Under review as a conference paper at ICLR 2025

A LINEAR QUERY LOWER BOUND FOR SUBMODULAR
MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We revisit the problem of selecting k-out-of-n elements with the goal of optimiz-
ing an objective function, and ask whether it can be solved approximately with
sublinear query complexity.

* For objective functions that are monotone submodular, [Li, Feldman,
Kazemi, Karbasi, NeurIPS’22; Kuhnle, AISTATS’21] gave an Q(n/k) query
lower bound for approximating to within any constant factor. We strengthen

their lower bound to a nearly tight Q(n). This lower bound holds even for
estimating the value of the optimal subset.

* When the objective function is additive, i.e. f(S) = ), g w; for unknown
w; > 0, we prove that finding an approximately optimal subset still requires
near-linear query complexity, but we can estimate the value of the optimal

subset in O(n/k) queries, and that this is tight up to polylog factors.

1 INTRODUCTION

We consider the problem of selecting the “best” k-out-of-n elements, e.g. selecting k& locations to
place sensors, selecting k features to include in data analysis, or selecting k& samples for training a
model. We are particularly interested in the case where:

Expensive query access We are not given an explicit function to compute what makes one subset
“better” than another: rather we have expensive query access to an oracle that tells us that
evaluates different candidate subsets (e.g. estimating the quality of prediction from a subset
of features or samples by training a smaller model on them).

Sublinear query complexity Motivated by the expensive query constraint and large problem sizes
in machine learning applications, we ask whether it is possible to obtain approximately
optimal subsets with query complexity that scales sublinearly with n.

In full generality, it is clearly hopeless to find an approximately optimal k-subset without querying
all (Z) subsets (not to mention sublinear query complexity), so as is common in the literature we
restrict our attention to monotone submodular objective functions, i.e. we assume that the marginal
contribution from each additional element is diminishing, yet it is always non-negative (see Section2]
for a formal definition). Since our result for worst-case functions in this class is quite negative, we
also consider the most important special case: (monotone) additive objective functions, i.e. f(S) =
> icg w; for unknown w; > 0.

Monotone submodular maximization has important applications in machine learning (see e.g. the re-
cent survey of Bilmes|(2022)) and references therein), and the problem sizes in those machine learn-
ing applications increases rapidly. This inspired over the past decade an extensive effort in obtaining
sublinear time algorithms for approximate submodular maximization by parallelization (Balkanski
et al.| 2016} Balkanski & Singer;, [2018; [Balkanski et al.,|2018; 2019} [Chekuri & Quanrud, [2019azb;
Chen et al., 2019} [Ene & Nguyen, |2019; [Fahrbach et al., [2019; Kazemi et al.| [2019a; [Breuer et al.,
2020; [Ene & Nguyen, 2020; Balkanski et al., [2022aib). In contrast, in this work we look for algo-
rithms whose total work (specifically, total query complexity) is sublinear. Indeed, this is motivated
in part by the increasing monetary and environmental cost of total work of state-of-the-art machine
learning algorithms that already achieve significant parallelization. (Of course, beyond the important
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connections to applications in machine learning, finding the best k-subset is generally a fundamental
problem in optimization!)

The question of sublinear-query algorithms for submodular maximization was considered by |Li
et al.| (2022); Kuhnle| (2021)), who showed that any constant factor approximation algorithm requires
query complexity 2(n/k); |Li et al|(2022) additionally proved a lower bound of Q(ﬁ) when

k = ©(n). For the special case of £ = O(1) and k = O(n), previous work rules out truly sublinear
query complexity algorithms.

Our first result strengthens this impossibility result by ruling out approximate submodular maxi-
mization in sublinear query complexity for any k£ < n, even if we’re just interested in estimating
the value of the optimal subset:

Theorem (Submodular: informal version of Theorem[3.9). With a monotone submodular objective

function and for any k = o(n), no 6(n)—query complexity algorithm can approximate the value of
the optimal k-subset to within any constant factor.

We note for typical application of submodular maximization (e.g. dataset selection — selecting a
small dataset to train a model; influence maximization — selecting a small subset of influential users),
the subset size k is neither linear in the entire dataset, nor a small constant that can be ignored.
Comparing with previous work (Li et al.| [2022; | Kuhnle, 2021)), we obtain improved (and optimal)
lower bound for the critical regime of polylog(n) < k < solylogimy - Our lower bound rules out
sublinear query algorithms over all possible regimes of k and fully resolves the query complexity of
monotone submodular maximization (up to polylog factor), a fundamental question in optimization
theory.

Given this sweeping negative result, we turn our attention to characterizing the complexity of select-
ing an approximately optimal k-subset with an additive objective function. Here, we have a mix of
negative/positive results, where the key difference depends on whether we just want to estimate the
value of the optimal subset, or actually find it:

Theorem (Additive: Informal version of Theorems [3.7] {.1} E.7).

With a monotone additive objective function and for any k = o(n),

* No 5(n)-query complexity algorithm can find an approximately optimal k-subset, for any
constant approximation factor (Theorem 3.7).

 For any constant € > 0, there exists an (1 + €)-approximation algomhm for estimating the
value of the optimal k-subset using only O(n /k) queries ( Theorem

— Furthermore, this query complexity is nearly tight for any algorithm obtaining any
constant factor approximation (Theorem{.7).

Our algorithm uses sublinear queries and estimates the value of the optimal k-subset, this is a
standard goal in the field of sublinear algorithms, see (Chen et al.| 2022} |Charikar et al.| 2023}
Behnezhad| 2023} |Behnezhad et al., 2023} [Bhattacharya et al.|[2024) and reference there in. To mo-
tivate this, consider a scenario where one needs to select a subset from a large dataset under a budget
constraint. Our algorithm can first be used to assess whether the dataset is sufficiently valuable —
that is, whether it contains elements with large values. If the dataset meets this criterion, one can
proceed with further analysis or selection; otherwise, unnecessary efforts can be avoided.

Query complexity vs. Runtime The focus of this paper is on the query complexity. Our algorithm
uses sublinear queries (i.e., O(n/k)) and linear computation time (i.e. O(n)), this is optimal both in
computation and query costﬂ The study of the query complexity is motivated by practical questions
raised by practitioners about training large models using only a subset of the data. Hence even
if we assume the simplest possible structure, an additive function, we are not given explicit input
with the marginal value of each data point — but we can hope to estimate the value of a subset of
the data by e.g. training a smaller model from scratch. Other motivating examples including data

'It is easy to see that linear computation time is necessary: Imagine there is one (unknown) element that
has huge value comparing to all other elements, an algorithm needs to at least load that element to estimate its
value, which takes ©2(n) time in expectation.
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valuation (Ilyas et al., [2022), where a query to subset .S corresponds to training a neural network
over set [n] \ S; influence maximization (Kempe et al.,2003), where a query to subset .S correspond
to a simulation or social experiment using .S as the seed set. In all above applications, a query is
much more expensive than a unit computation cost: One can afford linear computation time (e.g.
load/pass the entire dataset), but cannot afford linear number of queries models (i.e., train n different
models).

