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Abstract

We introduce a clipping strategy for Stochastic Gradient Descent (SGD) which uses quan-
tiles of the gradient norm as clipping thresholds. We prove that this new strategy provides
a robust and efficient optimization algorithm for smooth objectives (convex or non-convex),
that tolerates heavy-tailed samples (including infinite variance) and a fraction of outliers in the
data stream akin to Huber contamination. Our mathematical analysis leverages the connection
between constant step size SGD and Markov chains and handles the bias introduced by clip-
ping in an original way. For strongly convex objectives, we prove that the iteration converges
to a concentrated distribution and derive high probability bounds on the final estimation error.
In the non-convex case, we prove that the limit distribution is localized on a neighborhood
with low gradient. We propose an implementation of this algorithm using rolling quantiles
which leads to a highly efficient optimization procedure with strong robustness properties, as
confirmed by our numerical experiments.

Keywords. robust methods, stochastic optimization, heavy-tailed data, outliers, generalization
error

1 Introduction

Stochastic gradient descent (SGD) [72] is the core optimization algorithm at the origin of most
stochastic optimization procedures [46, 23, 44]. SGD and its variants are ubiquitously employed in
machine learning in order to train most models [47, 7, 48, 79, 13, 55]. The convergence properties
of SGD are therefore subjects of major interest. The first guarantees [62, 30] hold under strong
statistical assumptions which require data to follow light-tailed sub-Gaussian distributions and
provide error bounds in expectation. With the recent resurgence of interest for robust statistics [37,
25,49, 70], variants of SGD based on clipping are shown to be robust to heavy-tailed gradients [31,
81], where the gradient samples are only required to have a finite variance. The latter requirement
has been further weakened to the existence of a g-th moment for some ¢ > 1 in [77, 65]. In this
paper, we go further and show that another variant of clipped SGD with proper thresholds is robust
both to heavy tails and outliers in the data stream.

Robust statistics appeared in the 60s with the pioneering works of Huber, Tukey and others [82,
41, 39, 76, 32]. More recently, the field found new momentum thanks to a series of works about
robust scalar mean estimation [18, 1, 43, 53] and the more challenging multidimensional case [35,
19, 52, 59, 22, 24, 50, 27]. These paved the way to the elaboration of a host of robust learning
algorithms [34, 70, 49, 51, 66] which have to date overwhelmingly focused on the batch learning
setting. We consider the setting of streaming stochastic optimization [12, 14, 57], which raises
an additional difficulty coming from the fact that algorithms can see each sample only once and
must operate under an O(d) memory and complexity constraint for d-dimensional optimization



problems. A limited number of papers [81, 60, 28] propose theoretical guarantees for robust
algorithms learning from streaming data.
This work introduces such an algorithm that learns from data on the fly and is robust both to
heavy tails and outliers, with minimal computational overhead and sound theoretical guarantees.
We consider the problem of minimizing a smooth objective

min £(0) == Ec[¢(0, 0)] (D
using observations G(0, (¢) of the unknown gradient V.L(6), based on samples ((;):>0 received
sequentially that include corruptions with probability < 1/2. Formulation (1) is common to
numerous machine learning problems where /¢ is a loss function evaluating the fit of a model
with parameters # on a sample (, the expectation E is w.r.t the unknown uncorrupted sample
distribution.

We introduce quantile-clipped SGD (QC-SGD) which uses the iteration
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where 3 > 0 is a constant step size and ay, is the clipping factor with threshold chosen as the p-th
quantile 7y, = Q,(||G (6%, ¢)||) with G(6¢, (;) an uncorrupted sample of VL(6;) and p € (0,1)
(details will follow). Quantiles are a natural choice of clipping threshold which allows to handle
heavy tails [75, 11] and corrupted data. For instance, the trimmed mean offers a robust and com-
putationally efficient estimator of a scalar expectation [53]. Since the quantile Q, (|| G0, ¢)|)) is
non-observable, we introduce a method based on rolling quantiles in Section 5 which keeps the
procedure O(d) both memory and complexity-wise.

Contributions. Our main contributions are as follows:

* For small enough 7 and well-chosen p, we show that, whenever the optimization objective is
smooth and strongly convex, QC-SGD converges geometrically to a limit distribution such
that the deviation around the optimum achieves the optimal dependence on 7.

