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ABSTRACT

Many real-world dynamical systems, such as epidemic, traffic, and logistics networks,
consist of sparsely interacting components and thus naturally exhibit an underlying graph
structure. Forecasting their evolution is computationally challenging due to high dimen-
sionality and is further complicated by measurement noise and uncertainty in the network
topology. We address this problem by studying the predictability of graph time series
under random topology perturbations, a problem with major implications that has remained
largely unexplored. In the limit of large networks, we uncover distinct noise regimes:
systems that are predictable with arbitrary accuracy, systems predictable only up to limited
accuracy, and systems that become entirely unpredictable. Motivated by this characteriza-
tion, we propose a time series forecasting framework based on a probabilistic representation
of network dynamics, which leverages Bayesian coreset approximations for scalable and
robust dimentionality reduction. Numerical experiments on both synthetic and real-world
networks demonstrate that our approach achieves competitive accuracy and robustness
under topology uncertainty, while significantly reducing computational costs.

1 INTRODUCTION

Network structure is ubiquitous in real-world interconnected systems, making the study of robustness of
network forecasting a topic of major importance. It spans applications ranging from epidemic spread
prediction to logistics and traffic network forecasting, among many others. Yet, robustness studies have so far
been restricted to static network tasksNi et al. (2024); Zügner and Günnemann (2019); Wang et al. (2021); Li
et al. (2024); Wang et al. (2024), such as node classification, edge classification or graph regression. . . As for
data-driven modeling of non-linear network dynamical systems, it has been mostly focused on proposing
various time-varying graph neural network architectures Liu and Zhang (2024); Lan et al. (2022); Shao et al.
(2022); Yan et al. (2024b) for settings with given noiseless topologies, besides signal recovery schemes
Sardellitti et al. (2021); Ceci and Barbarossa (2018). Hence, we consider in this work the problem of
forecasting network systems under mis-specification of the topology, in a high-dimensional setting i.e. for
networks with a large number of nodes. Such types of noise or uncertainty may be encountered due to several
reasons, including partial observability such as in social networks, abrupt changes such as road closures due
to accidents, or equipment failure in electrical grids. Addressing this problem entails designing a suitable
scheme that aims to circumvent the sensitivity to topology perturbation by probabilistic estimation of the
main components of the considered state system evolution, i.e. a robust model reduction scheme. Specifically,
the key contributions are organized as follows:

• We provide a theoretical analysis of the impact of topology perturbation on the system trajectory, for
a class of common network systems.

• We develop a Bayesian coreset reduction of Graph Convolution Network (GCN) embeddings,
resulting in a low-dimensional representation of network trajectories that is robust to random
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topology perturbations. This representation naturally lends itself to Recurrent Neural Network
(RNN)-based temporal modeling, giving rise to a forecasting scheme that is both robust and scalable.

• We conduct numerical experiments on simulated data of Kuramoto networks as well as real-world
traffic data, demonstrating the competitiveness of the proposed approach.

The rest of the paper is organized as follows. In section 2, we review the related works and contrast them with
the question we address. In section 3, we introduce the problem setting followed by the theoretical analysis
of predictability under various noise regimes in section 4. In section 5, we present the proposed forecasting
method followed by numerical result comparisons against the state-of-the-art in sections 6. Last, we conclude
with a discussion of limitations and outlook in section 8.

2 RELATED WORKS

Time-Varying Graph Neural Networks.
In order to leverage the expressive power of graph neural networks Kipf and Welling (2017) for graph time
series forecasting, several architectures have been proposed. First approaches were based on evolving the
graph extracted features using recurrent neural networks Manessi et al. (2020); Seo et al. (2018) or leveraging
a RNN to evolve the weights of a graph convolution network Pareja et al. (2020). More recently, various
adaptive attention-based mechanisms for spatial or temporal modeling have been proposed Guo et al. (2021);
Yan et al. (2024a). For instance, Lan et al. (2022) combine a multi-order Chebyshev polynomial GCN
with an adaptive self-attention mechanism to leverage the dynamic spatial correlation within multi-scale
neighborhoods, whereas Shao et al. (2022) combines a self-attention layer with a GRU Cho et al. (2014) to
model the non-diffusive component in traffic forecasting. We refer to Yan et al. (2024a) for an extensive
review. Yet, these approaches assume the graph to be given. In contrast, we propose a forecasting scheme that
is designed to be robust to graph topology perturbation or misspecification.

