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Abstract

Conditional generative models became a very powerful tool to sample from
Bayesian inverse problem posteriors. It is well-known in classical Bayesian lit-
erature that posterior measures are quite robust with respect to perturbations of
both the prior measure and the negative log-likelihood, which includes perturba-
tions of the observations. However, to the best of our knowledge, the robustness
of conditional generative models with respect to perturbations of the observations
has not been investigated yet. In this paper, we prove for the first time that ap-
propriately learned conditional generative models provide robust results for single
observations.

1 Introduction

Initiated by Szegedy et al. (2013), the vulnerability of deep neural networks (NNs) to adversarial
attacks has been shown in many papers, see for instance (Carlini, 2020; Ortiz-Jimenez et al., 2020;
Yuan et al., 2019). The vast majority of the literature is concerned with classification and related
tasks like image segmentation. Here, gradient-based information is typically used in order to cross
the discontinuous decision boundary of the classifier.

In this paper, we are interested in the solution of inverse problems by Bayesian methods. In
(del Aguila Pla et al., 2023), it was shown that for Gaussian noise and a convex negative log
prior, the maximum a-posteriori (MAP) estimation is stable with respect to the observations.
This is no longer true for non-convex log priors, see our motivating example in the appendix.
Concerning the robustness of end-to-end NN architectures, e.g., when learning the NN with a
parameter constrained quadratic loss function between the true data and their NN reconstruction
from corresponding observations, there exist ambivalent results in the literature. Antun et al.
(2020) observed that deep learning for inverse problems comes with instabilities in the sense that
„tiny, almost undetectable perturbations, both in the image and sampling domain, may result in
severe artifacts in the reconstruction”, while Genzel et al. (2023) attested in their comprehensive
tests that „ deep-learning-based methods are at least as robust as TV minimization with respect to
adversarial noise”. The authors of (Gandikota et al., 2022) showed experimentally the sensitivity
of NN to perturbations for the inverse problem of image deblurring.

We are not interested in end-to-end learning methods, but rather in learning the whole posterior
distribution in Bayesian inverse problems by conditional generative NNs as proposed, e.g., in (Adler
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& Öktem, 2018; Ardizzone et al., 2019; Batzolis et al., 2021; Hagemann et al., 2022). Addressing
the posterior measure instead of end-to-end reconstructions has several advantages as illustrated
in our example in the appendix. In particular, (samples of) the posterior can be used to provide
additional information on the reconstructed data, for example on their uncertainty. Further, several
robustness guarantees on the posterior were proved in the literature. One of the first results in the
direction of stability with respect to the distance of observations was obtained in (Stuart, 2010) with
respect to the Hellinger distance, see also (Dashti & Stuart, 2017). A very related question instead
of perturbed observations concerns the approximations of forward maps, which was investigated in
(Marzouk & Xiu, 2009). Furthermore, different prior measures were considered in (Hosseini, 2017;
Hosseini & Nigam, 2017; Sullivan, 2017), where they also discuss the general case in Banach spaces.
Two recent works (Latz, 2020; Sprungk, 2020) investigated the (Lipschitz) continuity of the posterior
measures with respect to a multitude of metrics, where Latz (2020) focused on the well-posedness of
the Bayesian inverse problem and Sprungk (2020) on the local Lipschitz continuity. Most recently,
in (Garbuno-Inigo et al., 2023) the stability estimates have been generalized to integral probability
metrics circumventing some Lipschitz conditions done in (Sprungk, 2020). Our paper is based on
the findings in (Sprungk, 2020), but relates them with conditional generative NNs that aim to learn
the posterior.

More precisely, in many machine learning papers, the following idea is pursued in order to solve
inverse problems simultaneously for all observations y: Consider a family of generative models
Gθ(y, ·) with parameters θ, which are supposed to map a latent distribution, like the standard
Gaussian one, to the absolutely continuous posteriors PX|Y =y, i.e., Gθ(y, ·)#PZ ≈ PX|Y =y. In
order to learn such a conditional generative model, usually a loss of the form

L(θ) := Ey∼PY
[D(PX|Y =y, Gθ(y, ·)#PZ)]

is chosen with some „distance” D between measures like the Kullback-Leibler (KL) divergence
D = KL used in (Ardizzone et al., 2019) or the Wasserstein-1 distance D = W1 appearing, e.g.,
in the framework of (conditional) Wasserstein generative adversarial networks (GANs) (Adler &
Öktem, 2018; Arjovsky et al., 2017; Liu et al., 2021). Also conditional diffusion models (Igashov
et al., 2022; Song et al., 2021b; Tashiro et al., 2021) fit into this framework. Here De Bortoli (2022)
showed that the standard score matching diffusion loss also optimizes the Wasserstein distance
between the target and predicted distribution.

