
MIGGPT: Harnessing Large Language Models for
Automated Migration of Out-of-Tree Linux Kernel

Patches Across Versions

Pucheng Dang 1,2,3 Di Huang 1 Dong Li 1,2,3 ∗ Kang Chen 4

Yuanbo Wen 1 Qi Guo 1 Xing Hu 1,3

1 State Key Lab of Processors, Institute of Computing Technology, CAS
2 University of Chinese Academy of Sciences

3 Zhongguancun Laboratory
4 Tsinghua University

{dangpucheng20g,lidong}@ict.ac.cn

Abstract

Out-of-tree kernel patches are essential for adapting the Linux kernel to new
hardware or enabling specific functionalities. Maintaining and updating these
patches across different kernel versions demands significant effort from experi-
enced engineers. Large language models (LLMs) have shown remarkable progress
across various domains, suggesting their potential for automating out-of-tree ker-
nel patch migration. However, our findings reveal that LLMs, while promising,
struggle with incomplete code context understanding and inaccurate migration
point identification. In this work, we propose MIGGPT, a framework that em-
ploys a novel code fingerprint structure to retain code snippet information and
incorporates three meticulously designed modules to improve the migration ac-
curacy and efficiency of out-of-tree kernel patches. Furthermore, we establish
a robust benchmark using real-world out-of-tree kernel patch projects to evalu-
ate LLM capabilities. Evaluations show that MIGGPT significantly outperforms
the direct application of vanilla LLMs, achieving an average completion rate
of 74.07% (↑ 45.92%) for migration tasks. Our code and data are available at
https://github.com/CherryBlueberry/MigGPT.

1 Introduction

The Linux kernel, a widely-used open-source operating system, is extensively applied across various
domains [46, 30, 5, 55]. Its adaptability and extensibility enable developers to create out-of-tree kernel
patches that enhance performance [23, 1] or security [50, 57, 52], holding irreplaceable significance
in modern engineering practices. Out-of-tree kernel patches, such as RT-PREEMPT, AUFS, HAOC,
Raspberry Pi kernel, and Open vSwitch, are modifications to the Linux kernel that are developed and
maintained independently of the mainline source tree. Unlike in-tree patches, which are included in
official kernel releases, out-of-tree patches address specific use cases or features not yet supported
by the mainline kernel. As the Linux kernel evolves, these out-of-tree patches require ongoing
maintenance to ensure compatibility with newer Linux kernel versions. As shown in Figure 1, the
maintenance process involves utilizing the old out-of-tree kernel patch and analyzing the differences
between the old and new Linux kernel versions to upgrade the patched kernel repository to the new
version. This maintenance process is crucial and labor-intensive in engineering applications, which
demands specialized experts and takes weeks of intensive effort [56].

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CherryBlueberry/MigGPT

Old Linux Kernel
Repository

New Linux Kernel
Repository

Patched Old Linux
Kernel Repository

Old Out-of-Tree
Patch

Version Update

Patched New Linux
Kernel Repository

Expert Effort

MigGPT

Migration

Figure 1: MIGGPT can assist in automating the version
migration and maintenance of out-of-tree kernel patches
of the Linux kernel. This saves on expert labor costs and
reduces the development cycle.

Existing code migration technologies [48, 25,
12, 17, 47, 22, 41, 10, 45, 43, 44, 53] utilize
static program analysis [26] to facilitate API
cross-version maintenance or the backporting of
CVE security patches. However, these methods
only address a subset of scenarios in out-of-tree
kernel patch migration. 1) They rely on pre-
defined migration rules, which are insufficient
for handling comprehensive scenarios involving
complex changes such as namespace modifica-
tions, invocation conflict resolution, and the inte-
gration of control and data flow dependencies. 2)
These single-step methods assume known target
code locations in updated repositories, limiting
their applicability to out-of-tree kernel patch scenarios.

With the substantial progress made by Large Language Models (LLMs) in understanding [38, 19, 24]
and generating code [13, 2, 36, 51, 54], there is a promising opportunity to leverage LLMs for the
automated migration and maintenance of out-of-tree kernel patches. However, due to the inherent
lack of determinism in LLMs when generating content, several challenges arise when directly
employing these models to handle the migration and maintenance of out-of-tree kernel patches.
These challenges include 1) structural similarity-induced failure, 2) non-deterministic code snippet
boundaries, 3) absence of associated code snippet information, and 4) inaccuracies in locating
migration points, which reveals that LLMs struggle with incomplete code context understanding and
inaccurate migration point identification.

To address the challenges, we propose MIGGPT, the first framework designed to assist humans in
automating the migration and maintenance of out-of-tree kernel patches. We reframe this migration
process as a two-step task: retrieving target code from updated kernels and performing patch migration,
which is both more challenging and practical. MIGGPT utilizes Code Fingerprint (CFP), a novel
data structure to encapsulate the structural and critical information of code snippets throughout the
migration process of out-of-tree kernel patches. With the assistance of CFP, MIGGPT incorporates
three core modules: the Retrieval Augmentation Module (addressing challenges 1 and challenges 3),
the Retrieval Alignment Module (addressing challenge 2), and the Migration Enhancement Module
(addressing challenge 4). Specifically, the Retrieval Augmentation Module supplies code snippet
information via CFPs, mitigates interference from similar structures, and appends additional code
snippet information pertinent to migration. The Retrieval Alignment Module achieves alignment of
the target code snippet boundaries through the first anchor line and the last anchor line within CFPs.
The Migration Enhancement Module facilitates accurate and efficient migration by comparing CFPs
to ascertain the number of migration points and their respective locations.

To evaluate the efficiency of MIGGPT, we construct a robust benchmark that includes three real-world
projects from the out-of-tree patch community of the Linux kernel. These projects comprise two
different levels of migration examples, encompassing a variety of common migration types. With
this benchmark, we evaluated MIGGPT across diverse LLMs (GPT-3.5, GPT-4-turbo, OpenAI-o1,
DeepSeek-V3, DeepSeek-R1, and Llama-3.1) [33, 34, 35, 8, 6, 11] to validate its effectiveness and
broad applicability. MIGGPT significantly outperforms the direct application of vanilla LLMs,
achieving an average completion rate of 74.07% (↑ 45.92%) for migration tasks. Additionally,
the average number of queries to LLMs is only 2.26(↑ 0.26), indicating no substantial increase in
computational overhead. Meanwhile, MIGGPT required only 2.08% of the average time taken by
human experts, demonstrating its superior time efficiency.

In summary, we make the following contributions:

• We have developed a robust migration benchmark, encompassing three real-world projects.
To the best of our knowledge, this is the first benchmark for out-of-tree kernel patch
migration that can assess performance across diverse migration tools, providing a valuable
foundation for future research.

• We propose CFP, a carefully designed data structure that encapsulates the structural and
critical information of code snippets, providing essential migration context for LLMs. Based

2

on this, we introduce MIGGPT, a framework to assist humans in automating out-of-tree
kernel patch migration and maintenance.

• We conduct comprehensive experiments on both closed-source models (i.e. GPT-3.5, GPT-4
and OpenAI-o1) and open-source models (i.e. DeepSeek-V3, Deepseek-R1, and Llama-
3.1). The results demonstrate that MIGGPT achieved an average migration accuracy of
74.07%(↑ 45.92%), representing a significant improvement over vanilla LLMs.

2 Related Work

2.1 Code Migration Kernel Patch

Existing code migration [9, 37] technologies primarily focus on API cross-version maintenance [48,
25, 12, 17, 47, 22, 41, 10] and the backporting of CVE security patches [45, 43, 44, 53]. The most
similar migration efforts, FixMorph [43], TSBPORT [53], and PPatHF [37], focus on CVE patch
or forked code, which cannot be applied to the migration of out-of-tree kernel patch: 1) these
methods only partially address out-of-tree kernel patch migration due to the tight coupling between
kernel and patch code. They identify vulnerability patterns and apply predefined rules [26] but fail to
manage complex changes such as namespace modifications, invocation conflicts, and control/data
flow dependencies, limiting their effectiveness in comprehensive migration scenarios. 2) These works
handle single-step migration, assuming known target code locations in updated repositories, making
them difficult to apply to out-of-tree kernel patch scenarios. In contrast, our MIGGPT tackles a more
complex two-step task: retrieving target code from updated kernels and migrating patches, which is
both more challenging and more practical.

2.2 LLMs for Coding

In recent years, LLMs [4, 14, 42, 27, 32, 28, 34] have achieved remarkable progress in various natural
language processing tasks. Initially focused on natural language understanding and generation, the
adaptability of LLMs has expanded to the field of software engineering, where they can be fine-
tuned to perform programming tasks such as code completion [38, 19, 24], code search [13], code
summarization [2], code generation [36], and even complex code repair [15, 20]. This inspires us to
apply LLMs to the migration of out-of-tree kernel patches. To the best of our knowledge, MIGGPT
is the first work to apply LLMs to this task, paving the way for subsequent research.

3 Problem Formulation

Table 1: Formalization and counts of the two types
of migration examples. Other cases are too simple to
necessitate resolution. Details in App. A.2.

Class Formalization Number

Type 1 ∆ ̸= ∅, Σ ̸= ∅, 80
∀δ ∈ ∆, ∀σ ∈ Σ, ⟨δ, σ⟩ = 0 (59.3%)

Type 2 ∆ ̸= ∅, Σ ̸= ∅, 55
∀δ ∈ ∆, ∀σ ∈ Σ, ⟨δ, σ⟩ ̸= 0 (40.7%)

Others ∆ = ∅ or Too simple
∆ ̸= ∅, Σ = ∅ to resolve

Out-of-tree kernel patches lack official support
and require manual maintenance to ensure com-
patibility with future Linux kernel versions. An
example of migration is provided in App. B.
Let R denote a Linux kernel repository, where
s ∈ R represents a code snippet within the repos-
itory. The older version of Linux kernel is Rold,
and after applying an out-of-tree patch, it be-
comes R′

old. When the kernel advances to a
new version Rnew, the migration problem is to
construct a function M : R′

old → R′
new where

∀s ∈ R′
old,∃M(s) ∈ R′

new s.t.∀x ∈ Inputs,Execute(R′
old, x) = Execute(R′

new, x).

4 Migration Benchmark

4.1 Migration Types

We can obtain the code snippets sold ∈ Rold and s′old ∈ R′
old at the same location in the repository

before and after applying the out-of-tree kernel patch, with the differences represented by ∆. As
Rold is updated to a new version of the Linux kernel Rnew, we need to locate the corresponding code
snippet snew ∈ Rnew in the new version of the Linux kernel to obtain the difference information

3

during the kernel update. The differences between sold and snew are denoted as Σ. Subsequently, by
utilizing the information from ∆ and Σ, we complete the migration task to obtain the new version of
the out-of-tree kernel patch code snippet s′new. Finally, these code snippets are integrated to form the
new version of the out-of-tree kernel patch code repository R′

new.

Considering the states of ∆ and Σ, we can categorize the migration types into two classes:

Type 1: This type of migration example satisfies ∆ ̸= ∅,Σ ̸= ∅, ∀δ ∈ ∆,∀σ ∈ Σ, ⟨δ, σ⟩ = 0. This
indicates that both the out-of-tree kernel patch and the new version of the Linux kernel have modified
the code snippet, and their changes do not affect the same lines of code, meaning the modifications
do not overlap or conflict with each other. Traditional methods’ limitations with Type 1 are discussed
in App. G.1.

Type 2: In contrast, this type satisfies ∆ ̸= ∅,Σ ̸= ∅, ∀δ ∈ ∆,∀σ ∈ Σ, ⟨δ, σ⟩ ≠ 0, indicating that
their modifications overlap on the same lines of code, leading to conflicts.