Robustness of Graph Neural Networks. For static tasks such as node classification or edge clas-
sification, the robustness of GNNs has been extensively studied Zügner and Günnemann (2019); Wang et al.
(2021); Bojchevski and Günnemann (2019); Yang et al. (2024a;b); Geisler et al. (2021), mostly focusing on
adversarial defense to node or edge attacks. Specifically, Entezari et al. (2020); Wu et al. (2019) propose
pre-processing techniques to overcome adversarial perturbations via low-rank approximation of the graph
adjacency matrix or gradient averaging, while Zhang and Zitnik (2020) propose a mechanism to tackle
adversarial training by assigning higher weights to edges connecting similar nodes. On the other hand, Wang
et al. (2021); Zügner and Günnemann (2019) propose certifiable defenses against bounded adversarial attacks,
via convex relaxation of the robust optimization target or random smoothing. More recently, Yang et al.
(2024a) proposed the first deterministic certificate defense leveraging a majority vote among sub-graphs
defined via an unperturbed hash function. Nonetheless, most of these approaches are too conservative for
non-adversarial noise settings and do not scale to time-varying graphs, given the exponential explosion in the
number of sub-graphs to consider when a temporal component is introduced.

Reduced Order Modeling.
Model reduction of parametric evolution equations governing physical systems has been extensively studied
Benner et al. (2015), given the high computational cost associated with full-scale resolution. Specifically, two
main families of methods have emerged: model-based projections and data-driven surrogates. Model-based
approaches leveraging the structure of the equations include Galerkin projections Hesthaven and Warburton
(2007), Krylov subspace methods Liesen and Strakos (2013), and dynamic low-rank approximations Kazashi
et al. (2025); Musharbash et al. (2020). They are based on different identification schemes of the underlying
low-dimensional manifold capturing most of the variability of the system. More recently, several deep
learning-based approaches have demonstrated competitive performance, among which Dynamic Mode
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Decomposition Schmid (2022), Physics-Informed neural networks Cai et al. (2021) and Neural Operator
Learning Lu et al. (2021); Li et al. (2021) are most notable. Nonetheless, most work has been restricted to
low-dimensional noiseless dynamical systems. Alternatively, we consider noisy high-dimensional network
systems.

3 PROBLEM SETTING

A large class of natural and social processes, including those of epidemic spreading in populations, traffic
flow in urban networks, synchronization in power grids, and gene regulation in biological systems, can
be described as high-dimensional dynamical systems evolving over a network. Despite their diversity, the
underlying dynamics often share a common structure: each node evolves according to its own self-dynamics
while interacting with its neighbors through the network topology. Formally, this can be expressed as

dxi(t)

dt
= f(xi(t)) +

n∑
j=1

aijg(xi(t), xj(t)), i = 1, . . . , n (1)

with node states (x1, . . . , xn), where f describes the self-dynamics of xi, g captures the interactions
with its neighbors, and A = (aij)1≤i,j≤n non-negative weights encoding the network topology. A large
number of real-world dynamic networks can be modeled as such, including epidemic Gao and Yan (2022),
traffic Ding et al. (2019), and gene regulation Aubin-Frankowski and Vert (2020) networks, among many
others Prasse and Van Mieghem (2022). Assume f and g to be unknown, but instead trajectories of the
system nodes (x1(tj), . . . , xn(tj))j≤m are given, for different initial conditions. The task we address in
this work is the forecasting of node states for unseen initial conditions as well as for t > tm, as long as
(x1(t), . . . , xn(t)) is defined, under perturbation or misspecification of the network topology. We consider
discrete random perturbations represented as a matrix (εi,j)1≤i,j≤n of i.i.d. Bernoulli random variables with
success parameter p ∈ (0, 1).

