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Abstract

Large language models have revolutionized natural language processing through
self-supervised pretraining on massive datasets. Inspired by this success, re-
searchers have explored adapting these methods to speech by discretizing contin-
uous audio into tokens using neural audio codecs. However, existing approaches
face limitations, including high bitrates, the loss of either semantic or acoustic
information, and the reliance on multi-codebook designs when trying to capture
both, which increases architectural complexity for downstream tasks. To address
these challenges, we introduce FocalCodec, an efficient low-bitrate codec based on
focal modulation that utilizes a single binary codebook to compress speech between
0.16 and 0.65 kbps. FocalCodec delivers competitive performance in speech resyn-
thesis and voice conversion at lower bitrates than the current state-of-the-art, while
effectively handling multilingual speech and noisy environments. Evaluation on
downstream tasks shows that FocalCodec successfully preserves sufficient semantic
and acoustic information, while also being well-suited for generative modeling.
Demo samples and code are available at https://lucadellalib.github.io/focalcodec-
web/.

1 Introduction

Recent advancements in large language models [46, 10, 26, 17] have led to significant progress in
natural language processing, enabling breakthroughs in tasks such as summarization, translation,
question answering, code generation, and retrieval. Building on this success, the research community
has extended these methods to other modalities, with speech emerging as a major area of interest. The
impressive performance of text-conditioned audio and speech generation models [6, 11, 33, 69, 30],
along with recent speech language models [85, 22, 16, 45], highlights the potential of token-based
approaches for speech processing.

A key component of these pipelines is the neural audio codec, which compresses speech into tokens
that downstream models can process. These tokens must preserve acoustic and semantic information
to ensure effective representations for downstream tasks while maintaining high reconstruction quality.
Another important requirement is a low token rate. As sequence length increases, capturing long-term
dependencies becomes more challenging, and computational costs increase.

Despite recent progress, current codecs still face several challenges. Acoustic codecs [14, 34, 25, 76]
achieve high-quality reconstruction but often rely on multiple codebooks, adding complexity to the
design of downstream models. Additionally, they typically lack strong semantic representations.
Hybrid codecs [86, 37, 16, 48] aim to combine both acoustic and semantic information while
maintaining high-quality resynthesis. Still, they often depend on complex multi-codebook designs,
explicit disentanglement, distillation losses, or supervised fine-tuning. Single-codebook designs [36,
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Figure 1: FocalCodec architecture. The encoder extracts features containing both acoustic and
semantic information. These features are then mapped to a low-dimensional space by the compressor,
binary quantized, and projected back by the decompressor. The decoder resynthesizes the waveform
from these features.

21, 25, 76, 74] offer a simpler architecture but struggle to balance compression while maintaining both
reconstruction quality and effective representations for downstream tasks, especially at low bitrates.
To address these limitations, we introduce FocalCodec, an efficient low-bitrate codec based on focal
modulation [81] that compresses speech into the space of a single binary codebook. FocalCodec
achieves competitive performance in reconstruction at lower bitrates than the current state-of-the-art
under a variety of conditions while also preserving sufficient semantic and acoustic information for
downstream tasks.

Our contributions are as follows:

• We introduce FocalCodec, a novel hybrid codec featuring a compressor-quantizer-decompressor
architecture that compresses speech using a single binary codebook at ultra-low bitrates (0.16
to 0.65 kbps).

• We propose a focal modulation-based architecture with strong inductive biases for speech,
offering an efficient and scalable solution for tokenization.

• We demonstrate the versatility of FocalCodec through comprehensive evaluations of recon-
struction quality and performance in downstream tasks, highlighting its potential for both
discriminative and generative speech modeling.

Demo samples and code are available at https://lucadellalib.github.io/focalcodec-web/.

2 Related Work

Acoustic Codecs. Acoustic codecs, built on the VQ-VAE [67] framework, aim for high-fidelity
reconstruction. Notable advancements include hierarchical RVQ [83], lightweight architectures [14],
improved RVQ techniques [34], and efficiency-driven designs [78, 57, 1]. Recent methods explore
scalar quantization [41, 79], Mel-spectrogram discretization [4], and novel paradigms like diffusion-
and flow-based decoding [75, 80, 49]. To reduce bitrate without compromising performance, multi-
scale RVQ [63, 52] achieves improved compression by varying frame rates in deeper quantizers.
However, its hierarchical design adds complexity to downstream applications, as it requires flattening
the token sequences. Single-codebook designs [36, 21, 25, 76, 74] have emerged as a simpler, efficient
alternative, delivering robust performance at low bitrates. Our codec aligns with this trend, leveraging
a novel focal modulation architecture and a pretrained self-supervised encoder to efficiently unify
semantic and acoustic representation learning.

Semantic Codecs. Semantic codecs leverage self-supervised features from large models trained
with contrastive [3] or predictive [23, 9] objectives and k-means clustering [39] for quantization, either
from a single layer [50, 71] or multiple layers [44, 61]. Improvements upon this paradigm include
replacing k-means with RVQ [24, 90, 20, 70], noise-aware [42] and speaker-invariant tokenization [8].
While these approaches effectively capture linguistic and content-related information, they often
discard much of the acoustic detail, resulting in low speaker fidelity when a vocoder is trained
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to resynthesize speech directly from these representations. To improve reconstruction quality,
[90, 20, 70] incorporate continuous embeddings to capture prosody and speaker traits. However, this
defeats the purpose of using speech tokenization for unified semantic and acoustic modeling. In
contrast, our codec adopts a self-supervised architecture similar to semantic codecs but preserves
both semantic content and acoustic detail through its compressor-quantizer-decompressor design and
decoupled training strategy, ensuring high-quality reconstruction while preserving the advantages of
semantic representations.

Hybrid Codecs. Hybrid codecs combine semantic and acoustic features to balance reconstruction
quality and content representation. Some methods [28, 27, 88] employ multiple codebooks to
disentangle speech into distinct subspaces, such as content, prosody, and timbre, while others [37]
utilize dual encoders to separately capture content and fine-grained acoustic information. Semantic
distillation [86, 16] has also been explored to enrich the first RVQ codebook with semantic information
from HuBERT [23] and WavLM [9]. More recently, Parker et al. [48] trained a large-scale transformer-
based VQ-VAE, achieving exceptional reconstruction quality at ultra-low bitrates. To enhance
semantic content, they employed supervised fine-tuning on force-aligned phoneme data. Our codec
also belongs to this category but instead of relying on complex multi-codebook designs with explicit
disentanglement, distillation losses, or supervised fine-tuning, it is purely based on self-supervised
learning. It compresses both semantic and acoustic information into a single codebook, pushing the
boundaries of hybrid codec design at low bitrates.

3 FocalCodec

3.1 Architecture

The proposed codec is largely based on the VQ-VAE framework but incorporates compressor and
decompressor modules between the encoder and decoder (see Figure 1). The discriminator is used
only during training and is discarded afterward.

Encoder. To build a hybrid codec with a simple design, without relying on distillation losses or
multiple encoders, the encoder must capture both acoustic and semantic information. This ensures
high-quality reconstructions and expressive tokens for training downstream models. Self-supervised
models like HuBERT and WavLM retain significant acoustic information in their lower layers [9],
making them suitable for hybrid codecs. For instance, Baas et al. [2] show that a high-quality
vocoder can be trained using continuous representations from layer-6 of WavLM-large. Following
this approach, we use the first 6 layers of WavLM-large2 as our encoder. However, effective
quantization is critical for approximating continuous representations with sufficient granularity.
Standard k-means clustering typically fails to preserve essential acoustic details [68]. To address this,
we introduce a compressor-quantizer-decompressor design based on focal modulation, which allows
for granular quantization that preserves both semantic and acoustic information.