The remaining cases, ∆ = ∅ and ∆ ̸= ∅,Σ = ∅, signify no code modification in the out-of-tree
kernel patch and no changes in the new kernel version, respectively. Due to their simplicity and
straightforward migration, they are excluded from our benchmark.

4.2 Benchmark Design

We have built a robust migration testing benchmark using out-of-tree kernel patches from real-world
projects, specifically focusing on three open-source initiatives: RT-PREEMPT [21], Raspberry Pi
Linux [39], and HAOC [16] 2. More details about these projects are available in App. A.1. We collect
code from these projects across Linux kernel versions 4.19, 5.4, 5.10, and 6.6 for our benchmark.
The selected kernel versions are officially maintained LTS releases, which are widely adopted in
production systems(e.g., enterprise servers, embedded devices).

Guided by the experience of manually completing the task, we divide the migration task into two
steps: 1) Identifying the migration location, i.e., finding snew. 2) Completing the migration to obtain
s′new. In this case, firstly, we use the diff command to obtain the code snippets sold and s′old from
files with the same name in the code repository. Subsequently, by matching filenames, we locate the
file in code repository Rnew that contains the target new version code snippet snew. Finally, we gather
the ground truth (results manually completed by humans) ŝnew and ŝ′new. Specifically, our benchmark
includes a quintuple (sold, s

′
old,filenew, ŝnew, ŝ

′
new) for each migration example. After filtering out

invalid differences (such as spaces, blank lines, file deletions, etc.), we randomly collected 135
migration examples, comprising 80 Type 1 and 55 Type 2, as detailed in Table 1.

5 MIGGPT

We first outline the challenges faced when utilizing vanilla LLMs for the migration of out-of-tree
kernel patches (Section 5.1), and then discuss how MIGGPT effectively addresses these challenges
(Sections 5.2 to 5.7).

5.1 Challenges

Through analyzing LLM behavior and results, we identify key challenges hindering their success in
out-of-tree kernel patch migration:

Challenge 1 (Structural Ambiguity): When identifying the code snippet snew in filenew for migration,
retrieval errors can occur. LLMs often struggle to locate function definitions within snew due to
interference from similar function structures, leading to inaccuracies that affect subsequent migration
stages. An example is provided in App. C.1.

Challenge 2 (Boundary Indeterminacy): This challenge occurs when retrieving snew from filenew.
Due to the inherent randomness in LLM-generated responses, discrepancies often arise between the
start and end lines of snew identified by the LLM and those retrieved by human developers (ŝnew).

2Even with knowledge of the code in these out-of-tree kernel patches, LLMs still struggle to accomplish
migration and maintenance tasks.

4

Function Signature
Extraction

CFP
Generation

Correlation Function
Extraction

CFP
Generation

Retrieval Task
Prompt

Structure
Prompt

Expert Persona
Prompt

Retrieval PromptRetrieval Augmentation Module

LLM

Migration Point
Localization

Migration
Task Prompt

Location
Prompt

Expert Persona
Prompt

Migration Prompt

LLM
CFP

Generation

Retrieval Alignment Module

Anchor Statement
Extraction

Alignment
Prompt

Migration Augmentation Module

𝑠𝑠new′ 𝑠𝑠old′

𝑠𝑠old

filenew

CFPold
CFPtmp

𝑠𝑠tmp

CFPold′

Critical Information
Check

Pass

𝑠𝑠newFail

Figure 2: Overview of MIGGPT. MIGGPT employs a code fingerprint (CFP) structure to retain code snippet
information, enhanced by three modules to improve migration accuracy and efficiency. The migration process
involves two steps: 1) locating the migration position in filenew to find snew, and 2) completing the migration to
obtain s′new.

This indeterminacy can result in missing or extraneous lines, significantly compromising migration
outcomes where precise code segment boundaries are critical. An example is provided in App. C.2.

Challenge 3 (Missing Associated Fragments): This challenge occurs when retrieving snew from
filenew. During Linux kernel upgrades, code blocks from older versions may be split into fragments
in the new version for standardization or reuse. LLMs often fail to identify and retrieve all these
fragments, leading to incomplete snew. This results in errors during out-of-tree kernel patch migration
due to missing code segments. An example is provided in App. C.3.

Challenge 4 (Ambiguous Migration Points): This challenge arises during the migration of snew to
s′new. Although the information provided by sold and s′old is sufficient to accurately infer the migration
point, LLMs frequently fail to precisely identify these points. This ambiguity results in errors when
determining the correct location for migration. An example is provided in App. C.4.

Overall, LLMs require migration-relevant code structure information and code scope constraints to
more effectively migrate and maintain out-of-tree kernel patches.

5.2 Overview

5.3 Code Fingerprint

static inline void local_daif_mask(int set_mm)
 {
 asm volatile(“msr daifset, #0xf“...);
 if (system_uses_nmi())
 _allint_set();
 /* Don't really care for a dsb here */
 trace_hardirqs_off();
 ...
 }

1
2
3
4
5
6
7
8
9

Figure 3: A code snippet containing inline
assembly statements and comment annota-
tions.

To this end, we propose MIGGPT, a framework combin-
ing traditional program analysis with LLMs to facilitate
out-of-tree kernel patch migration across Linux versions.
As outlined in Section 4, MIGGPT works in two stages:
identifying target code snippets in the new version and mi-
grating the out-of-tree patch. Figure 2 shows its three core
modules: the Retrieval Augmentation Module (address-
ing Challenges 1 and 3), the Retrieval Alignment Module
(addressing Challenge 2), and the Migration Enhance-
ment Module (addressing Challenge 4). Each module
uses a code fingerprint structure, which encodes the struc-
tural features of code snippets, to enhance LLM performance and migration accuracy, tackling the
challenges discussed earlier.

To address the challenges LLMs face in migrating out-of-tree kernel patches across Linux kernel
versions, a detailed analysis of code snippet structure is essential to identify migration-related code
structure information and code scope constraints. While tools like Abstract Syntax Tree (AST) are
useful for structural analysis, they have limitations: 1) Inability to process code snippets that lack

5

complete compilation dependencies (e.g., missing variable or function definitions, absent macro
declarations, or incomplete header inclusions) due to tight integration with the compilation process.
2) The mismatch between excessive structural details (AST tools provide a plethora of information
irrelevant to patch migration) and the absence of critical information (such as comments and inline
assembly), which is essential for maintaining and updating kernel patches 3. Focusing on key
statements, such as migration points and alignment positions, while preserving essential elements like
comments and inline assembly, can enhance efficiency and reduce overhead in the migration process.

Function
Definition Asm If

pos: 1

end: 9

name:local_d
aif_mask

parameter

pos: 6

end: 6

context:‘\"ms
r daifset…

pos: 4

end: 5

inline_fuccall

Comment

pos: 3

end: 3

context:‘\"ms
r daifset…

FuncCall

pos: 4

end: 4

name:system
_uses_nmi

Variable
Declaration

name:set_m
m

FuncCall

pos: 7

end: 7

name:trace_h
ardirqs_off

Name Return
TypeModifierBody

local_daif_
mask static, inline viod

Name Type

set_mm int

Function
Definition

If

Parameter

Condition

Function
Call

Name Argument
system_use

s_mni

Then
Block

Function
Call

Name Argument

_allin_set

Asm Comment

AST:
Information Overload,
Complex,
Tree Structure.

CFP:
Key Information,
Lightweight,
Sequential Structure.

Figure 4: Compared to AST, CFP extracts key code
structures, and its linear representation enables clearer
localization of code modification points.

To address the limitations of traditional code
structure analysis, we propose Code Finger-
print (CFP), a lightweight sequential data struc-
ture for analyzing code snippets. CFP records
both the content and positional information for
each line of statements, encompassing all C lan-
guage statements, including comments and in-
line assembly (a detailed example is provided
in App. D.5). As shown in Figure 4, CFP fo-
cuses on recording function definitions and func-
tion calls, which are crucial for addressing chal-
lenges 1 and 3, as detailed in Section 5.4. Ad-
ditionally, its linear structure facilitates accu-
rate positioning for insertion, deletion, and other
update operations, tackling challenges 2 and 4,
further explained in Sections 5.5 and 5.6. The
algorithm for generating CFP is in App. D.5.
Overall, CFP offers three key advantages: 1) ef-
fective processing of incomplete code snippets,
2) preservation of critical information such as
comments and inline assembly, which are vital
for out-of-tree kernel patch migration, and 3) a streamlined design that focuses on essential statements,
improving migration efficiency and reducing overhead. CFP is specifically designed for out-of-tree
kernel patch code, addressing the challenges encountered in Linux kernel patches. More discussions
about CFP are in App. G.2. By minimizing unnecessary processing while ensuring relevance, CFP
provides a targeted solution for migrating out-of-tree kernel patches across Linux kernel versions.

5.4 Retrieval Augmentation Module

The retrieval augmentation module is designed to address challenge 1 and challenge 3 encountered
during the migration update of out-of-tree kernel patches by LLMs. In challenge 1, LLMs are prone
to be misled by similar function structure when processing function definitions in code snippets,
leading to incorrect retrieval of snew in filenew, which ultimately results in erroneous migrated s′new.
To overcome this challenge, it is necessary to constrain the LLM’s attention to the target code snippet.
As illustrated in Figure 2, the retrieval augmentation module achieves this by constructing a code
fingerprint structure (CFPold) for the old version of the Linux kernel code snippets sold. By analyzing
CFPold, the module extracts the function signatures of the function definitions contained within
sold. These function signatures are then used to build a prompt to describe the structure information
(“Structure Prompt"), which is incorporated into the input fed to the LLM. An example is provided in
the App. D.2.

On the other hand, challenge 3 highlights that during the migration update of out-of-tree kernel patches
by LLMs, there is an issue with missing associated functions. For the LLM’s temporary retrieval
result stmp, we utilize the code fingerprint structures CFPtmp and CFPold of stmp and sold, respectively,
and extract from them the sets of internally called associated functions, denoted as Ftmp and Fold.
Then, using string matching techniques, we retrieve from filenew the code snippets corresponding
to the associated function calls Funccall that satisfy Funccall ∈ Ftmp \ Fold. Ultimately, these
associated function code snippets are combined with stmp to form the complete code snippet snew. An
example is provided in the App. D.2.

3Inline assembly is widely used in the Linux kernel, and comments are crucial for future module development,
as their omission would hinder subsequent modifications.

6

5.5 Retrieval Alignment Module

The retrieval alignment module is devised to tackle challenge 2, which was encountered during the
migration update of out-of-tree kernel patches by LLMs. Challenge 2 indicates that when the LLM
retrieves the target code snippet snew from the new version of the Linux kernel file filenew, there can
be a mismatch between the boundary line of snew. To address this issue, we need to leverage the
information from the first and last lines of the old version code snippet sold to aid in the localization
during the retrieval of snew. As illustrated in Figure 2, we utilize the code fingerprint structure CFPold
of sold. By taking advantage of its linear structure, we obtain the CFP statements for the first and last
lines. These statements are used to construct an “Alignment Prompt", which describes the information
of the first and last lines and is included as part of the input to the LLM. This prompt guides the LLM
in performing the retrieval task better by accurately identifying the boundaries of the code snippet.

5.6 Migration Augmentation Module

The migration augmentation module is primarily designed to address challenge 4 encountered by
LLMs during the migration of new-version Linux kernel code snippets snew into the final updated out-
of-tree kernel patch s′new. In challenge 4, LLMs often struggle to accurately identify the number and
location of migration points, leading to errors in the final migrated s′new. As illustrated in Figure 2, to
tackle this challenge, we leverage information from the old version code snippet sold and its modified
counterpart s′old to determine the number and location of modifications made to the out-of-tree kernel
patch. This information is used to construct a “Location Prompt” that assists the LLM in accurately
identifying the number and location of migration points. An example is provided in the App. D.3.