* In the non-corrupted case = 0 and with a strongly convex objective, we prove that a co-
ordinated choice of 8 and p ensures that the limit distribution is sub-Gaussian with constant
of order O(+1/3). In the corrupted case 1 > 0, the limit distribution is sub-exponential.

* For a smooth objective (non-convex) whose gradient satisfies an identifiability condition,
we prove that the total variation distance between QC-SGD iterates and its limit distribution
vanishes sub-linearly. In this case, the limit distribution is such that the deviation of the
objective gradient is optimally controlled in terms of 7).

* Finally, we provide experiments to demonstrate that QC-SGD can be easily implemented by
estimating @, (||G (6, ()||) with rolling quantiles. In particular, we show that the iteration
is indeed robust to heavy tails and corruption on multiple stochastic optimization tasks.

Our theoretical results are derived thanks to a modelling through Markov chains and hold under
an L, assumption on the gradient distribution with ¢ > 1.

Related works. Convergence in distribution of the Markov chain generated by constant step
size SGD, relatively to the Wasserstein metric, was first established in [29]. Another geometric
convergence result was derived in [86] for non-convex, non-smooth, but quadratically growing
objectives, where a convergence statement relatively to a weighted total variation distance is given



and a CLT is established. These papers do not consider robustness to heavy tails or outliers. Early
works proposed stochastic optimization and parameter estimation algorithms which are robust to a
wide class of noise of distributions [56, 67, 68, 71, 80, 21, 20, 61], where asymptotic convergence
guarantees are stated for large sample sizes. Initial evidence of the robustness of clipped SGD
to heavy tails was given by [87] who obtained results in expectation. Subsequent works derived
high-confidence sub-Gaussian performance bounds under a finite variance assumption [31, 81]
and later under an L, assumption [77, 65] with ¢ > 1. A similar SGD clipping scheme to (2) is
presented in [78], however, in contrast to our work, they do not consider the robust setting and
focus on experimental study while we also provide theoretical guarantees.

Robust versions of Stochastic Mirror Descent (SMD) are introduced in [60, 45]. For a proper
choice of the mirror map, SMD is shown to handle infinite variance gradients without any explicit
clipping [85]. Finally, [28] studY heavy-tailed and outlier robust streaming estimation algorithms
of the expectation and covariance. On this basis, robust algorithms for linear and logistic regres-
sion are derived. However, the involved filtering procedure is hard to implement in practice and
no numerical evaluation of the considered approach is proposed.

Agenda. In Section 2 we set notations, state the assumptions required by our theoretical results
and provide some necessary background on continuous state Markov chains. In Section 3, we
state our results for strongly convex objectives including geometric ergodicity of QC-SGD (The-
orem 1), characterizations of the limit distribution and deviation bounds on the final estimate. In
Section 4, we remove the convexity assumption and obtain a weaker ergodicity result (Theorem 2)
and characterize the limit distribution in terms of the deviations of the objective gradient. Finally,
we present a rolling quantile procedure in Section 5 and demonstrate its performance through a
few numerical experiments on synthetic and real data.

2 Preliminaries

The model parameter space is R? endowed with the Euclidean norm || - ||, B(R?) is the Borel
o-algebra of R? and we denote by M (R?) the set of probability measures over R?. We assume
throughout the paper that the objective £ is smooth.

Assumption 1. The objective L is L-Lipschitz-smooth, namely
L
L0 <L)+ (VL®O),0 —0) + §H0 —0)?

with L < 400 for all §,0" € R?.
The results from Section 3 below use the following

Assumption 2. The objective L is p-strongly convex, namely
L(8') = L(6) + (VL©).6' —6) + T]lo — |

with 11 > 0 for all ,0' € R%

An immediate consequence of Assumption 2 is the existence of a unique minimizer 6* =
argmingcra £(6). The next assumption formalizes our corruption model.

Assumption 3 (n-corruption). The gradients (G(6:,(t))i>0 used in Iteration (2) are sampled as
G0, ¢) = UG(0:) + (1 — Up)G(0r, Gt) where Uy are i.i.d Bernoulli random variables with
parameter n < 1/2, G(0;) ~ Do () with Do(0;) an arbitrary distribution and G(0y, () ~

D1(6:) follows the true gradient distribution and is independent from the past given 0.