Compressor. The compressor maps the encoder representations to a compact, low-dimensional
latent space. Optionally, it can perform temporal downsampling to further reduce the frame rate. Prior
work typically relies on convolutional, recurrent, or transformer-based architectures for compression.
In contrast, we introduce a novel focal downscaling module, which combines a downscaling operation
with a focal block. The downscaling step applies a linear projection to compress the feature dimension,
while a 1D convolution can be used instead to additionally downsample along the time dimensions. To
better capture periodic patterns, we follow [34] and apply Snake activations [89] after the projection.

To build a focal block, we replace the self-attention mechanism in the standard transformer block with
focal modulation. Focal modulation [81] is an efficient alternative to self-attention that enables fine-
to-coarse modeling and introduces useful inductive biases such as translation equivariance, explicit
input dependency, time and channel specificity, and decoupled feature granularity. While originally
designed for image and video processing, these properties also benefit speech modeling [15]. Unlike
self-attention, which directly computes token-wise interactions, focal modulation first aggregates
the global context and then modulates local interactions based on this aggregated representation.
Intuitively, self-attention mixes tokens by first computing pairwise similarities and then aggregating,
which can make the result sensitive to a few high-scoring neighbors. Focal modulation inverts this

2https://github.com/microsoft/unilm/tree/master/wavlm
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order: it first forms a compact, multi-scale summary of the input (local + global context) and then
uses this summary to modulate each token. This ensures that interactions are guided by the overall
context rather than being dominated by individual tokens, while avoiding quadratic cost.

Formally, focal modulation computes output representation yi for each input feature xi in sequence
x1:n as:

yi = q(xi)⊙ h

(
L+1∑
ℓ=1

zℓi ⊙ gℓ
i

)
(1)

where q(·) and h(·) are linear projections, and zℓi ∈ zℓ1:n and gℓ
i ∈ gℓ

1:n are the context and gating
vectors at position i and focal level ℓ ∈ {1, . . . , L+1}, with ⊙ denoting element-wise multiplication.
The context sequence z1:n is obtained via a stack of depth-wise convolutions with increasing kernel
sizes to capture dependencies from short to long range, with average pooling applied to the last level
feature map to incorporate global information. Then, for each focal level, a point-wise convolution
is used to compute the gating sequence g1:n. This hierarchical approach, operating at multiple
granularities, makes focal modulation well-suited for processing speech features, enabling efficient
and scalable representation learning in linear time while preserving long-range dependencies.

Quantizer. FocalCodec maps latent representations from the compressor into the codebook space of
a single quantizer, eliminating the need for hierarchical designs in downstream models. To achieve
this, while maintaining both reconstruction quality and efficiency, the quantizer should satisfy the
following requirements: 1) given that the original waveform is already significantly compressed into
a short sequence of latents, the quantizer must compensate by using a sufficiently large codebook size
to reduce the quantization error; 2) the quantizer should make efficient use of the codebook capacity,
avoiding under-utilization; 3) code lookup must remain efficient, despite the increased codebook size,
to ensure fast inference.

To address these challenges, we employ binary spherical quantization (BSQ) [87], originally
introduced for compression of images and videos. To the best of our knowledge, this is the first
successful application of binary quantization in the speech domain. BSQ belongs to the category of
lookup-free quantization (LFQ) methods [41, 82], i.e. it utilizes an implicit codebook, defined as:

C =

{
− 1√

L
,

1√
L

}L

, (2)

which represents an L-dimensional hypercube projected onto a unit hypersphere. The codebook size is
determined by the latent representation dimension L as |C| = 2L. For example, latent representations
of dimension 13 correspond to a codebook size of 8192. The quantization process consists of two
steps. First, the input vector v of dimension L is normalized to lie on the unit hypersphere:

u =
v

∥v∥2
. (3)

Second, binary quantization with a normalization factor of
√
L is applied independently to each

dimension of u:

û =
sign(u)√

L
, (4)

where sign(·) denotes the sign function, with sign(0) remapped to 1 to ensure the output always lies
on the hypersphere. To make the quantization differentiable, we use the straight-through estimator [5].
BSQ offers several advantages over traditional quantization methods. First, the parameter-free implicit
codebook is lightweight and computationally efficient. Second, empirical evidence [87] shows that
the binary quantization bottleneck encourages high codebook utilization, even for large values of
L, outperforming other lookup-free methods such as finite scalar quantization (FSQ) [41]. Third,
the quantization error is bounded, resulting in faster convergence compared to vanilla LFQ, which
does not normalize the representations. Finally, tying the codebook size to the latent dimension helps
prevent performance degradation in downstream generative models when using larger codebooks [82].

Decompressor. The decompressor reconstructs the encoder continuous representations from the
quantizer output. It closely mirrors the structure of the compressor, with the downscaling layers
replaced by upscaling layers.
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Decoder. Most codecs use symmetric architectures, where the decoder mirrors the encoder. How-
ever, some works [4, 25, 37] explore asymmetric designs with larger decoders to improve reconstruc-
tion quality. In this work, we adopt an asymmetric design but prioritize the encoder, allocating ∼ 5x
more parameters to it than the decoder. We argue that a strong encoder is essential for extracting ro-
bust, disentangled representations for downstream tasks. Even with a high compression rate, a smaller
decoder can still generate high-quality audio while offering faster inference, which is beneficial for
streaming applications. For the decoder, we choose the more efficient Vocos [62] architecture over
HiFi-GAN [32]. Vocos maintains consistent feature resolution and uses inverse STFT for upsampling,
minimizing aliasing and improving computational efficiency. The decoder processes features through
ConvNeXt [38] blocks and projects the sequence of hidden representations to Fourier coefficients for
waveform reconstruction. The final audio is synthesized using inverse STFT.

Discriminator. Following HiFi-GAN [32], we employ a multi-period discriminator and a multi-
scale discriminator. This approach slightly differs from prior work [83, 14, 62, 34, 25], which utilize
multi-resolution and/or STFT-based discriminators in place of a multi-scale discriminator. The
multi-resolution and STFT-based discriminators are particularly useful for mitigating over-smoothing
artifacts in high-frequency components [34], which are more critical for music and environmental
sounds. Since our focus is on speech (i.e. medium frequency range), we stick to the simpler HiFi-GAN
setup.

3.2 Training

The training process consists of two stages. In the first stage, the compressor, quantizer, and
decompressor are jointly trained to reconstruct the encoder continuous representations, ensuring that
the tokens retain both semantic and acoustic information from the encoder, which is kept frozen. The
training objective includes reconstruction loss and entropy loss. The reconstruction loss is computed
as the squared L2 distance between the reconstructed and original encoder features. The entropy loss,
defined as in [82, 87], encourages both confident predictions and uniform code utilization. Note that
we omit the commitment loss used in standard VQ, as for BSQ there is no concern of embedding
divergence (quantization error is bounded).