However, in practice we are usually interested in the reconstruction quality from a single or just
a few measurements which are null sets with respect to PY . In this paper, we are interested in
the important question, whether there exist any guarantees for the NN output to be close to the
posterior for one specific measurement ỹ. Our main result in Theorem 5 shows that for a NN
learned such that the loss becomes small in the Wasserstein-1 distance, say L(θ) < ε, the distance
W1(PX|Y =ỹ, Gθ(ỹ, ·)#PZ) becomes also small for the single observation ỹ. More precisely, we get
the bound

W1(PX|Y =ỹ, Gθ(ỹ, ·)#PZ) ≤ Cε
1

n+1 ,

where C is a constant and n is the dimension of the observations. To the best of our knowledge,
this is the first estimate given in this direction.

We like to mention that in contrast to our paper, where we assume that samples are taken from
the distribution for which the NN was learned, the authors of (Hong et al., 2022) observed that
conditional normalizing flows are unstable when feeding them out-of-distribution observations. This
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is not too surprising given some literature on the instability of (conditional) normalizing flows
(Behrmann et al., 2021; Kirichenko et al., 2020).

Outline of the paper. The main theorem is shown in Section 2. For this we introduce several
lemmata for the local Lipschitz continuity of posterior measures and conditional generative models
with respect to the Wasserstein distance. In Section 3, we discuss the dependence of our derived
bound on the training loss for different conditional generative models. In Appendix A, we illustrate
by a simple example with a Gaussian mixture prior and Gaussian noise, why posterior distributions
can be expected to be more stable than maximum a-posteriori (MAP) estimations and have more
desirable properties than minimum mean squared error (MMSE) estimations.

2 Pointwise Robustness of Conditional Generative NNs

Let X ∈ Rm be a continuous random variable with law PX determined by its density function pX

and f : Rm → Rn a measurable function. We consider a Bayesian inverse problem

Y = noisy(f(X)) (1)

where "noisy" describes the underlying noise model. A typical choice is additive Gaussian noise,
resulting in

Y = f(X) + Ξ, Ξ ∼ N (0, σ2In).

Let Gθ = G : Rn ×Rd → Rm be a conditional generative model trained to approximate the posterior
distribution PX|Y =y using the latent random variable Z ∈ Rd. We will assume that all appearing
measures are absolutely continuous and that the first moment of G(y, ·)#PZ is finite for all y ∈ Rn.
In particular, the posterior density is related via Bayes’ theorem through the prior pX and the
likelihood pY |X=x as

pX|Y =y ∝ pY |X=xpX ,

where ∝ means quality up to a multiplicative normalization constant. Further, we assume
that the negative log-likelihood − log pY |X=x is bounded from below with respect to x, i.e.,
infx − log pY |X=x > −∞. In particular, this includes mixtures of additive and multiplicative noise
Y = f(X) + Ξ1 + Ξ2f(X), if X, Ξ1 and Ξ2 are independent, or log-Poisson noise commonly arising
in computerized tomography.

We will use the Wasserstein-1 distance (Villani, 2009), which is a metric on the space of probability
measures with finite first moment and is defined for measures µ and ν on the space Rm as

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
Rm×Rm

∥x − y∥dπ(x, y),

where Π(µ, ν) contains all measures on Rm × Rm with µ and ν as its marginals. The Wasserstein
distance can be also rewritten by its dual formulation (Villani, 2009, Remark 6.5) as

W1(µ, ν) = max
Lip(φ)≤1

∫
φ(x)d(µ − ν)(x). (2)

First, we show the Lipschitz continuity of our generating measures G(y, ·)#PZ with respect to y.
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Lemma 1 (Local Lipschitz continuity of generator). For any parameterized family of generative
models G with ∥∇yG(y, z)∥ ≤ Lr for all z ∈ supp(PZ) and all y ∈ Rn with ∥y∥ ≤ r for some Lr > 0
and some r > 0, it holds

W1(G(y1, ·)#PZ , G(y2, ·)#PZ) ≤ Lr∥y1 − y2∥

for all y1, y2 ∈ Rn with ∥y1∥, ∥y2∥ ≤ r.

Proof. We use the mean value theorem which yields for every z ∈ supp(PZ) and all y1, y2 ∈ Rn

with ∥y1∥, ∥y2∥ ≤ r

∥G(y1, z) − G(y2, z)∥ =
∥∥∥ ∫ 1

0
∇yG(y1 + t(y2 − y1), z)(y1 − y2)dt

∥∥∥
≤

∫ 1

0
∥∇yG(y1 + t(y2 − y1), z)∥dt∥y1 − y2∥

≤ Lr∥y1 − y2∥.