Additional related work The query complexity of monotone submodular maximization has been
studied in the literature. The greedy algorithm (Fisher et al.l [1978) finds an (1 — 1/e)-approximate
solution using O(nk) queries. The query complexity can be improved, the stochastic greedy al-
gorithm (Mirzasoleiman et al.| [2015) makes O(nlog(1/€)) queries and return an (1 — 1/e — €)
approximate solution; [Li et al|(2022) gives a deterministic algorithm using O(n/€) queries. De-
spite of extensive research, the only query lower bound known is Q(n/k) from the recent work of

(L1 et all 2022} [Kuhnle| [2021])).

In addition to previously mentioned work on parallel algorithms for submodular maximization, our
work is also related to algorithms for submodular maximization in other sublinear models such as

dynamic (where the update time needs to be sublinear) (2022)); Peng| (2021); |Peng &

Rubinstein| (2023)); [Lattanzi et al.| (2020); Monemizadeh| (2020); Diitting et al.| (2023); |Agarwal &
Balkanski (2023)); [Banihashem et al.| (2024} 2023)) and streaming (where the space needs to be sub-

linear) Badanidiyuru et al.[(2014); |[Feldman et al.| (2023)); Chakrabarti & Kale|(2015); Chekuri et al.
(2015)); |Feldman et al.|(2021); [Huang et al.| (2021); [Liu et al.| (2021)); [Shadravan| (2020); Norouzi-

Fard et al| (2018); |Alaluf & Feldman| (2019); |Agrawal et al.| (2018)); [Kazemi et al.| (2019b); Huang
et al.| (2022)); |[Feldman et al.|(2018); /Alaluf et al.| (2022); |[McGregor & Vu|(2019); [Indyk & Vakilian

(2019).

1.1 TECHNIQUE OVERVIEW

The linear lower bound for submodular maximization The key idea driving our approach for
proving lower bounds is to relate the query complexity of submodular maximization to the commu-
nication complexity of distributed set detection problem.

We first describe the distributed set detection task, which is inspired by [Braverman et al] (2016)f]
The distributed set detection is a multi-party communication problem, where each party observes the
outcome of n coins. Among these 7 coins, k coins are fair and have mean 1/2, while the rest n — k
coins are biased and have small mean vallue. The goal of these parties is to collectively identify a
small fraction (e.g. 0.1k) of fair coins. We prove that the distributed set detection requires §2(n)
communication cost using the distributed strong data process inequality (SDPI) and a direct-sum
argument.

Our key observation is that the linear communication lower bound for distributed set detection yields
a linear query lower bound of submodular maximization. To this end, consider a linear function
whose weight on the i-th element equals the summation of the outcome of the ¢-th coin. The op-
timal k-subset is exactly the k fair coins, given the number of parties is roughly ©(log(n)). The
crucial observation is one could simulate the query algorithm in the communication model, with
only polylog(n) overheads: If the query algorithm asks for the value of f(.S) for some set .S, then
all parties just locally compute the summation of coins in .S and broadcast their results, it takes at
most O((log(n))?) communication bits (O(log(n)) parties and log(n) bits per party). This proves

that finding the optimal k-subset requires €2(n) queries due to the €2(n) communication lower bound
of distributed set detection.

When the goal is to estimate the value of the optimal k-subset, the above hard instance fails be-
cause the query algorithm could easily find one fair coin using O(n/k) queries. To this end, we
construct a monotone submodular function by applying two levels of truncation to the above linear
function. Roughly speaking, the optimal k-subset still corresponds to the k fair coins in distributed
set detection, but the two-level truncation over the linear function (see Eq. @)(3)) masks off useful
information on large sets and requires the detection of a non-trivial fraction of the fair coins (see
Section [3.2] for detailed description).

2Concretely, Braverman et al.| (2016) studied the sparse gaussian mean estimation problem, in which multi-
ple parties aim to collaboratively approximate the mean of an n-dimensional, k-sparse gaussian distribution.
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Remark 1.1 (Comparison with previous work L1 et al.| (2022); [Kuhnle| (2021)). The previous work
dLi et al.l |2022[' |Kuhnl(fl |202]|) prove a lower bound of Q)(n/k) and |Li et al.|(2022) additionally
has a lower bound of }(n) when k = ©(n). Our approach yields significantly stronger lower

bound, e.g. when k = +/n, our lower bound (i.e., )(n)) is quadratically better than 2022}
2021) (i.e., 2(y/n)). From a technical point of view, all previous lower bounds are proved

using counting arguments. Our technique is completely different from them, it is based on novel
ideas, including (1) the query to communication reduction, (2) a communication lower bound using
information complexity and distributed data-processing inequality, and (3) a new construction of
the hard submodular function with two-level truncation.

Sublinear algorithm for linear function Our algorithm is a multi-scale combination of two base
subroutines. The first subroutine is to randomly select a set of size n/m and estimate the value
of each individual element. This subroutine yields a good estimate on the top m-th quantile of
the ground set, but fails to give an accurate estimation on top o(m) elements (to see this, imagine
there are o(m) elements that have super large value, then one can observe their value only after
sampling > n/m elements). The second subroutine is to partition the ground set into m subsets
and estimate the value of each subset. Intuitively, this subroutine alleviates the weakness of the first
subroutine — if there are o(m) elements that have super large value, then most of them would fall
into different subsets and we can have a good sense of their value after querying the value of m
subsets. Nevertheless, the second subroutine could fail if the top o(m) elements are not significantly
larger than rest elements (say they have value 2 and the rest have value 0 or 1, then querying the
value of m subsets gives negligible hints on the value of top o(m) elements).

Intuitively, both subroutine have their own weakness, but they are somewhat complementary to each
other. We wish to combine them in a careful manner to get an optimal sublinear algorithm. The
real situation gets complicated due to the possible intricate choice of the top k elements, so we only
sketch our final solution here. Indeed, we compose the two base subroutines in multiple scales. Let
k. = (14 €)", at each level r, the algorithm randomly partitions the ground set into nk,./k subsets

and estimates the k,.-th quantile of these subsets (hence each level takes O(n/k) queries). Roughly
speaking, we expect the top k,.-th subsets to be as valuable as the top k,.-th element + an average
bucket. Our final estimate is a weighted average over the output at each scale. See Section f] for
details.