While equation 1 provides a general model for network dynamics, the critical question remains: to
what extent can such systems be predicted when the underlying topology is perturbed? This is an open
problem of both theoretical and practical importance, as robustness of forecasts directly depends on whether
the dynamics remain predictable under noisy or uncertain topologies. In the next section, we establish distinct
noise regimes that characterize when reliable forecasting is possible and when it inevitably breaks down.

4 FORECASTING SENSITIVITY TO NOISE

In this section, we investigate the predictability of network systems with noisy topologies. Specifically, in
the limit of a large number of nodes, we identify distinct noise regimes. Surprisingly, under small noise, the
system remains arbitrarily predictable. With weak noise, predictability persists but is limited in accuracy. As
expected, higher levels of random perturbations render the system effectively unpredictable. More precisely,
we present two results analyzing discrete and continuous perturbations respectively. (Discrete Noise)
Consider a binary adjacency matrix A = (ai,j)1≤i,j≤n and a discrete noise matrix ε = (εi,j)1≤i,j≤n of
independent and identically distributed (i.i.d.) Bernoulli random variables, with success probability p ∈ (0, 1).
Assume f and g to be continuously differentiable and the system trajectory to be supported on a space of
lower dimension m≪ n, where n is the number of nodes. Then, denoting by y1, . . . , ym the spatial modes
and (xε(t))t∈T the trajectory over a compact time domain of the perturbed system

dxi(t)

dt
= f(xi(t)) +

n∑
j=1

(aij + εi,j) g(xi(t), xj(t)), i = 1, . . . , n (2)
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• If p ≤ (maxk ∥yk∥∞)−1

n1+α with α > 0, then limn→+∞ E[supt∈T ∥x(t)− xε(t)∥] = 0

• If p = (maxk ∥yk∥∞)−1

n , then there exists M > 0, such that for all n ≥ 2,
E[supt∈T ∥x(t)− xε(t)∥] ≤M

• If p > (maxk ∥yk∥∞)−1

n and ∥g∥∞ > δ, then for all n > 2, E[supt∈T ∥x(t)− xε(t)∥] > δ.

Proof. The proof is postponed to Appendix A.1.

(Gaussian Noise)
Consider a Gaussian noise matrix ε = (εi,j)1≤i,j≤n of i.i.d. standard Gaussian random variables, with
variance σ2 > 0. Assume f and g are continuously differentiable and the system trajectory to be supported
on a space of lower dimension m≪ n, where n is the number of nodes. Then, denoting by y1, . . . , ym the
spatial modes and (xε(t))t∈T the trajectory over a compact time domain of the perturbed system (2), we have

• If σ ≤ (maxk ∥yk∥∞)−1

n1+α with α > 0, then limn→+∞ E[supt∈T ∥x(t)− xε(t)∥] = 0

• If σ = (maxk ∥yk∥∞)−1

n , then there exists M > 0, such that for all n ≥ 2,
E[supt∈T ∥x(t)− xε(t)∥] ≤M

• If σ > (maxk ∥yk∥∞)−1

n and ∥g∥∞ > δ, then for all n > 2, E[supt∈T ∥x(t)− xε(t)∥] > δ.

Proof. The proof is postponed to Appendix A.2.

Remark. (Approximability)
Given the invariance encoded in network systems, the set of their node trajectories typically lives
(approximately) on a space of much lower dimensionality than the number of nodes. In particular, several
common network models satisfy this property Prasse and Van Mieghem (2022).

Remark. (Practical Implications)
The previous results characterize precisely the fact that, for a large class of network systems, topology
perturbation doesn’t render predictability unachievable. This motivates the design of a network forecasting
scheme that is least sensitive to network perturbation. We design such a scheme and demonstrate in practical
performance in the following sections.

