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Abstract

We consider a combinatorial multi-armed ban-
dit problem for maximum value reward function
under maximum value and index feedback. Our
problem has a new feedback structure that is in be-
tween semi-bandit and full-bandit feedback. We
propose an algorithm and provide a regret bound
for problem instances with stochastic outcomes
of arms according to arbitrary distributions with
finite supports. The key idea is in using a reduc-
tion to the case of binary distributions. The re-
gret analysis rests on considering an extended set
of arms, associated with values and probabilities
of outcomes, and applying a smoothness condi-
tion. Our algorithm achieves a O((k/A) log(T'))
distribution-dependent and a O(+/T) distribution-
independent regret where k is the number of
arms selected in each round, A is a distribution-
dependent gap and T is the horizon time. We
demonstrate the effectiveness of our algorithm
empirically in several simulation settings.

1. Introduction

We consider a sequential decision making problem in which
an agent selects a set of items of cardinality k£ from a set of n
items in each round, where each selected item independently
produces a random value, and the reward of the set is the
maximum of these random values. After selecting a set of
items in a round, the agent observes the feedback that con-
sists of the maximum value and the identity of the item that
achieves this maximum value. We refer to this as the max
value-index feedback. The values of items are assumed to be
stochastic and independent over items and rounds. We first
consider binary distributions; and then further extend this to
discrete distributions with finite supports. The performance
is measured by expected cumulative regret over a time hori-
zon, defined as the difference of the cumulative rewards
achieved by selecting a set with maximum expected reward
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in each round and that achieved by the learning agent. We
refer to this sequential decision making problem as k-MAX
bandit with max value-index feedback.

There are several motivating applications for the k--MAX
bandit problem with the max value-index feedback. In
crowdsourcing platforms and team formation applications
(Kleinberg and Raghu, 2018; Sekar et al., 2021; Lee et al.,
2022; Mehta et al., 2020), a team performance may corre-
spond to the best individual performance, which is often
dubbed as the strongest-link performance. In this case, ob-
serving a team success measure corresponds to observing
best individual value. The observation data may also contain
information about which individual accomplished the best
solution. In project portfolio selection, e.g. R&D projects in
pharmaceutical industry (Blau et al., 2004; Jekunen, 2014),
projects may fail or succeed and different projects may have
different rewards conditional on being successful, includ-
ing high-risk, high-reward projects. In recommendation
systems and information retrieval (Manning et al., 2008;
Chapelle and Zhang, 2009), a goal is to recommend a set
of items to a user that maximizes the probability of the rec-
ommendation set containing at least one relevant item. Not
all relevant items need to be equally relevant to the user,
as some may be of higher value than other. In selection
problems, such as in job search, school admissions, server
selection in data centers and various other settings, an agent
(e.g. job applicant) may have preferences over a set of items
(e.g. employers) and upon selecting a set of items only some
may be available (e.g. depending on being offered a job).

Our goal is to maximize the expected cumulative reward
for the learning agent over the time horizon. The problem
is challenging mainly for two reasons. Firstly, the reward
function is the maximum value function, which is nonlinear
and thus depends not only on the expected values of the con-
stituent base arms. The uncertainty of binary-valued items
makes the problem more challenging under the maximum
value reward. As we will show in the numerical section,
high-risk high-reward items may outperform stable-value
items in this case. The second challenge is due to the limited
feedback. The agent only observes the maximum value and
the identity of an item that achieves this value. These all
make it hard to estimate distributions of values of base arms.

The k-MAX bandit problem has action set and rewards
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like in some combinatorial bandits, but its max value-index
feedback structure is neither semi-bandit nor full-bandit
feedback, commonly studied in bandits literature. Assume
outcomes of arms are according to distributions of some
independent random variables X7y, ..., X,,. Then, for any
set S of arms, semi-bandit feedback consists of all values
{X; | i € S}, while full-bandit feedback is only maximum
value, max{X; | ¢ € S}, under maximum value reward
function. On the other hand, the max value-index feedback
consists of maximum value max{X; | ¢ € S} and index
I € argmax{X; | ¢ € S}. This feedback is between semi-
bandit feedback and full-bandit feedback, and only slightly
stronger than the full-bandit feedback. Indeed, the only
information that can be deduced from the max value-index
feedback about arms j # I, is that their outcome values are
smaller than or equal to the maximum value X;. The index
feedback is alike to comparison observations in dueling
bandits, but with additional maximum-value feedback.

We present algorithms for the underlying sequential deci-
sion making problem and show regret upper bounds for
these algorithms, under different assumptions on what in-
formation is available about item values. Our results show
that despite limited feedback, comparable regret bounds to
combinatorial semi-bandits can be achieved for the k-MAX
bandit problem with the max value-index feedback.