Organization of the paper We describe notations and models in Section[2} The lower bound for
submodular maximization is presented in Section [3| and the algorithm for additive function is in
Sectiond] Due to space constraints, we defer detailed proof to the appendix.

2 PRELIMINARY

Notation We write [n] = {1,2,...,n}. For random variables X,Y, we use I(X;Y) to denote
the mutual information of X,Y’, h(X;Y) to denote the Hellinger distance, TV(X;Y") to denote the
total variation distance. For any value p € [0, 1], let B,, the Bernoulli distributions with mean p.

Submodular maximization Let f : {0,1}" — R* be a nonnegative set function. For any sets
A,B C [n], let fa(B) := f(AU B) — f(A) be the marginal value of a set B w.r.t. a set A. The
function is monotone if f(B) > f(A) for any A C B. The function is said to be submodular if
fa(u) > fp(u) holds for every sets A C B C [n] and every element v € [n] \ B. In a con-
strained monotone submodular maximization problem, there is a budget k € [n] and the goal is
find a subset S C [n] of size at most k that (approximately) maximizes the function value, i.e.,
maxgcin),s|<k J(S). The problem is studied in the query oracle model, where each time the algo-
rithm submit a query V' C [n] and the oracle returns the function value f(V'). We assume the oracle
returns the exact value of f (V') and leave the study of noisy query to future work.

Let S* := argmaxgci,),s/<k f(S) be the optimum solution set (breaking ties arbitrarily). In the
search problem, the goa% is to find an (approximately) optimal solution, and we say the algorithm
finds an a-approximate solution if it returns a set S (|S| < k) such f(S) > af(S*). In the decision
problem, the goal is to determine the optimal value, given a value OPT, we say an algorithm is
a-approximate if it can distinguish between f(S*) > OPT vs. f(S*) < a OPT.
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3 LOWER BOUND FOR SUBMODULAR MAXIMIZATION

We prove that the distributed set detection requires €2(n) communication cost in Section using
the distributed SDPI inequality and a direct sum argument. In Section [3.2] we give a simple re-
duction from distributed set detection to submodular maximization, which rules out the possibility
of approximately finding the optimal k-subset using sublinear query (and it holds even for addi-
tive function). In Section [3.3] we present a more involved reduction that proves the hardness of
approximating the value of optimal k-subset.

3.1 COMMUNICATION LOWER BOUND

A key ingredient of our proof is a communication lower bound on the distributed set detection
problem. The distributed set detection is a multi-party communication problem and we study it
under the blackboard model, where every party can write and read over a common blackboard.

Definition 3.1 (Distributed set detection). Let n, k, m be input parameters, Dy, D1 be two Bernoulli
distributions with mean pg, jt11. m is the number of parties, who communicate in the blackboard
model. Let T C [n] be an index set of size [k/2, k]. The input of the t-th party (t € [m]) is a vector
X € {0,1}", such that for any i € [n], X ; ~ Dy ifi € [n]\I and X ; ~ Dy if i € I. The goal is

to output a set T C [n] (|Z| = k) that maximizes the intersection |I NZ).

The main goal of this section is to establish the following communication lower bound of distributed
set detection.

Theorem 3.2 (Communication lower bound). Let € € (0, 1), n,k, m be integers and satisfy k <
en/4. Let ¢ > 1 be some constant and %,uo < p1 < cug. For the problem of distributed set
detection, any (randomized) communication protocol that outputs e-fraction of the index set (i.e.,

|ZNZ| > ek) in expectation has communication complexity at least Q(e2n/c).

With the goal of proving Theorem [3.2] we first introduce the distributed detection problem, where
each party only receives one coordinate and the goal is to detect whether they come from Dy or D;.

Definition 3.3 (Distributed detection). Let V' ~ By and Do, D1 be two Bernoulli distributions
with mean Lo, 1. There are m parties communicate in the blackboard model and each party re-
ceives a single bit Z, ~ Dy independently drawn from Dy (with the same V for all parties). The
goal is to determine the value of V.

The distributed detection problem has large information cost.

Lemma 3.4 (Distributed SDPI, Theorem 1.1 in Braverman et al.{(2016)). Suppose % o < p1 < clo,
B0, p1) < 1 be the SDPI constant of o, p1. Let 1T be the communication transcript, 11|y —q (resp.
|y =1) be the transcript when V = 0 (resp. V = 1). In the distributed detection problem, we have
the following distributed strong data processing inequality,

2|y =0, M|y=1) < K - ¢B(po, 1) - min{I(IL; Zy ... Zp|[V = 0), IAL; Zy ... Zpp|[V = 1)}
for some fixed constant K > 0.
We apply a direct sum argument and prove the information cost for distributed set detection is Q(n)

times the information cost of distributed detection. To this end, consider the communication protocol
in Figure|1|for distributed detection.

Let II be the transcript of distributed set detection. Let R be the public randomness used by the
distributed set detection, R' = (R, Z) be the public randomness of distributed detection. The infor-
mation cost of distributed set detection is defined as

IC = max  I(ILXy,...,Xm|Z,R). (1)
TC[n],k/2<|Z|<k

The information cost is also a lower bound on the communication cost of distributed set detection.

We have the following direct-sum theorem on the information cost, the proof is similar to Proposition
5.2 in|Braverman et al.| (2016).
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* Using public randomness, the m parties sample a set Z = {iy, ..., i} C [n].

* For any t € [m)], the t-th party constructs the vector X; € {0, 1}" as follow:
Dy i€ [n]\Z
Xt)iN D1 ie{ig,...,i}(}
Zt 1= il

* Then the m parties follow the communication protocol of distributed set detection,
and they output 1 if ¢ € 7.

Figure 1: Communication protocol for distributed detection

Lemma 3.5. For any k > 2, we have

IC

IOLR:Zy, ... 2|V =0) < —~
(a 3 L1y 3 | )_n—k+1

We next analyse the correctness of the protocol.

Lemma 3.6. Suppose the communication protocol of distributed set detection outputs e-fraction of
the index set, then the protocol in Figure[l|correctly guesses the value of V with probability at least
1 €
= + =,
271

Combining Lemma[3.4]—[3.6] we can prove Theorem 3.2}

3.2 LOWER BOUND FOR SEARCH PROBLEM

We start with a simpler linear query lower bound for the search problem. It is worth noting that the
lower bound holds even when the function is additive.

Theorem 3.7. Let n be the size of the ground set, k € [n] be the cardinality constraint, o €
(0,1) be the approximation ratio and k < O(an). A randomized algorithm must make at least

Q(a®n/log?(n)) queries in order to find an o-approximate solution for submodular maximization
under the cardinality constraint.