5 NETWORK CORESET FORECASTING

The theoretical analysis in Section 4 establishes that, under certain noise regimes, forecasting network
dynamics remains feasible. Motivated by this characterization, we now design a forecasting scheme that
explicitly aims to preserve predictability in the presence of topology perturbations. Our approach, termed
Network Coreset Forecasting (NCF), leverages probabilistic reduction via Bayesian coresets to identify a
compact set of representative node embeddings, which are then evolved in time for efficient and robust
prediction. Hence, the key problem that we aim to solve is how to efficiently down-sample the processed
node features for accurate prediction, while keeping sensitivity to network topology perturbation as small as
possible. Classical approaches such as max-pooling Hamilton et al. (2017) or low-rank approximations Savas
and Dhillon (2011) either suffer from poor performance or high computational cost. Indeed, the nodes with
the highest values at different screen-shots, might be very different from the ones that should be tracked to
approximate the system trajectory. As for combinations of nodes with high eigenvalues, they can be quite
sensitive to random perturbations, in addition to being costly to compute i.e. they require O(n3) operations.
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(a) (b)

Figure 1: (a) Network Coreset Forecasting Scheme Illustration (b) Coreset Selection Illustration

Consequently, we propose to leverage a probabilistic representation of the network time series by selecting the
nodes which approximate the best, the distribution of the whole system trajectory. Specifically, we consider a
Bayesian setting where the network time series constitute realizations of a given distribution and identify a
subset of nodes {ik, k ≤ m} such that the posterior given node embeddings {ik, k ≤ m} is the closest to the
full posterior. That is, we identify a Bayesian coreset Campbell and Broderick (2019); Huggins et al. (2016).
In the following, we describe with greater detail the different components of the proposed method, illustrated
in figure 1 and report a pseudo-code of the proposed algorithm in appendix D.

5.1 BAYESIAN CORESET APPROXIMATION

Bayesian coresets have been developed to reduce the cost of Bayesian inference with a large amount of data,
without compromising accuracy Campbell and Broderick (2019). More precisely, considering a data set
(xi)i≤n of n observations, a likelihood p(xi|θ) for each observation given the parameter θ ∈ Θ ⊆ Rd, and a
prior density π0 on Θ, the Bayesian posterior is given by

π(θ) :=
1

Z
exp (L(θ))π0(θ),

where the log-likelihood θ 7→ L(θ) and the marginal likelihood Z are defined by

L(θ) :=
n∑

i=1

Li(θ), s.t. Li(θ) := log p(xi|θ) and Z :=

∫
exp(L(θ))π0(θ)dθ.

The aim of the Bayesian coreset framework is then to find a set of weights (wi)i≤n such that

min
w∈Rn

∥∥∥∥∥L −
n∑

i=1

wiLi

∥∥∥∥∥
π,L

with w ≥ 0, and
n∑

i=1

I[wi>0] ≤ m,

where ∥ · ∥π,L is a functional norm that involves a scaling by the full likelihood L and the posterior π. This
problem can be solved by a Frank-Wolfe type algorithm Jaggi (2013); Campbell and Broderick (2019).
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We refer to Campbell and Broderick (2019) for more details. In our setting, we consider the (embedded)
trajectory (xi(t1), . . . , xi(tℓ)) of each node i ≤ n to be a multi-dimensional realization of a probability
distribution, where ℓ is predicted sequence length, and we look for the subset of nodes that summarizes the
best the whole network trajectory-segment. To simplify the algorithm and reduce the computational burden,
we approximate the data distribution as Gaussian and adopt a Gaussian prior in the implementation.

Remark. (Computational Complexity)
The computational complexity of the Bayesian coreset reduction component may scale like O(n2) which is
already an improvement from classical low-rank approximations which scales like O(n3). Hence, to improve
scalability further, we use random projections for the computation of the norms, following Campbell and
Broderick (2019). This results in a complexity of O(nq), where q is the dimension of the projection space.

5.2 GRAPH STRUCTURE EMBEDDING

Following previous work Liu and Zhang (2022; 2024), we extract node embeddings incorporating the
graph information with a graph convolution network Kipf and Welling (2017). Specifically, we train a
GCN encoder-decoder network, where the encoder performs message passing between nodes leveraging
the network topology information and the decoder performs a diffusion of the updated states of the coreset
selected nodes. For that matter, we first compute the coresets -kept nodes in reduced space, of the training
data considering trajectories divided according to forecasting range target -forecasting sequence length, then
we train the GCN decoder to estimate the updates of nodes discarded during the space reduction. Once this
graph autoencoder is trained, we use its encoder to embed the node features before recomputing a new set of
coresets that will be evolved in time by training a RNN, as we describe in the next subsection.