1.1. Related work

The problem we study has connections with combinatorial
multi-armed bandits (CMAB) (Cesa-Bianchi and Lugosi,
2012; Chen et al., 2013; 2016b). Most of the existing work
on CMAB problems is focused on semi-bandit feedback
setting, e.g. (Chen et al., 2013; Kveton et al., 2015a). The
k-MAX problem with the semi-bandit feedback was studied
in (Chen et al., 2016a), and the solution is easier than in
our paper because the semi-bandit feedback provides much
more information.

In most works on full-bandit CMAB, restrictions are placed
on the reward function. (Auer et al., 2002) studied the
problem under linear reward and provided a linear UCB
algorithm. (Dani et al., 2008) fully analyzed the linear UCB
algorithm and gave a nearly optimal regret bound. (Re-
jwan and Mansour, 2020) considered the reward defined as
the sum of arm values. Only a few algorithms have been
proposed for full-bandit CMAB problem with non-linear
rewards. (Katariya et al., 2017) considered minimum value
reward function and item values according to Bernoulli dis-
tributions. (Gopalan et al., 2014) studied the full-bandit
CMAB with general rewards using Thompson sampling
method. However, it is computationally hard to compute the
posteriors in the algorithm and the regret bound has a large
exponential constant. Recent work by (Agarwal et al., 2021)
proposed a merge and sort algorithm under assumption that
distributions of base arm outcomes obey a stochastic domi-

nance relation. This is a restrictive assumption, which does
not generally hold, such as for binary distributions. We thus
point out that full-bandit CMAB solutions proposed so far
either do not apply to our problem or require exponential
computational complexity in the regret bound.

A related work is on combinatorial cascading bandits, e.g.
(Kveton et al., 2015b). An agent chooses an ordered subse-
quence from the set of base arms and the outcomes of base
arms are revealed one by one until a stopping criteria is met.
(Chen et al., 2016b) generalized the problem to the frame-
work of combinatorial semi-bandits with probabilistically
triggered arms (CMAB-T). The main difference with our
setting is that CMAB-T assumes more information and is
inherently semi-bandit. By revealing the outcome of base
arms one by one, the agent is able to observe individual
rewards for all arms selected before the one meeting the
criteria. Another difference in our work is that we consider
more general item value distributions.

We summarize some known results on regret bounds for
CMAB problems in Table 1. In the table, A denotes the
gap between the optimum expected regret of a set and the
best suboptimal expected regret of a set. (Agarwal et al.,
2021) only provides a distribution-independent regret bound,
which is worse than O(T"/?) distribution-independent re-
gret bounds that follow from our distribution-dependent
regret bounds. The goal in (Sui et al., 2017) is to select the
best item instead of the best set of items, and for this reason
there is no dependency on k in their bound.

Another related line of work is that on dueling bandits (Ailon
etal., 2014) where the agent plays two arms at each time and
observes the outcome of the duel. The goal is to find the best
arm in the sense of a Condorcet winner under relative feed-
back of the dueling outcomes. (Sui et al., 2017) extended
the setting to multiple dueling bandits problem by simulta-
neously playing k arms instead of two arms. Compared with
this line of work, we assume additional absolute feedback.
Our goal is different as we would like to select a best set of
items with respect to a non-linear reward function.

It is noteworthy that our work is related to choice mod-
els, e.g. (Luce, 1959) (Thurstone, 1927), and sequential
learning for choice models (Agarwal et al., 2020). The main
difference from previous work is that we consider maximum
value and index feedback.

1.2. Summary of contributions
Our results can be summarized in the following points.

* We consider the combinatorial bandit problem for max-
imum value reward function under max value-index
feedback. This is a new problem with feedback in be-
tween full-bandit and semi-bandit feedback, and only
slightly stronger than the full-bandit feedback. Com-
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Table 1. Known regret bounds for CMAB problems under different settings.

Feedback Restrictions Regret
(Chen et al., 2016a) semi-bandit general O(%E log(T))
(Rejwan and Mansour, 2020) full-bandit linear reward O( log( )
(Katariya et al., 2017) full-bandit Bernoulli, K rows L colns O( L og(T))
(Agarwal et al., 2021) full-bandit stochastic dominance O(n' 3k:1/ 272/3)
(Kveton et al., 2015b) cascading-bandit Bernoulli O(%E log(T))
(Sui et al., 2017) relative approx linearity (" log(T))

pared to the full-bandit setting, we assume additional
information of maximum-value index, which is a natu-
ral assumption to be made in real-world applications.
On the other hand, we do not assume per-item value
feedback, which differentiates with the semi-bandit
problem. Our work is one step towards solving the
full-bandit CMAB problem with non-linear reward
functions under mild assumptions.