We reduce from the distributed set detection problem. Let

1001
e=a/l5, m=—22"0 g=e  m=1/2 and c=1/2
€
Given an instance of distributed set detection with input X, ..., X,, € {0,1}", consider the fol-
lowing function
F9)=Y">" X;; vSc{o1}"
1€S te[m]

It is clear that the function f is non-negative, monotone, submodular since it is a linear function.
Furthermore, its optimal solution satisfies

Lemma 3.8. With probability at least 1 — 1/n', for any a-approximate solution set S C [n]
(IS| < k), we have |S NI| > ek.

The proof of Theorem [3.7) follows from Lemma [3.8] and the communication lower bound of distri-
bution set detection (Theorem [3.2).

3.3 LOWER BOUND FOR DECISION PROBLEM

We next prove a linear query lower bound for the decision problem.

Theorem 3.9. Let n be the size of the ground set, k € [n] be the cardinality constraint, o € (0, 1)
be the approximation ratio, OPT € R* and k < O(a?n). A randomized algorithm must make at
least Q(a''n/ log®(n)) queries in order to distinguish between
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* YES Instance f(S*) > OPT
* NO Instance f(5*) < « OPT

We present a reduction from the distributed set detection problem. The construction of the submod-
ular function and the choice of parameters are slightly different from Theorem[3.7] Let

2 1001
6252%0’ m:%gn, po=¢€  p1=1/2, and c=1/2

Given an instance of distributed set detection with input X1, ..., X,, € {0,1}", consider the fol-
lowing functions

fres(S)=mind 3 N x> N X+ “m's', mk ©)

1€SNZT te[m)| 1€SN[n]\Z te[m]
and
k S
foolS)=mindmind S 3 x, TR ST Y X+ am' N e
1€SNZ te[m) 1€SN[n]\Z te[m]

It is easy to see that both fycs, fno are monotone and submodular, because linear combination and
minimum with a constant keep submodularity and monotonicity (see Fact[A.T).

We first make a few simple observations.
Lemma 3.10. With probability at least 1 — 1/n'%, we have

Z Xii €[(1/2—=€e)m,(1/2+€)m] Viel (4)
and
Z Xii € (em/2,2em) Vi€ [n]\T (5)
te[m]

In the rest of the proof, we would condition on the high probability event of Lemma [3.10] Let
OPT = mk/5. We have the following observation on the optimal value of fyes and fyo.

Lemma 3.11. We have (1) maxg-cn],|s+|=k fyes(S*) > OPT; and fuo(S) < aOPT for any
S Cn],|S| = k.

Now we can proceed to prove Theorem [3.9]

Proof of Theorem[3.9] Suppose there exists an algorithm ALG that makes at most R queries and
distinguishes between the YES/NO instance. Consider the communication protocol in Algorithm ]
for distributed set detection. From a high level, the communication proceeds in (at most) R rounds.
At the r-th round, the m parties look at the r-th query S, C [n] of ALG, they either decide an output
set (Line or construct the value oracle f(.S;) (Lineand. Concretely, if the size of .S, is large,
they set f(.S;,) = mk and proceed to the next round/query. Otherwise, they partition the set S, =
Sr1U---US; 20/4 into 20/ subsets, each of size at most k. The m parties then compute the value
of > e S Zte[m] X,,; for each subset S, - (T € [20/a]). If the value is large, they return the set

T« Sy,7; otherwise, they set the oracle value f(S;) = min{} ;¢ (. > e, Xii+aklS,[/20, mk}
and proceed to the next round/query.
Correctness First, we prove the correctness of the protocol. We divide into two cases.

Case 1. Algorlthmlretums asetT « Sy, at some round 7 € [R] and 7 € [20/«]. Then we prove
it must satisfy |S, » N Z| > ek.
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Algorithm 1 Reduction: From submodular maximization to distributed set detection

1: Imput: Input Xi,..., X,, € {0,1}", submodular maximization algorithm ALG,
2: forr=1,2,...,Rdo > Round r

3: Let S, C [n] be the r-th query of ALG
4: if |.S,| > 20k/« then
5: f(S.) «+ mk
6: else
7: Partition S, = S,.1 U--- U S, 20/4a > |Syr| < kVT € [20/a])
8: forr=1,2...,20/a do
9: i) cs, . Dtemm Xti = a?mk/200 then
10: I < S, ; and return
11: end if
12: end for
13: f(Sp) = min{} ;g > e Xei + am|S;|/20, mk}
14: end if
15: end for
We have

mkf200< 3 3 Xeo= >0 Y X+t > Y X

€Sy - t€[m)] 1€S,r NI te[m] 1€Sy, N[N\ t€[m]
<|SyrNZ|-(1/24+¢e)m+ k- 2em.
Here the first step follows from the assumption, the third step follows from Lemma [3.10] Plugging
in the value of o, €, we have that
2 _
/200 2ek S

S, NI|>
|r. = 1/2+¢ =

Case 2. Suppose Algorithm [I|never returns anything, i.e., the if condition at Line [9]of Algorithm |I]
is never satisfied. Then we prove f(S,) = fyes(Sr) = funo(Sr) holds for every r € [R].

Fix around r € [R], if S| > 20k/a, then we have fyes(Sr) = fuo(Sr) = mk = f(S,) due to
Lmelof Algonthml 1} Now suppose | S| < 22, we have

f(Sr) = min Z Z Xt +am|S;|/20,mk » = fyes(Sr)

i1€S, te[m]

Meanwhile, by the assumption of the second case, we also have

Y X< Y Xu= Y Y Y X< (20/a) - (aPmk/200) = amk/10,
1€S,-NZL te[m] 1€S, te[m] TE[20/a) 1€Sy + tE[M]

Hence, we also have f,5(S;) = fyes(Sy) (see the definition in Eq. Z)(3)). This proved that
fyes(ST) = fuo(Sr) = f(S;) forany r € [R].

In summary, we conclude that in Case 1, the reduction outputs a set Z with |[Z N Z| > ek, while
in Case 2, the transcript of ALG is the same for fyes and f,,. Since we assume ALG is able
to distinguish between fyes, fno after R queries, then we must fall into Case 1. This proves the
correctness of Algorithm [I]

Communication complexity Next we analyse the communication complexity. At each round
r € [R], the m parties need to compute 3,1, > es, . Xeq for 7 € [20/a]. For each 7 €

[20/ ], the t-th party (¢ € [m]) could compute the partial sum ;s X ; locally, and then write
it on the blackboard. Hence, the total communication cost per round is at most 7 - m - log(n) =

O(log*(n)/ae®) = O(log? ( )/ad ) There are at most R rounds, so the total communication cost
over R rounds are O(Rlog®(n)/a®). By Theorem we must have
Rlog*(n)/a® > Q(?n/c) = R >Q(a''n/log?(n)). O
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4 SUBLINEAR ALGORITHM FOR ADDITIVE FUNCTION

Theorem 4.1. Let n be the size of ground set, k be the constraint, ¢ € (0,1/8) be a constant.
Suppose f is monotone and additive, then there is an algorithm that approximates the value of
maxg-c(n),|s|=k f (S) within (1 £ €) factor using (n/k) - poly(log(n), e~ ") number of queries and
succeeds with probability at least 4/5.