5.7 Implementation

With the critical code information provided by CFP, we can leverage the Retrieval Augmentation
Module and the Retrieval Alignment Module to assist LLMs in more effectively identifying target
kernel code snippets snew. Subsequently, with the aid of the Migration Augmentation Module, we
facilitate the migration to generate the final code snippet s′new. All the prompts and the algorithm of
MIGGPT are provided in App. D.4.

As illustrated in Figure 2, we first need to retrieve code snippet snew from filenew. Specifically, using
the information contained within CFPold, we can extract a set of critical function signatures S and
a set of key anchor statements A. With this information, we construct the StructurePrompt and
AlignmentPrompt, ultimately forming the complete RetrievalPrompt. We then query LLMs
using the RetrievalPrompt to obtain an initial result stmp. We check if stmp contains items from the
target function signature set S. If not, we repeatedly query the LLMs using the RetrievalPrompt
(up to m times). If it does contain items from S, we use CFPold and CFPtmp to extract newly
appeared called functions within stmp and retrieve the code snippets where these called functions are
defined from filenew as additional supplementary information for stmp. Finally, we concatenate these
two parts of the code snippets to obtain snew. After obtaining snew, we proceed to migrate it to achieve
s′new. We utilize the differences between CFPold and CFP′

old to extract the number and positions of
migration points and generate the LocationPrompt. Further, we formulate the MigrationPrompt
and query the LLM to obtain the migrated out-of-tree kernel patch code snippet s′new.

6 Evaluation

In this section, we assess the performance of MIGGPT, focusing on the following questions:
RQ1 (Performance): How does the performance of MIGGPT compare with that of vanilla LLM?
RQ2 (Ablation): How does each module within MIGGPT contribute to the overall performance?
RQ3 (Failure Analysis): How much modification is required for MIGGPT’s failed example to align
with human-level performance in out-of-tree patch migration tasks?

6.1 Evaluation Settings

We assess MIGGPT using two benchmarks: the out-of-tree kernel patch migration benchmark
from Section 4 and FixMorph’s CVE patch backporting benchmark [43], which includes 350 in-
stances. For baselines, we use vanilla LLMs, including GPT-3.5 [33], GPT-4-turbo [34], OpenAI-

7

Table 2: The accuracy of the MIGGPT-augmented LLMs compared to vanilla LLMs on retrieving target code
snippets.

LLM Method Type 1 (80) Type 2 (55) All (135) Average
Best Match Semantic Match Human Match Best Match Semantic Match Human Match Best Match Semantic Match Human Match Query Times

GPT-3.5 Vanilla 20.00% 33.75% 26.25% 20.00% 25.45% 27.27% 20.00% 30.37% 26.67% 1.00
MIGGPT 68.75% 68.75% 71.25% 61.82% 54.55% 70.91% 65.93% 62.96% 71.11% 1.28

GPT-4-turbo Vanilla 60.00% 67.50% 65.00% 69.09% 76.36% 78.18% 63.70% 71.11% 70.37% 1.00
MIGGPT 91.25% 95.00% 96.25% 81.82% 83.64% 89.09% 87.41% 90.37% 93.33% 1.16

OpenAI-o1 Vanilla 76.25% 82.50% 80.00% 81.82% 85.45% 92.73% 78.52% 83.70% 85.19% 1.00
MIGGPT 96.25% 97.50% 96.25% 85.45% 89.09% 92.73% 91.85% 94.07% 94.81% 1.25

DeepSeek-V3 Vanilla 68.75% 71.25% 72.50% 74.55% 78.18% 78.18% 71.11% 74.07% 74.81% 1.00
MIGGPT 92.50% 93.75% 95.00% 85.45% 78.18% 89.09% 89.63% 87.41% 92.59% 1.22

DeepSeek-R1 Vanilla 72.50% 76.25% 77.50% 63.64% 70.91% 74.55% 68.89% 74.07% 76.30% 1.00
MIGGPT 95.00% 95.00% 95.00% 80.00% 85.45% 87.27% 88.89% 91.11% 91.85% 1.23

Llama-3.1-8B Vanilla 37.50% 46.25% 43.75% 43.64% 47.27% 45.45% 40.00% 46.67% 44.44% 1.00
MIGGPT 77.50% 80.00% 81.25% 70.91% 74.55% 78.18% 74.81% 77.78% 80.00% 1.36

Llama-3.1-70B Vanilla 58.75% 65.00% 63.75% 61.82% 72.73% 75.55% 60.00% 68.15% 68.15% 1.00
MIGGPT 91.25% 92.50% 93.75% 80.00% 81.82% 81.82% 86.67% 88.15% 88.89% 1.29

Average
Vanilla 56.25% 63.26% 61.25% 59.22% 65.19% 67.42% 57.46% 64.02% 63.70% 1.00

MIGGPT 87.50% 88.93% 76.25% 77.92% 78.18% 84.16% 83.60% 84.55% 87.51% 1.26
↑ +31.25% +25.67% +15.00% +18.70% +12.99% +16.74% +26.14% +20.53% +23.81% -

Table 3: The accuracy of the MIGGPT-augmented LLMs compared to vanilla LLMs on the migration task of
target code snippets.

LLM Method Type 1 (80) Type 2 (55) All (135)
Best Match Semantic Match Human Match Best Match Semantic Match Human Match Best Match Semantic Match Human Match

GPT-3.5 Vanilla 7.50% 5.00% 8.75% 3.64% 3.64% 5.45% 5.93% 4.44% 7.41%
MIGGPT 37.50% 46.26% 47.50% 38.18% 41.82% 61.82% 37.78% 44.44% 53.33%

GPT-4-turbo Vanilla 15.00% 12.50% 18.75% 10.91% 30.91% 23.64% 13.33% 20.00% 20.74%
MIGGPT 68.75% 82.50% 85.00% 54.55% 76.36% 69.09% 62.96% 80.00% 78.52%

OpenAI-o1 Vanilla 20.00% 28.75% 30.00% 18.18% 30.91% 27.27% 19.26% 29.63% 28.89%
MIGGPT 77.50% 90.00% 90.00% 60.00% 76.36% 74.55% 70.37% 84.44% 83.70%

DeepSeek-V3 Vanilla 23.75% 37.50% 32.50% 34.55% 54.55% 49.09% 28.15% 44.44% 39.26%
MIGGPT 81.25% 88.75% 87.50% 65.45% 78.18% 74.55% 74.81% 84.44% 82.22%

DeepSeek-R1 Vanilla 53.75% 60.00% 62.50% 40.00% 54.55% 56.36% 48.15% 57.78% 60.00%
MIGGPT 72.50% 85.00% 81.25% 69.09% 81.82% 78.18% 71.11% 83.70% 80.00%

Llama-3.1-8B Vanilla 5.00% 12.50% 16.25% 0% 20.00% 25.45% 2.96% 15.56% 20.00%
MIGGPT 36.25% 65.00% 67.50% 25.45% 52.73% 56.36% 31.85% 60.00% 62.96%

Llama-3.1-70B Vanilla 3.75% 16.25% 18.75% 7.27% 27.27% 23.64% 5.19% 20.74% 20.74%
MIGGPT 62.50% 80.00% 81.25% 47.27% 67.27% 72.73% 56.30% 74.81% 77.78%

Average
Vanilla 18.39% 24.64% 26.79% 16.36% 31.69% 30.13% 17.57% 27.51% 28.15%

MIGGPT 62.32% 76.78% 77.14% 51.43% 67.79% 69.61% 57.88% 73.12% 74.07%
↑ +43.93% +52.14% +50.36% +35.06% +36.10% +39.48% +40.32% +45.61% +45.92%

o1 [35], DeepSeek-V2.5 [7], DeepSeek-V3 [8], Deepseek-R1 [6], Llama-3.1-8B and Llama-3.1-70B-
Instruct [11], as they are widely recognized for their advanced performance, along with previous
migration efforts like FixMorph [43], TSBPORT [53] and PPatHF [37]. Evaluation metrics include
“best match" (exact code similarity after removing spaces, line breaks, and tab characters), “semantic
match" (CodeBLEU with a 0.9 threshold for binary classification, detailed in App. F.6) [40], and
“human match" (developer-judged functional equivalence, detailed in App. F.3). We also considered
the compilation success rate, as detailed in App. F.4. The hyperparameter m is set to 3.

For each sample (sold, s
′
old,filenew, ŝnew, ŝ

′
new) in our benchmark, we evaluate vanilla LLMs using two

distinct strategies: One-step Strategy: The LLM directly generates the migrated code snippet s′new
by taking the triplet (sold, s

′
old,filenew) as input. Two-step Strategy: The process is divided into two

phases. First, the LLM identifies the corresponding new version code snippet snew using the pair
(sold,filenew). Then, the LLM generates s′new by taking the triplet (sold, s

′
old, snew) as input.

6.2 Performance Evaluation (RQ1)

Type 1
Retrieval Migration

Type 2Type 1 Type 2

10

20

30

50

All

A
cc

ur
ac

y

All

GPT-3.5

GPT-3.5 One-step
GPT-4 One-step

GPT-4

𝑠𝑠new 𝑠𝑠new′

70

40

60

Figure 5: The semantic match accuracy of target code
snippets retrieval task and target code snippets migration
task across various LLMs. “One-step" indicates the
direct utilization of an LLM to complete the migration
task in a single step.

MIGGPT demonstrates exceptional capabil-
ity in retrieving target code snippets. As
shown in Table 2, MIGGPT exhibits a signifi-
cant advantage in the subtask of retrieving target
code. Specifically, when paired with a high-
performance LLM like GPT-4-turbo, MIGGPT
achieves a human matching precision of 96.25%
for Type 1 samples, significantly outperform-
ing standalone GPT-4-turbo (65.00%). Overall,
MIGGPT attains an average semantic match-
ing precision of 84.55% across all sample types,
marking a 20.53% relative improvement.

MIGGPT demonstrates outstanding perfor-
mance in generating migrated code snippets.
As shown in Table 3, MIGGPT outperforms
vanilla LLMs, achieving a 73.12% higher average migration semantic matching precision, a 45.61%
relative improvement. Notably, due to Llama-3.1-8B’s weak base performance, MigGPT-augmented

8

Llama-3.1-8B underperforms–yet still achieves 44.44% higher semantic matching precision than
vanilla Llama-3.1-8B. Additional results for other LLMs are provided in App. E.

The two-step strategy outperforms the one-step strategy. We compared GPT-3.5 and GPT-4-
turbo using both one-step and two-step strategies to investigate the impact of task complexity on
migration performance. As illustrated in Figure 5, when vanilla LLMs are employed, the two-step
strategy achieves an average migration accuracy of 12.22% across all sample types, representing an
improvement of 8.89% over the one-step strategy’s accuracy of 3.33%.

Table 4: The compilation success rate MIGGPT com-
pared to vanilla LLMs.

Method GPT-4-turbo DeepSeek-V3
Vanilla MIGGPT Vanilla MIGGPT

Rate 16.30% 66.67% (+50.37%) 31.85% 79.26% (+47.41%)

MIGGPT performs well on compilation-level
metric. We conducted additional compilation
success rate experiments on migrated patches.
As shown in Table 4, MigGPT achieves a
48.49% average improvement in compilation
success rate over vanilla LLMs.

Table 5: The semantic match accuracy of MIGGPT
compared to patch backporting methods.