* We use a reduction to the case of arm outcomes ac-
cording to binary distributions and, for analysis, use
an extended set of base arms associated with values
and probabilities of outcomes. In the case when the
ordering of values is known within each action, the
problem boils down to a standard CMAB-T problem
instance. In the case when the ordering of values is
unknown, the problem differs from CMAB-T as the
triggered subset of the base arm set given an action
depends on whether the item values are observed or
not. We tackle with this difficulty by introducing the
concept of item equivalence, such that we can restore
the CMAB-T framework by using replacement items.

* We present a Combinatorial Upper Confidence Bound
(CUCB) algorithm to solve the k-MAX problem under
the case that the ordering of values is known to the
learner. We prove that the algorithm achieves compa-
rable regret bound as standard CMAB problems. The
CUCB algorithm does not directly apply to the case
of unknown ordering of values. We propose a vari-
ant of the CUCB algorithm based on the concept of
item equivalence. We show that the modified algorithm
achieves comparable regret as the case of the known
ordering of values. This means we do not lose much
under limited feedback.

Organization of the paper. In Section 2, we formally
define the problem. In Section 3, we first prove key proper-
ties of the reward function that will be used for the regret
analysis. Then we present our algorithms and regret bounds
for two settings of the problem for binary distributions. In
Section 4, we discuss extension to arbitrary discrete distribu-
tions with finite supports. Section 5 contains our numerical
results. Finally, we summarize our work in Section 6. Proofs
of theorems are provided in Appendix.

2. Problem formulation

We consider a sequential decision making problem in-
volving an agent and a set of n base arms', denoted as
E = [n] = {1,2,...,n}. For each base arm i € E, the
outcomes are independent and identically distributed over
time steps, according to distribution of a random variable
X that has a discrete distribution with a finite support. We
let 0 = v;0 < v31 < --- < vy, denote values of the
support of distribution of X;, where s; is a positive integer,
and s; + 1 is the support size. Let p; ; = Pr[X; = v; j]

for j € {0,1,...,s;}, with 0 < Z;le” < 1. Let
v = (v1,...,v,) and p = (p1,...,P,) Where v; =
(Vi1s Vi) Witho; ; € [0,1],and p; = (pi 15 -+, Piys, )

For the special case of binary distributions, we write p; and
v; in lieu of p; 1 and v; 1, respectively. Both v and p, as
well as the s;’s in the general case, are unknown parameters
to the learning agent.

We define F = {S € 2F | |S| = k} as the set of arms
of cardinality k. At each time step ¢, the agent takes an
action to play an arm S; € F. The agent observes the max-
imum value of the selected arms and the index of an item
achieving the maximum value. The goal is to select a set of
random variables with maximum performance according to
the expected maximum objective.

When an action is played, the agent obtains a non-negative
reward of the maximum value, which is fully determined
by the triggered arms. We denote the expected reward as
rs(p,v) = E[max{X; | i € S}], which is a function of
action S and parameters p and v.

The performance of a learning algorithm is measured by
the cumulative regret, which is defined as the difference
in expected cumulative reward by playing the best action
and playing actions suggested by the algorithm. Denote
OPT(p,v) = max{rs(p,v) | S € F}. An (o, f)-
approximation oracle takes (p’, v') as input and returns a set
S such that Pr[rg(p’,v’) > a OPT(p’,v’)] > /8 where «
is the approximation ratio and /3 is the success probability. If
the learning agent uses an («, 3)-approximation oracle, then
we evaluate its performance by the («, §)-approximation

"We use the terms base arm, arm and item interchangeably.
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regret defined as

R(T) s, p,

Mﬂ

T o 8 OPT(p,v [

t=1

The offline k-MAX problem can be solved either by a greedy
algorithm to achieve a (1 —1/¢) approximate solution, or by
a polynomial-time approximation scheme (PTAS) to achieve
a (1 — ¢) approximate solution for any £ > 0 (Chen et al.,
2016a). For the special case of binary distributions, an exact
solution can be found by using a dynamic programming
algorithm (Chen and Du, 2022).

3. Algorithms and regret bounds for binary
distributions

In this section we present algorithms and regret bounds
for binary distributions. We first show some properties of
reward functions which are crucial for our regret analysis.
We then present an algorithm for the case when the ordering
of v1,...,v, values is known. In this case, we will see
that the problem can be reduced to a CMAB-T instance
solvable using the standard CUCB method. Then we move
to the general case when the ordering of vy,...,v, is a
priori unknown. We present an algorithm and show that
this algorithm achieves the same regret bound as when the
ordering is known up to constant factors.