Parameters and notation Let w; = f(i) > 0 and we have f(S) = >, gw; forall S C [n].
For parameters R, Ry, R defined below, we define a set {k,}, of scales ranging from k; = 1 to
kr+yry+r, = k. Specifically, we let R = 100log(n)/€e?, Ry = log, .(k/R®), Ry = log, .(R?).
Letk, =rforr < R,and k., = R(1+¢€)" fforr € [R+1: R+ Ry + Ry).

Algorithm description Our approach is depicted as LINEARSUM (Algorithm [2). From a high
level, LINEARSUM divides the largest k£ elements into multiple scales. For the largest scales,
kr € {kR+Ry+1,---sKR+R1+Rs }» LINEARSUM directly estimates the k,-th quantile (Line [7| of

Algorithm and it takes roughly O(n/k,) = O(n/k) samples.

For smaller scales, k,. € {k1,...,krytr, }» we cannot directly use this naive estimation approach as

we cannot afford O(n/k,) query complexity for smaller k,.. To avoid this increase in query com-
plexity, LIENARSUME randomly partitions the ground set [n] into nk, /k buckets A,.1, ..., Ay ok, /1-
Define f,(i) := f(A,;) fori € [nk,/k], LIENARSUM estimates the k,-th largest element of f,.
(Line [ of Algorithm [2). Roughly speaking, we expect the top k,-th bucket to be as valuable as
the top k,-th element + an average bucket, so LIENARSUM further subtracts the average value of a
bucket (Line [5|of Algorithm [2) to get an estimate of the contribution just from the top k, elements.

Algorithm 2 LINEARSUM( f, k)

:forr=1,2,...,R+ Ry do > R =100log(n)/€e?, Ry = log, . (k/R?)
Random partition [n] = A, 1 U---U A, .1, /i, into nk, /k subsets

Define f,(i) := f(A, ;) for Vi € [nk, /k]

b, < ESTIMATEQUANTILE( f, k;.)

Cr — br - %f([n])

6: end for

7: ¢, + BESTIMATEQUANTILE(f, k,) forr € [R+ Ry + 1: R+ Ry + Rs] > Ry = log, . .(R?)

8: Return ZR+R1+R7(I<:T —kr_1)er

r=1

A .

Algorithm 3 ESTIMATEQUANTILE(g, t) >g:[m] — RT

1: if t < 100log(n)/e? then

2 Random sample a set S C [m] of size 100m log(n)/te?

3 Query g(i) for all i € S and let b; be the 100 log(n)/e>-th largest element of {g(i) }ics
4: Return b,
5

6
7

: else
Query g and Return the ¢-th largest element
end if

4.1 ANALYSIS

We relabel the ground set elements such that w; > --- > w, for convenience; note that
LINEARSUM is oblivious to the labeling of ground set elements so this is without loss of gener-
ality.

We first prove that ESTIMATEQUANTILE(g, t) gives a good estimate on the value of the top ¢-th
element of g.

Lemma 4.2. Given any function g : [m] — RT, and let 51 > 32 > .-.Em be the descending
ordering of {g(i)}ic(m)- For any t € [m], the output by of ESTIMATEQUANTILE(g, t) satisfies

g(1+e)t <b < Z(1+e)*1t
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fort > 1001log(n)/€* with probability at least 1 — 1/n*, and b, = by fort < 100 log(n)/€>.

In the rest of the proof, it is convenient to assume k divides n, and further that

(log(n)/e)® < k < n - (¢/log(n))®. (6)
This assumption is without loss of generality as we could just add dummy elements to the ground
set.

The key step is to prove that ¢, gives a good estimate on the k,.-th largest element of f.

Lemma 4.3. Forr < R, with probability at least 1 — ﬁ
2e 2¢
wk,,—ﬁzwjﬁcréwk,.JrEij. )
J<k i<k
and forr € [R+ 1 : R+ R1|, with probability at least 1 — n% we have
2 2
Wataek, T ij < ¢ S Wa-20)k, + % Zw] ®)
i<k i<k

In the proof of Lemmal4.3| fix a value of 7, let t, = log®(n)/e* when r < Rand t,. = k, log®(n) /e
whenr € [R+1: R+ R;]. For each subset i € [nk,/k], we decompose f(A, ;) into three parts

A= D wi= Y wiliz, + Y wiligyernt Y wilps.
JEA., JEAL; JEAL; JEA;
From a high level, we wish to prove that (1) there is at most one element contributes the first term;
(2) the second term is negligible; and (3) the last term concentrates on its mean.

Fix a partition A3 U---U A, /. For any subset S C [n], the number of collisions among
S is defined as the total number of elements in .S that are allocated to subsets with more than one
element of S. We first prove that (with sufficiently high probability) there are few collisions among
the largest ¢, elements.

Lemma 4.4. We have

e For r < R, with probability at least 1 — ﬁ, there are no collisions among the top t,
elements.

s Forr € [R+ 1 : R+ Ry), with probability at least 1 — 1/n*, the number of collisions
among the top t,. elements are at most is at most ek,

We next prove ZjeAT cw;ly, < i<k 1s negligible.
Lemma 4.5. Foranyr € [R+ Ry, i C [nk,/k], with probability at least 1 — 1/n*, we have

log®(n
> wiltcjzi < gt( >ij-

JEA T i<k

Finally, we prove > jea,, Wi - 1>, concentrates around the mean.
Lemma 4.6. Forany r € [R+ R1] and i € [nk,/k], with probability at least 1 — 1/n”,
k | k
JEAr i>k

We can obtain Lemma [4.3| from Lemma 4.4 - Lemma [£.6] and obtain Theorem [4.1] using Lemma
43l

4.2 A NEARLY-MATCHING LOWER BOUND

We present a matching lower bound to Theorem .1 whose proof can be found at the Appendix.

Theorem 4.7. Let f be an additive function, n be the size of ground set, k be the constraint, o €
(0,1) be a constant. Then it takes Q(a®n/klog(n)) queries to distinguish between

* YES Instance: f(S*) > OPT
* NO Instance: f(5S*) < « OPT

10
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A MISSING PROOF FROM SECTION 3]

We have the following basic fact about submodular functions.

Fact A.1. We have the following basic facts about submodular functions: (1) A linear function
is submodular; (2) If f, g are submodular, then f + g is submodular; and (3) If [ is monotone
submodular, Let ¢ > 0 be any constant, and let g(S) = min{f(S), c} for any S C [n], then g is
also submodular.