Next, we apply the dual formulation of the Wasserstein-1 distance to estimate

W1(G(y1, ·)#PZ , G(y2, ·)#PZ) = max
Lip(φ)≤1

Ez∼PZ
[φ(G(y1, z)) − φ(G(y2, z))]

≤ max
Lip(φ)≤1

Ez∼PZ
[|φ(G(y1, z)) − φ(G(y2, z))|]

≤ Ez∼PZ
[∥G(y1, z) − G(y2, z)∥]

≤ Lr∥y1 − y2∥.

Remark 2. If PZ is supported on a compact set, then the assumption in Lemma 1 is fulfilled for
generators which are, e.g., continuously differentiable and then it follows from the extreme value
theorem. Note that if we choose PZ to be a Gaussian distribution, then it holds supp(PZ) = Rd.
Thus, for continuously differentiable generators it is not clear that this assumption is fulfilled, but
at least the weaker assumption ∥∇yG(y, z)∥ ≤ Lr for all z ∈ Rd with ∥z∥ ≤ r̃ and all y ∈ Rn with
∥y∥ ≤ r holds true. In this case, we can show that Lemma 1 holds true up to an arbitrary small
additive constant, see Appendix B for more details.

By the following lemma, which is just (Sprungk, 2020, Corollary 19) for Euclidean spaces, the
local Lipschitz continuity of the posterior distribution with respect to the Wasserstein-1 distance is
guaranteed.
Lemma 3 (Local Lipschitz continuity of the posterior). Let the forward operator f and the likelihood
pY |X=x in (1) be measurable. Assume that there exists a function M : [0, ∞) × R → [0, ∞) which
is monotone in the first component and non-decreasing in the second component such that for all
y1, y2 ∈ Rn with ∥y1∥, ∥y2∥ ≤ r for r > 0 and for all x ∈ Rm it holds

| log pY |X=x(y2) − log pY |X=x(y1)| ≤ M(r, ∥x∥)∥y1 − y2∥. (3)

Furthermore, assume that M(r, ∥ · ∥) ∈ L2
PX

(Rm,R). Then, for any r > 0 there exists a constant
Cr < ∞ such that for all y1, y2 ∈ Rn with ∥y1∥, ∥y2∥ ≤ r we have

W1(PX|Y =y1 , PX|Y =y2) ≤ Cr∥y1 − y2∥.
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The Lipschitz constants of the family of generative models Gε and the posterior distributions
PX|Y =y can be related to each other under some convergence assumptions. Let the assumptions of
Lemma 3 be fulfilled, assume further that

lim
ε→0

Gε(y, ·)#PZ = PX|Y =y

with respect to the W1-distance and consider observations y1, y2 ∈ Rn with ∥y1, ∥, ∥y2∥ ≤ r. Then,
by the triangle inequality it holds

lim
ε→0

W1(Gε(y1, ·)#PZ , Gε(y2, ·)#PZ) ≤ lim
ε→0

W1(Gε(y1, ·)#PZ , PX|Y =y1) + W1(PX|Y =y1 , PX|Y =y2)

+ W1(PX|Y =y2 , Gε(y2, ·)#PZ)
= W1(PX|Y =y1 , PX|Y =y2)
≤ Cr∥y1 − y2∥.

Hence, under the assumption of convergence, we expect the Lipschitz constant of our conditional
generative models to behave similar to the one of the posterior distribution.
Remark 4. The assumption (3) is for instance fulfilled for additive Gaussian noise Ξ ∼ N (0, σ2Id).
In this case

− log pY |X=x(y) = n

2 log(2πσ2) + 1
2σ2 ∥y − f(x)∥2.

Hence − log pY |X=x(y) is differentiable with respect to y and we get local Lipschitz continuity of the
negative log-likelihood.

Now we can prove our main theorem which ensures pointwise bounds on the distance between
posterior and generated measure, if the training loss becomes small. In particular, the bound
depends on the local Lipschitz constant of the conditional generator with respect to the observation,
the local Lipschitz constant of the inverse problem, the training loss and the probability of the
considered observation ỹ. We want to highlight that the bound depends on the evidence pY (ỹ)
of an observation ỹ and indicates that we generally cannot expect a good pointwise estimate for
out-of-distribution observations, i.e., pY (y) ≈ 0. This is in agreement with the empirical results
presented in (Hong et al., 2022).
Theorem 5. Let the forward operator f and the likelihood pY |X=x in (1) fulfill the assumptions of
Lemma 3. Let ỹ ∈ Rn be an observation with pY (ỹ) = a > 0. Further, assume that y 7→ pY (y) is
differentiable with ∥∇pY (y)∥ ≤ K for K > 0 and all y ∈ Rn. Assume that we have trained a family
of generative models G which fulfills ∥∇yG(y, z)∥ ≤ Lk for all z ∈ supp(PZ) and all y ∈ Rn with
∥y∥ ≤ k for some Lk > 0 and some k ≥ a