Method FIXMORPH TSBPORT PPatHF GPT-4-turbo DeepSeek-V3
vanilla MIGGPT vanilla MIGGPT

Accuracy 24.63% 87.59% 75.12% 85.43% 91.78% 87.12% 92.59%

MIGGPT outperformed previous migration
efforts on the CVE patch backporting task.
We also evaluate the performance of MIGGPT
in the context of CVE patch backporting. No-
tably, our out-of-tree patch migration task is
different from FixMorph, TSBPORT, and PPatHF, which only solve the migration problem, while
we target both target code retrieval and migration. As illustrated in Table 5, MIGGPT demonstrates
superior performance compared to previous patch backporting methods.

Table 6: The accuracy of MIGGPT compared to vanilla
LLM on the Linux driver migration task.

Method GPT-4-turbo DeepSeek-V3
Vanilla MIGGPT Vanilla MIGGPT

Best Match 54.16% 83.33% (+29.17%) 58.33% 79.16% (+20.83%)
Semantic Match 62.50% 83.33% (+20.83%) 62.50% 87.50% (+25.00%)

MIGGPT performs well on the Linux driver
migration task. We conducted experiments
to assess MIGGPT’s performance on the Linux
driver migration. We randomly collected 24
driver migration samples. The results, presented
in the Table 6, indicate that MIGGPT performs
well in migrating patches involving driver interface modifications.

Table 7: The accuracy of MIGGPT compared to vanilla
LLM on Python code migration task.

Method GPT-4-turbo DeepSeek-V3
Vanilla MIGGPT Vanilla MIGGPT

Best Match 61.29% 80.65% (+19.36%) 64.52% 83.87% (+19.35%)
Semantic Match 70.97% 87.10% (+16.13%) 74.19% 90.32% (+16.13%)

MIGGPT demonstrates cross-language gen-
eralizability. We conducted an experiment fo-
cusing on Python code migration. We randomly
selected 31 migration examples from our bench-
mark and translated them to Python. With only
minor adjustments (modify the implementation
of the statement tokenization and statement element extraction functions to adapt the CFP for Python
syntax) MIGGPT can process these Python examples. The results of Table 7 demonstrate that
the average semantic match performance improved by 16.13%. compared to a vanilla approach,
indicating MIGGPT’s effectiveness beyond C-language code. We also discuss the generalization of
MIGGPT in App. G.3.

Table 8: The time cost of MIGGPT compared to human
experts.

Method Expert A Expert B Expert C MIGGPT
GPT-4-turbo DeepSeek-V3

Time (days) 14.15 10.89 12.51 0.25 0.27

MIGGPT is more time-efficient. We com-
pared MIGGPT with three human experts on
our out-of-tree patch migration benchmark. As
shown in Table 8, MIGGPT required only
2.08% of the average time taken by human ex-
perts, demonstrating its superior time efficiency.

6.3 Ablation Study (RQ2)

6.4 Ablation Study

We conduct an ablation study to evaluate the impact of the four units in MIGGPT: CFP, Retrieval
Augmentation Module, Retrieval Alignment Module, and Migration Augmentation Module (details
in App. F.7). Figure 6 presents the outcomes of four tested variants on our benchmarks. Among these,
MIGGPT consistently outperforms the ablation baselines. Meanwhile, we perform an ablation study
on the hyperparameter m in Algorithm 1 with MigGPT-GPT-4-turbo, which controls the total query
time of the Retrieval Augmentation Module. As shown in Figure 6, m = 3 is suitable for both Type 1
and Type 2 examples.

9

Type 1
Retrieval Migration

Type 2Type 1 Type 2

40

50

60

80

All
A

cc
ur

ac
y

All

MigGPT-no-CFPMigGPT-no-Retrieval-Augmentation

MigGPT-no-Migration-Augmentation
MigGPT-no-Retrieval-Alignment

𝑠𝑠new 𝑠𝑠new′

70

90

80.0

21

81

87

93

3

A
cc

ur
ac

y

4 5

84

90

78

90.0

80.0
81.8 81.8 81.8

𝑚𝑚

Type 1
Type 2

91.3 91.391.3 91.3

MigGPT

Figure 6: Left: The accuracy of different variants of MIGGPT. Right: The best match retrieval accuracy of
different m.

6.5 Failure Analysis (RQ3)

Table 9: The line edit distance between the failure cases
of MIGGPT-augmented GPT-4-Turbo and the manual
migration results. “3 ≤ dis < 6” denotes a line edit
distance of at least 3 but less than 6.

LLM Type dis < 3 3 ≤ dis < 6 6 ≤ dis < 9 9 ≤ dis All

GPT-3.5 Type 1 13 9 8 12 42
Type 2 8 4 2 7 21

GPT-4-turbo Type 1 5 1 3 3 12
Type 2 9 1 0 7 17

DeepSeek-V2.5 Type 1 10 2 3 1 16
Type 2 8 1 3 4 16

DeepSeek-V3 Type 1 3 2 3 2 10
Type 2 5 4 1 4 14

We evaluate MIGGPT’s robustness by analyz-
ing failed migration cases (not human-matched)
across various samples, measuring line edit dis-
tances (insertions, deletions, modifications) be-
tween MIGGPT’s incorrect outputs and human-
corrected results (see App. F.5). As shown in
Table 9, 41% of MIGGPT’s errors require
fewer than three lines of modification to align
with correct results, demonstrating its potential
to aid in out-of-tree kernel patch migration.

In our in-depth analysis of "human match" errors
in MIGGPT-augmented GPT-4-turbo, we identified the following primary categories:

• Incomplete snew Retrieval for Large Codebases (31.03%): In some instances, when retriev-
ing snew from filenew, the target code snew was significantly large (exceeding 150 lines),
leading to incomplete retrieval. This could be due to LLMs’ tendency to shift attention when
dealing with long contexts.

• Deviation from the Migration Point in s′new Generation (24.14%): Even with precise
migration point information provided by CFP, the LLM occasionally failed to strictly
adhere to these locations during s′new generation. While minor offsets often didn’t impact
functionality, they sometimes led to functional errors in code with complex control or data
flows. This behavior appears to be related to the inherent randomness of LLMs.

• Difficulty in Fusing Divergent Changes in Type 2 Migrations (27.59%): For certain Type 2
migrations, significant differences between snew and sold’s modifications to sold prevented
the LLM from correctly integrating these changes, resulting in errors. This limitation points
to challenges related to the LLM’s code comprehension and manipulation capabilities.

• Miscellaneous (17.24%): Errors in symbols, statements, etc., appearing in s′new,
such as incorrectly writing verbose(env, off, size, reg’s id) instead of
verbose(env, off, size, reg->id). This may be related to LLM hallucinations.

It’s important to note that these identified failure modes primarily arise from the inherent limitations
of the LLMs themselves, rather than architectural flaws within the MigGPT framework.

7 Conclusion

This study explores the migration of out-of-tree kernel patches in the Linux kernel across versions.
Our proposed benchmark reveals that LLMs struggle with incomplete code context understanding
and inaccurate migration point identification. To address these issues, we propose MIGGPT, an
automated tool for migrating Linux kernel downstream patches. Our evaluation highlights MIGGPT’s
effectiveness and potential to advance this field.

10

Acknowledgments and Disclosure of Funding

This work is partially supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences (Grants No.XDB0660300, XDB0660301, XDB0660302), Science and Technology Major
Special Program of Jiangsu (Grant No. BG2024028), the NSF of China (Grants No. U22A2028,
62302483, 6240073476), CAS Project for Young Scientists in Basic Research (YSBR-029) and Youth
Innovation Promotion Association CAS. This work is also supported by NSFC-92467102.

References
[1] George K. Adam. Real-time performance and response latency measurements of linux kernels

on single-board computers. Comput., 10(5):64, 2021.

[2] Toufique Ahmed and Premkumar T. Devanbu. Few-shot training llms for project-specific
code-summarization. In ASE, pages 177:1–177:5. ACM, 2022.

[3] Huilai Chen, Yuanbo Wen, Limin Cheng, Shouxu Kuang, Yumeng Liu, Weijia Li, Ling Li, Rui
Zhang, Xinkai Song, Wei Li, Qi Guo, and Yunji Chen. Autoos: Make your OS more powerful
by exploiting large language models. In ICML. OpenReview.net, 2024.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. arXiv preprint, arXiv:2107.03374,
2021.

[5] Daniel Bristot de Oliveira, Daniel Casini, and Tommaso Cucinotta. Operating system noise in
the linux kernel. IEEE Trans. Computers, 72(1):196–207, 2023.

[6] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv, arXiv/2501.12948, 2025.

[7] DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,
Chengqi Deng, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, Hao Zhang,
Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui
Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi
Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu,

11

Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen,
S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong
Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, Tao Wang, Tian
Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu,
Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiaotao Nie, and Xiaowen Sun.
Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv,
arXiv/2405.04434, 2024.

[8] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian
Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo,
Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng.
Deepseek-v3 technical report. arXiv, arXiv/2412.19437, 2024.

[9] Malinda Dilhara, Abhiram Bellur, Timofey Bryksin, and Danny Dig. Unprecedented code
change automation: The fusion of llms and transformation by example. Proc. ACM Softw. Eng.,
1(FSE):631–653, 2024.

[10] Malinda Dilhara, Danny Dig, and Ameya Ketkar. PYEVOLVE: automating frequent code
changes in python ML systems. In ICSE, pages 995–1007. IEEE, 2023.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny
Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng
Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. arXiv, arXiv/2407.21783, 2024.

[12] Mattia Fazzini, Qi Xin, and Alessandro Orso. Automated api-usage update for android apps. In
ISSTA, pages 204–215. ACM, 2019.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages. In EMNLP (Findings), volume EMNLP 2020 of Findings
of ACL, pages 1536–1547. Association for Computational Linguistics, 2020.

[14] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. In ICLR. OpenReview.net, 2023.

12

[15] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Q. Phung. Vulrepair:
a t5-based automated software vulnerability repair. In ESEC/SIGSOFT FSE, pages 935–947.
ACM, 2022.

[16] HAOC. Haoc kernel patch. https://gitee.com/src-openeuler/kernel/blob/master/
0005-haoc-kernel.patch, 2024.

[17] Stefanus A. Haryono, Ferdian Thung, Hong Jin Kang, Lucas Serrano, Gilles Muller, Julia
Lawall, David Lo, and Lingxiao Jiang. Automatic android deprecated-api usage update by
learning from single updated example. In ICPC, pages 401–405. ACM, 2020.

[18] Jie Hu, Qian Zhang, and Heng Yin. Augmenting greybox fuzzing with generative ai. arXiv
preprint arXiv:2306.06782, 2023.

[19] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-token code completion
by jointly learning from structure and naming sequences. In ICSE, pages 401–412. ACM, 2022.

[20] Kevin Jesse, Toufique Ahmed, Premkumar T. Devanbu, and Emily Morgan. Large language
models and simple, stupid bugs. In MSR, pages 563–575. IEEE, 2023.

[21] Linux Kernel. Rt-preempt patch. https://mirrors.edge.kernel.org/pub/linux/
kernel/projects/rt, 2013.

[22] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Aftandilian. Type
migration in ultra-large-scale codebases. In ICSE, pages 1142–1153. IEEE / ACM, 2019.

[23] Jungho Kim, Philkyue Shin, Myungsun Kim, and Seongsoo Hong. Memory-aware fair-share
scheduling for improved performance isolation in the linux kernel. IEEE Access, 8:98874–
98886, 2020.

[24] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees
to transformers. In ICSE, pages 150–162. IEEE, 2021.

[25] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. A3: assisting android API migra-
tions using code examples. IEEE Trans. Software Eng., 48(2):417–431, 2022.

[26] William Landi. Undecidability of static analysis. LOPLAS, 1(4):323–337, 1992.

[27] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu-Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning.
In NeurIPS, 2022.