Assumption 3 is an online analog of the Huber contamination model [38, 41] where corrup-
tions occur with probability 77 and where the distribution of corrupted samples is not fixed and may
depend on the current iterate 6;. The next assumption requires the true gradient distribution to be
unbiased and diffuse.

Assumption 4. For all 0, non-corrupted gradient samples G (0,¢) ~ Dz(0) are such that
G(6,¢) = VL) + e, 3)

where €g is a centered noise Eleg|0] = 0 with distribution évg 1 + (1 — §)vg o where 6 > 0 and
Vg 1, Vg2 are distributions over RY such that vg,1 admits a density hg w.r.t. the Lebesgue measure

satisfying
inf hg(w) > (R) >0
lwlI<R
forall R > 0, where »(-) is independent of 6.
Assumption 4 imposes a weak constraint, since it is satisfied, for example, as soon as the noise
€g admits a density w.r.t. Lebesgue’s measure. Our last assumption formalizes the requirement of
a finite moment for the gradient error.

Assumption 5. There is ¢ > 1 such that for G(6,¢) ~ Dz (0), we have
1 ~ 1
E[leoll* 6]/ = E[||G(6,¢) — VL®)[" 18]/ < Agll6 - 6] + B, )
forall § € RY, where Ay, By > 0. When L is not strongly convex, we further assume that A, = 0.

The bound (4) captures the case of arbitrarily high noise magnitude through the dependence
on ||§ — 6*||. This is consistent with common strongly convex optimization problems such as least
squares regression. For non-strongly convex £, we require A, = 0 since §* may not exist.

Definition 1. If X is a real random variable, we say that X is K-sub-Gaussian for K > 0 if
Eexp(A\2X2) < M5 for |\ < 1/K. (5)
We say that X is K-sub-exponential for K > 0 if
Eexp(A\X]|) < exp(AK) forall 0<A<1/K. (6)

The convergence results presented in this paper use the following formalism of continuous
state Markov chains. Given a step size § > 0 and a quantile p € (0, 1), we denote by Pg, the
Markov transition kernel governing the Markov chain (6;):>0 generated by QC-SGD, so that

P01 € Al 01) = Pgp(by, A)

fort > 0and A € B(R?). The transition kernel Ps,, acts on probability distributions v €
M (R?) through the mapping v — vPs,, which is defined, for all A € B(R?), by vPg ,(A) =
J4P3p(0,A)dv(0) = P61 € A| 6 ~ v). Forn > 1, we similarly define the multi-step
transition kernel Pj',, which is such that Pg (6¢, A) = P(6;1n, € A|6;) and acts on probability
distributions v € M (R?) through vPg, = (VPB’p)ngl. Finally, we define the total variation
(TV) norm of a signed measure v as

2||v :sup/fQVdOZ sup v(A)— inf v(A).
Wy = s [ SO0 = o vA)= it ()

In particular, we recover the TV distance between vy, 5 € M1 (R?) as drv(v1,10) = |11 —
vollTv.



3 Strongly Convex Objectives

We are ready to state our convergence result for the stochastic optimization of a strongly convex
objective using QC-SGD with n-corrupted samples.

Theorem 1 (Geometric ergodicity). Let Assumptions 1-5 hold and assume there is a quantile
p € [n,1 —n] such that

_1
k= (1=n)pp—nL —(1-p) 7441 = p(l—mn))>0. @)
Then, for a step size [ satisfying
1 K

B < - 2 ) (8)
442 4602 + 167 1 A2

the Markov chain (0;):>0 generated by QC-SGD with parameters [ and p converges geometrically
to a unique invariant measure g ,: for any initial 0y € R?, there is p < 1 and M < oo such that
after T iterations
T T 2
1860 P5,p = 7.0l vy < Mp" (1 + 1160 — 67[%),

where &g, is the Dirac measure located at 0.

The proof of Theorem 1 is given in Appendix D.2 and relies on the geometric ergodicity
result of [58, Chapter 15] for Markov chains with a geometric drift property. A similar result
for quadratically growing objectives was established by [86] and convergence w.r.t. Wasserstein’s
metric was shown in [29] assuming uniform gradient co-coercivity. However, robustness was not
considered in these works. The restriction p € [1, 1 — 1] comes from the consideration that other
quantiles are not estimable in the event of 7n-corruption. Condition (7) is best interpreted for the
choice p = 1 — 5 in which case it translates into n' /4 < O(u/(L + A,)) implying that it is
verified for 1 small enough within a limit fixed by the problem conditioning. A similar condition
with ¢ = 2 appears in [28, Theorem E.9] which uses a finite variance assumption.