2K + ∥ỹ∥, such that

Ey∼PY
[W1(PX|Y =y, G(y, ·)#PZ)] ≤ ε (4)

for some ε > 0. Then we have for ε ≤
(

a
2K

)n+1 (L∥ỹ∥+ a
2K

+C∥ỹ∥+ a
2K

)Sna

2n that

W1(PX|Y =ỹ, G(ỹ, ·)#PZ) ≤ (L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

)1− 1
n+1 (1 + 1

n
)
(

2n

Sna

) 1
n+1

ε
1

n+1 , (5)

where Sn := π
n
2 /Γ( n

2 + 1) and C• is the Lipschitz constant from Lemma 3. If ε ≤ 1, it also holds

W1(PX|Y =ỹ, G(ỹ, ·)#PZ) ≤ (L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

)ε
1

n+1 a

2K
+ 2ε

1
n+1

Sn( a
2K )na

. (6)
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Proof. Let 0 < r ≤ a
2K . Then, for y ∈ Br(ỹ), there exists by the mean value theorem some ξ ∈ yỹ

such that

|pY (y) − pY (ỹ)| ≤ ∥∇pY (ξ)∥∥y − ỹ∥ ≤ Kr ≤ a

2 .

Consequently, each y ∈ Br(ỹ) has at least probability pY (y) ≥ a
2 . Moreover, by the volume of the

n-dimensional ball it holds that

PY (Br(ỹ)) =
∫

Br(ỹ)
pY (y)dy ≥ π

n
2

Γ( n
2 + 1)rn a

2 = Snrn a

2 .

Now we claim that there exists ŷ ∈ Br(ỹ) with

W1(P
X|Y =ŷ

, G(ŷ, ·)#PZ) ≤ 2ε

Snrna
. (7)

If this would not be the case, this would imply a contradiction to (4) by

Ey∼PY
[W1(PX|Y =y, G(y, ·)#PZ)] =

∫
Rn

W1(PX|Y =y, G(y, ·)#PZ)dPY (y)

≥
∫

Br(ỹ)
W1(PX|Y =y, G(y, ·)#PZ)dPY (y)

>

∫
Br(ỹ)

2ε

Snrna
dPY (y)

= PY (Br(ỹ)) 2ε

Snrna
≥ ε.

Next, we show the local Lipschitz continuity of y 7→ W1(PX|Y =y, G(y, ·)#PZ) on Br(ỹ) by combining
Lemma 1 and Lemma 3. Let y1, y2 ∈ Br(ỹ), so that ∥y1∥, ∥y2∥ ≤ ∥ỹ∥ + r. Let L∥ỹ∥+r > 0 be the
local Lipschitz constant from Lemma 1 and C∥ỹ∥+r the local Lipschitz constant from Lemma 3.
Using the triangle inequality and its reverse, we get

|W1(PX|Y =y1 , G(y1, ·)#PZ) − W1(PX|Y =y2 , G(y2, ·)#PZ)|
≤ |W1(PX|Y =y1 , G(y1, ·)#PZ) − W1(PX|Y =y1 , G(y2, ·)#PZ)|

+ |W1(PX|Y =y1 , G(y2, ·)#PZ) − W1(PX|Y =y2 , G(y2, ·)#PZ)| (8)
≤ W1(G(y1, ·)#PZ , G(y2, ·)#PZ) + W1(PX|Y =y1 , PX|Y =y2)
≤ (L∥ỹ∥+r + C∥ỹ∥+r)∥y1 − y2∥.

Combination of the results in (7) and (8) yields the estimate

W1(PX|Y =ỹ, G(ỹ, ·)#PZ) ≤ |W1(PX|Y =ỹ, G(ỹ, ·)#PZ) − W1(P
X|Y =ŷ

, G(ŷ, ·)#PZ)|

+ |W1(P
X|Y =ŷ

, G(ŷ, ·)#PZ)|

≤ (L∥ỹ∥+r + C∥ỹ∥+r)r + 2ε

Snrna

≤ (L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

)r + 2ε

Snrna
.
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The radius r, for which the right-hand side becomes minimal, is given by

r =
( 2nε

(L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

)Sna

) 1
n+1

.

Plugging this in, we get (5). However, we need that r ≤ a
2K which implies

ε ≤
( a

2K

)n+1 (L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

)Sna

2n
.

On the other hand, if ε ≤ 1, we can choose r = ε
1

n+1 a
2K ≤ a

2K which results in (6) and has the
same asymptotic rate.

Remark 6. We can get rid of the dimension scaling ε
1

n+1 by choosing the radius as r = a
2K , which

yields

W1(PX|Y =ỹ, G(ỹ, ·)#PZ) ≤ (L∥ỹ∥+ a
2K

+ C∥ỹ∥+ a
2K

) a

2K
+ 2ε

Sn( a
2K )na

.

This comes at the disadvantage that the first term is constant with respect to ε.