In the second stage, the decoder is trained to resynthesize audio from the encoder continuous
representations. The training objective includes adversarial loss, reconstruction loss, and feature
matching loss, as in [32]. However, following [83], we use a hinge loss formulation instead of least
squares. The reconstruction loss is computed as the L1 distance between the reconstructed and
original log-Mel spectrograms, while the feature matching loss is the mean of the distances between
the l-th feature maps of the k-th subdiscriminator.

This design allows the second stage to run in parallel with the first, simplifying the training setup. At
inference, the same decoder operates on dequantized features produced by the compressor-quantizer-
decompressor pipeline. Because the decompressor is trained to reconstruct the original continuous
features from the discrete codes, these dequantized features closely approximate the originals. As
a result, the decoder maintains strong performance even when using dequantized features as input,
without requiring any additional fine-tuning.

This decoupled training approach ensures that both semantic and acoustic information are preserved
in the tokens, which is crucial for downstream tasks while maintaining high reconstruction quality. If
trained end-to-end without additional constraints on the hidden representations (e.g. distillation loss),
the reconstruction loss prioritizes acoustic features, as observed in [14, 34].

4 Experiments

4.1 FocalCodec

We train FocalCodec on LibriTTS [84], resampled to 16 kHz. We train three variants of the model
with a codebook size of 8192 and token rates of 50 Hz, 25 Hz, and 12.5 Hz by adjusting the temporal
downsampling factors in the compressor layers to (1, 1, 1), (2, 1, 1), and (2, 2, 1), respectively. These
patterns are mirrored in the decompressor layers for upsampling. Information about hyperparameters
and training details can be found in Section E.1.
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4.2 Baselines

Table 1: Codecs considered in our experimental analysis.

Codec Bitrate
(kbps)

Sample
Rate
(kHz)

Token
Rate
(Hz)

Codebooks Code
Size

Params
(M)

MACs
(G)

EnCodec 1.50 24 75.0 2 × 1024 128 15 2
DAC 1.00 16 50.0 2 × 1024 8 74 56
WavLM6-KM 0.45 16 50.0 1 × 512 1024 127 28
SpeechTokenizer 1.00 16 50.0 2 × 1024 1024 108 17
SemantiCodec 0.65 16 25.0 2 × 8192 1536 1033 1599
Mimi 0.69 24 12.5 5 × 2048 256 82 11
WavTokenizer 0.48 24 40.0 1 × 4096 512 85 3
BigCodec 1.04 16 80.0 1 × 8192 8 160 61
Stable Codec 0.70 16 25.0 2 × 15625 6 950 37

FocalCodec@50 0.65 16 50.0 1 × 8192 13 142 9
FocalCodec@25 0.33 16 25.0 1 × 8192 13 144 9
FocalCodec@12.5 0.16 16 12.5 1 × 8192 13 145 8

We compare our models to recent
state-of-the-art low-bitrate codecs
across acoustic, semantic, and hy-
brid categories. Since this paper fo-
cuses on low-bitrate codecs, when
multiple quantizers are available,
we configure them to achieve a
bitrate below 1.50 kbps, ensuring
a fair comparison. For acoustic
codecs, we compare against En-
Codec [14], DAC3 [34], WavTo-
kenizer [25], and BigCodec [76].
Among these, BigCodec is the cur-
rent state-of-the-art for low-bitrate
speech reconstruction quality [74]. We use the official checkpoints for these models. We do not
include the recent TS3-Codec [74], which matches BigCodec performance at an even lower bitrate,
as it is not publicly available. However, we contacted the authors to request reconstructed samples
for comparison. Additional results related to TS3-Codec can be found in Section G.1.

For semantic codecs, we adopt the approach introduced in [71], which quantizes layer-6 representa-
tions from WavLM-large using k-means clustering with 512 centroids. These representations are fed
into a Conformer [19] encoder to reconstruct continuous representations, followed by a HiFi-GAN
decoder. This baseline, referred to as WavLM6-KM, provides a direct comparison between our
codec and another model leveraging WavLM layer-6 features but differing in design and training
methodology. Since the code and checkpoints for WavLM6-KM are not publicly available, we
reimplemented the model using a subset of LibriSpeech [47]. Note that we do not include additional
baselines from this category, as semantic codecs typically underperform in terms of reconstruction
quality [48] or require much higher bitrates to be competitive in this regard [43]. Furthermore, most
hybrid codecs are already built on top of semantic representations. Therefore, we prioritize the hybrid
category, to which our codec also belongs. For hybrid codecs, we compare against SpeechTok-
enizer [86], SemantiCodec [37], Mimi [16], and Stable Codec [48], using their official checkpoints.
The configurations and details of each model are summarized in Table 1. Multiply-accumulate
operations per second (MACs) are measured using ptflops4. Additional information about the
baselines is provided in Section D.

4.3 Speech Resynthesis

We evaluate FocalCodec on speech resynthesis, considering both English and multilingual speech.
For English speech, we use LibriSpeech [47] test-clean. For multilingual speech, following
[76], we randomly select 100 utterances from each of the 7 foreign languages in Multilingual
LibriSpeech [51] (Dutch, French, German, Italian, Polish, Portuguese, and Spanish), resulting in a
total of 700 utterances5. We also consider the more realistic scenario of speech contaminated with
environmental noise. For this, we use the test splits of VoiceBank [66] and the more challenging
Libri1Mix, which is constructed by mixing clean utterances from the first speaker of LibriMix [12]
with noise from WHAM! [73].

We evaluate the models using objective metrics. To measure naturalness, we employ UTMOS [59]
for clean speech and DNSMOS [56] for noisy speech. Note that we do not include signal-level
metrics such as SNR, PESQ [58], or STOI [64], as these metrics do not correlate well with perceived
reconstruction quality [48, 71]. To evaluate speaker fidelity, we compute the cosine similarity (Sim)
between speaker embeddings extracted from the reconstructed audio and the target audio. These
embeddings are obtained using WavLM-base-SV6 [9]. To assess intelligibility, we compute the
differential word error rate (dWER) [72], which measures the difference in word error rate between

3Note that we use the 16 kHz checkpoint, whereas the original results in [34] use the 24 kHz checkpoint.
4https://pypi.org/project/ptflops/0.7.4/
5https://zenodo.org/records/14791114
6https://huggingface.co/microsoft/wavlm-base-sv
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Table 2: Speech resynthesis performance across clean and noisy datasets.

Codec Bitrate
(kbps) ↓

UTMOS ↑ dWER ↓ Sim ↑ Code
Usage ↑ Norm.

Entropy ↑ RTF ↑ DNSMOS ↑ dWER ↓ Sim ↑ Code
Usage ↑ Norm.