5.3 LATENT REPRESENTATION TEMPORAL EVOLUTION

Once the embedded node subsets are extracted, we simply train a long short-term memory (LSTM) network
Cho et al. (2014) to model the time evolution. As a result of the reduction in dimensionality, the temporal
evolution computational cost is considerably reduced allowing for scalability to large networks. Note that
such a reduction is necessary since the complexity of effective sequence-to-sequence models (e.g. RNNs,
Transformers) is in O(n2), where n is the dimension of the feature space. In the case of RNNs, that comes
from the standard choice of a hidden-state dimension that scales similarly to input space dimension, resulting
in an output scaling in O(n2). Once the predictions in reduced space are obtained, the node updates are

Figure 2: Time Evolution in Reduced Space

diffused using the decoder. Given the probabilistic formulation of the model reduction component, the
number of nodes which are kept slightly varies across trajectory segments. Hence, we consider the size of the
largest coreset as RNN input dimension, and pad the input with the mean encoded value for smaller coresets.

Remark. (Model Reduction Error Bound)
We note that a Bayesian coreset-based model reduction enjoys competitive error bounds in comparison to
classical computationally efficient network reduction schemes. More precisely, we recall the bound derived

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

by Campbell and Broderick (2019), for a given confidence level 1− α, for α ∈ (0, 1) by∥∥∥∥∥L −
n∑

i=1

wiLi

∥∥∥∥∥
π,L

≤ ση̄√
m

(
1 +

√
2 log

1

α

)
where

η̄ := max
i,j∈[N ]

∥∥∥∥Li

σi
− Lj

σj

∥∥∥∥
π,L

, σi := ∥Li∥π,L and σ :=

N∑
i=1

σi.

That is, the dimension of the reduced space to achieve a given accuracy level is chosen adaptively and depends
on how well the trajectories align with one another. This is in contrast to selecting high-degree nodes, which
might lead to arbitrary large error.

6 NUMERICAL RESULTS

We evaluate the proposed method on real-world traffic forecasting datasets, publicly available in Guo et al.
(2021). Traffic forecasting represents a major practical problem that requires robust forecasting schemes,
given the different noise sources leading to topology changes that it can be subject to, such as weather
incidents, traffic accidents as well as closure due to road maintenance. We compare our method against the
state-of-the-art method D2STGNN proposed by Shao et al. (2022) and very recently shown to perform
the best across datasets in the benchmarking study Liu et al. (2023). Additionally, we compare against
ASTGNN which was proposed to handle heterogeneity of spatial-temporal graph data Guo et al. (2021).

Figure 3: Test error evolution for PEMS03 dataset
- 30% corrupted test data with discrete noise

Figure 4: State trajectory evolution from the PEMS04
dataset

Evaluation on test data is carried out using the Mean Absolute Error (MAE) in all displayed figures.
We train the competitor methods with the hyper-parameters proposed by the respective authors, but
truncate training to a computational time similar to that of NCF, for fair comparison. This is moti-
vated by the goal of designing computationally efficient forecasting methods under limited budget, as
discussed in previous sections. We explore the robustness of different methods with respect to pertur-
bation by discrete i.i.d. noise -specifically Bernoulli matrices on challenging settings with high levels
of noise. We report additional experiments, as well as an execution times comparison in Appendix B.
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Figure 5: Test error evolution for PEMS04 dataset
- 30% corrupted test data with discrete noise

Figure 6: Test error evolution for PEMS08 dataset
- 30% corrupted test data with discrete noise

Figure 7: Test error evolution for PEMS04 dataset for
varying sparsity levels

We note from figures 3, 5 and 6 that NCF signifi-
cantly outperforms the competitor methods. This
is partly due to the highly noisy nature of the con-
sidered dataset, illustrated in figure 4, as is often
the case in real-world settings. It’s worth noting
that NCF outperforms the state-of-the-art competi-
tors even when there is no noise in the topology,
which corresponds to noise level 0 in figures 3, 5
and 6. To further investigate robustness to structured
changes in the topology as opposed to random ones,
we estimate sparse approximations to the consid-
ered network topology for PEMS04, and explore the
performance of the different methods under varying
sparsity levels. We report the estimation procedure
in Appendix C. We note that across models, datasets
and perturbations above a certain noise level the per-
formance, stabilizes. This is due to the fact that once
the network information is destroyed, the forecasting
schemes no longer exploit the topology information.