The following corollary provides a characterization of a perfect generative model. If the expectation
(4) goes to zero, then for all y ∈ Rn with pY (y) > 0 the posteriors PX|Y =y get predicted correctly.
Corollary 7. Let the assumptions of Lemma 1 and Lemma 3 hold true and assume a global Lipschitz
constant in Lemma 1. Let pY be differentiable with ∥∇pY (y)∥ ≤ K for some K > 0 and all y ∈ Rn.
Consider a family of generative networks (Gε)ε>0 fulfilling

Ey∼PY
[W1(PX|Y =y, Gε(y, ·)#PZ)] ≤ ε

and assume that the Lipschitz constants Lε of Gε from Lemma 1 are bounded by some L < ∞.
Then for all observations y ∈ Rn with pY (y) > 0 it holds

W1(PX|Y =y, Gε(y, ·)#PZ) → 0 as ε → 0.

Proof. We can assume that ε ≤ 1, then the statement follows immediately from Theorem 5.

3 Conditional Generative Models

In this section, we discuss whether the main assumption, namely that the averaged Wasserstein
distance Ey∼PY

[W1(PX|Y =y, G(y, ·)#PZ)] in (4) becomes small, is reasonable for different condi-
tional generative models. Therefore we need to relate the typical choices of training loss with the
Wasserstein distance.

3.1 Conditional Normalizing Flows

Conditional normalizing flows (Altekrüger & Hertrich, 2023; Andrle et al., 2021; Ardizzone et al.,
2019; Winkler et al., 2019) are a family of normalizing flows parameterized by a condition, which in
our case is the observation y. The aim is to learn a network T : Rn ×Rm → Rm such that T (y, ·) is a
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diffeomorphism and T (y, ·)#PZ ≈ PX|Y =y for all y ∈ Rn, where ≈ means that two distributions are
similar in some proper distance or divergence. This can be done via minimizing the expectation on
Y of the forward KL divergence Ey∼PY

[KL(PX|Y =y, T (y, ·)#PZ)], which is equal, up to a constant,
to

Ex∼PX ,y∼PY
[− log pZ(T −1(y, x)) − log(| det DT −1(y, x)|)],

where the inverse is meant with respect to the second component, see (Hagemann et al., 2022)
for more details. Training a network using the forward KL has many desirable properties like
a mode-covering behaviour of T (y, ·)#PZ . Now conditional normalizing flows are trained using
the KL divergence, while the theoretical bound in Section 2 relies on the metric properties of the
Wasserstein-1 distance. Thus we need to show that we can ensure a small ε in (4) when training
the conditional normalizing flow as proposed. Following (Gibbs & Su, 2002, Theorem 4), we can
bound the Wasserstein distance by the total variation distance, which in turn is bounded by KL
via Pinsker’s inequality (Pinsker, 1963), i.e.,

Ey∼Py
[W1((PX|Y =y, T (y, ·)#PZ)2] ≤ C Ey∼PY

[TV((PX|Y =y − T (y, ·)#PZ)2]

≤ C√
2
Ey∼PY

[KL((PX|Y =y, T (y, ·)#PZ)],

where C is a constant depending on the support of the probability measures. However, by definition
supp(T (y, ·)#PZ) = Rm. By (Altekrüger et al., 2022, Lemma 4) the density pT (y,·)#PZ

decays
exponentially. Therefore, we expect in practice that the Wasserstein distance becomes small if the
KL vanishes even though (Gibbs & Su, 2002, Theorem 4) is not applicable.

3.2 Conditional Wasserstein GANs

In Wasserstein GANs (Arjovsky et al., 2017), a generative adversarial network approach is taken
in order to sample from a target distribution. For this, the dual formulation (2) is used in order to
calculate the Wasserstein distance between measures PX and PY . Then the 1-Lipschitz function is
reinterpreted as a discriminator in the GAN framework (Goodfellow et al., 2014). If the correspond-
ing minimizer in the space of 1-Lipschitz functions can be found, then optimizing the adversarial
Wasserstein GAN loss directly optimizes the Wasserstein distance. The classical Wasserstein GAN
loss for a target measure µ and a generator G : Rd → Rm is given by

min
θ

max
Lip(φ)≤1

Ex∼PX ,z∼PZ
[φ(x) − f(G(z))],

where d ∈ N is the dimension of the latent space.

The Wasserstein GAN framework can be extended to conditional Wasserstein GANs (Adler &
Öktem, 2018; Liu et al., 2021) for solving inverse problems. For this, we aim to train generators
G : Rn × Rd → Rm and average with respect to the observations

L(θ) = Ey∼Py

[
max

Lip(φy)≤1
Ex∼PX|Y =y,z∼PZ

[φy(x) − φy(G(y, z))]
]
.