Entropy ↑ RTF ↑

Clean – LibriSpeech test-clean Noisy – VoiceBank

Reference — 4.09 0.00 100.0 — — — 3.56 0.00 100.0 — — —
EnCodec 1.50 1.58 8.08 93.8 93.4 82.1 109 2.76 28.16 87.7 77.5 78.1 44
DAC 1.00 1.29 20.04 89.2 100.0 91.7 89 2.72 63.90 79.8 98.7 88.4 48
WavLM6-KM 0.45 3.75 6.20 90.0 26.4 95.4 85 3.06 20.67 82.9 24.8 92.3 44
SpeechTokenizer 1.00 2.28 5.14 91.6 95.9 97.0 63 2.74 34.51 82.2 88.1 88.4 42
SemantiCodec 0.65 2.91 8.97 96.0 75.9 94.4 0.62 3.13 31.46 90.6 52.4 92.6 0.28
Mimi 0.69 3.29 5.73 96.0 95.6 91.8 137 3.01 28.00 87.8 78.6 85.5 47
WavTokenizer 0.48 3.78 11.55 95.4 100.0 96.7 181 3.09 42.12 89.8 94.8 94.0 63
BigCodec 1.04 4.11 2.55 98.5 100.0 98.6 22 3.19 20.67 92.3 99.8 96.8 17
Stable Codec 0.70 4.32 4.97 94.7 98.5 94.7 103 3.33 20.32 88.8 75.7 95.4 39

FocalCodec@50 0.65 4.05 2.18 97.4 100.0 98.9 185 3.16 8.08 91.3 98.0 96.2 80
FocalCodec@25 0.33 4.14 3.30 96.3 99.8 98.4 195 3.17 11.75 90.1 89.6 96.0 81
FocalCodec@12.5 0.16 4.22 7.94 93.9 98.2 97.4 208 3.22 27.97 84.7 77.3 95.5 79

Clean – Multilingual LibriSpeech 700 Noisy – Libri1Mix

Reference — 2.84 0.00 100.0 — — — 3.73 0.00 100.0 — — —
EnCodec 1.50 1.33 29.60 95.5 93.4 79.2 140 2.40 55.17 86.3 84.4 78.7 97
DAC 1.00 1.24 56.08 89.1 100.0 90.0 97 2.40 90.92 76.6 99.1 88.8 91
WavLM6-KM 0.45 2.97 44.54 89.5 28.1 0.91 125 2.87 36.60 85.9 26.8 95.5 65
SpeechTokenizer 1.00 1.55 56.32 92.0 96.1 94.0 74 2.58 57.26 82.8 93.5 96.5 63
SemantiCodec 0.65 1.87 36.21 97.7 76.4 94.7 0.74 2.67 51.18 89.9 64.7 90.8 91
Mimi 0.69 2.08 30.96 96.7 95.9 89.0 239 2.65 49.14 89.4 90.8 90.1 104
WavTokenizer 0.48 2.64 49.73 97.0 97.6 95.6 290 2.53 70.10 86.3 96.4 95.4 165
BigCodec 1.04 2.86 15.24 99.1 100.0 97.9 24 2.75 53.26 88.3 100.0 98.2 19
Stable Codec 0.70 3.47 56.99 95.9 92.9 93.8 144 2.91 43.52 90.0 95.8 93.4 68

FocalCodec@50 0.65 2.96 12.57 98.3 100.0 98.1 269 2.93 27.89 91.6 100.0 98.5 155
FocalCodec@25 0.33 3.16 19.78 97.3 99.2 97.4 292 2.91 34.27 90.7 99.6 97.9 161
FocalCodec@12.5 0.16 3.37 54.15 95.2 96.4 96.9 296 2.92 42.59 88.9 97.2 97.2 164

the reconstructed and target audio, using transcriptions from Whisper small7 [53]. To ensure fairness
in evaluation, we do not use more powerful ASR models (e.g. Whisper large-v3), as these models
can correct pronunciation mistakes and are more robust to noise, potentially hiding flaws in the
reconstruction. We also report code usage, i.e. the ratio of unique tokens used to the codebook size
(averaged over codebooks for multi-codebook models), and normalized entropy [13, 48], where
higher values indicate more uniform codebook usage. For inference speed, we measure the real-time
factor (RTF), i.e. the ratio of the reconstructed audio duration to the processing time. An RTF greater
than 1 indicates faster-than-real-time performance, measured on an NVIDIA V100 GPU with 32 GB
of memory.

Results are presented in Table 2. FocalCodec shows strong performance across both clean and noisy
speech resynthesis tasks. On clean speech, FocalCodec@50 achieves the best trade-off of quality, in-
telligibility, and efficiency. Notably, FocalCodec is the best in terms of dWER, surpassing BigCodec,
which is currently state-of-the-art. It also generalizes well to multilingual speech, obtaining the lowest
dWER and high Sim. Note that FocalCodec, WavLM6-KM, SpeechTokenizer, BigCodec and Stable
Codec were trained exclusively on English speech. In noisy speech resynthesis, FocalCodec@50
again excels, achieving the lowest dWER by a large margin on both VoiceBank and Libri1Mix, while
maintaining high speaker similarity. Meanwhile, FocalCodec@25 and FocalCodec@12.5 exhibit
some degradation in dWER and speaker similarity, particularly in multilingual settings, due to their
significantly lower bitrates. Nevertheless, despite operating at just 0.16 kbps, FocalCodec@12.5
remains competitive with several baselines that use much higher bitrates (e.g. EnCodec). It is also
worth noting that FocalCodec’s UTMOS tends to increase at lower bitrates, likely due to the stronger
smoothing effect introduced by downsampling. However, UTMOS tends to saturate and may not fully
capture perceptual quality [59]. dWER and Sim are therefore essential to provide a more comprehen-
sive evaluation. Finally, the high code usage and normalized entropy across all FocalCodec variants
indicate efficient token utilization, contributing to their strong overall performance. Additional
results on reconstruction quality, including subjective evaluations, streamability and Mel-spectrogram
analysis, can be found in Sections G.2 to G.4.

4.4 Voice Conversion

We conduct one-shot voice conversion experiments to verify that FocalCodec can effectively dis-
entangle speaker information from content despite its single-codebook design. This task involves

7https://huggingface.co/openai/whisper-small
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Table 3: One-shot voice conversion on VCTK [77].

Codec Bitrate
(kbps) ↓ UTMOS ↑ dWER ↓ Sim ↑ RTF ↑

Reference — 4.09 0.00 100.0 —
EnCodec 1.50 1.24 86.52 72.2 57
DAC 1.00 1.25 104.00 67.2 60
WavLM6-KM 0.45 2.90 26.68 92.4 57
SpeechTokenizer 1.00 1.49 20.32 81.2 33
SemantiCodec 0.65 2.02 106.00 72.8 0.60
Mimi 0.69 2.40 110.00 89.7 71
WavTokenizer 0.48 3.13 43.15 73.4 89
BigCodec 1.04 1.31 99.96 68.9 13
Stable Codec 0.70 3.76 27.63 71.1 65

FocalCodec@50 0.65 3.38 21.27 92.2 116
FocalCodec@25 0.33 3.40 23.59 92.6 118
FocalCodec@12.5 0.16 3.43 29.93 92.6 117

converting speech from a source speaker
to an arbitrary target speaker using ref-
erence speech from the target speaker.
For single-codebook baselines, includ-
ing FocalCodec, we use k-nearest neigh-
bors search in the codec feature space,
as in [2]. Specifically, we replace each
frame in the reconstructed feature se-
quence (right before the decoder) with
the average of the k = 4 closest matches
in terms of cosine distance from con-
tinuous features extracted from the ref-
erence. For multi-codebook baselines,
instead, we follow the procedure in [86].
The source and reference speech are to-
kenized, and the first codebook tokens from the source are concatenated with the second-to-last
codebook tokens from the reference. The resulting sequence is then forwarded to the decoder. If
sequence lengths differ, the reference is truncated or circularly padded as needed. Effective disentan-
glement of content and speaker information between first and subsequent codebooks is expected to
yield fair voice conversion performance. We conduct voice conversion experiments on VCTK [77],
which includes parallel utterances from different speakers. To create the test set, we randomly
select an utterance from a source speaker, the corresponding utterance from a target speaker, and an
utterance with different content from the same target speaker to act as the reference. Among available
reference utterances, we select the longest to minimize padding issues. We repeat this process for
each speaker, for each of the ∼24 parallel utterances, resulting in a dataset with 2521 samples. To
evaluate performance, we use UTMOS, dWER, Sim, and RTF as defined in Section 4.3.