The constants M and p controlling the geometric convergence speed in Theorem 1 depend on
the parameters 5, p and the initial fg. Among choices fulfilling the convergence conditions, it is
straightforward that greater step size S and 6 closer to 6* lead to faster convergence. However,
the dependence in p is more intricate and should be evaluated through the resulting value of x. We
provide a more detailed discussion about the value of p in Appendix C.

The choice p = 1 — n appears to be ideal since it leads to optimal deviation of the invariant
distribution around the optimum 6* which is the essence of our next statement.

Proposition 1. Assume the same as in Theorem I and condition (7) with the choice p = 1 — n.
For step size (3 satisfying (8), ¢ > 2, and additionally:

B <k, )
for 0 ~ g 1_,, we have the following upper bound:

6171_1/qu>2

Bll6 - 6*|” < (~—

Proposition 1 is proven in Appendix D.3. An analogous result holds for ¢ € (1,2) but re-
quires a different proof and can be found in Appendix D.4. Proposition 1 may be compared to [86,
Theorem 3.1] which shows that the asymptotic estimation error can be reduced arbitrarily using
a small step size. However, this is impossible in our case since we consider corrupted gradients.



The performance of Proposition 1 is best discussed in the specific context of linear regression
where gradients are given as G(6, (X,Y)) = X(X "0 — Y) for samples X,Y € R? x R such
that Y = X T#* + ¢ with ¢ a centered noise. In this case, a finite moment of order k for the
data implies order k/2 for the gradient corresponding to an n'=2/¥ rate in Proposition 1. Since
Assumption 5 does not include independence of the noise € from X, this corresponds to the neg-
atively correlated moments assumption of [2] being unsatisfied. Consequently, Proposition 1 is
information-theoretically optimal in 77 based on [2, Corollary 4.2]. Nonetheless, the poor dimen-
sion dependence through B, may still be improved. If the gradient is sub-Gaussian with constant
K, we would have B, < K V/q for g > 1 (see [84] for a reference), in which case, the choice
q = log(1/n) recovers the optimal rate in 77/log(1/n) for the Gaussian case.

We now turn to showing strong concentration properties for the invariant distribution g ,,.
For this purpose, we restrict the optimization to a bounded and convex set © C R? and replace
Iteration (2) by the projected iteration

011 =1lo (9t — ag, BG(0, Ct))a (10)

where Ilg is the projection onto ©. Assuming that the latter contains the optimum 6* € O, one
can check that the previous results continue to hold thanks to the inequality

Mo (0) — 07| = Te(0) — e (67)[| < [0 — 7],

which results from the convexity of ©. The restriction of the optimization to a bounded set allows
us to uniformly bound the clipping threshold 7y, which is indispensable for the following result.

Proposition 2. In the setting of Theorem 1, consider projected QC-SGD (10) and let T = supycg 79, D =
diam(©) the diameter of © and B, = A,D + B,,.

_a

* Consider the non-corrupted case 11 = 0 and set the quantile p such that p > 1 — (Su)2-D.

Then, for 6 ~ g, the variable |0 — 0*|| is sub-Gaussian in the sense of Definition 1 with
constant

2/3(?3 +72)
P ‘

K=4

o Consider the corrupted case n > 0, and set the quantile p € [n,1 — n| such that Inequal-
ity (7) holds. Then, for 0 ~ 7g,, the variable ||6 — 0*|| is sub-exponential in the sense of
Definition 1 with constant B

7T+ (1-p)YiB,

ph '

K

The proof can be found in Appendix D.5. The strong concentration properties given by Propo-
sition 2 for the invariant distribution appear to be new. Still, the previous result remains asymptotic
in nature. High confidence deviation bounds for an iterate 6; can be derived by leveraging the con-
vergence in Total Variation distance given by Theorem 1 leading to the following result.