Hence minimizing this loss (or a variant of it) directly enforces a small ε in assumption (4).
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3.3 Conditional Diffusion Models

In diffusion models, a forward SDE, which maps a data distribution to an approximate Gaussian
distribution is considered (Song et al., 2021a;b). Then the theory of reverse SDEs (Anderson, 1982)
allows to sample from the data distribution by learning the score ∇ log pt(x), where pt(x) is the
path density of the forward SDE. The forward SDE usually reads

dXt = −αXtdt +
√

2αdWt,

while the reverse SDE is given by

dYt = −αYtdt − 2 ∇ log pt(x)dt +
√

2αdW̃t,

where α ∈ R describes the schedule of the SDE. However, the path density pt(x) is usually in-
tractable, so that the score ∇ log pt(x) is learned with a NN sθ : [0, T ] × Rm → Rm such that
sθ(t, x) ≈ ∇ log pt(x) for all t ∈ [0, T ] and x ∈ Rm. This can be ensured using the so-called score
matching loss (Song et al., 2021b) defined by

min
θ

Et∼U([0,T ]),x∼PXt

[
∥sθ(t, x) − ∇ log pt(x)∥2]

.

In order to solve inverse problems, we can consider a conditional reverse SDE

dYt = −αYtdt − 2 ∇ log pt(x|y)dt +
√

2αdW̃t,

where pt(x|y) is the conditional path density given an observation y ∈ Rn. Consequently, we con-
sider conditional diffusion models, where a NN sθ : Rn ×[0, T ]×Rm → Rm is learned to approximate
sθ(y, t, x) ≈ ∇ log pt(x|y) for all t ∈ [0, T ], x ∈ Rm and all observations y ∈ Rm. Then the score
matching loss for conditional diffusion models is given by (Batzolis et al., 2021, Theorem 1) as

L(θ) = Ey∼PY

[
Et∼U([0,T ]),x∼PXt|Y =y

[∥sθ(y, t, x) − ∇ log pt(x|y)∥2]. (9)

Denote by Ỹ the solution to the approximated SDE starting at Ỹ0 ≈ PZ and Ỹ y the solution of the
approximated SDE conditioned on an observation y ∈ Rn. Then we can use the bound derived in
(Pidstrigach et al., 2023, Theorem 2) which gives

Ey∼PY
[W2(PX|Y =y, PỸ y

T
)] ≤ Ey∼PY

[
C W2

(
PXy

T
, N (0, Id)

)]
+ TL(θ),

where C is a constant depending on the length of the interval T and the Lipschitz constant of the
conditional score ∇ log pt(x|y). Finally, Hölders inequality yields for the Wasserstein-1 distance

Ey∼PY
[W1(PX|Y =y, PỸ y

T
)] ≤ Ey∼PY

[
C W2

(
PXy

T
, N (0, Id)

)]
+ TL(θ).

Hence, when training the conditional diffusion model by minimizing (9) we also ensure that (4)
becomes small. For more in depth discussion with less restrictive assumptions on the score, see also
(De Bortoli, 2022).
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3.4 Conditional Variational Autoencoder

Variational Autoencoder (VAE) (Kingma & Welling, 2013) aim to approximate a distribution PX

by learning a stochastic encoder Eϕ : Rm → Rd × Rd,d determining parameters of the normal
distribution (µϕ(x), Σϕ(x)) for x sampled from PX and pushing PX to a latent distribution PZ with
density pZ of dimension d ∈ N. In the reverse direction, a stochastic decoder Dθ : Rd → Rm ×Rm,m

determines parameters of the normal distribution (µθ(z), Σθ(z)) for z ∈ Rd and pushes PZ back
to PX . By definition, the densities of Eϕ and Dθ are given by qϕ(z|x) = N (z; µϕ(x), Σϕ(x)) and
pθ(x|z) = N (x; µθ(z), Σθ(z)), respectively. These networks are trained by minimizing the so-called
evidence lower bound (ELBO)

ELBO(θ, ϕ) = −Ex∼PX

[
Ez∼qϕ(·|x)[log(pθ(x|z)pZ(z)) − log(qϕ(z|x)))]

]
.

By (Hagemann et al., 2023, Theorem 4.1), the loss L(θ, ϕ) is related to KL by

KL(PX , Dθ#PZ) ≤ ELBO(θ, ϕ).

We can solve inverse problems by extending VAEs to conditional VAEs (Lim et al., 2018; Sohn
et al., 2015) and aim to approximate the posterior distribution PX|Y =y for a given observation
y ∈ Rn. The conditional stochastic encoder Eϕ : Rn × Rm → Rd × Rd,d and conditional stochastic
decoder Dθ : Rn × Rd → Rm × Rm,m are trained by

L(θ, ϕ) = Ey∼PY

[
− Ex∼PX|Y =y

[
Ez∼qϕ(·|y,x)[log(pθ(x|y, z)pZ(z)) − log(qϕ(z|y, x)))]

]]
.