[28] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho
Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao
Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan
Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. Starcoder: may the source be with you! arXiv preprint, arXiv:2305.06161,
2023.

[29] Hongyu Lin, Yuchen Li, Haoran Luo, Kaichun Yao, Libo Zhang, Mingjie Xing, and Yanjun
Wu. Byos: Knowledge-driven large language models bring your own operating system more
excellent. arXiv preprint arXiv:2503.09663, 2025.

[30] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred: Escalating privilege in linux kernel. In
CCS, pages 1963–1976. ACM, 2022.

13

https://gitee.com/src-openeuler/kernel/blob/master/0005-haoc-kernel.patch
https://gitee.com/src-openeuler/kernel/blob/master/0005-haoc-kernel.patch
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt

[31] Na Meng, Miryung Kim, and Kathryn S. McKinley. Systematic editing: generating program
transformations from an example. In PLDI, pages 329–342. ACM, 2011.

[32] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In ICLR, 2023.

[33] OpenAI. Chatgpt, 2023. 2023.

[34] OpenAI. GPT-4 technical report. arXiv preprint, arXiv:2303.08774, 2023.

[35] OpenAI. Openai-o1, 2024. 2024.

[36] Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. LLM is like a box of chocolates:
the non-determinism of chatgpt in code generation. arXiv preprint, arXiv:2308.02828, 2023.

[37] Shengyi Pan, You Wang, Zhongxin Liu, Xing Hu, Xin Xia, and Shanping Li. Automating
zero-shot patch porting for hard forks. In ISSTA, pages 363–375. ACM, 2024.

[38] Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raffel, and Chris
Callison-Burch. Bidirectional language models are also few-shot learners. In ICLR. OpenRe-
view.net, 2023.

[39] Raspberry Pi. Raspberry pi linux kernel. https://github.com/raspberrypi/linux, 2018.

[40] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code
synthesis. arXiv, arxiv/2009.10297, 2020.

[41] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit
Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program transformations from
examples. In ICSE, pages 404–415. IEEE / ACM, 2017.

[42] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. arXiv preprint,
arXiv:2308.12950, 2023.

[43] Ridwan Shariffdeen, Xiang Gao, Gregory J. Duck, Shin Hwei Tan, Julia Lawall, and Abhik
Roychoudhury. Automated patch backporting in linux (experience paper). In ISSTA, pages
633–645. ACM, 2021.

[44] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roychoudhury. Auto-
mated patch transplantation. ACM Trans. Softw. Eng. Methodol., 30(1):6:1–6:36, 2021.

[45] Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, Yinzhi Cao, Ziwen Wang, Yudi Zhao,
Zongan Huang, and Min Yang. Backporting security patches of web applications: A prototype
design and implementation on injection vulnerability patches. In USENIX Security Symposium,
pages 1993–2010. USENIX Association, 2022.

[46] Xin Tan, Minghui Zhou, and Brian Fitzgerald. Scaling open source communities: an empirical
study of the linux kernel. In ICSE, pages 1222–1234. ACM, 2020.

[47] Ferdian Thung, Hong Jin Kang, Lingxiao Jiang, and David Lo. Towards generating transforma-
tion rules without examples for android API replacement. In ICSME, pages 213–217. IEEE,
2019.

[48] Zhenchang Xing and Eleni Stroulia. Api-evolution support with diff-catchup. IEEE Trans.
Software Eng., 33(12):818–836, 2007.

[49] Hanxiang Xu, Wei Ma, Ting Zhou, Yanjie Zhao, Kai Chen, Qiang Hu, Yang Liu, and Haoyu
Wang. Ckgfuzzer: Llm-based fuzz driver generation enhanced by code knowledge graph. In
ICSE Companion, pages 243–254. IEEE, 2025.

14

https://github.com/raspberrypi/linux

[50] Jiali Xu, Mengyao Xie, Chenggang Wu, Yinqian Zhang, Qijing Li, Xuan Huang, Yuanming Lai,
Yan Kang, Wei Wang, Qiang Wei, and Zhe Wang. PANIC: pan-assisted intra-process memory
isolation on ARM. In CCS, pages 919–933. ACM, 2023.

[51] Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. Codetransocean: A
comprehensive multilingual benchmark for code translation. In EMNLP (Findings), pages
5067–5089. Association for Computational Linguistics, 2023.

[52] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via
large language models. In ASPLOS (2), pages 560–573. ACM, 2025.

[53] Su Yang, Yang Xiao, Zhengzi Xu, Chengyi Sun, Chen Ji, and Yuqing Zhang. Enhancing OSS
patch backporting with semantics. In CCS, pages 2366–2380. ACM, 2023.

[54] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue
Ma, Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in
automated code translation. Proc. ACM Softw. Eng., 1(FSE):1585–1608, 2024.

[55] Xiao Yi, Yuzhou Fang, Daoyuan Wu, and Lingxiao Jiang. Blockscope: Detecting and investi-
gating propagated vulnerabilities in forked blockchain projects. In NDSS. The Internet Society,
2023.

[56] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. An investigation of the android kernel
patch ecosystem. In USENIX Security Symposium, pages 3649–3666. USENIX Association,
2021.

[57] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J. Walls. Silhouette:
Efficient protected shadow stacks for embedded systems. In USENIX Security Symposium,
pages 1219–1236. USENIX Association, 2020.

15

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction is clear.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: For a detailed discussion of the limitations regarding the generalization capa-
bility of MIGGPT, please see Appendix G.3.

16

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Does not involve theoretical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have thoroughly elaborated on the experimental setup details and provided
the code in the supplementary materials to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have thoroughly elaborated on the experimental setup details and provided
the data and code in the supplementary materials to facilitate reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided a comprehensive explanation of the experimental setup
details; please refer to the App. F for further information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Refer to the ablation study for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to the App. F.1, Table 1 and Table 8 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

19

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See App. G.6.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See App. G.6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our dataset was obtained from open-source channels (See App. A.1) and does
not involve any data misuse.
Guidelines:

20

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the models and open-source data have been credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code and data are provided in an anonymous zip file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

21

paperswithcode.com/datasets

Justification: See supplementary materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We disclosed the potential risks to the research participants and signed an
agreement with them.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have provided a detailed description of the LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Benchmark

A.1 Collection

The migration examples in our benchmark are derived from three open-source out-of-tree kernel patch
projects: RT-PREEMPT [21], HAOC [16] and Raspberry Pi kernel [39]. RT-PREEMPT 4 enhances
the Linux kernel’s real-time performance for timing-sensitive applications like industrial control and
robotics, while Raspberry Pi Linux 5 offers a lightweight kernel optimized for embedded systems.
HAOC 6 improves kernel security through a "dual-kernel" design, enhancing code behavior, data
access, and permission management. These projects are widely adopted in industry and open-source
communities, ensuring coverage of critical out-of-tree patch scenarios. Notably, RT-PREEMPT’s
latest version has been integrated into the mainline Linux kernel for maintenance and no longer exists
as an out-of-tree kernel patch. However, this does not impede our utilization of it for research on
automated migration and maintenance of out-of-tree kernel patches.

A.2 Examples of Benchmark

As shown in Table 1, we categorized these samples based on the difficulty of migration into two
classes:

Type 1: This type of migration example satisfies ∆ ̸= ∅,Σ ̸= ∅, ∀δ ∈ ∆,∀σ ∈ Σ, ⟨δ, σ⟩ = 0. This
indicates that both the out-of-tree kernel patch and the new version of the Linux kernel have modified
the code snippet, and their changes do not affect the same lines of code, meaning the modifications do
not overlap or conflict with each other. As shown in Table 1 for example, s′old introduces additional
lines of code to the function definition of hisilicon_1980005_enable in sold. Conversely, snew
both adds and removes certain lines of code within the same function definition in sold. However, it is
important to note that these modifications do not occur on the same lines of code.

Type 2: This type of migration example satisfies ∆ ̸= ∅,Σ ̸= ∅, ∀δ ∈ ∆,∀σ ∈ Σ, ⟨δ, σ⟩ ̸= 0.
This indicates that both the out-of-tree kernel patch and the new version of the Linux kernel have
modified the code snippet, and their changes affect the same lines of code, resulting in overlapping
modifications that conflict with each other. As illustrated in Table 1, for instance, s′old introduces
additional lines of code to the function definition of ptep_get_and_clear in sold. However, snew
refactors the same function definition into two separate function definitions, resulting in overlapping
modifications that conflict with each other.

Table 10: Formalization, Counts, and Examples of the Three Types of Migration Example.
Class Type 1 Type 2

Formalization ∆ ̸= ∅,Σ ̸= ∅, ∆ ̸= ∅,Σ ̸= ∅,
∀δ ∈ ∆,∀σ ∈ Σ, ⟨δ, σ⟩ ≠ 0

Number 80 (59.3%) 55 (40.7%)

sold vs s′old

static void hisilicon_1980005_enable(const struct
arm64_cpu_capabilities *__unused)

{
cpus_set_cap(ARM64_HAS_CACHE_IDC);
arm64_ftr_reg_ctrel0.sys_val |= BIT(CTR_IDC_SHIFT);
arm64_ftr_reg_ctrel0.strict_mask &= ~BIT(CTR_IDC_SHIFT);

+ #ifdef CONFIG_IEE
+ sysreg_clear_set_iee_si(sctlr_el1, SCTLR_EL1_UCT, 0);
+ #else

sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
+ #endif

}

1
2
3
4
5
6
7
8
9

10
11
12

static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)

{
+ #ifdef CONFIG_PTP
+ pteval_t pteval= iee_set_xchg_relaxed(ptep, (pteval_t)0);
+ pte_t ret = __pte(pteval);
+ return ret;
+ #else

return __pte(xchg_relaxed(&pte_val(*ptep), 0));
+ #endif

}

1
2
3
4
5
6
7
8
9

10
11

sold vs snew

static void hisilicon_1980005_enable(const struct
arm64_cpu_capabilities *__unused)

{
- cpus_set_cap(ARM64_HAS_CACHE_IDC);
- arm64_ftr_reg_ctrel0.sys_val |= BIT(CTR_IDC_SHIFT);
- arm64_ftr_reg_ctrel0.strict_mask &= ~BIT(CTR_IDC_SHIFT);
+ __set_bit(ARM64_HAS_CACHE_IDC, system_cpucaps);
+ arm64_ftr_reg_ctrel0.sys_val |= BIT(CTR_EL0_IDC_SHIFT);
+ arm64_ftr_reg_ctrel0.strict_mask &=
+ ~BIT(CTR_EL0_IDC_SHIFT);

sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}

1
2
3
4
5
6
7
8
9

10
11
12

+ static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
+ unsigned long address, pte_t *ptep)
+ {
+ pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
+ page_table_check_pte_clear(mm, pte);
+ return pte;
+ }

static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)

{
+ contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
- return __pte(xchg_relaxed(&pte_val(*ptep), 0));
+ return __ptep_get_and_clear(mm, addr, ptep);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt
5https://github.com/raspberrypi/linux
6https://gitee.com/src-openeuler/kernel/blob/master/

23

B Examples of Out-of-tree Kernel Patch Migration

As shown in Figure 7, the migration maintenance of an out-of-tree kernel patch requires integrating
the modifications from the old version out-of-tree kernel patch and the modifications from the new
version Linux kernel to ultimately complete the code snippet for the new version out-of-tree kernel
patch.

void kthread_unuse_mm(struct mm_struct *mm)
 {
 struct task_struct *tsk = current;

 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
 WARN_ON_ONCE(!tsk->mm);

 force_uaccess_end(to_kthread(tsk)->oldfs);
 task_lock(tsk);
 sync_mm_rss(mm);
 local_irq_disable();
 tsk->mm = NULL;