Corollary 1. In the setting of Proposition 2, in the absence of corruption 1 = 0, after T iterations,
for & > 0, we have

" [— . /2/310g(e/5)) T <12
P |0y — 07| >4 B2—|-T2 — =L ) <5+ p M(1+]6g—0 .
(H H q Pl = P ( H 0 || )



Choosing a smaller step size § in Corollary 1 allows to improve the deviation bound. However,
this comes at the cost of weaker confidence because of slower convergence due to a greater p. See
Appendix C for a discussion including a possible compromise. Corollary 1 may be compared to
the results of [31, 81, 77, 65] which correspond to 5 ~ 1/T and have a similar dependence on
the dimension through the gradient variance. Although their approach is also based on gradient
clipping, they use different thresholds and proof methods. In the presence of corruption, the
invariant distribution is not sub-Gaussian. This can be seen by considering the following toy
Markov chain:

Xl — aX;+€& wp. 1—n
i Xie+7  wp. 7

where o < 1,7 > 0 are constants and £ is a positive random noise. Using similar methods to the
proof of Theorem 1, one can show that (X;);>o converges (for any initial Xy) to an invariant dis-
tribution whose moments can be shown to grow linearly, indicating a sub-exponential distribution
and excluding a sub-Gaussian one. We provide additional details for the underlying argument in
Appendix D.6. For the corrupted case, the sub-exponential property stated in Proposition 2 holds
with a constant K of order 7/, which is not satisfactory and leaves little room for improvement
due to the inevitable bias introduced by corruption. Therefore, we propose the following procedure
in order to obtain a high confidence estimate, similarly to Corollary 1.

Algorithm 1: Aggregation of cycling iterates

Input: Step size 5 > 0, quantile index p € (0, 1), initial parameter 6y € ©, horizon T

and
number of concurrent iterates N > 1.
Optimize multiple parameters le), e Qt(N) starting from a common 6y = 9[()") for

ne[N]=:{1,...,N}and T steps t = 0, ..., T using the following cycling iteration:;

o) _ 0§")—a9§n>BG(0§"),Q) ift=n—1 mod N, (an
o H,En) otherwise.
Compute 7;; = Heéf) — Gg)H fori,j € [N].;
For j € [N], let 7) € RY be the vector 7. :=[rj1,...,7; n] sorted in non decreasing

order.;
Compute the aggregated estimator as 6= 95@ with i = argmin; ey r](\i,)/z.;

return 0

Algorithm 1 uses ideas from [37] (see also [59, 45]) and combines a collection of weak estima-
tors (only satisfying Lo bounds) into a strong one with sub-exponential deviation. The aggregated
estimator 6 satisfies the high probability bound given in the next result.

Corollary 2. Assume the same as in Theorem 1 and Proposition 1. Consider ) given by Algo-

rithm 1, with the assumption that the gradient sample sets used for each (9;” ))n €[N in Equa-
tion (11) are independent. For § > 0, if N > 161log(1/0) and T satisfies
T > Nlog(15M (1 + 6 — 0*]12))/ 1og(1/p),
then, with probability at least 1 — 9, we have
o7y "4 B
-~ q
|90 < === (12)



We obtain a high confidence version of the bound in expectation previously stated in Propo-
sition 1. As argued before, the above bound depends optimally on 7. Similar bounds to (12) are
obtained for ¢ = 2 in [28] for streaming mean estimation, linear and logistic regression. Their
results enjoy better dimension dependence but are less general than ours. In addition, the imple-
mentation of the associated algorithm is not straightforward whereas our method is quite easy to
use (see Section 5).

4 Smooth Objectives

In this section, we drop Assumption 2 and consider the optimization of possibly non-convex ob-
jectives. Consequently, the existence of a unique optimum 6* and the quadratic growth of the
objective are no longer guaranteed. This motivates us to use a uniform version of Assumption 5
with A, = 0 since the gradient is no longer assumed coercive and its deviation moments can
be taken as bounded. In this context, we obtain the following weaker (compared to Theorem 1)
ergodicity result for QC-SGD.

Theorem 2 (Ergodicity). Let Assumptions 1, 3, 4 and 5 hold with A, = 0 (uniformly bounded
moments) and positive objective L. Let (68;)1>0 be the Markov chain generated by QC-SGD with
step size [ and quantile p € [n, 1 — n]. Assume that p and (3 are such that 3p(1 —n)/4 > LB +n
and that the subset of R® given by

2((1—p) 4 (LB+202)+25° 1) }

1 9 B
0:—||IVLO)|| < (13)
3l < 25w
is bounded. Then, for any initial 6y € R?, there exists M < +oco such that after T iterations
M
T
H‘SGOPBJD - WBJJHTV S T (14)

where g, is a unique invariant measure and where dg, is the Dirac measure located at 0.

