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ABSTRACT

Hybrid modeling, combining machine learning with physical equations, is promis-
ing in many fields of science, in particular for climate and Earth Sciences, but faces
challenges like interpretability, inconsistent extrapolation, lack of speed, and ro-
bust inference. Here we show that the Bayesian machine scientist, a Bayesian
approach to symbolic regression is an ideal choice for the challenges in the hybrid
modeling task. We formulate the hybrid Bayesian machine scientist and show-
case its potential in the example of modeling ecosystem respiration with the Q10

model. Specifically, we show that our proposed hybrid equation discovery method
(i) extracts the correct equations, (ii) extrapolates better in different scenarios than
the non-hybrid and deep-learning-based baselines, and (iii) is able to infer more
accurately parameters of interest, even in the presence of equifinality. We antici-
pate a spur of development of hybrid equation discovery algorithms in the sciences
to approach fully interpretable data-driven models.

1 INTRODUCTION

Earth system models (ESMs) play a major role in understanding human impact on the Earth’s cli-
mate (IPCC, 2021), crucial for addressing climate change. They are complex mathematical repre-
sentations of the Earth’s climate system involving coupled nonlinear ordinary and partial differen-
tial equations (Scholze et al., 2012). To enhance these models, the community pursues integrations
with machine learning (ML), made possible by abundant Earth observation data (Grundner et al.,
2022; Reichstein et al., 2019; Camps-Valls et al., 2021). However, this approach is not without
its challenges, which include violating physical laws, poor generalization to out-of-domain (OOD)
data, and lack of interpretability in black-box ML models (Reichstein et al., 2019; Marcus, 2018;
Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe, 2012; Rudin & Radin, 2019).

Hybrid modeling, integrating ML with physical equations, has emerged as a popular approach to
harness these models (Karpatne et al., 2022; Koppa et al., 2022; Zhao et al., 2019; Tramontana et al.,
2020). However, challenges persist in speed, interpretability, and addressing equifinality (Oberpriller
et al., 2021; Reichstein et al., 2022), that is the existence of multiple (parametric and non-parametric)
models and sets of parameters that describe the data similarly well.

Symbolic regression is gaining attention as a promising solution to address some of the problems of
ML (Camps-Valls et al., 2023). It has been shown to be effective in supporting scientific discovery
in different areas of science (Abdellaoui & Mehrkanoon, 2021; Martinez-Gil & Chaves-Gonzalez,
2020; Weng et al., 2020; Wang et al., 2019; Batra et al., 2021; Lemos et al., 2022; Reichardt et al.,
2020), including the Earth sciences (Grundner et al., 2023). Unlike black-box ML models, symbolic
regression yields mathematical equations that are white-box models, i.e., interpretable to humans.
This enables direct insight into its extrapolation behavior, providing clarity and transparency in
predicting outcomes beyond the observed data range.
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Because in AI-enhanced ESMs there are several sources of uncertainty, it is crucial to sample from
distributions over parameter values, ML models, and, ideally, discovered equations to capture the
uncertainty of its projections. A Bayesian approach is the natural choice to obtain distributions
over equations (and eventually parameters). The Bayesian machine scientist (BMS) is a Bayesian
formulation of symbolic regression (Guimerà et al., 2020) and has shown impressive results for
extrapolation and discovery of physical equations.

In this work, we tie the ends together towards a hybrid BMS, which enables us to extract distribu-
tions over both equations and fixed meaningful parameters in a Bayesian fashion, thus pioneering
the path for combining perturbed parameter ensemble (Dagon et al., 2020) with symbolic regression
in climate models. Our concrete contributions are as follows: We formulate the BMS for the hybrid
modeling setting and showcase its capabilities in a simple but significant problem of ecosystem res-
piration modeling, where the hybrid Bayesian machine scientist (HBMS): 1) improves extrapolation
under different forms of OOD data; 2) recovers the true equations; and 3) shows improved inference
on parameters of interest and robustness under equifinality (the lack of identifiability). We find that
these results hold for both synthetic and measured data. Our findings showcase that the HBMS could
be the preferred tool for offline learning in the context of ESMs.