+ #ifdef CONFIG_IEE
+ iee_set_token_pgd(tsk, NULL);
+ #endif

 /* active_mm is still 'mm' */
 enter_lazy_tlb(mm, tsk);
 local_irq_enable();
 task_unlock(tsk);

 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

void kthread_unuse_mm(struct mm_struct *mm)
 {
 struct task_struct *tsk = current;

 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
 WARN_ON_ONCE(!tsk->mm);

- force_uaccess_end(to_kthread(tsk)->oldfs);
 task_lock(tsk);

+ smp_mb__after_spinlock();
 sync_mm_rss(mm);
 local_irq_disable();
 tsk->mm = NULL;

+ membarrier_update_current_mm(NULL);
+ mmgrab_lazy_tlb(mm);

 /* active_mm is still 'mm' */
 enter_lazy_tlb(mm, tsk);
 local_irq_enable();
 task_unlock(tsk);

 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

void kthread_unuse_mm(struct mm_struct *mm)
 {
 struct task_struct *tsk = current;

 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
 WARN_ON_ONCE(!tsk->mm);

 task_lock(tsk);
 smp_mb__after_spinlock();
 sync_mm_rss(mm);
 local_irq_disable();
 tsk->mm = NULL;
 membarrier_update_current_mm(NULL);

+ #ifdef CONFIG_IEE
+ iee_set_token_pgd(tsk, NULL);
+ #endif
 mmgrab_lazy_tlb(mm);

 /* active_mm is still 'mm' */
 enter_lazy_tlb(mm, tsk);
 local_irq_enable();
 task_unlock(tsk);

 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

(a) (b) (c)

Figure 7: (a) Old version Linux kernel code snippet, with the green section indicating modifications from the
old version out-of-tree kernel patch; (b) Old version Linux kernel code snippet, with the red and green sections
indicating modifications for the new Linux version kernel; (c) New Linux version kernel code snippet, with the
green section indicating modifications from the new version out-of-tree kernel patch.

C Examples of Each Challenge

C.1 Challenge 1

static inline void __pmd_free_tlb(struct mmu_gather *tlb,
pmd_t *pmdp, unsigned long addr)

{
struct ptdesc *ptdesc = virt_to_ptdesc(pmdp);

pagetable_pmd_dtor(ptdesc);
tlb_remove_ptdesc(tlb, ptdesc);

}
...
static inline void __pte_free_tlb(struct mmu_gather *tlb,

pgtable_t pte, unsigned long addr)
{

struct ptdesc *ptdesc = page_ptdesc(pte);

pagetable_pte_dtor(ptdesc);
+ #ifdef CONFIG_PTP
+ iee_tlb_remove_ptdesc(tlb, ptdesc);
+ #else

tlb_remove_ptdesc(tlb, ptdesc);
+ #endif
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 8: A migration case for challenge 1. The green code denotes modifications originating from the
out-of-tree kernel patches.

In the migration case shown in Figure 8, we need to locate the target code snippet snew, which defines
the function __pte_free_tlb, within the code file filenew of the new Linux kernel version. However,
the new version file also contains a code snippet __pmd_free_tlb that closely resembles the target
code snippet __pte_free_tlb. When LLMs attempt to locate the function __pte_free_tlb in
filenew, they erroneously retrieve the similar function __pmd_free_tlb. This misidentification leads
to errors during the migration of the out-of-tree kernel patch code. This issue highlights the challenges
faced by LLMs in distinguishing between similar elements within codebases, indicating a need for
improved precision in function identification and handling during the migration process.

24

+ #ifdef CONFIG_IEE
+ extern void set_pmd(pmd_t *pmdp, pmd_t pmd);
+ #else

extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);

static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
...
}

+ #endif

1
2
3
4
5
6
7
8
9

10
11

Figure 9: A migration case for challenge 2. In this migration case sold = snew. The green code denotes
modifications originating from the out-of-tree kernel patch.

static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
 unsigned long address, pte_t *ptep)
 {
+ #ifdef CONFIG_PTP
+ pteval_t pteval= iee_set_xchg_relaxed((pte_t *)&
+ pte_val(*ptep), (pteval_t)0);
+ pte_t pte = __pte(pteval);
+ #else
 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
+ #endif
 page_table_check_pte_clear(mm, pte);

 return pte;
 }

 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 unsigned long addr, pte_t *ptep)
 {
 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
 return __ptep_get_and_clear(mm, addr, ptep);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 unsigned long addr, pte_t *ptep)
 {
 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
+ #ifdef CONFIG_PTP
+ pteval_t pteval= iee_set_xchg_relaxed(ptep, (pteval_t)0);
+ pte_t ret = __pte(pteval);
+ return ret;
+ #else
 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
+ #endif
 }

1
2
3
4
5
6
7
8
9

10
11
12

(a)

(b)
Figure 10: A migration case for challenge 3. (a) The legacy Linux kernel code snippet sold. (b) The updated
Linux kernel code snippet snew. The green code denotes modifications originating from the out-of-tree kernel
patch.

C.2 Challenge 2

In the migration case shown in Figure 9, we need to locate the target code segment snew, which
encompasses lines 4 to 10, within the code file filenew of the new Linux kernel version. However,
when LLMs perform this task, they only retrieve the code segment from line 7 to line 10. As a
result, the migrated custom module code exhibits deficiencies due to the missing lines. This issue
underscores the limitations of LLMs in accurately identifying precise code segments, suggesting a
need for enhanced alignment strategies to improve the reliability of migration tasks.

C.3 Challenge 3

As shown in Figure 10, in the legacy Linux kernel code snippet sold, the function
ptep_get_and_clear is defined. In the updated Linux kernel code snippet snew, this
function has been decomposed into two separate definitions: __ptep_get_and_clear and
ptep_get_and_clear. The modifications introduced by our out-of-tree kernel patch are located
within the definition of the __ptep_get_and_clear function in the snew code snippet. When em-
ploying LLMs directly to retrieve snew from filenew, the LLMs tend to overlook the definition of
__ptep_get_and_clear, focusing instead on the definition of ptep_get_and_clear present in
the new version code. Consequently, during the subsequent phase of migrating the out-of-tree kernel

25

/* Tail call offset to jump into */
+ #ifdef CONFIG_HIVE
+ #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
+ #define PROLOGUE_OFFSET 8 + 6
+ #endif

#define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 8)

static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
{

...
const struct bpf_prog *prog = ctx->prog;

+ #ifdef CONFIG_HIVE
+ const u8 base = bpf2a64[BPF_REG_BASE];
+ ...
+ #endif

const int idx0 = ctx->idx;
...

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Figure 11: A migration case for challenge 4. The green code denotes modifications originating from the
out-of-tree kernel patch.

patch, the correct migration point cannot be identified, leading to erroneous migration. This issue
highlights the difficulties LLMs face in handling the fragmentation of code during version updates,
indicating a need for improved methods to accurately locate and integrate all relevant code fragments
for successful migration

C.4 Challenge 4

As shown in Figure 11, to accurately obtain the migrated out-of-tree kernel patch code s′new, it is
essential to perform two modifications on the new Linux kernel code segment snew (specifically, adding
the code snippet #ifdef CONFIG_HIVE at two locations). However, when LLMs undertake this task,
they either misidentify the migration positions or only execute one of the required modifications. This
results in the failure of the out-of-tree kernel patch code migration. This issue reveals the limitations
of LLMs in interpreting the precise context required for accurate migration, suggesting a need for
more refined techniques to enhance the models’ ability to infer migration points based on the given
information correctly.

D MIGGPT Modules

D.1 Examples of CFP

Figure 12 illustrates a segment of code alongside its corresponding CFP. The CFP sub-
statement in the second row of Figure 12 (b), IfdefNode, represents the second line of
the code snippet in Figure 12 (a). This indicates an #ifdef statement that spans from
line 2 to line 4 (pos=2, end=4) of the code segment, with the critical identifier being
ARM_64_SWAPPER_USES_MAPS (name=’ARM_64_SWAPPER_USES_MAPS’).

D.2 Examples of Retrieval Augmentation Module

The retrieval augmentation module is designed to address challenge 1 and challenge 3.

For challenge 1, we construct a “Structure Prompt" to specify the signatures of the code snippet sold.
By constructing the code fingerprint structure CFPold from sold as shown in Figure 8, we can extract
FuncDef statements that contain the code signatures (Figure 13), thereby generating a “Structure
Prompt" that describes these signatures. Consequently, the LLM will focus its attention on the function
definition __pte_free_tlb rather than on the similar function definition __pmd_free_tlb. This
Structure prompt enhances the LLM’s ability by providing a precise description of the target code,
allowing the LLM to focus more accurately on the relevant code snippet and improving the precision
of the retrieval.

For challenge 3, we extract the associated function calls of the code snippet to provide comprehensive
code context. As shown in Figure 10 (b), when retrieving snew, the LLM can only find the definition
snippet of the function ptep_get_and_clear (lines 16-21) and overlooks the definition snippet
of the internally called function __ptep_get_and_clear (lines 1 to 14). To address this challenge,

26

/* We intend to enable IRQs */
 #ifdef ARM_64_SWAPPER_USES_MAPS
 #include <iee/setup.h>
 #endif

 static inline void local_daif_mask(int set_mm)
 {
 ...
 asm volatile(
 "msr daifset, #0xf"
 :
 :
 : "memory");
 ...
 /* Don't really care for a dsb here */
 if (system_uses_nmi())
 _allint_set();
 trace_hardirqs_off();
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

CommentNode(pos=1, end=1, content=‘We intend to enable IRQs ’)
IfdefNode(pos=2, end=4, name=‘ARM_64_SWAPPER_USES_MAPS’)
IncludeNode(pos=3, end=3, content=‘iee/setup.h’)
FuncDef(pos=6, end=19, name=‘local_daif_mask’,
 type=[‘static’, ‘inline’, ‘void’],
 param=[VarDec(name=‘set_mm’, type=[‘int’])])
…
ASMNode(pos=9, end=13,
 context=‘\"msr daifset, #0xf\"\n:\n:\n:\"memory\"’)
…
CommentNode(pos=15, end=15,
 content=‘Don't really care for a dsb here ’)
IfNode(pos=16, end=17, inline_fuccalls=[
 FuncCall(pos=17, end=17, name=‘system_uses_nmi’)])
FuncCall(pos=17, end=17, name=‘_allint_set’)
FuncCall(pos=18, end=18, name=‘trace_hardirqs_off’)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a)

(b)

Figure 12: (a) A code snippet. (b) Corresponding CFP of the code snippet.

FuncDef(name='__pte_free_tlb’, type=['static inline’], param=[
VarDec(name='tlb’, type=['struct', 'mmu_gather', '*']),
VarDec(name='pte’, type=['pgtable_t']),
VarDec(name='addr’, type=['unsigned', 'long'])
])

1
2
3
4
5

Figure 13: The CFP statement on line 10 of Figure 8

it is necessary to supplement the initially retrieved stmp from filenew with its invoked associated
functions, ultimately obtaining a complete code snippet snew. It should be noted that the function
ptep_get_and_clear often invokes many functions (such as contpte_try_unfold on line 19),
which also appear in sold (line 4 of Figure 10 (a)) and are not what we require. Therefore, we need to
select only those associated functions that are invoked within stmp but not by sold to form the complete
code snippet snew.

D.3 Examples of Migration Augmentation Module

The migration augmentation module is primarily designed to address challenge 4. Specifically, as
shown in Figure 11, we conduct a comparative analysis between the code fingerprint structures
CFPold and CFP′

old of the code snippets to ascertain that there are two primary migration points.
The first point is located after the comment statement Tial call offset... and before the
macro definition statement #define PROLOGUE_OFFSET.... The second point is situated after the
statement const struct bpf_prog... and before the statement const int idx0=ctx->idx.
By constructing the “Location Prompt", we enable the LLM to precisely locate the migration points,
thereby successfully completing the task of migrating and maintaining the out-of-tree kernel patch.