As reported in Table 3, FocalCodec achieves the highest speaker similarity while maintaining good
intelligibility, confirming its suitability for voice conversion tasks. This is particularly impressive,
especially compared to other hybrid codecs like SpeechTokenizer and Mimi, which are explicitly
optimized to disentangle semantic information in the first codebook and acoustic information in the
following. Despite this, FocalCodec outperforms these models, excelling in both speaker identity
preservation and intelligibility, striking a remarkable balance of quality, efficiency, and speaker
similarity. WavLM6-KM ranks as the second-best performing model, which is expected since it
shares the same encoder as FocalCodec. In contrast, acoustic codecs struggle with this task, as they
do not separate speaker and content information.

4.5 Downstream Tasks

To evaluate the quality of the learned discrete representations, we train downstream models on both
discriminative and generative tasks.

Discriminative Tasks. We evaluate performance on automatic speech recognition (ASR), speaker
identification (SI), and speech emotion recognition (SER). These tasks allow us to assess token
quality along three axes: semantic information retention (ASR), acoustic information retention (SI),
and emotion information retention (SER, which requires a non-trivial combination of semantic and
acoustic clues). To focus on the disentanglement of learned representations, we employ shallow
downstream models, aiming to stay as close as possible to linear probing. Following [86], we
employ a shallow BiLSTM for all tasks. For ASR, we use LibriSpeech [47] train-clean-100
and train-clean-360 for training, dev-clean for validation, and test-clean for testing. The
word error rate (WER) is reported. For SI, we also use LibriSpeech, grouping utterances from
train-clean-100 and train-clean-360 by speaker ID. Data are randomly split into training,
validation and test sets in a ratio of 80% / 10% / 10%. The speaker error rate (ER) is reported. For
SER, we use the IEMOCAP dataset [7], focusing on four emotions: sadness, happiness, anger, and
neutral. Sessions 1-4 are used for training, session 5F for validation, and session 5M for testing.
The emotion ER is reported. Details about the model architecture, hyperparameters, and training
procedure are provided in Section E.2.

Table 4 shows the results. In ASR, FocalCodec@50 achieves the third lowest WER. While SpeechTo-
kenizer and Stable Codec perform slightly better, the former operates at ∼1.5x higher bitrate using
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Table 4: Evaluation on discriminative and generative downstream tasks.

Codec Bitrate
(kbps) ↓

Discriminative Tasks Generative Tasks

ASR SI SER SE SS TTS

WER ↓ ER ↓ ER ↓ DNSMOS ↑ dWER ↓ Sim ↑ DNSMOS ↑ dWER ↓ Sim ↑ UTMOS ↑ dWER ↓ Sim ↑
Reference — — — — 3.56 0.00 100.0 3.77 0.00 100.0 4.09 0.00 100.0
EnCodec 1.50 27.89 3.00 47.00 3.11 37.10 85.9 3.11 78.51 87.3 1.71 64.28 83.2
DAC 1.00 35.89 3.27 45.90 3.03 67.65 81.7 2.76 106.00 83.3 1.34 47.06 85.9
WavLM6-KM 0.45 19.04 22.30 42.90 3.52 22.85 83.6 3.49 76.91 85.0 3.74 38.67 88.7
SpeechTokenizer 1.00 14.97 2.73 41.50 3.21 29.82 85.9 3.13 83.99 87.3 2.69 35.46 89.2
SemantiCodec 0.65 41.42 15.90 51.60 3.59 102.00 83.3 3.59 123.00 84.4 2.82 48.38 91.4
Mimi 0.69 22.98 5.43 44.70 3.30 53.98 84.6 3.41 93.23 88.1 3.11 28.63 93.6
WavTokenizer 0.48 35.62 2.44 49.80 3.41 51.75 88.6 3.54 105.00 86.4 3.68 47.56 92.8
BigCodec 1.04 26.41 2.34 47.50 3.52 26.68 93.2 3.54 89.24 89.4 3.43 54.43 89.4
Stable Codec 0.70 16.85 16.50 46.54 3.55 35.57 82.8 3.61 103.00 78.2 3.19 49.28 88.8

FocalCodec@50 0.65 17.63 4.48 45.60 3.47 10.93 91.4 3.71 73.87 89.0 4.11 28.10 93.3
FocalCodec@25 0.33 21.12 6.07 46.80 3.49 14.74 90.0 3.69 99.96 85.4 4.16 16.75 91.6
FocalCodec@12.5 0.16 33.24 11.69 46.30 3.58 36.98 86.9 3.57 116.00 80.8 4.12 21.59 90.8

two codebooks, while the latter was fine-tuned on force-aligned phoneme data to enhance semantic
representations. In contrast, our model is purely self-supervised. In SI, FocalCodec@50 achieves a
marginally higher error rate (∼2%) than codecs such as BigCodec and WavTokenizer. However, these
models perform significantly worse in ASR due to being trained solely with reconstruction-based
objectives. On the other hand, the purely semantic WavLM-KM6 codec performs competitively
in ASR but exhibits the highest ER in SI despite using the same encoder as FocalCodec. This
further confirms the effectiveness of our codec design, as it improves WER over WavLM-KM6 while
preserving speaker information. Interestingly, Stable Codec also performs poorly in SI, likely because
semantic fine-tuning tends to remove acoustic information from the representations. In SER, no
codec clearly excels, with FocalCodec@50 performing on par with the best models. Overall, Focal-
Codec@50 shows competitive performance across all discriminative tasks, rivaling hybrid codecs
with more complex multi-codebook designs and higher bitrates. The more compressed variants,
FocalCodec@25 and FocalCodec@12.5, still achieve good performance while operating at ultra-low
bitrates.

Generative Tasks. We evaluate performance on speech enhancement (SE), speech separation (SS),
and text-to-speech (TTS). For these tasks, we employ more powerful transformer-based downstream
models, focusing on generation quality. For SE we use VoiceBank [66]. To form a validation
set, we randomly select two speakers from the training set. The input tokens are extracted from
noisy utterances, while the target tokens come from clean utterances. Performance metrics include
DNSMOS, dWER, and Sim. For SS, we use Libri2Mix [12] train-100, dev, and test sets. The
setup mirrors that of speech enhancement: input tokens are derived from speech mixtures, while target
tokens correspond to the two individual sources. For TTS, we use LibriSpeech train-clean-100
and train-clean-360 for training, dev-clean for validation, and test-clean for testing. Note
that test-clean contains several utterances longer than 20 seconds (∼4%), whereas our training
splits include almost none. To reduce the mismatch between training and testing conditions, we
removed these long utterances from the test set. The input consists of character-based text tokens,
while the target tokens are derived from the corresponding utterances. Performance is evaluated
using UTMOS, dWER, and Sim. Details about the model architecture, hyperparameters, and training
procedure are provided in Section E.2.