2 HYBRID BAYESIAN MACHINE SCIENTIST

Prior works have explored integrating symbolic regression and domain knowledge. Famous ap-
proaches, such as SINDy (Brunton et al., 2016) or genetic programing (GP) (Koza, 1994), have
been subject to the introduction of various scientific constraints. Asadzadeh et al. (2021) demon-
strated improved performance by partially fixing the regression tree in hybrid symbolic regression
models with GP. Kronberger et al. (2022) introduced constraints on function image and derivatives
to incorporate prior knowledge in a GP approach. Cornelio et al. (2023) developed AI-Descartes,
which constraints symbolic regression using logical axioms. Additionally, Chen et al. (2021) com-
bined sparse regression with physics-informed neural networks (PINNs) for effective use in sparse
and noisy data scenarios. To our knowledge, this work is the first to apply prior knowledge con-
straints to the BMS, focusing on the joint inference of physical parameters in the hybrid setting with
a partially fixed parametrization.

2.1 INFERENCE ON PARAMETERS WITH THE HYBRID BAYESIAN MACHINE SCIENTIST

In the probabilistic formulation of model selection, the posterior p(m|D) over models m given
some data D encapsulates all the information about the plausibility of models. This posterior can be
written as

p(m|D) =
exp[−H(m;D)]

Z
,

where H(m;D) is the description length for jointly encoding the model m and the data D, and Z
is a normalizing constant. It can be approximated as H = BIC(m;D)/2 − log p(m), where BIC is
the Bayesian information criterion and p(m) is a suitable prior for models (Guimerà, 2020). The
BMS is a symbolic regression algorithm that samples closed-form mathematical models from the
posterior p(m|D) using MCMC (Guimerà, 2020).

Here, we formulate the BMS for additional inference on meaningful parameters in the hybrid mod-
eling setting, in which part of the equation is known (with some parameters θ whose values are
unknown and need to be learned) and the other part m needs to be inferred through symbolic regres-
sion among all possible models M . We obtain the posterior over θ via marginalization

p(θ|D) =
∑
m∈M

p(θ,m|D) =
∑
m∈M

p(θ|m,D)p(m|D) . (1)

Since, in general, there is no closed-form solution to the posterior p(θ|m,D), we would ideally need
to run a nested MCMC, sampling each equation m and then, in turn, sampling from the posterior
p(θ|m,D) over θ given the equation. This is computationally intensive, so we instead assume that
p(θ|m,D) is peaked around some value θ∗ and use the approximation

p(θ|D) ≈
∑
m∈M

δ(θ∗m − θ)p(m|D) .

We estimate θ∗m via maximum likelihood, which amounts to assuming a flat (enough) prior over θ.
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Table 1: Results on extrapolation task to OOD data scenarios. EM denotes the ensemble mean of the
NN training, PPM is the posterior predictive mean, and MDL represents the model with minimum
description length. RMSE and bias are given in µmolCO2m

−2s−1.
One year to next year Night to day

Model Estimator RMSE R2 Bias RMSE R2 Bias

NN EM 0.049 0.987 -0.073 0.457 0.944 -0.063
HNN EM 0.122 0.967 -0.122 0.121 0.996 -0.013

BMS PPM 0.018 0.995 0.038 0.123 0.996 0.066
BMS MDL 0.028 0.993 0.018 0.290 0.977 0.154

HBMS PPM 0.013 0.997 -0.008 0.100 0.997 0.054
HBMS MDL 0.003 0.999 0.006 0.053 0.999 0.022

2.2 EXPERIMENTS

We illustrate the performance of our approach in a relevant problem in Earth sciences.

Q10 Model of Ecosystem Respiration The functional relationship between temperature and res-
piration in terrestrial ecosystems has been classically represented via the Q10 respiration model (Ar-
rhenius, 1889; Van’t Hoff et al., 1899; Lloyd & Taylor, 1994):

Reco(X,TA) = Rb(X) ·Q(TA−15)/10
10 , (2)

where Q10 is the parameter describing temperature sensitivity, which is the part of the equation
that is well understood, X is a set of meteorological drivers, and Rb describes the unknown base
respiration, i.e., the baseline emission of CO2 of an ecosystem at the reference temperature of 15◦C.
For a thorough description of the real and synthetic data, see Appendix A.1. A typical hybrid
modeling approach amounts to using a neural network (NN) as an estimator for Rb, treating Q10 as
a trainable parameter, and fitting everything end-to-end with gradient descent, as in Reichstein et al.
(2022). We will refer to this approach as hybrid Neural Network (HNN) approach in contrast to the
purely non-parametric NN approach, and it will serve as a hybrid modeling baseline.