D.4 Algorithm and Prompts

Algorithm 1 and Algorithm 2 respectively illustrate the specific details of target code snip-
pet retrieval and code migration processes. We also present all the prompts utilized by
MIGGPT. As shown in Figure 14, when retrieving the target code snippet snew, we construct

27

Algorithm 1 Retrieval of the target code snippet snew

1: Input: (sold,filenew), LLM, and maximum query count m
2: Output: snew
3: Generating CFPold form sold
4: Preparing RetrievalTaskPrompt
5: Preparing ExpertPersonaPrompt
6: S ← Extractsignature(CFPold)
7: StructurePrompt← Prompt(S)
8: A ← Extractanchor(CFPold)
9: AlignmentPrompt← Prompt(A)

10: RetrievalPrompt←
11: +RetrievalTaskPrompt+ StructurePrompt
12: +AlignmentPrompt+ ExpertPersonaPrompt
13: while q <= m do
14: stmp ← LLM(RetrievalPrompt, sold,filenew)
15: Generating CFPtmp from stmp

16: if find(S, stmp) then
17: break
18: end if
19: q ← q + 1
20: end while
21: Fold ← Funccall(CFPold)
22: Ftmp ← Funccall(CFPtmp)
23: snew ← stmp + FindCode(Ftmp \ Fnew,filenew)
24: return snew

Algorithm 2 Migration of code snippet s′new

1: Input: (sold, s
′
old, snew) and LLM

2: Output: s′new
3: Generating CFPold, CFP′

old form sold and s′old
4: Preparing MigrationTaskPrompt
5: Preparing ExpertPersonaPrompt
6: P ← PinpointMigrationLocation(CFPold,CFP′

old)
7: LocationPrompt← Prompt(P)
8: MigrationPrompt← +MigrationTaskPrompt
9: +LocationPrompt+ ExpertPersonaPrompt

10: s′new ← LLM(LocationPrompt, sold, s
′
old, snew)

11: return s′new

the Retrieval Prompt to query LLMs. Specifically, we employ Task Prompt 1 to de-
scribe the task and Expert Persona Prompt to standardize the output format of LLMs. Ad-
ditionally, StructurePrompt and AlignmentPrompt are used to enhance the retrieval ca-
pabilities of the LLMs. When generating the migrated code snippet s′new, we construct the
Migration Prompt to query LLMs. Specifically, we utilize Task Prompt 2 to describe the
task and Expert Persona Prompt to standardize the output format of the large language model.
Additionally, LocationPrompt is employed to enhance the migration capabilities of the LLM.

D.5 CFP

Algorithm 3 illustrates the specific details about generating CFP. The code snippet s is tokenized,
and nested scopes (e.g., {,}, #ifdef/#endif) are identified via bracket matching. Critical symbols
(e.g., {, }, #ifdef, func()) demarcate code blocks. Function calls (e.g., foo()) are detected
through pattern matching on token sequences (e.g., identifier followed by (). Associated functions
are identified by analyzing call statements within code blocks, avoiding call graph construction. An
example of step-by-step CFP generation is illustrated in Figure 16.

28

Algorithm 3 The generation of CFP

1: Input: code snippet s
2: Output: CFPs

3: Initialize list CFPs

4: for line in s do
5: Node← IdentifyType(line)
6: (Node.pos,Node.end)← IdentifyScope(line)
7: if Node ∈ {FuncDef} then
8: Node.parameter ← CFP (InternalStatement(Node))
9: end if

10: if Node ∈ {if, else,while, for, do, switch} then
11: Node.inline_fuccall← Funcall (InternalStatement(Node))
12: end if
13: Node.content← Content(Node)
14: end for
15: CFPs ← CFPs ∪ {Node}
16: return CFPs

Retrieval Prompt Migration Prompt
Retrieval Task Prompt: We are facing a challenge that requires your specialized
knowledge and expertise. We need to locate a corresponding segment of code, indicated
as `part_new`, within a C file named `new.c` that matches semantically with a provided
code snippet labeled as `part_old`. Given that `part_new`, the target code segment,
originates from modifications made to `part_old`, it is essential to identify this
correspondence accurately. The starting point for your task involves comparing the
following `part_old`: {code of }. And the entire context available in the `new.c`:
{code of }.
Structure Prompt: It appears that `part_old` encompasses the definition of the function
`{target function signature of }`. Your role is to pinpoint the matching code
segment `part_new` within `new.c`. Please ensure that the identified function definitions
are solely derived from `new.c`. Avoid constructing false code snippets by using the
function definitions from `part_old`.
Alignment Prompt: To facilitate the search, you may need to align `part_new` using the
initial line `{head anchor statement of }` and the final line `{tail anchor statement
of }` from `part_old`.
Expert Persona Prompt: You are an expert in Linux Kernel development and coding.
We kindly ask you to respond with a Markdown-formatted string within a code block
that starts and ends with triple backticks (```). The response should strictly contain the
identified `part_new` without providing additional analysis or using a list to store lines
of code.

𝑣𝑣old
filenew

CFPold

CFPold
CFPold

Migration Task Prompt: I am reaching out to you with a specialized code migration task
where your expertise in Linux kernel development would be invaluable. Your assistance
will help ensure the successful adaptation of existing code to the latest version of the Linux
kernel. For this task, I will provide three code snippets for your consideration. Code Snippet
1: The old version of the Linux kernel code snippet, which we will refer to as `part_old`:
{code of }. Code Snippet 2: The corresponding code developed based on the old
version of the Linux kernel code snippet `part_old`, referred to as `part_old_patched`: {code
of }. Code Snippet 3: The new version of the Linux kernel code snippet, denoted as
`part_new`: {code of }.
Location Prompt: Upon preliminary analysis, it appears that there is {number of
modifications} specific area within `part_old_patched` that requires modification: The first
modification should be made situated after the line containing {head location statement
of }, and before the line containing {tail location statement of } with the
change being {analysis of and }…… It\'s likely that similar adjustments will
need to be made within `part_new` to maintain functionality and compatibility. Given your
extensive knowledge and experience in this field, could you kindly assist by generating the
corresponding code snippet `part_new_patched` developed on `part_new`?
Expert Persona Prompt: You are an expert in Linux Kernel development and coding. We
kindly ask you to respond with a Markdown-formatted string within a code block that starts
and ends with triple backticks (```). The response should strictly contain the identified
`part_new` without providing additional analysis or using a list to store lines of code.

𝑣𝑣old

𝑣𝑣old
′

𝑣𝑣new

CFPold CFPold
CFPold CFPold

′

Figure 14: The prompts of MIGGPT.

E More Results of MIGGPT

We have also tested the performance of MigGPT on DeepSeek-V2.5 [7], as shown in Table 11 and
Table 12, MIGGPT outperforms the vanilla LLM.

Table 11: The accuracy of the MIGGPT-augmented LLMs compared to vanilla LLMs on retrieving target code
snippets.

LLM Method Type 1 (80) Type 2 (55) All (135) Average
Best Match Semantic Match Human Match Best Match Semantic Match Human Match Best Match Semantic Match Human Match Query Times

DeepSeek-V2.5 Vanilla 61.25% 66.25% 62.50% 65.45% 69.09% 67.27% 62.96% 67.40% 64.44% 1.00
MIGGPT 95.00% 97.5% 96.25% 87.27% 90.90% 90.90% 91.85% 94.81% 94.07% 1.22

F Settings

F.1 Platform

Our experiments were conducted on a system equipped with an AMD Ryzen 9 7900X 12-core CPU,
32GB of RAM, running on Ubuntu 22.04.3 LTS.

F.2 Contextual Information

The contextual information given to the LLM is identical for both the “two-step strategy” (baseline
vanilla approach in Tables 1 and 2) and the “one-step strategy”, so the comparison is fair (details are
shown in Table 13). The contextual information includes the old version code sold, s′old, and the new

29

40

60

100

80

120

6040 80 100 120
Human Match

C
od

eB
LE

U

Type 1
Type 2
All

Threshold 0.8
Threshold 0.85
Threshold 0.9
Threshold 0.95

Figure 15: Comparison of Consistency with Human Match at Different Thresholds for CodeBLEU.

Function
Definition

pos: 1

end: 9

name:local_d
aif_mask

parameter

static inline void local_daif_mask(int set_mm)

static inline void local_daif_mask(int set_mm)

Variable
Declaration

name:set_m
m

asm volatile(“msr daifset, #0xf“...);

Asm

pos: 3

end: 3

context:‘\"ms
r daifset…

if (system_uses_nmi())
_allint_set();

If

pos: 4

end: 5

inline_fuccall

if (system_uses_nmi())
_allint_set();

FuncCall

pos: 4

end: 4

name:system
_uses_nmi

/* Don't really care for a dsb here */

pos: 6

end: 6

context:‘\"ms
r daifset…

Comment

trace_hardirqs_off();

FuncCall

pos: 7

end: 7

name:trace_h
ardirqs_off

Line

Part Code

CFP Node

CFP Node

Step 1 Step 2 Step 3 Step 3 Step 4

static inline void local_daif_mask(int set_mm)
{

asm volatile(“msr daifset, #0xf“...);
if (system_uses_nmi())

_allint_set();
/* Don't really care for a dsb here */
trace_hardirqs_off();
...

}

1
2
3
4
5
6
7
8
9

Function
Definition Asm If

pos: 1

end: 9

name:local_d
aif_mask

parameter

pos: 6

end: 6

context:‘\"ms
r daifset…

pos: 4

end: 5

inline_fuccall

Comment

pos: 3

end: 3

context:‘\"ms
r daifset…

FuncCall

pos: 4

end: 4

name:system
_uses_nmi

Variable
Declaration

name:set_m
m

FuncCall

pos: 7

end: 7

name:trace_h
ardirqs_off

CFP:
Key Information,
Lightweight,
Sequential Structure.

Code

Code to CFP

Figure 16: An example of step-by-step CFP generation.

version file new.c. As shown in Figure 5 of the paper, the “two-step strategy” is clearly superior to
the “one-step strategy”.

We provided the key migration information extracted by CFP and the code information (sold, s′old,
new.c) as context to the “one-step strategy” (One-step + CFP) and compared it with MigGPT (Two-
step + CFP). As shown in Table 14, formulating the migration task as a two-step process demonstrates
performance advantages.

F.3 The Reliability of Human Match

We strictly adhere to defined steps and principles for Human Match testing, ensuring reliable post-
migration code functionality verification:

• Cross-validation: 5 experienced Linux kernel engineers independently validate results.

• Triple-blind voting: Each example is evaluated by 3 randomly assigned engineers.

• Criteria: (1) syntactic consistency, which ensures the preservation of original patch logic
through structural adaptations (e.g., variable renaming while maintaining control flow);
and (2) semantic correctness, verifying functional equivalence between migrated code and
human-generated ground truth patches.

30

Table 12: The accuracy of the MIGGPT-augmented LLMs compared to vanilla LLMs on the migration task of
target code snippets.

LLM Method Type 1 (80) Type 2 (55) All (135)
Best Match Semantic Match Human Match Best Match Semantic Match Human Match Best Match Semantic Match Human Match

DeepSeek-V2.5 Vanilla 11.25% 16.25% 18.75% 9.09% 27.27% 21.82% 10.37% 20.74% 20.00%
MIGGPT 67.50% 80.00% 80.00% 56.36% 74.55% 70.91% 62.96% 77.78% 76.30%

Table 13: The contextual information of various methods.
Context One-step strategy Two-step strategy (Vanilla) One-step strategy + CFP MigGPT (Two-step strategy + CFP)
Code Information ✓ ✓ ✓ ✓
CFP Information ✘ ✘ ✓ ✓

Adherence to these provisions enhances the reliability and credibility of our Human Match metric,
ensuring rigorous alignment with established evaluation standards.