From Table 4, we observe that in SE, FocalCodec@50 significantly outperforms all other baselines in
terms of dWER. A similar trend is observed for SS, where FocalCodec@50 is consistently superior
to the other baselines. However, the absolute performance is still far from practical utility, likely
due to the loss of information crucial for SS during quantization. As with discriminative tasks,
FocalCodec@25 and FocalCodec@12.5 show degraded performance, due to their ultra-low bitrates.
However, this trend is reversed for TTS, with FocalCodec@25 achieving the best overall results,
followed closely by FocalCodec@12.5. This can be attributed to the fact that, in autoregressive
modeling, shorter sequences reduce the computational burden and simplify the task of predicting the
next token. Both models, operating at a frame rate closer to that of text with a single codebook, make
next-token prediction easier and more computationally efficient than other methods. This highlights
the importance of having compact representations for downstream tasks. Note, however, that we
trained on only 460 hours of speech, which explains why TTS performance is not state-of-the-art.
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4.6 Ablation Studies

Table 5: Ablation studies on LibriSpeech test-clean [47].

Compression
Block

Downscale
Activation Quantizer UTMOS ↑ dWER ↓ Sim ↑

Focal modulation Snake BSQ 3.73 2.54 95.7
Focal modulation Snake FSQ 3.71 2.61 94.8
Focal modulation Snake LFQ 3.74 2.75 95.4
Focal modulation Leaky ReLU LFQ 3.72 2.85 95.2

Conformer Snake LFQ 3.74 3.58 94.3
AMP Snake LFQ 3.70 4.52 94.3

Linear Snake LFQ 2.55 9.37 82.5

Due to limited computational re-
sources, we perform ablation stud-
ies on a smaller variant of Focal-
Codec. This variant is similar to
the 50 Hz model, with the main dif-
ference being the model size, as de-
tailed in Section E.1. We focus on
the clean speech resynthesis task us-
ing LibriSpeech test-clean [47].
The results are shown in Table 5.
Replacing BSQ with FSQ [41] leads to worse UTMOS, dWER, and Sim. It also results in less
uniform code usage, as evidenced by the normalized entropy measured for these two configurations
(99.7 for BSQ vs. 97.7 for FSQ). Replacing BSQ with vanilla LFQ results in worse dWER and
Sim despite similar UTMOS. Replacing Snake activations with leaky ReLU causes only minor
performance degradation. The most significant performance drop occurs when the focal modulation
blocks are replaced with Conformer [19] blocks, anti-aliased multi-periodicity (AMP) [35] blocks, or
linear layers, in this order. This leads to a notable decrease in both dWER and Sim. This analysis
further validates our design choices, highlighting the importance of the selected components for
achieving optimal performance.

5 Conclusions

In this work, we introduced FocalCodec, a low-bitrate single-codebook speech codec that employs
a novel architecture based on focal modulation. It delivers competitive performance in speech
resynthesis and voice conversion at low and ultra-low bitrates while maintaining robustness across
diverse conditions, including multilingual and noisy speech. Furthermore, it effectively preserves both
semantic and acoustic information, providing powerful discrete representations for downstream tasks.
A detailed discussion of the limitations and societal impact of this work is provided in Sections A
and B.
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• The authors should provide instructions on data access and preparation, including how to access
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• The authors should provide scripts to reproduce all experimental results for the new proposed
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library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: see Section F.
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• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have reviewed the NeurIPS Code of Ethics and ensured that our research complies
with its guidelines in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: see Section B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: see Section C and Section D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Limitations

Despite its competitive performance, FocalCodec is undertrained compared to other state-of-the-art approaches.
While the WavLM encoder benefits from 94k hours of pretraining, the rest of the pipeline was trained on only
a few hundred hours of clean English speech. Expanding the dataset to include more data, a broader range of
domains (e.g. multilingual speech, mixtures, etc.) could further improve quality, robustness, and versatility of
the model. By comparison, competing methods such as WavTokenizer (8k hours), StableCodec (105k hours),
and Mimi (7M hours) are trained on significantly larger and more diverse datasets.

B Societal Impact

We believe this research has the potential for meaningful societal benefits. Ultra-low bitrate speech codecs can
significantly reduce the bandwidth and storage requirements for transmitting and storing spoken content. This
has practical implications for improving the accessibility and efficiency of voice communication in bandwidth-
constrained settings, such as rural or remote areas, and for enabling on-device speech applications with minimal
resource consumption. However, we also acknowledge potential risks associated with misuse. In particular,
voice conversion capabilities enabled by FocalCodec could potentially be exploited for malicious purposes,
including voice cloning, impersonation, and the creation of deceptive or harmful deepfake audio content. To
mitigate these risks, we encourage responsible use of this technology and further research into detection and
authentication mechanisms to ensure secure and ethical deployment. It is worth noting nevertheless that similar
capabilities are already publicly accessible, with models like https://huggingface.co/amphion/Vevo offering
few-shot voice conversion.

C Datasets

The following datasets were used in this work:

• LibriSpeech [47] is a large-scale corpus of English read speech derived from audiobooks in the LibriVox
project. It contains approximately 1000 hours of speech sampled at 16 kHz, with predefined training,
validation, and test splits. License: CC BY 4.0.

• LibriTTS [84] is a corpus designed for text-to-speech research, constructed from the same source as
LibriSpeech. It consists of 585 hours of transcribed speech with predefined training, validation, and test
splits. License: CC BY 4.0.

• Multilingual LibriSpeech [51] is an extension of LibriSpeech to multiple languages, including English,
German, Dutch, French, Spanish, Italian, Portuguese and Polish. It provides approximately 44,500 hours of
transcribed English speech and about 6000 hours from other languages. License: CC BY 4.0.

• VoiceBank [66] is a dataset primarily used for speech enhancement, including 11,572 utterances from 28
speakers in the training set (noise at 0 dB, 5 dB, 10 dB, and 15 dB), and 872 utterances from 2 unseen
speakers in the test set (noise at 2.5 dB, 7.5 dB, 12.5 dB, and 17.5 dB). License: CC BY 4.0.

• LibriMix [12] is a dataset for speech separation and enhancement, created by mixing LibriSpeech utterances
with noise from the WHAM! [73] corpus. It provides mixtures of two or three speakers at different
signal-to-noise ratios. License: MIT.

• VCTK [77] is a corpus of English speech recordings from 110 speakers with various accents. It is widely
used for speaker adaptation, text-to-speech, and voice conversion tasks. License: CC BY 4.0.

• IEMOCAP [7] is a dataset designed for emotion recognition, consisting of scripted and improvised dialogues
performed by 10 actors. It includes audio, video, and textual transcriptions with emotion labels such as
happiness, sadness, and anger. License: https://sail.usc.edu/iemocap/iemocap_release.htm.