7 LIMITATIONS & OUTLOOK

The proposed NCF approach performs competitively, but also raises limitations that point to opportunities
for future research. First, it relies on a two-stage training approach as opposed to an end-to-end training
formulation. Besides, since it relies on a probabilistic formulation of the model reduction component, it
might under-perform under perfect knowledge of the system trajectories, as compared to other approaches.
We investigate this aspect by testing the different forecasting methods a synthetic dataset based on the
Kuramoto system of ODEs, which is used across the biological, chemical and electrical domains to simulate
circadian oscillators, pacemaker cells in the heart and electrical power networks among other applications
(Discacciati and Hesthaven, 2021; Dörfler and Bullo, 2014). For the topology, we generate a scale-free
network instantiated as an Erdos-Renyi graph with connection probability between nodes equal to 0.3. We
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report in figures 9 the results for a network of size n = 500. We note from figure 9 that NCF under-performs
for smooth uncertainty-free trajectories as those illustrated in figure 8. This comes from the fact that NCF
relies on a probabilistic representation and hence introduces by design a level of non-smoothness through
the randomized selection of the reduced model, although randomization is also what allows scalability.
Consequently, when trained on clean data, like the smooth solutions of a Kuramoto system, it doesn’t perform
as well as randomization-free approaches like D2STGNN. This is in contrast with the performance obtained
for real-world trajectories in the previous section. However, this is not a surprising aspect given that all
learning methods are bound by the accuracy-robustness trade-off Owhadi et al. (2015).

Figure 8: State trajectory evolution for the Ku-
ramoto model - noise-free

Figure 9: Test error evolution for Kuramoto net-
work of size n=500 - 30% corrupted test data with
discrete noise

8 CONCLUSION

In this work, we addressed the open problem of forecasting network dynamical systems under uncertainty in
their underlying topology. We characterized the sensitivity of network trajectories to random perturbations,
identifying noise regimes that outline when reliable prediction is feasible and it when necessarily breaks
down. On the algorithmic side, we developed a Bayesian coreset formulation of network forecasting, which
yields a low-dimensional representation of network dynamics. Combined with GCN embeddings and RNN
temporal modeling, this approach provides a robust and scalable forecasting scheme.

Our results integrate both theoretical analysis and probabilistic model reduction: the former clari-
fies the fundamental limits of predictability, while the latter delivers a practical and affordable method
for achieving it. The evaluation on real-world datasets confirms that the proposed approach outperforms
state-of-the-art baselines in noisy settings. By combining noise-regime analysis with a Bayesian coreset–based
reduction, we provide a methodology that can be extended to more complex setting of structured/correlated
perturbations with direct impact on domains such as epidemiology, transportation, and power systems where
topology uncertainty is inherent.

Reproducibility and LLM Usage. We provide an implementation of the proposed method in Ap-
pendix E. The publicly available codes by Guo et al. (2021) and Shao et al. (2022) are used for baselines.
Parts of the manuscript text were refined with the assistance of a large language model. The technical content,
derivations, and experiments are original to the authors.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Recall that we would like to show that a Bernoulli perturbed network system features different behaviors
depending the success parameter p ∈ (0, 1) of the Bernoulli noise. Specifically,

p ≤ (maxk ∥yk∥∞)−1

n1+α
withα > 0 ⇒ lim

n→+∞
E[sup

t∈T
∥x(t)− xε(t)∥] = 0

Denote by Y the matrix of reduced space basis of the system trajectory, and E the noise matrix i.e.