To establish communication lower bounds, we need a few basic facts of information theory.
Fact A.2 (Hellinger v.s. total variation). For any two distributions P, Q, we have

W (P,Q) < TV(P,Q) < V2h(P,Q).
Fact A.3. Suppose A, B are independent when conditioned on C, then we have
I(D; A|IC) + I(D; B|C) < I(D; A, B|C)

We first prove Lemma3.3]

Proof of Lemma[3.5] First, we have
IAL R Z1, ..., 2|V =0) = I(IL Z1, ..., Zn|R',V = 0)
= I(I; X1z, Xpuz, R, T,V = 0)
= ig,E,ik, T X2, Xz | Ry Th, o = 2y .o Dy = iy, V = 0).
)

The first step follows because the public randomness R’ is independent of Z1, ..., Z,, conditioning
on V = 0, the second step follows from R’ = (R,Z), and Z1, ..., Z,, are embedded to the Z;-th
coordinate. The third step follows from the definition of condition mutual information.

For any fixed is, . . ., i, we bound the RHS of Eq. (9) and our goal is to prove

IC
I(H;XI,I17~-~aXm,Il|RthIQ = ig,...,Ik, = ik,v = 0) <

_ 1
“n—k+1 (10)

To this end, we have

I(H;XLIU...,Xm711|R,Il,Ig = iQ,...,Ik- = ik.,V = 0)

1 . . .
= TE T Z | IO X105y Xy |[R T = 0, L0 = da, .., Iy, = iy, V = 0)
i€[n]\{iz,...;ix}
1
- T X1 as oy Xoni| R To = gy oo T = i, V =0
ey Z (IL; X7, AR Ie =iy K = ik )
i€[n]\{iz,..., ik}
1 . .
< mI(H; {Xl,i, EER) Xm,i}ie[n]\{ig,...,’ik}|R722 =d2,...,Ip =g,V = 0)
1
(L Xy, Xon|R T = iz, Ty = i, V = 0). 11
_n—k+1(’1’ s Xm|R, Iy = ip k= Uk ) 1D
The first step holds since the choice of I is uniform over [n]\{é2,...,4x}. The second step holds
since the distribution of X4 ;,..., X, ; for i € [n]\{is,...,4x} does not depend on ¢ (because

they are drawn from Dg"), and the transcript II is oblivious of Z;. The third step holds due to
X1,i,... Xon,; are independent across i € [n]\{iz,...,ix} and Fact[A.3]

Finally, for any ¢, . .., i, we have
I Xy, ..., X;m| R, Zo = 42, ..., I, = i, V = 0) < IC (12)
holds for any k& > 2 due to the definition of information cost (see Eq. (I)).

We have proved Eq. (I0) combining Eq. (IT)(12), and combining with Eq. (), we complete the
proof. O
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We next prove Lemma[3.6]

Proof of Lemma[3.6) WhenV = 1,note { X1, ..., X ;}iez are drawn from the same distribution,
hence we have

. ZnI| 7|
Pr[i; € Z] =
T \I | ~
When V' = 0, note { X1, ..., Ximi}ic[n]\{is,...,ix} have the same distribution, hence we have
7 k
Pr[il S I] = | | =

n—k+1 n—k+1
Combining the above two cases, the success probability is at least

1 +1 (1 k )>1+e
2 "2 n—k+1'"27 0
Here we use the fact that k < en/4. O

Now we provide the proof of Theorem 3.2]

Proof of Theorem[3.2] By Lemma we have that TV(I|y =g, |y =1) > £, and therefore,

i’
2
R*(|y—o, H]yy=1) > TVZ(H|V 0, y=1) > ?T

Here, the first step follows from Fact[A2]
By Lemma [3.4]and the fact that the SDPI constant 3(y, 411 ) is at most 1, we have
IAL Zy, ..., Zm|V = 0) > Q(1/c) - K2y =0, |y =1) = Qe /c).

By Lemma we have IC > Q(e?*n/c). This completes the proof since the communication cost is
at least the information cost. O

Next we prove lower bound for submodular maximization. We first prove Lemma 3.8}

Proof of Lemma @ By Chernoff bound, we have

= > Xii€l1/2-em,(1/2+e)m] Viel (13)
te[m]
and
i) = Z X1 <2em Vi€ [n\T (14)
te[m]

holds with probability at least 1 — 1/n'°. Hence, we have
F(S) = F(Z) =D fi) = (k/2)(1/2 = e)m (15)
i€l
The first two steps follow from the definition, the last step follows from |Z| > k/2 and Eq. (T3).
On the other hand, for any set S C [n] with size k, we have

F(S)=F(SNT) + f(S\T) < |SﬂI|-(%+6)-m+k-2em. (16)

The first step follows from the definition of f. The second step follows from Eq. (13)(T4). Combin-
ing Eq. (T3)(T6), we can conclude that for any «-approximate solution S,

f(S) s ISNZ| (346 -m+k-2em
5y~ = (k/2)(1/2— om

>15¢ = |[SNIZ|>ek.

16
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We next prove Theorem [3.7]

Proof of Theorem[3.7] Suppose there exists an algorithm ALG that makes at most R queries and
outputs an a-approximate solution S for the submodular maximization problem. Consider the
following communication protocol: The protocol proceeds in R rounds, where in the r-th round
(r € [R]), suppose ALG queries set S, then the m parties collectively compute the value of f(.S;).

Since
=303 Xei= Y > X,

i€S, t€[m)] te[m] i€Sy

it suffices for the ¢-th party to compute > _, - s, Xt,i locally and writes it on the blackboard. Given the
knowledge of S1,..., Sy, f(S1),..., f(S), m parties can simulate ALG and determine the next
query 5,1, and therefore, continue the protocol. Finally, m parties output the solution set Z = S.

The communication cost at each round equals 7 - log(n) = O(log?(n)/€?), and there is a sequence
of R queries, so there are O(Rlog (n)/€?) bits of communication in total. Moreover, ALG guaran-

tees the output solution 7 =Sisa=15¢ approximate, by Lemma L we know that \I NZ| > ek.
By Theorem [3.2] we must have

Rlog?(n)/e® > Q(?n/c) = R>Q(n/log*(n)) = Q(a’n/log*(n)).