By the same argument as above, the KL can be bounded by

Ey∼PY
[KL(PX|Y =y, Dθ(y, ·)#PZ)] ≤ L(θ, ϕ)

and, using similar arguments as in Section 3.1, we get the estimate

Ey∼PY
[W1(PX|Y =y, Dθ(y, ·)#PZ)2] ≤ C√

2
L(θ, ϕ).

4 Conclusion

We showed a pointwise stability guarantee of the Wasserstein distance between the posterior PX|Y =y

of a Bayesian inverse problem and the learned distribution G(y, ·)#PZ of a conditional generative
model G under certain assumptions. In particular, the pointwise bound depends on the Lipschitz
constant of the conditional generator with respect to the observation, the Lipschitz constant of the
inverse problem, the training loss with respect to the Wasserstein distance and the probability of
the considered observation.

The required training accuracy of the bound depends on the Wasserstein-1 distance between the
target distribution and the learned distribution. However, some conditional networks as the con-
ditional normalizing flow are not trained to minimize the Wasserstein-1 distance. Consequently, a
direct dependence of the bound on the training accuracy with respect to the KL divergence would
be helpful. Under very strong assumptions, the continuity in Lemma 1 has been shown for KL in
(Baptista et al., 2023). This could be used to derive a similar statement.

Furthermore, our bound is a worst case bound and is not always practical if the constants are large.
It would be interesting to check whether tightness of the bound can be shown for some examples.
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A Example on the Robustness of the MAP and Posterior

We like to provide an example that illustrates the stability of the posterior distribution in contrast
to the MAP estimator and highlights the role of the MMSE estimator.

By the following lemma, see, e.g., (Grana et al., 2017; Hagemann et al., 2023), the posterior of
a Gaussian mixture model given observations from a linear forward operator corrupted by white
Gaussian noise can be computed analytically.
Lemma 8. Let X ∼

∑K
k=1 wkN (mk, Σk) ∈ Rm be a Gaussian mixture random variable. Suppose

that
Y = AX + Ξ,

where A : Rm → Rn is a linear operator and Ξ ∼ N(0, σ2In). Then the posterior is also a Gaussian
mixture

PX|Y =y ∝
K∑

k=1
w̃kN (·|m̃k, Σ̃k)

with
Σ̃k := ( 1

σ2 ATA + Σ−1
k )−1, m̃k := Σ̃k( 1

b2 ATy + Σ−1
k µk)

and

w̃k := wk exp
(

1
2(m̃kΣ̃−1

k m̃k − mkΣ−1
k mk)

)
.

Now, for some small ε > 0 we consider the random variable X ∈ R with simple prior distribution

PX = 1
2N (−1, ε2) + 1

2N (1, ε2)

14
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Figure 1: The MAP estimator (top) and the MMSE estimator (bottom) with respect to the obser-
vation y for ε2 = 0.052 and different noise levels σ2.

and observations from Y = X + Ξ with noise Ξ ∼ N (0, σ2). The MAP estimator is given by

xMAP(y) ∈ arg max
x

pX|Y =y(x)

= arg min
x

1
2σ2 (y − x)2 − log

(1
2(e− 1

2ε2 (x−1)2
+ e− 1

2ε2 (x+1)2
)
)

= arg min
x

1
2σ2 (y − x)2 + 1

2ε2 (x2 + 1) − log
(

cosh
( x

ε2

))
.

The above minimization problem has a unique global minimizer for y ̸= 0 which we computed
numerically. Figure 1 (top) shows the plot of the function xMAP(y) for ε2 = 0.052 and different
values of σ. Clearly, small perturbations of y near zero lead to qualitatively completely different
x-values, where a smaller noise level σ lowers the distance between the values xMAP(y) for y > 0
and y < 0. In other words, the MAP estimator is not robust with respect to perturbations of the
observations near zero.

In contrast, using Lemma 8, we can compute the posterior

PX|Y =y = 1
w̃1 + w̃2

(w̃1N (·|m̃1, σ̃2) + w̃2N (·|m̃2σ̃2))

with

σ̃2 = σ2ε2

σ2 + ε2 , m̃1 = ε2y + σ2

ε2 + σ2 , m̃2 = ε2y − σ2

ε2 + σ2 ,

w̃1 = 1
2ε

exp
( 1

2ε2

( (ε2y + σ2)2

σ2(ε2 + σ2) − 1
))

, w̃2 = 1
2ε

exp
( 1

2ε2

( (ε2y − σ2)2

σ2(ε2 + σ2) − 1
))

.
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Figure 2: Posterior density (red), MAP estimator (blue) and MMSE estimator (green) for different
observations y = −0.05, −0.01, 0.01, 0.05 (from left to right). While the MAP estimator is discon-
tinuous with respect to the observation y, the posterior density is continuous with respect to y. The
MMSE estimator gives just the expectation value of the posterior which is, in contrast to MAP, in
not the value with highest probability.