Y =

y⊤1
...
y⊤m

 , and E =

ε1
...
εn

 , with εi = (εi,j)j≤n

Given a perturbed adjacency matrix Â = A+ E, note that we have for k ≤ m,

∥Âyk −Ayk∥1 ≤ ∥Ayk −Ayk∥1 + ∥Eyk∥∞ = ∥Eyk∥1
Furthermore, setting without loss of generality x(1) = 0 and T = (1, 2), we have

sup
t∈T
∥x(t)− xε(t)∥1 = sup

t∈T

∥∥∥∥∥∥
∫ t

1

∑
i,j

εi,jg(xi(s), xj(s)) ds

∥∥∥∥∥∥
1

≤ sup
t∈T

∫ t

1

∥∥∥∥∥∥
∑
i,j

εi,jg(xi(s), xj(s))

∥∥∥∥∥∥
1

ds

≤
∫ 2

1

∥∥∥∥∥∥
∑
i,j

εi,jg(xi(s), xj(s))

∥∥∥∥∥∥
1

ds

leading to

E
[
sup
t∈T
∥x(t)− xε(t)∥1

]
≤ E

∫ 2

1

∥∥∥∥∥∥
∑
i,j

εi,jg(xi(s), xj(s))

∥∥∥∥∥∥
1

ds


By regularity of g, x, xε and Fubini theorem, we get

E
[
sup
t∈T
∥x(t)− xε(t)∥1

]
≤
∫ 2

1

E

∥∥∥∥∥∥
∑
i,j

εi,jg(xi(s), xj(s))

∥∥∥∥∥∥
1

ds

Hence, by proposition 2 in section C of Prasse and Van Mieghem (2022), it is enough to show for each k ≤ m
that

E[∥Eyk∥1] −→
n→+∞

0

That is equivalent to
∀ i ≥ 1, E[∥Y εi∥1] −→

n→+∞
0
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However, by Holder inequality

E[∥Y εi∥1] ≤ np(max
k
∥yk∥∞) ≤ 1

nα
−→

n→+∞
0

And, we can also have the result for ∥ · ∥2 by the fact that ∥ · ∥2 ≤ ∥ · ∥1.

Similar reasoning leads to the result of the case p = (maxk ∥yk∥∞)−1

n .

Last, for the case p > (maxk ∥yk∥∞)−1

n and ∥g∥∞ > δ, let
τ = inf {s > 1; |g(x1(s), x2(s))| > δ}

Then, 1 < τ < +∞, thanks to the regularity of g and the fact that the considered differential system is
autonomous. Hence,

E[sup
t∈T
∥x(t)− xε(t)∥1] ≥ E

∫ τ

1

∑
i,j

εi,j |g(xi(s), xj(s))| ds


≥ τδ

∑
i,j

E[εi,j ]

≥ δ(max
k
∥yk∥∞)−1

≥ δ.

A.2 PROOF OF PROPOSITION 2

The proof proceeds similarly as for proposition 1, except this time the noise is not non-negative. Hence, using
the properties of the absolute value and Gaussian distributions, we get

E[∥Y εi∥1] ≤

∑
j

|εi,j |

 (max
k
∥yk∥∞) = nσ(max

k
∥yk∥∞) ≤ 1

nα
−→

n→+∞
0

since E|εi,j | = σ. The remaining cases can be shown in an analogus way.

B EXPERIMENTAL SET UP & ADDITIONAL NUMERICAL RESULTS

B.1 EXPERIMENTAL SET UP

We train the competitor methods with the hyper-parameters optimized by the respective authors Shao et al.
(2022) and Guo et al. (2021). However, for a fair comparison we limit the training time to the amount required
by the fastest method. We report estimated training time for each method on the PEMS03 dataset in table 1,
for the number of epochs suggested by the respective authors. The observed significant gain in training time
notably comes from the fact that NCF is designed to perform the time evolution in a much smaller space.

B.2 ADDITIONAL NUMERICAL RESULTS

We report additional comparison results on the datasets PEMS03 and PEMS07 proposed by Guo et al. (2021)
similarly as PEMS04 and PEMS08 which we considered in section 6. Furthermore, we report error bars
for the results presented in section 6. The very high error bars for ASTGNN come from the fact that under
network perturbation its predictions across horizons (from 1 step ahead to 12 steps ahead) varies a lot, leading
to a large standard deviation.
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Table 1: Training time for each of the forecasting methods

Method NCF ASTGNN D2STGNN

Time (hours) 3.41 19.57 6.83

Figure 10: Test error evolution for PEMS04
dataset - 30% corrupted test data with discrete
noise, 1σ error bars