We next prove Lemma and Lemma

Proof of Lemma[3.10] This follows directly from Chernoff bound. For any i € Z, X; ; ~ By, and
therefore

2y
Pr Z Xii—m/2| > em| < 2exp(—2me”) = —300
te[m] ]
and for any i € [n]\Z, X;; ~ B,
2 _
Pr fz[:]Xm —em| > em/2| < 2exp(—me=/2) = 50
te[m

Proof of Lemma For the YES instance, we have

Fres(S%) > fyes(T) > min ¢ > Z X, mk y > (k/2)(1/2 — €)m > OPT

S*C[n] \S*| k
i€L te[m

where the second step follows from the definition of fyCS (see Eq. [@)), the third step follows from
Eq. (@) and the last step holds since OPT.

For the NO instance, for any set S of size at most k, we have

fro(S) < min Z Z Xt,i,a%k + Z Z X+ amk

1€SNT te[m] i€SN[n]\Z te[m]
< amk/10+ k - 2em + amk/20 < « OPT

where the first step follows from the definition of f,,, (see Eq. (3)), and the second step holds due to
Eq. (3) and | S| < k. The last step follows from the choice of parameters. O
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B MISSING PROOF FROM SECTION [4]

We first prove Lemma[d.2]

Proof of Lemma[#-2] We focus on the non-trivial case of ¢ > 1001log(n)/e?. By Chernoff bound,
we have

~ 1001 1001 1 1
Pr{by < by =Pr [|SN[(1+e)t]| < 0060;:{(71)} = exp (62 . ()()%g(n) : 2> <

here the second step follows from Chernoff bound and

100m log(n 1+e€)t 100 log(n
B[S N [(1+ e)t]]] = kJ>wm)ﬂHd—?L2
Similarly,
D 100 log(n
Pr[b; > b ye)-u] = Pr {|5ﬁ [(1+e)7] > ezg()]

e \2 100log(n) 1 1
- - : R I
eXp( (l—i—e) l+ee 3) = nt

where the second step follows from Chernoff bound and

_ 100m log(n) t ~ 1001og(n)

E[|S N [(1+¢) ] re2 14+em  (1+e)e’

We next prove Lemma [4.4]—[.6]

Proof of Lemmad.4} For r < R, the probability that is there are no collisions among [t,] equals

k (tr — Dk s k 1
1= NP O P SRAL I T >1-
! (1 k,«n) (1 krn > =1t kyn — ! 100R

(here the last inequality uses (0)).

Forr € [R+ 1 : R+ Ry], consider the random process that j = 1,2,3,...,¢, are randomly put
into A,.1,..., Ay i, k- Let X; indicates if j falls into the same set as some element j' < j, i.e.,

Y. — {1 jE A, j €A, forsome j' < j,i€ [nk,/k]
J

0 otherwise
We know that E[X;] < ¢, - ﬁ, and
k k klog(n)
2 _ 2 2 _
E Z X | <2 T (ky log?(n)/e)? - P — 5 ke <y /A
J<tr
where the last step holds since we assume k < e3n/ log®(n).
By Azuma-Hoeffding bound, we have
Pr| Y X; > ek /2| < exp(—ck,/12) < 1/n°.
J<tr
This completes the proof. O
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Proof of Lemma[.3] For any r € [R + R;], for any subset i C [nk,/k], we have

2
E Z wily, <j<k | = % Z w; < IOth(n)ij,

JEAL " tn<j<k "<k

where the second step follows from the choice of parameters. By Chernoff bound, we have

log?(n
Pri Y wl, e > S,

T

IN

exp | — Z w; log?(n) /6t wy,

JEAr; J<k i<k
< exp(—1log®(n)/6) < 1/n°
where the second step follows from w;, < % doj<t, Wi < i D j<t Wy O

Proof Lemma We have

k
E| Y wilpk|=——> w,
JEAM, ">k
We use Chernoff bound. If nikr > jsk Wi > \/k/kylog(n)wy, then we have

k
Pr Z wj - g — %ij < Vk/k.log(n)wy
">k

JEAL;

Zlmp( log?(n)k/k» )

3k Do wj/nkwy

1
> 1 —exp(—log*(n)/3) > 1 — 5

Otherwise, If £ Yok Wi < \/k/klog(n)wy, then we have

k
Pr Z wj - Lisgk — n—kTij < Vk/k,log(n)wg
>k

JEA,;
>1—2exp(— logQ(n)k/?)kr)

> 1 exp(~log*(n)/3) > 1~ =

Now we can finish the proof of Lemma[4.3]

Proof of Lemma[.3| Fix a value of r, for each subset i € [nk,/k], we would decompose f(A, ;)
into three parts

FA) = > wi= Y wiljc, + Y wilycjer+ Y wiljsge (17

j€A7~,i jeAT',i jeAv',i jEAT',i

CASEl:re [R+1: R+ Ry]

We first consider the case that r € [R 4+ 1 : R 4+ R;] and prove Eq. (§). For the LHS of Eq. (§), let
T C [nk./k] be the collection of subsets such that contain the top (1 + 2¢)k, elements, i.e. [(1 +
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2¢)k,] C Ujez A, ;. By Lemmal4.4] we know that |Z| > (1 + €)k,.. We have

b, > min E w;
1€L .
JEAL;

= min E wjljgtr+§ wjltr<j§k+§ w;ljsp

jeAr,i jEAr'L' jeAr,i

> W(142e)k, +0+ ij Mlog(n)wk

> W(it20k, + —— ij ij (18)

]<k

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma4.2)), the third step
follows from Lemma the last step follows from k, < k/log?(n).

Meanwhile, we have

k
7f :nk‘ Z e Z krj;wj_ wa . ij (19)

j<k j>k

Combining Eq. (T8)(T9), we have

k
Cr = Op nkr ([n]) 2 w(1+26)]€7» Zwr

g<k

For the RHS of Eq. (). Let Z, C [nk,/k] be the top (1 — €)k, subsets of {A, ;}icink, k- BY
Lemma we know that there exists 4, € Z,, such that, either |4, ;. N[t;]| = 0, or j, = A, ; N[t,]

and j, > (1 — 2¢)k,.. Therefore, we have
br S Z ’LUj
JEAL i,
= > wilic, + Y wiliciart+ >, wilisk
JEA i, JEA i, JEA i,
<w +10g2(n)2w-+i2w4+\/k/k log(n)w
> W(1—-2¢)k, tr : i nkr : 7 T k
i<k >k
1 + 1
< wy, + - Z wj + Z wj

1<k

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma[4.2)), the third step
follows from Lemma[.5]and Lemma[4.6] the last step follows from the choice of parameters.