D Baselines

Additional information about the baseline codecs is provided in Table 6. For our WavLM6-KM [71] reproduction,
we use LibriSpeech train-clean-100 and train-clean-360. First, we train a k-means quantizer with 512
centroids on top of layer-6 representations from WavLM-large. We train on audio chunks of 16,000 samples
with a large batch size of 512 for improved stability, and we stop training when cluster centroids stop changing
significantly. Then, we train a dequantizer to minimize the L2 loss between quantized and original WavLM
features. We employ a Conformer [19] encoder with 6 layers, 4 attention heads, a hidden dimension of 512,
and a feed-forward layer dimension of 512. We train on audio chunks of 7040 samples with a batch size of 16.
We use the AdamW [40] optimizer with an initial learning rate of 0.0005, β1 of 0.8, β2 of 0.99, weight decay
of 0.01, and dropout of 0.1. The learning rate is reduced by a factor of 0.9 if validation loss does not improve
within a margin of 0.0025. Gradients are clipped to a maximum L2 norm of 5. Training stops when validation
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Table 6: Baseline codecs.
Codec Causal Training Datasets Hours Multilingual Audio Domain Checkpoint License

EnCodec [14] Optional DNS, CommonVoice, AudioSet, FSD50K, Jamendo 17k+ Yes General encodec_24khz MIT

DAC [34] No DAPS, DNS, CommonVoice, VCTK, MUSDB, Jamendo 10k+ Yes General weights_16khz.pth MIT

WavLM6-KM [71] No Subset of LibriSpeech (in addition to Libri-Light,
GigaSpeech, and VoxPopuli English for WavLM pretraining)

460
(+ 94k) No Speech discrete-wavlm-codec Apache 2.0

SpeechTokenizer [86] No LibriSpeech 960 No Speech speechtokenizer_hubert_avg Apache 2.0

SemantiCodec [37] No GigaSpeech, subset of OpenSLR, Million Song Dataset,
MedleyDB, MUSDB18, AudioSet, WavCaps, VGGSound 20k+ Yes General semanticodec_tokenrate_50 MIT

Mimi [16] Yes Predominantly English speech (in addition to Libri-Light,
GigaSpeech, and VoxPopuli English for WavLM pretraining)

7M
(+ 94k) Likely Speech mimi CC BY 4.0

WavTokenizer [25] No LibriTTS, VCTK, subset of CommonVoice,
subset of AudioSet, Jamendo, MUSDB 8k Yes General WavTokenizer-large-unify-40token MIT

BigCodec [76] No LibriSpeech 960 No Speech bigcodec.pt MIT

Stable Codec [48] Optional Libri-Light, Multilingual LibriSpeech English 105k No Speech stable-codec-speech-16k StabilityAI

loss does not decrease for several consecutive epochs. Finally, we train a HiFi-GAN V1 [32] decoder on audio
chunks of 7040 samples with a batch size of 16. We use the AdamW optimizer with an initial learning rate of
0.0002, β1 of 0.8, β2 of 0.99, and weight decay of 0.01. The learning rate follows an exponential decay schedule
with a factor of 0.999. Training continues until perceived audio quality stops improving.

E Hyperparameters and Training Details

E.1 FocalCodec

The compressor processes 1024-dimensional WavLM features and forwards them through 3 focal downscaling
blocks with hidden dimensions of 1024, 512, and 256, respectively. Each block has two focal levels, a window
size of 7, a focal factor of 2, and a layer scale initialization of 0.0001. A final projection maps the 256-
dimensional hidden states to latent representations of dimension 13, which are then quantized with a binary
spherical codebook of 213 = 8192 codes. The decompressor mirrors the compressor, replacing focal downscaling
blocks with focal upscaling blocks to reconstruct the 1024-dimensional continuous representations from the
quantized latent codes. We use a weight of 1.0 for the reconstruction loss and a weight of 0.1 for the entropy
loss. We train on LibriTTS [84] (585 hours from 2456 speakers) using full utterances rather than fixed-length
chunks, which differs from related work. This approach allows us to fully exploit the unlimited receptive field of
focal modulation. This is in line with our vision that the encoder should be as powerful as possible to extract
high-quality representations, while the decoder can be lightweight and use limited context windows. For this
stage, we use the AdamW [40] optimizer with an initial learning rate of 0.0005, β1 of 0.8, β2 of 0.99, and weight
decay of 0.01. The learning rate is reduced by a factor of 0.9 if validation loss does not improve within a margin
of 0.0025. Gradients are clipped to a maximum L2 norm of 5. Training stops when validation loss does not
decrease for several consecutive epochs.

The decoder processes 1024-dimensional WavLM features and forwards them through 8 ConvNeXt blocks with
a hidden dimension of 512, a feed-forward dimension of 1536, a kernel size of 7, and padding of 3. For the
STFT, we set the FFT size to 1024 samples and the hop length to 320. The feature matching loss is calculated
using 80-dimensional log-Mel spectrograms with the same STFT configuration. The discriminator adopts the
convolutional architecture introduced in [32]. We train on LibriTTS using audio chunks of 7040 samples with a
batch size of 16. Due to resource constraints, our training is limited to the train-clean-100 split. We found
this amount of data sufficient to obtain high-quality reconstructions. We use the AdamW optimizer with an initial
learning rate of 0.0002, β1 of 0.8, β2 of 0.99, and weight decay of 0.01. The learning rate follows an exponential
decay schedule with a factor of 0.999. Training continues until perceived audio quality stops improving, which
occurs around 3M steps.

For the smaller variant of FocalCodec used in the ablation studies, we employ the same setup with the following
modifications: the hidden sizes in the three focal downscaling blocks are reduced from 1024, 512, 256 to 512,
256, 128; the codebook size is decreased to 1024; we use HiFi-GAN-V1 [32] decoder instead of Vocos [62]; the
model is trained on LibriSpeech train-clean-100 using a batch size of 4.

E.2 Downstream Tasks

Automatic Speech Recognition (ASR). The model architecture is a 2-layer BiLSTM with 512-
dimensional hidden states. A CTC [18] head is stacked on top and trained to predict either characters or
BPE units. Experiments use characters and BPE vocabularies of sizes 250, 500, and 1000, with the best result
reported. Note that for Mimi and FocalCodec@12.5, training on characters is infeasible due to the low token
rate (12.5 Hz), which results in hidden sequences shorter than the target, making them incompatible with CTC
loss. For all models except Mimi, performance improves monotonically with increasing BPE sizes up to 1000,
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while Mimi achieves the best results with BPE-500. If the codec employs multiple codebooks, we compute a
weighted sum of the embeddings from each codebook, with the weights learned during training, as done in [9].
The embedding layer is initialized using the discrete embeddings from the codec quantizer.

Speaker Identification (SI). The SI setup closely mirrors that of ASR. The only difference is that the
BiLSTM output sequence is aggregated using statistics pooling, followed by a cross-entropy classification head.

Speech Emotion Recognition (SER). The SER setup is the same as SI, where only the number of output
classes is different.

Speech Enhancement (SE). The model architecture is a Conformer [19] encoder with 6 layers, 4 attention
heads, a model dimension of 512, and a feed-forward layer dimension of 2048. Codecs with multiple codebooks
use a weighted sum of embeddings for the input, with independent linear heads for each codebook in the output.
The embedding layer is initialized using the discrete embeddings from the codec quantizer. Training is performed
using cross-entropy loss between predicted and target tokens.

Speech Separation (SS). The SS setup closely mirrors that of SE. The only difference is that training is
performed using cross-entropy loss with permutation invariant training [31], and the number of output heads is
doubled to account for predicting two sources in parallel.