Training-Test scenarios We consider three scenarios: (i) 1000 randomly sampled points from
the synthetic data in 2004. We test the extrapolation capabilities to the dynamics in 2005. (ii)
Synthetic training points (1010 data points) according to the measurement mask of the real data for
2004. Hence, only nighttime data is used for training. At test time, we evaluate the extrapolation
capabilities to the synthetic daytime data of 2004. (iii) 1010 data points measured in 2004. We test
extrapolation capabilities to the measured points of 2005.

Methodology In all experiments, we run the BMS and the HBMS with a burn-in phase of 1000
steps and then sample 100 equations with 50 simulation steps between each sample. We report both
the posterior predictive mean (PPM) and the model of minimum description length (MDL) of the
runs. Similar to Reichstein et al. (2022), we deployed neural networks with two layers and a width
of 16 nodes with ReLU nonlinearities in the intermediate layers and a final softmax nonlinearity. We
train 100 models with Adam (Kingma & Ba, 2017) with an exponentially decaying learning rate for
optimization and select the best model during the training based on 20% hold-out validation data.
We report the ensemble mean (EM) for these models. Finally, we run both the HBMS and HNN
with TA as an additional driver to create issues of equifinality. We report extrapolation performance
and inference on Q10 for the hybrid models.

3 RESULTS

HBMS extrapolates better to unseen scenarios Initially, we assess HBMS extrapolation capa-
bilities, focusing on two scenarios detailed in Table 1. The first involves extrapolation from one
year to the next, where BMS-based approaches outperform NN-based methods. Hybrid knowledge
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Table 2: Equations discovered by standard BMS and HBMS over different setups.
Setting Model Discovered equation of minimum description length

Random synthetic BMS α4(WDcum − α6α
TA
3 )(

SW SM
POT

α7
+ SW SM,diff

POT )− α7

HBMS (α3SW
SM,diff
POT + α7SW

SM
POT + α5)α

WDcum
5 Q

0.1(TA−15)
10

Night time synthetic BMS ((WDcum + α6 + α2TA)(α4 + SW SM
POT) + SW SM,diff

POT )α0

HBMS (α7 + α7SW
SM,diff
POT + α4SW

SM
POT + α2)α

WDcum
2 Q

0.1(TA−15)
10

Night time measured BMS (α5(TA + α4(SW
SM,diff
POT )3) + α7)SW

SM
POT

HBMS −((WDcum+α
SW SM,diff

POT
0 )+SW SM

POT)
α4

Q
0.1(TA−15)
10

enhances BMS, but harms the NN approach. In the second scenario, a shift from training on night-
time data to testing on daytime data challenges pure NN extrapolation, favoring the hybrid variant.
HBMS typically shows superior MDL performance, as the optimal representation beats an ensem-
ble. On real data (refer to Table 3), PPM excels, particularly when the real mode is harder to identify.
For visualizations and a brief discussion on the sampled functions, refer to Appendix A.3.

HBMS retrieves correct and interpretable equations As shown in Table 2, synthetic data, the
HBMS methods all picked up correct relationships of SW SM

POT, SW SM,diff
POT , including the exponential

relationship with WDcum. The BMS instead introduced WDcum linearly and found only on the random
data exponential relationship. Potentially, due to the smaller range of values, a linear relationship
with temperature was discovered on nighttime data alone. The HBMS found a linear relationship of
WDcum on measured data.

HBMS allows robust inference under equifinality Examining Q10 values from the scenario with
1000 randomly sampled data points, HBMS provides a distribution closer to the actual Q10 value
of 1.5 with the ability to capture multiple modes. HBMS remains robust even when introducing an
additional temperature predictor, creating an equifinality scenario. In contrast, HNN struggles with
this introduction, significantly affecting Q10 estimation. The resilience of HBMS to the additional
predictor aligns with its nature, as the introduction of unnecessary dynamics is penalized by an
increase in description length.
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Figure 1: Estimated Q10 values over 100 models of a) HNN and b) HBMS each. Results are shown
for both methods without and with temperature TA as a predictor in the base respiration part Rb.