Then the MMSE estimator is given by the expectation value of the posterior

xMMSE(y) = arg min
T

E(x,y)∼P(X,Y )∥x − T (y)∥2 = E[X|Y = y]

=
∫
R

xpX|Y =y(x) dx

= 1
w̃1 + w̃2

(w̃1m̃1 + w̃2m̃2)

= 1
w̃1 + w̃2

1
ε(ε2 + σ2)e

ε2y2−σ2

2σ2(ε2+σ2)
(
ε2y cosh( y

ε2 + σ2 ) + σ2 sinh( y

ε2 + σ2 )
)
.

In Figure 1 (bottom), we see that the MMSE estimator shows a smooth transition in particular
for larger noise levels, meaning that the estimator is robust against small perturbations of the
observation near zero. The posterior is plotted for four different small values of y in Figure 2. The
red curves show the graphs of the corresponding density functions. Obviously, these curves change
smoothly with respect to y, i.e., we observe a continuous behavior of the posterior also with respect
to observations near zero. Therefore, sampling from the posterior distributions PX|Y =y appears to
be robust to perturbations of y. Having different samples from the posterior at Y = y, we can obtain
a more circumvent overview on the original data than just taking their mean value represented by
the MMSE estimator into account. As can be seen in the figure, for fixed y the MMSE estimator
delivers just an averaged value, which is, in contrast to the non robust MAP estimator, not the
one with highest probability. Note that in case of a Gaussian prior X ∼ N (m, Σ) in Rm and white
Gaussian noise, the MAP and MMSE estimators coincide.

B Local Lipschitz continuity of the generator for a latent space with infinite
support

Here we show a weakened version of Lemma 1 leading to an arbitrary small additive constant. The
main difference is the weaker assumption ∥∇yG(y, z)∥ ≤ Lr for all z ∈ Rd with ∥z∥ ≤ r̃ and all
y ∈ Rn with ∥y∥ ≤ r, which is fulfilled for continuously differentiable generators. For this we use the
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so-called truncated normal distribution (Horrace, 2005; Tallis, 1963). Let pZ be the density of the
standard normal distribution PZ = N (0, In), then the density of the truncated normal distribution
P r̃

Z is given by

pr̃
Z(z) =


pZ (z)∫

Br̃(0)
pZ (z)dz

= pZ (z)
Cr̃

, if ∥z∥ ≤ r̃,

0, else.

Lemma 9. Let PZ = N (0, In) be the latent space. For any parameterized family of generative
models G with ∥∇yG(y, z)∥ ≤ Lr for all z ∈ Rd with ∥z∥ ≤ r̃ and all y ∈ Rn with ∥y∥ ≤ r for some
Lr > 0 and some r > 0, it holds

W1(G(y1, ·)#PZ , G(y2, ·)#PZ) ≤ Lr∥y1 − y2∥ + Mr̃

for all y1, y2 ∈ Rn with ∥y1∥, ∥y2∥ ≤ r. The additive constant Mr̃ fulfills Mr̃ → 0 for r̃ → ∞.

Proof. Let y1, y2 ∈ Rn with ∥y1∥, ∥y2∥ ≤ r, then it holds

W1(G(y1, ·)#PZ , G(y2, ·)#PZ) ≤ W1(G(y1, ·)#PZ , G(y1, ·)#P r̃
Z) + W1(G(y1, ·)#P r̃

Z , G(y2, ·)#P r̃
Z)

+ W1(G(y2, ·)#P r̃
Z , G(y2, ·)#PZ).

By the assumption on the generator G, Lemma 1 yields

W1(G(y1, ·)#P r̃
Z , G(y2, ·)#P r̃

Z) ≤ Lr∥y1 − y2∥.

Consequently, it suffices to show that for y ∈ Rn with ∥y∥ ≤ r the term W1(G(y ·)#PZ , G(y, ·)#P r̃
Z)

vanishes for r̃ → ∞. By definition, it holds

W1(G(y, ·)#PZ , G(y, ·)#P r̃
Z) = max

Lip(φ)≤1

∫
Rd

φ(G(y, z))dPZ(z) −
∫
Rd

φ(G(y, z))dP r̃
Z(z)

= max
Lip(φ)≤1

∫
Rd\Br̃(0)

φ(G(y, z))dPZ(z) +
∫

Br̃(0)
φ(G(y, z))dPZ(z)

−
∫

Br̃(0)
φ(G(y, z))dP r̃

Z(z)

= max
Lip(φ)≤1

∫
Rd\Br̃(0)

φ(G(y, z))pZ(z)dz

+
∫

Br̃(0)
φ(G(y, z))pZ(z)(1 − 1

Cr̃
)dz.

The first term vanishes exponentially in r̃ by the density pZ , and for the second term note that
Cr̃ → 1 for r̃ → ∞.
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