For the convenience of exposition, we assume that values
v1,..., U, are distinct. This ensures that for any action S;,
there is a unique item achieving the maximum value over the
items in .S;. This is equivalent to allowing for non-unique
values and using a deterministic tie-breaking rule.

We introduce two sets of base arms decomposed from the
random variables X1, ..., X,,. The first set of base arms
Z consists of n independent Bernoulli random variables
Z1, ..., 2L, with mean values p1, ..., p,. The second set of
base arms V = {V4,...,V,} are deterministic with mean
values v1, ..., v,. We also define an extended set of base
arms 5 containing both sets of base arms. Note that we
have X; = V;Z;. Each time an action S; is played, we
obtain information on some of the base arms Z; and V; in
B. We call these arms as being triggered, and we observe
their values as feedbacks. We define 7; ; as the number of
triggering times for Z; and Ti,t as the number of triggering
times for V; up to time step ¢. For any two vectors ¢, ' €
R™, we write ¢ > & if z; > x for all i € [n].

3.1. Properties of reward functions

For the case of binary distributions of base arm outcomes,
for any set S € F, under assumption that base arms are
ordered in decreasing order of their values vy, ..., v,, the

expected reward can be expressed as

):Zvipi H (1—pj)

€S JES:Ii<i

3.1)

where a product over an empty set has value 1.

There are two key properties of the regret function that we
leverage for analysing regret of algorithms.

Monotonicity The first property is monotonicity.
Lemma 3.1. rg(p, v) is increasing in every p; and v;.

Recall that for a given set of random variables, we can
explicitly write rg(p,v) as in equation (3.1). It is clear
from the expression that s (p, v) is monotonic increasing
in v;. We can prove that it is monotonic increasing in p; by
taking first derivative with respect to p; and showing that
the derivative is greater than zero.

Smoothness The second condition is relative triggering
probability modulated (RTPM) smoothness. This is a slight
generalization of the condition in (Wang and Chen, 2017),
which allows for item-specific weights. Let ¢! ¥ denote the
triggering probability of a base arm ¢ in a set of base arms
B with expectation p for action .S.

Definition 3.2 (RTPM smoothness). The problem satisfies
the RTPM smoothness condition with respect to the base
arm set B if, for any two distributions with expectation
vectors p and ' and any action S,

s
< a bl — il
€S

Irs(p) —rs(p

where b; is some per-arm weight coefficient. Note that when
rg(p) is monotonic increasing in p, and v > p/, we can
remove the absolute value notation.

Note that we add the triggering probability ¢t > and a rela-
tive weight coefficient b; to modulate the standard 1-norm
condition By allowing for arm-specific weights, we account
for item-specific values as we will see in our next lemmas.
The intuition is that we underweight the importance of items
with small triggering probability or weight in expected re-
ward. Even if for some item ¢ we cannot estimate its ex-
pected value accurately, we lose very little in the expected
reward. This will be a very important concept in the regret
analysis that follows.

Consider an arbitrary set and without loss of generality as-
sume that arms are ordered in decreasing value. Let the
triggering probability of Z; for action S be ¢¥ S and the trig-
gering probability of V; for action S be ¢; S The triggering
probability for Z; for action S is

"% =1 —p1)1—p2) (1 —pi_1)
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and the triggering probability for V; for action S is
P =1 —p1) L —p2)- (1= pi_1)ps.

We note that Z; is triggered when the winner item has value
smaller than or equal to v;, while V; is triggered when arm
» : ~p,S _ p,S

1 is the winner, thus ¢; "~ = ¢; " p;.

The following is a key lemma for our regret analysis.

Lemma 3.3. The expected maximum reward function (3.1)
satisfies the RTPM condition (Definition 3.2) with respect
to the extended base arm set B: for any S, p and p’, and v
and v’ such that v > v’, it holds

Irs(p,v) — rs(p’,v')|
< 2% e s a5 0lp = P 4 Xieg @ fvi — ).
Furthermore, if p > p', then we can remove the factor 2 in
the last inequality.

The lemma can be intuitively explained as follows. When
an arm ¢ has small value v; and the corresponding base arm
Z; is unlikely to be triggered (small g), its importance in
regret analysis diminishes. On the other hand, if the arm
is unlikely to win (small §), it is also not important in our
analysis. This concept is important throughout our proof
for the main theorem. For items with small values or items
whose values are hardly to be observed, we may not be able
to estimate their value and probability parameters accurately.
The lemma suggests that it is not a serious issue as these
items are not important for our analysis.