4 CONCLUSION

For advancing AI-enhanced ESMs, fast, scientifically constrained, interpretable, and probabilistic
machine learning models are imperative. The proposed HBMS is a significant step forward, of-
fering a joint distribution over parameters and interpretable equations. Our results demonstrate its
superiority over non-hybrid and standard hybrid neural network baselines in extrapolation and ro-
bustness under equifinality, thus emphasizing its potential. In future work, we aim to identify more
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use cases and enhance strategies for approximating the true posterior over structural parameters, po-
tentially using methods like the Laplace approximation. Exploring additional avenues to introduce
prior scientific constraints in equation discovery, facilitated by the Bayesian framework, is a crucial
aspect to investigate further.
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A APPENDIX

A.1 ECOSYSTEM RESPIRATION DATA

The problem of modeling ecosystem respiration is seemingly simple but essential due to the nature
of CO2 as a greenhouse gas, and it carries interesting caveats that make it suitable for demonstrating
the capabilities of our approach. It is known that temperature is the main driver of respiration and
usually has an exponential effect. How other drivers, like water availability, modulate the base
respiration is highly uncertain. Another difficulty is that we can only measure it at an ecosystem
level during the night; during the day, photosynthesis also affects the change in CO2. The conditions
for measurements of the CO2 flux during the night are particularly unfavorable and high-quality
measurements, hence, sparse.

Synthetic Data We compute the synthetic data similar to Reichstein et al. (2022) where we also
take the HNN baseline from and add an additional exponential dependency to water deficit WDcum.
We use measured air temperature TA, water deficit WDcum computed from precipitation and evapo-
ration, and potential incoming radiation SWPOT . We compute

Q10 = 1.5, (3)

Rcycle
b = 0.01 · SW SM

POT − 0.005 · SW SM,diff
POT (4)

Rb = 0.75 · (Rcycle
b −min(Rcycle

b + 0.1π) · exp(0.01WDcum), (5)

Reco = Rb ·Q0.1·(TA−15)
10 · (1 + ϵ), (6)

(7)

where Rsyn
b describes the base respiration, which we compute with a smooth daily radiation cycle.

The smooth incoming potential radiation SW SM
POT and its smoothed difference quotient SW SM,diff

POT are
computed by averaging moving windows of 10 days over the incoming potential radiation SWPOT.
We apply the computations in equation 5 to ensure that Rsyn

b is always positive. We sample ϵ from
a centered truncated normal distribution with 0.2 standard deviation in the interval [−0.95, 0.95] to
obtain heteroskedastic noise over the observations.

A.2 REAL DATA

The performance on real data is generally not very good (see Table 3), but we extrapolate substan-
tially better than the NN approaches. The problem with this task is that we cannot capture any
anomalies outside of temperature and water availability. If someone cuts the grass from 2004 to
2005, there is no natural way for the model to pick up this change.

Table 3: Results on extrapolation task to the next year on real data.
model RMSE R2 Bias

NN (EM) 17.568 0.256 -1.075
HNN (EM) 17.305 0.267 -0.983

BMS (MDL) 15.081 0.361 -0.194
BMS (PPM) 14.732 0.376 -0.276

HBMS (MDL) 14.752 0.375 -0.269
HBMS (PPM) 14.447 0.388 -0.265

A.3 VISUAL INSPECTION OF SAMPLED CURVES

In the visual inspection in Figure 2, we can see that the MDL model of HBMS is almost identical
to the ground truth while the HNN shows some bias from day 154 on. The HNN ensemble shows
relatively uniform patterns in the uncertainty, but with the bias, the ground truth moves to the edge
of the confidence bands. At the same time, the distribution of the posterior predictive of the HBMS
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visually seems to capture the uncertainty better when the predictive mean deviates from the true
curve.
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Figure 2: Ensemble plots of both hybrid modeling approaches in the extrapolation task from night-
time to daytime.
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