Hence, we have

k
r:br*
o= )
S Wa-20k, + 7= nk, Zw] . Zw] nk, Z

i<k >k

Swa-20)k, + 7 ij
]<k

CASE2:r <R

We next study the case that < R. The proof is similar. For the LHS of Eq. (7), let Z C [nk,./k] be
the collection of subsets such that in [k,] C U;ezA, ;. By Lemmal4.4] we know that |Z| = pk,. We

20



Under review as a conference paper at ICLR 2025

have

b, > min E w;
1€L .
JEAL

= min E wﬂjﬁtmLE wjltr<j§k-+§ w;ljsp

j€A1 i JEA JEAL
Zw] Vk/klog(n)w
j>k
k €
Zw;w"‘rnikrzwj—ﬁzw]‘ (20)
i>k i<k

The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma[4.2)), the third step
follows from Lemma [4.5] the last step follows from the choice of parameters.

Meanwhile, we have
k € k
*f Z Z Swy <> wit—— Y w, QD)
nk nk, nk, 4 R 4 nk, 4
j>k i<k Jj>k
Combining Eq. Z0)(21), we have proved
k 2¢
Cr = b"' - nkr ([n]) Z wkr - E Zw’

J<k

For the RHS of Eq. (7). Let Z,. C [nk,/k] be the top k,. subsets of {Ari}ticink, k) By Lemma
we know that there exists i, € Z,, such that, either |A,; N [t.]| = 0, or j, = A, N [t;] and
jr > k,.. Therefore, we have

brS Z w

JEAL i,

Z wj]‘jgtr—"_ Z wj]-t,-<j§k+ Z wj1j>k

JEA, JEAL i, JEAr,

log?(n k
< wg, + % ij + — ij + Vk/k log(n)w

T i<k ">k

Z“’J - Z“’J

]<k

. The first step follows from the guarantee of QUANTILEESTIMATE (see Lemma4.2), the third step
follows from Lemma[.5]and Lemma[4.6] the last step follows from the choice of parameters.

Consequently, we have
k
r=b, — —
¢ 3 7(ln)

(s

< wg, + ij—i—%z:wj IZ ij
">k

1<k
< - .
— wkr + R ij'
J<k

This completes the proof. O

Now we can wrap up the proof of Theorem [4.1]

21



Under review as a conference paper at ICLR 2025

Proof of Theoremd-1} We prove LINEARSUM( f, k) approximates the optimal value within (1 +
O(log(n)e)) factor with probability at least 4/5, and it draws at most (n/k) - poly(n, e~!) samples.

For the correctness guarantee, we condition on the event of Lemma.3] which holds with probability
at least 5/6. For r < R, by Lemma4.3| we have

R

> (k= kp) ij:thZwJ (22)

r=1 i<k

Forj € [R+ 1, R + R;], we have

R+Ry R+Ry
Z (kr —kr—1)er < Z (kr — kr—1)wa—2e)k, + 2log(n ng
r=R+1 r=R+1 i<k
kr+ R,
< Z w; + O(log(n ij (23)
j=kr+1 j<k

where the first step follows from Lemma@and k. — ky._1 < €k,.. Similarly, we have

R+R, R+R,
Z (kr - kr—l)cr > Z (k - kr 1)w(1+25)k - QIOg ij
r=R+1 r=R+1 i<k
kr+R,
> Y w;—O(log(n)e) Y w; (24)
Jj=kr+1 i<k

Finally, forr € [R+ Ry + 1 : R+ Ry + R»], by the guarantee of ESTIMATEQUANTILE (see

Lemma[.2)

R+Ri+R: kRt Ry + Ry
S ke —k)er= Y wi£0(e) > w; (25)
r=R+Ri+1 j=kr+Rr;+1 i<k
Combining Eq. 22)—(23)), we have
R+R1+R2
Z (kr — kp_1)er = ij:i:Olog ij
r=1 j=1 i<k

For the sample complexity, for 7 € [R + R,], the total number of samples to obtain {b, },c[r+r,] is

at most
R+Rq

> 100(nk,/k)log(n)/kye® = (n/k) - poly(log(n),e "),
r=1
forr € [R+R1+1: R+ Ry + Ry), the total number of samples to obtain {b, },c[r+ R, +1: R+ R, + Ra]

is at most
R+R1+R2

> 100nlog(n)/kre* = (n/k) - poly(log(n),e ).
r=R+R;+1
This completes the proof. O

Next we prove Theorem £.7] We reduce from a decision version of the distributed set detection
problem.

Definition B.1 (Distributed index detection). Let n, m be input parameters, Dy, D1 be two Bernoulli
distributions with mean [, 1. m is the number of parties, who communicate in the blackboard
model. The input of the t-th party (t € [m]) is a vector X, € {0, 1}" such that

* YES Instance: X, ; ~ Dy fori € [n]\{i*} and X; ;» ~ Dy;
* NO Instance: X, ; ~ Dy forall i € [n]
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The goal is to distinguish between the YES/NO instance.

The communication complexity of distributed index detection is at least Q(n/clog(n)), because
there is an Q(n/c) lower bound of finding the index ¢* in the YES instance (taking k = 1, e = 1/2
in Theorem[3.2)), and one could find the index ¢* by performing binary search using O(log(n)) calls
to distributed index detection.

Proof of Theorem[.7} Given n, k, o, suppose there exists an algorithm ALG that makes at most R
queries and approximates the value of optimal solution. Consider an instance of distributed index
detection with

101
€= a/15, n' =n/k, m:%(n), Lo = €, = 1/2.

Let X1,...,Xm € {0, 1}”, be the input of distributed index detection. Consider the following

function f : [n] — RT,
:Zf(l) and f Z th (mod n')

€S te[m]

It is easy to see that f is additive and monotone. By Lemma [3.10} in the YES instance, by taking
S* ={i:1=14* (mod n')}, we have

fyes(S™) > kf(i*) > (1/2 — e)mk. (26)
In the NO instance, for any set S of size at most k, we have we
fno(S) < 2emk. 27

Let OPT = (1/2 — €¢)mk. Consider the following communication protocol: The protocol proceeds
in R rounds, where in the 7-th round (r € [R]), suppose ALG queries set .S, then the m parties
collectively compute the value of f(.S,). Since

): Z Z Xt,i (mod n') Z Zth(modn’)7
1€Sy t€[m] m] i€Sy

it suffices for the ¢-th party to compute >, s, Xt.i (mod n/) locally and write it on the blackboard.
Given the knowledge of Sy, ..., Sy, f(S1),..., f(Sr), m parties can simulate ALG and determine
the next query S,y1, and therefore, continue the protocol. Finally, m parties could distinguish
between (1) f(S*) > OPT = (1/2 — ¢)mk and 2)f(S*) < aOPT = «(1/2 — ¢)mk, and
therefore, resolve the distributed index detection task (see Eq. 6)(27)).

The communication cost at each round equals 1 - log(n) = O(log?(n)/€?), and there is a sequence
of R queries, so there are O(Rlog?(n)/€?) bits of communication in total. Hence, we have

Rlog?(n)/e? > en//log(n) = R>a’n/klog?(n).
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