The proof is given in Appendix D.9 and uses ergodicity results from [58, Chapter 13]. The-
orem 2 provides convergence conditions for an SGD Markov chain on a smooth objective in a
robust setting. We are unaware of anterior results of this kind in the literature. Condition (13)
requires that the true gradient exceeds the estimation error at least outside of a bounded set. If this
does not hold, the gradient would be dominated by the estimation error, leaving no hope for the
iteration to converge. Observe that, for no corruption (n = 0), the condition is always fulfilled
for some (3 and p. Note also that without strong convexity (Assumption 2), convergence occurs
at a slower sublinear rate which is consistent with the optimization rate expected for a smooth
objective (see [15, Theorem 3.3]).

As previously, we complement Theorem 1 with a characterization of the invariant distribution.

Proposition 3. Under the conditions of Theorem 2, assume that the choice p = 1 — n is such that
the set (13) is bounded. For step size B < 1*/L, the stationary measure 0 ~ 7g,1—y Satisfies

2 5772_233

EIVEOT < e w15 =)

The statement of Proposition 3 is clearly less informative than Propositions 1 and 2 since it
only pertains to the gradient rather than, for example, the excess risk. This is due to the weaker
assumptions that do not allow to relate these quantities. Still, the purpose remains to find a critical
point and is achieved up to (’)(771*1/ ) precision according to this result. Due to corruption, the
estimation error on the gradient cannot be reduced beyond Q(nl_l/ ) [69, 36, 26]. Therefore, one
may draw a parallel with a corrupted mean estimation task, in which case, the previous rate is, in
fact, information-theoretically optimal.

15)




S Implementation and Numerical Experiments

The use of the generally unknown quantile Qp(Hé(Qt, ¢¢)||) in QC-SGD constitutes the main
obstacle to its implementation. For strongly convex objectives, one may use a proxy such as
al|f; — Bret|| + b with positive a,b and 0oy € R? an approximation of §* serving as reference
point. This choice is consistent with Assumptions 1 and 5, see Lemma 2 in Appendix D. In the

Algorithm 2: Rolling QC-SGD
Input: Step size 5 > 0, quantile index
€ (0, 1), initial parameter 6y € R?, 7ni¢ > 0, buffer B of size S and horizon 7.
Fill B with S — 1 values equal to Typis.
fort=0...T —1do
Draw a sample G(6;, ;) and add |G (6, (;)|| to B.
@p + |pS| rank element of B.
Ory1 < 0y — Belip(G (04, ¢r), Qp)
Delete the oldest value in B.
end
return 6

non-strongly convex case, a constant threshold can be used since the gradient is a priori uniformly
bounded, implying the same for the quantiles of its deviations. In practice, we propose a sim-
pler and more direct approach: we use a rolling quantile procedure, described in Algorithm 2.
The latter stores the values (|G (6—;, (— ])H)1<J<S in a buffer of size S € N* and replaces
Q,(IG(6¢,¢)) in QC-SGD by an estimate Qp which is the |pS]-th order statistic in the buffer.
Note that only the norms of previous gradients are stored in the buffer, limiting the memory over-
head to O(S). The computational cost of @p can also be kept to O(S) per iteration thanks to a
bookkeeping procedure (see Appendix B).

We implement this procedure for a few tasks and compare its performance with relevant base-
lines. We do not include a comparison with [28] whose procedure has no implementation we are
aware of and is difficult to use in practice due to its dependence on a number of unknown con-
stants. Our experiments on synthetic data consider an infinite horizon, dimension d = 128, and a
constant step size for all methods.

Linear regression. We consider least-squares linear regression and compare RQC-SGD with
Huber’s estimator [40] and clipped SGD (designated as CClip(\)) with three clipping levels
)\Umax\/;l for A € {0.8,1.0,1.2} where o is a fixed data scaling factor. These thresholds
provide a rough estimate of the gradient norm. We generate covariates X and labels Y both
heavy-tailed and corrupted. Corruption in the data stream is generated according to Assumption 3
with outliers represented either by aberrant values or fake samples Y = X " g, + € using a false
parameter O,y., see Appendix B for further details on data generation and fine tuning of the Huber
parameter. All methods are run with constant step size and averaged results over 100 runs are
displayed on Figure 1 (top row).