F.4 Compilation Success Rate

We conducted additional compilation success rate experiments on migrated patches. For each
migration sample, we replace the generated code with MigGPT into the patched version of the new
kernel in a containerized environment and attempt to compile the modified kernel. The compilation
success rate is the ratio of successfully compiled samples to all types of migration examples.

F.5 Line Edit Distance

The line edit distance is a measure of the difference between two code snippets. It is defined as the
minimum number of single-line edit operations (insertions, deletions, or substitutions) required to
transform one line into another.

Given two code snippets A = {ai}ni=1 and B = {bj}mj=1 with line lengths |A| = n and |B| = m,
the line edit distance D(A,B) can be defined recursively as follows:

D(A,B) =


max(n,m) if min(n,m) = 0,

min


D(prefix(A,n− 1), B) + 1,

D(A, prefix(B,m− 1)) + 1,

D(prefix(A,n− 1), prefix(B,m− 1)) + I(an ̸= bm)

otherwise.

(1)

Where:

1. prefix(A, k) = {ai}ki=1 denotes the first k lines of code snippet A.

2. I(ai ̸= bj) is an indicator function that equals 1 if ai ̸= bj and 0 otherwise.

3. The three cases in the recursion correspond to:
1) Deletion: Delete the last line of A and compute D(prefix(A,n− 1), B).
2) Insertion: Insert the last line of B into A and compute D(A, prefix(B,m− 1)).
3) Substitution: Replace the last line of A with the last line of B (if they differ) and

compute D(prefix(A,n− 1), prefix(B,m− 1)).

F.6 Threshold of CodeBLEU

CodeBLEU [40] is an automated metric designed to evaluate the quality of code generation, specifi-
cally tailored for tasks involving the generation of programming code. By integrating both syntactic
and semantic features of code, CodeBLEU provides a similarity score ([0, 1]) between two code
snippets. We employ CodeBLEU as a measure of “semantic match” and investigate the alignment
between CodeBLEU-based “semantic matches” and “human matches” across various thresholds. As
illustrated in Figure 15 and Table 15, we identify a threshold of 0.9 as optimal for our proposed bench-
mark, ensuring a high degree of consistency between “semantic matches” derived from CodeBLEU
and those determined by human evaluation.

31

Table 14: The accuracy of MIGGPT and “One-step + CFP” on the migration task.
Method Best Match Semantic Match
One-step + CFP 38.52% 42.96%
MIGGPT 62.96% 80.00%

Table 15: The results of MIGGPT, compared to the ground truth, are presented in terms of the number of correct
examples under both CodeBLEU “semantic match” and “human match”. Here, “CodeBLEU-0.8” denotes a
CodeBLEU classification threshold set at 0.8.

Metric Type GPT-4-turbo DeepSeek-V2.5 DeepSeek-V3 Average
Retrieval Migration Retrieval Migration Retrieval Migration Retrieval Migration

Human Match
Type1 77 68 77 64 76 70 77 67
Type2 49 38 50 39 49 41 49 39

All 126 106 127 103 125 111 126 107

CodeBLEU-0.8
Type1 78 77 79 77 77 77 78 77
Type2 46 45 50 48 51 48 49 47

All 124 122 129 125 128 125 127 124

CodeBLEU-0.85
Type1 78 69 79 70 76 74 78 71
Type2 46 43 50 46 51 45 49 45

All 124 112 129 116 127 119 127 116

CodeBLEU-0.9
Type1 76 66 78 64 75 71 76 67
Type2 46 42 50 41 51 43 49 42

All 122 108 128 105 126 114 125 109

CodeBLEU-0.95
Type1 76 62 78 57 75 67 76 62
Type2 45 40 49 38 49 41 48 40

All 121 102 127 95 124 108 124 102

F.7 Variant of MIGGPT

We implement four variants for the ablation study:

1. MigGPT-No-Retrieval-Augmentation: The Retrieval Augmentation Module is deactivated,
causing no constraint on the structure of code snippets.

2. MigGPT-No-Retrieval-Alignment: The Retrieval Alignment Module is deactivated, leading
to the absence of descriptions for the starting and ending line information of code snippets.

3. MigGPT-No-Migration-Augmentation: The Migration Augmentation Module is disabled.
The LLMs will not have the assistance of additional analytical information when completing
migration tasks.

4. MigGPT-No-CFP: Replace all components of MIGGPT that require CFP participation
(including code snippet invocation relationship analysis, anchor function identification, and
migration location detection) with implementations utilizing LLMs.

G Discussion

G.1 Type 1 Migration Sample

Traditional methods like FixMorph [43], SyDIT [31], TSBPORT [53], and PPatHF [37] target single-
step migration and cannot solve the target code retrieval problem, while MIGGPT tackles both
problems, which is harder and more practical. Besides, traditional methods struggle with Type 1
cases due to their reliance on static alignment and predefined transformation rules. As an example
shown in Figure 17, when backporting a patch that modifies compute_stats() in the old kernel,
FixMorph relies on static alignment (e.g., matching function names like process_data). However,
since compute_stats() is now a standalone function in the new kernel, traditional methods like
FixMorph cannot generate transformation rules for the split code structure, as its AST differencing
assumes code blocks stay within the same function. This illustrates how traditional methods struggle
with Type 1’s non-conflicting but structurally divergent changes.

G.2 CFP and Intermediate Representations

A pertinent research question emerges: Could the structural semantics captured through code snip-
pet intermediate representations (IR) provide enhanced contextual signals for guiding LLM-based

32

void process_data() {
 validate_input();
 compute_stats(); // Patch modifies this line
 log_results();
}

1
2
3
4
5

void compute_stats() { ... }
void process_data() {
 validate_input();
 compute_stats(); // Unmodified line
 log_results();
}

1
2
3
4
5
6

（a） （b）

Figure 17: (a) A code snippet of old kernel. (b) The code snippet is refactored into modular functions in the
new kernel.

code migration processes? The answer is negative. While IR-based approaches excel at syntax
normalization, our CFP method prioritizes two critical requirements for kernel patch migration:

• Context Preservation: Kernel patches often contain conditional compilation macros, inline
assembly, and annotations stripped during IR generation (e.g., preprocessing eliminates
macros). CFP retains these alongside code structure (function signatures, control-flow
anchors) to provide LLMs with a full migration context.

• Non-Compilable Code Support: Experimental/unmerged patches (e.g., ARM64-specific
optimizations) may fail compilation, making IR extraction impossible. CFP operates directly
on source fragments, even for "broken" code in development.

This demonstrates the necessity of employing CFP in MIGGPT.

G.3 Generalization of MIGGPT

MIGGPT demonstrates innovative advancements through its dual strengths of generalizability and
domain-specific optimization. While initially designed for out-of-tree kernel patches, its core method-
ology addresses universal challenges in LLM-based code migration, such as resolving structure
conflicts, precisely aligning code boundaries, reconstructing missing context, and establishing mi-
gration localization mechanisms, forming a framework extensible to multiple domains (CVE patch
backporting [43, 53], forked code porting [37, 55]). The architecture incorporates its Code Fingerprint
structure, which embeds Linux kernel-specific optimizations through preserving inline assembly
instructions and kernel macro patterns, interpreting kernel-specific comment conventions, and adapt-
ing to coding norms like function chaining. This technical design achieves a balance between
cross-domain adaptability and deep specialization, with the CFP serving as a modular component
that enhances Linux kernel patch migration while maintaining the system’s capacity for expansion
into other technical ecosystems. The solution thus enables bidirectional scalability, supporting both
horizontal domain transfer and vertical technical refinement.

G.4 Structured Analysis of CFP

The high-level idea of using program analysis techniques to create structured representations of code
to guide LLMs is an emerging area of research. We have compared MigGPT with existing research
in this emerging area. For instance, works such as AutoOS [3] and BYOS [29] utilize heuristic tree
structures to assist LLMs in optimizing kernel configurations during the deployment of operating
systems. Similarly, LLM-based fuzzing tools [49, 18] employ formal templates to guide LLMs in
generating more effective test cases. These approaches, much like MigGPT, leverage deterministic
information such as trees, graphs, and lists to mitigate the inherent uncertainty and randomness of
LLMs, thereby improving performance across various application tasks. However, it’s worth noting
that the specific deterministic information used and its data structure are often tailored to the particular
task at hand.

G.5 Deprecated System Calls

Once a system call is added to the kernel, it’s generally supported indefinitely to avoid breaking
existing software that relies on it. However, kernels do evolve, introducing new system calls that offer
more robust, secure, or efficient functionalities. These new features can, in some cases, functionally
supersede older, more limited mechanisms. When a patch migration involves new system calls

33

introduced in a newer kernel version, MigGPT is well-equipped to handle such scenarios. In these
cases, the new version target code (snew) will contain examples of how the new system call is used.
MigGPT can then refer to these usage examples in snew to complete the migration and generate a
corresponding patch that aligns with the new API. Certainly, in this scenario, migration types can still
be categorized according to the rules in Table 1. If the new kernel version and patch modifications
don’t overlap in location, it’s Type 1. Otherwise, it’s Type 2.

G.6 Impact Statement

This work advances the field of automated software maintenance by introducing MIGGPT, a frame-
work that leverages LLMs to automate the migration and maintenance of out-of-tree Linux kernel
patches. By reducing the manual effort and costs associated with these tasks, our research has the
potential to improve the efficiency and reliability of software systems, benefiting industries that rely
on stable and up-to-date infrastructure.

However, the adoption of such automation tools also raises ethical considerations. For example,
automating tasks traditionally performed by specialized engineers may impact job roles, necessitating
workforce adaptation. Additionally, the reliance on LLMs for critical maintenance tasks requires
rigorous validation to ensure accuracy and avoid potential risks to system stability and security.

While our primary focus is on technical advancements, we acknowledge the broader societal im-
plications of automating complex engineering processes. This study lays the foundation for future
research and encourages ongoing discussions on the responsible use of AI in software maintenance,
balancing innovation with ethical considerations.

34

	Introduction
	Related Work
	Code Migration Kernel Patch
	LLMs for Coding

	Problem Formulation
	Migration Benchmark
	Migration Types
	Benchmark Design

	MigGPT
	Challenges
	Overview
	Code Fingerprint
	Retrieval Augmentation Module
	Retrieval Alignment Module
	Migration Augmentation Module
	Implementation

	Evaluation
	Evaluation Settings
	Performance Evaluation (RQ1)
	Ablation Study (RQ2)
	Ablation Study
	Failure Analysis (RQ3)

	Conclusion
	Benchmark
	Collection
	Examples of Benchmark

	Examples of Out-of-tree Kernel Patch Migration
	Examples of Each Challenge
	Challenge 1
	Challenge 2
	Challenge 3
	Challenge 4

	MigGPT Modules
	Examples of CFP
	Examples of Retrieval Augmentation Module
	Examples of Migration Augmentation Module
	Algorithm and Prompts
	CFP

	More Results of MigGPT
	Settings
	Platform
	Contextual Information
	The Reliability of Human Match
	Compilation Success Rate
	Line Edit Distance
	Threshold of CodeBLEU
	Variant of MigGPT

	Discussion
	Type 1 Migration Sample
	CFP and Intermediate Representations
	Generalization of MigGPT
	Structured Analysis of CFP
	Deprecated System Calls
	Impact Statement