Figure 11: Test error evolution for PEMS08
dataset - 30% corrupted test data with discrete
noise

Figure 12: Test error evolution for PEMS03
dataset - 30% corrupted test data with discrete
noise, 1σ error bars

Figure 13: Test error evolution for PEMS07
dataset - 30% corrupted test data with discrete
noise

B.3 ANALYSIS OF THE RESULTS

We note that the competitor methods incur a higher error after perturbing a topology, but beyond a certain level
the perturbation effect becomes negligible. This can be explained by the fact that both methods extract spatial
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information not only from the graph but also from the time series itself. On the other hand, that might suggest
the static graph information could be leveraged in a better way. Yet, given the inherent noise in real-world
time series, the proposed method NCF that is designed to be robust, features much better performance.

C NETWORK SPARSE APPROXIMATION

In the context of network misspecification, we explore the effect of sparsifying the topology on the predictabil-
ity of network systems. For that matter, we estimate the closest to the ground truth sparse adjacency matrix,
in terms of its predictability of the system trajectories. We leverage the fact that a given matrix Â will lead to
accurate predictions of a network system -supported on a lower dimensional space of dimension m ≪ n-
if for a given set of spatial modes y1, . . . , ym, we have Âyk = Ayk, for all k ≤ m, as shown in Prasse and
Van Mieghem (2022). More precisely, we compute y1, . . . , ym by Principal Component Analysis (PCA) then
solve for Â the following sparse optimization problem

min
Â≥0

m∑
k=1

∥∥∥Âyk −Ayk

∥∥∥
2
+ λ

∥∥∥Â∥∥∥
1
.

We report in figure 14 the prediction error of each previously tested method on the sparse topologies obtained
for a subset of 2000 screen-shots of the PEMS04 traffic dataset. The results suggest that robustness to
sparsity aligns with robustness to random perturbations or more generally noisy input, posing an interesting
theoretical question about this relationship, which we leave for future work.

Figure 14: Test error evolution for PEMS04 dataset for varying sparsity levels

Remark.
We note that this simple test could serve as a benchmark for optimality of network forecasting methods or
their effectiveness in capturing the fundamental characteristics and directions of highest variability of the
underlying system.
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D PSEUDO-CODE

Algorithm 1 Bayesian Coreset Forecasting with GNN-RNN and Encoder-Decoder Training

Require: Time series node states {xt
1, . . . , x

t
n}Tt=1, adjacency matrix A = (aij)

n
i,j=1, GNN encoder fGNN,

GNN decoder gGNN, RNN model fRNN, Bayesian coreset selector C, forecasting horizon H
Ensure: Forecasted node states {x̂T+h

i }ni=1 for h = 1, . . . , H
▷ — Encoder-Decoder Training with Coreset Reduction —

1: for each training iteration do
2: for t = 1 to T do
3: Ht ← fGNN(A, {xt

i}ni=1) ▷ Encode full graph embeddings
4: H̃t ← C(Ht) ▷ Select coreset embeddings
5: Ĥt ← gGNN(A, H̃t) ▷ Decode back to full embedding
6: end for
7: Compute reconstruction loss:

Lrec =
T∑

t=1

∥Ht − Ĥt∥2

8: Update parameters of fGNN and gGNN via backprop using Lrec

9: end for
▷ — Forecasting using trained encoder-decoder and RNN —

10: for t = 1 to T do
11: Ht ← fGNN(A, {xt

i}ni=1) ▷ Embed node features with GNN
12: H̃t ← C(Ht) ▷ Select Bayesian coreset embeddings
13: end for
14: Initialize RNN hidden state h0

15: for t = 1 to T do
16: ht ← fRNN(H̃

t, ht−1) ▷ Evolve embeddings over time
17: end for
18: for h = 1 to H do
19: hT+h ← fRNN(NULL, hT+h−1) ▷ Rollout without new input
20: H̃T+h ← Decoder(hT+h) ▷ Decode reduced embedding
21: {x̂T+h

i }ni=1 ← gGNN(A, H̃T+h) ▷ GNN decode to full node states
22: end for
23: return {x̂T+h

i }ni=1 for h = 1, . . . , H

E CODE

An implementation of the proposed method is made available at code.
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