As anticipated, Huber’s loss function is not robust to corrupted covariates. In contrast, using
gradient clipping allows convergence to meaningful estimates. Although this holds true for a
constant threshold, Figure 1 shows it may considerably slow the convergence if started away from
the optimum. In addition, the clipping level also affects the final estimation precision and requires
tuning. Both of the previous issues are well addressed by RQC-SGD whose adaptive clipping level
allows fast progress of the optimization and accurate convergence towards a small neighborhood
of the optimum.
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Figure 1: Evolution of ||#; — 0*|| on the tasks of linear regression (top row) and logistic regression
(bottom row) averaged over 100 runs at increasing corruption levels (error bars represent half the
standard deviation). Estimators based on Huber’s loss are strongly affected by data corruption.
SGD with constant clipping thresholds is robust but slow to converge for linear regression and
requires tuning for better final precision. RQC-SGD combines fast convergence with good final
precision thanks to its adaptive clipping strategy.

Logistic regression. We test the same methods on logistic regression. Huber’s baseline is repre-
sented by the modified Huber loss (also known as quadratic SVM [88]). We generate data similarly
to the previous task except for the labels which follow Y ~ Bernoulli(o(X " 6*)) with o the sig-
moid function. Corrupted labels are either uninformative, flipped or obtained with a fake 6,y (see
details in Appendix B). Results are displayed on the bottom row of Figure 1.

As previously, Huber’s estimator performs poorly with corruption. However, constant clipping
appears to be better suited when the gradient is bounded, so that the optimization is less affected
by its underestimation. We observe, nonetheless, that a higher clipping level may lead to poor
convergence properties, even at a low corruption rate. Note also that the constant levels we use are
based on prior knowledge about the data distribution and would have to be fine tuned in practice.
Meanwhile, the latter issue is well addressed by quantile clipping. Finally, notice that no algorithm
truly approaches the true solution for this task. This reflects the difficulty of improving upon
Proposition 3 which only states convergence to a neighborhood where the objective gradient is
comparable to the estimation error in magnitude.

Classification with shallow networks. Finally, we evaluate the performance on the task of train-
ing a single hidden layer neural network classifier on some real datasets which corresponds to a
non-convex optimization problem. To handle multiclass data, we use the cross entropy loss and
replace Huber’s baseline with plain SGD for simplicity. We define constant clipping baselines
using thresholds given by the quantiles of order p = 0.25,0.5, and 0.75 of the norms of a batch
of gradients at the beginning of the optimisation. Due to the greater sensitivity to corruption ob-
served in this case, we set 7 = 0.02 and use p = 0.9 for RQC-SGD. We train all methods with
one sample per iteration using equal step sizes and evaluate them through the test loss. We provide
further results and experimental details in Appendix B. Results are displayed on Figure 2.
Unsurprisingly, standard SGD is not robust to corrupted samples and, while using a constant
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Figure 2: Evolution of the test loss (y-axis) against iteration ¢ (z-axis) for the training of a single
hidden layer network on different real world classification datasets (average over 20 runs). We
observe more consistent and stable objective decrease for RQC-SGD whereas constant clipping
baselines are slower and may fail to converge.

clipping level helps keep the optimisation on track, the experiments show that careful tuning may
sometimes be necessary to prevent divergence. On the other hand, the adaptive clipping levels used
by RQC-SGD allow to make the iteration faster and more resilient to corruption. This leads to
an optimization path with a more consistent decrease of the objective. Moreover, we also observe
that RQC-SGD allows for a better control of the asymptotic variance of the optimized parameter
compared to constant clipping.

6 Conclusion

We introduced a new clipping strategy for SGD and proved that it defines a stochastic optimization
procedure which is robust to both heavy tails and outliers in the data stream. We also provided
an efficient rolling quantile procedure to implement it and demonstrated its performance through
numerical experiments on synthetic and real data. Future research directions include improving the
dimension dependence in our bounds, possibly by using sample rejection rules or by considering
stochastic mirror descent [63, 5] clipped with respect to a non Euclidean norm. This may also
procure robustness to higher corruption rates. Another interesting research track is the precise
quantification of the geometric convergence speed of the Markov chain generated by constant step
size SGD on a strongly convex objective.
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