Text-To-Speech (TTS). The model architecture is an autoregressive Llama 3 [17] decoder with 12 layers,
4 attention heads, 1 key-value head, a model dimension of 512, a feed-forward layer dimension of 2048, and
a base RoPE frequency of 10,000. To provide speaker information, we extract speaker embeddings from the
target utterance using WavLM-base [9], fine-tuned for speaker verification. The pooled speaker embedding is
prepended to the text embeddings to condition the model on speaker identity. The embedding layer is initialized
using the discrete embeddings from the codec quantizer. Training is performed with next-token prediction,
where the input sequence consists of pooled speaker embedding, text embeddings, and speech token embeddings.
The cross-entropy loss is computed only on speech tokens, while the text and speaker embeddings are excluded
from loss computation. For inference, we use top-p sampling with p = 0.9 and temperature of 1.0. Following the
experimental protocol of [65], we generated 5 samples per utterance and selected the one with the lowest WER
relative to the input text, using Whisper-small [53] to obtain the transcription.

Training Details. For all tasks, we use AdamW [40] optimizer with a batch size of 16, an initial learning
rate of 0.0001, β1 = 0.8, β2 = 0.99, weight decay of 0.01, and dropout of 0.1. The learning rate is reduced by a
factor of 0.9 if validation loss does not improve within a margin of 0.0025. Gradients are clipped to a maximum
L2 norm of 0.01. Training stops if validation loss does not decrease for several consecutive epochs.

F Implementation and Hardware

Software for the experimental evaluation was implemented in Python using the SpeechBrain [55, 54] toolkit.
Each model is trained on a single GPU, with the choice between V100 GPUs (16 or 32 GB) and A100 GPUs (40
GB), depending on cluster resource availability.

G Additional Results

G.1 Comparison to TS3-Codec

TS3-Codec [74] is a recent transformer-only architecture designed for low-bitrate streaming speech coding.
Despite its lower bitrate and streamable architecture, it remains competitive with BigCodec, the current state-
of-the-art. Like FocalCodec, it utilizes a single quantizer. However, its fully transformer-based architecture
prioritizes reconstruction, focusing on acoustic representations. The model was trained on Libri-Light [29]. Since
the model is not publicly available, we reached out to the authors to obtain reconstructions of the LibriSpeech
test-clean for comparison. Table 7 shows the results. FocalCodec@50 surpasses TS3-Codec across all
evaluated metrics, while FocalCodec@25, despite operating at a significantly lower bitrate, still achieves superior
performance in terms of UTMOS and dWER. These findings further highlight the effectiveness of the proposed
models.

Table 7: Clean speech resynthesis on LibriSpeech test-clean [47].

Codec Bitrate
(kbps)

Sample Rate
(kHz)

Token Rate
(Hz) Codebooks Code Size Params

(M)
MACs

(G) UTMOS ↑ dWER ↓ Sim ↑

Reference — — — — — — — 4.09 0.00 100.0
TS3-Codec (X2) 0.85 16 50.0 1 × 131072 16 204 8 3.84 4.51 97.1

FocalCodec@50 0.65 16 50.0 1 × 8192 13 142 9 4.05 2.18 97.4
FocalCodec@25 0.33 16 25.0 1 × 8192 13 144 9 4.14 3.30 96.3
FocalCodec@12.5 0.16 16 12.5 1 × 8192 13 145 8 4.22 7.94 93.9
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G.2 Subjective Evaluation

We conduct a subjective test with 40 participants who rate a total of 10 reconstructions from LibriSpeech
test-clean. Following prior work [14, 86, 37, 48], we employ the MUSHRA [60] format without hidden
anchor. Listeners compare multiple versions of an example at once, including a labeled reference and a hidden
reference. They are asked the following question: “Please evaluate the quality proximity between an audio
sample and its reference. Please listen carefully to the reference audio and then rate the quality of each test
audio clip compared to the reference. Use the scale where 0 indicates no resemblance to the reference, and 100
means perfectly the same as the reference." Participants were recruited online by sharing a link to the test across
various public channels. To keep the subjective test short, we selected a subset of baselines based on their overall
performance in objective metrics. To ensure that participants spent sufficient time on each listening task, we
filtered out submissions where less than 60 seconds were spent on any of the 10 reconstructions. Out of 40 total
submissions, this resulted in 33 valid entries. As showcased in Figure 2, FocalCodec achieves extremely low
bitrates while maintaining strong performance. In particular, FocalCodec@50 outperforms most baselines and
remains comparable to BigCodec and Stable Codec.
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Figure 2: Subjective evaluation from 33 participants averaged over 10 samples. Left. Trade-off
between mean opinion score and bitrate. The green dashed line highlights the reference score. Focal-
Codec achieves extremely low bitrates while maintaining strong performance. Right. Distribution of
mean opinion score. The red lines highlight the mean. FocalCodec@50 outperforms most baselines
and remains comparable to BigCodec and Stable Codec.

G.3 Streaming Inference

Although our codec is non-causal, it can be made streamable via chunked inference. This involves splitting
the input signal into fixed-size chunks with a certain amount of overlap to reduce boundary artifacts. To assess
the streamability of our codec, we use a chunk size of 500 milliseconds with a ∼4% overlap and a left context
of 3 seconds. The reconstructed chunks are stitched together using the overlap-add method with linear fade-
in/fade-out. As shown in Table 8 (upper section), despite the gap with the full-context model, FocalCodec@50
maintains acceptable performance at 500 milliseconds latency. However, this is still too high for strict real-time
use. To enable real-time streaming, we replace all non-causal components with their causal counterparts, and
we distill the non-causal WavLM features into the causal model using a feature-matching loss during training.
Additionally, we train the decoder to reconstruct 24 kHz waveforms. As shown in Table 8 (lower section),
with these adjustments, together with increased model capacity and additional training data, we can achieve
competitive performance at 80 milliseconds latency while maintaining a real-time factor suitable for deployment
on consumer-grade GPUs.

Table 8: Streaming clean speech resynthesis on LibriSpeech test-clean [47].

Codec Bitrate
(kbps)

Sample Rate
(kHz)

Token Rate
(Hz) Codebooks Causal Latency

(ms) UTMOS ↑ dWER ↓ Sim ↑

FocalCodec@50 0.65 16 50.0 1 × 8192 ✗ Inf 4.05 2.18 97.4
FocalCodec@50 0.65 16 50.0 1 × 8192 ✗ 500 3.16 4.55 96.9

EnCodec 1.50 24 75.0 2 × 1024 ✓ 20 1.58 8.08 93.8
Mimi 0.69 24 12.5 5 × 2048 ✓ 80 3.29 5.73 96.0
FocalCodec@50 0.60 24 50.0 1 × 4096 ✓ 80 3.87 4.38 96.3
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G.4 Mel-Spectrogram Analysis

Figure 3 shows examples of reconstructed Mel-spectrograms from LibriSpeech [47] (left) and Libri1Mix [12]
(right), using the 3 top-performing codecs. The reconstructed speech from LibriSpeech is almost indistinguishable
from the ground truth. For Libri1Mix, the first row shows audio contaminated with noise, while the second
row shows the original clean audio. It can be observed that BigCodec, a purely acoustic codec trained for
reconstruction, attempts to reconstruct the noise, resulting in poor intelligibility. In contrast, Stable Codec and
FocalCodec, which have semantically meaningful representations, are able to perform basic denoising. Notably,
FocalCodec assigns more energy to the frequency bands corresponding to speech, even more than in the original
clean audio, leading to improved intelligibility. On the other hand, Stable Codec, while providing good denoising,
introduces some artifacts and static noise in the lower part of the spectrogram, which degrades intelligibility.
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Figure 3: Reconstructed Mel-spectrograms from LibriSpeech [47] (left) and Libri1Mix [12] (right).
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