To prove Lemma 3.3, we consider a sequence of vectors
changing from (p, v) to (p’, v") and add up the changes in
expected rewards. The full proof is in Appendix B.2.

3.2. Algorithm for known ordering of values

We use a similar CUCB algorithm as standard CMAB prob-
lem to estimate parameters p and v. Estimates of both sets
of parameters are initialized to one at the beginning. Each
time we observe v; as the maximum value of the set, we
update the corresponding estimates for v; and the estimates
for p;, for items in the action set ordered before j. The
algorithm maintains an upper confidence bound (UCB) for
both parameters and feeds the UCB to the approximation
oracle to obtain the next action. We note that for this case,
our problem can be interpreted as a conjunctive cascading
bandit (Kveton et al., 2015b) with binary-valued arms. The
ordering of arms within each action enables us to observe
values of all arms ordered before the winner, which makes
the problem easier to solve.

For each action S € F, we define the gap Ag =
max{aOPT(p,v) — rs(p,v),0}. We call an action bad
if its gap is positive. For arms that are contained in at least
one bad action, we define,
i .
Amin = S:ieS,qf‘S{I;;%>o,As>0

AS?

Algorithm 1 CUCB algorithm for known ordering of values
1: Fori € E, T; < 0 {Num. of triggering times for Z; }
2: Fori € E, p; < 1, ¥; + 1 {Initial est. of params}

3: fort =1,2,...do

4: Fori€ E, p; + 31°g(t) {Confidence radius}
5. Forie E,p; + mln{pl + pi, 1}, 9; + 0; {UCB}
6: S« Oracle(p, v) {Oracle decides the next action}
7. Play S and observe winner index ¢* and value v;~
8:  Update v for winner item ¢*: 0;« <— v;«
9: Forz‘ESsti<z‘*TeT+1
10 Forie Ss.t.i<i*:p; + (1—1/T;)p;
11: P (1= 1/T)ps» + 1/TZ*
12: end for
Al = max Ag

5:i€8,¢P° ,qP 5 >0,A5>0

where ¢, ’S, (jf’s > 0 require that Z;, V; are triggered by
action S with non-zero probabilities. For other arms, we
define Aimn = oo and A}, = 0. Then we define A, =
min;e Al and Ay = Max;e|n] Al

The regret bound for the algorithm is provided as follows.

Theorem 3.4. Under assumption Ay, > 0, Algorithm 1
has the following distribution-dependent regret bound,

R(T) <ey zn: (A“% +log (Ak + 1)) log(T)

i=1 min min

+c22 <(log (Amm ) + 1) Anmax +vi) ,

for some positive constants ¢ and ca.

This regret bound achieves O((nk/A)log(T')) which is
comparable to the regret upper bound for the standard
CMAB-T problem (Chen et al., 2016a), which in turn is
tight with respect to dependence on 7" in comparison with
the lower bound in (Kveton et al., 2015a). The only term in
the regret bound that depends on horizon time 7" is the first
summation term. In this summation term, the summands
have two terms, one scaling linearly with k/A? , and other
scaling logarithmically with k/A? ; , which are due to un-
certainty of parameters p and v, respectively. Hence, we
may argue that the uncertainty about values of parameters p
has more effect on regret than uncertainty about values of
parameters v. The regret bound in Theorem 3.4 implies a
O(\/T) distribution-independent regret bound.

To see how the algorithm can be boiled down into two
CMAB-T problems, we consider the contribution of each
action to regret, i.e, Ag, = max{a OPT(p,v) —
rs,(p,v),0}. Let F; be the good event {rg,(p,v) >
a OPT(p,v)} that the approximation oracle works well.
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By the smoothness condition, under F; we have

ASt S TSt (ﬁt; ﬁt) - rst (p,'U)

< Z " vi(piy — pi) + Z @ (0i4 — i)

1€S: i€St

Clearly, the first term corresponds to regret from the set of
base arms Z, and the second term corresponds to regrets
from the set of base arms V. We bound Ag, by bounding
the two summation terms individually. The first summation
term is standard in literature. Note that we need to take extra
steps to bound the second summation term, as our estimates
for v; will not be more and more accurate as the number
of selected times increase. The UCB of v; remains at the
upper bound value 1 until the base arm ¢ in V is triggered
once and we then know the exact value of v;. We show the
full proof in Appendix B.3.

3.3. Algorithm for unknown ordering of values

In the general case, the agent does not know the ordering
of vy1,...,v, for all actions. This greatly decreases the
information that can be deduced from information feedback.
To see this, we consider each arm ¢ € V in two stages,
before and after its value v; is observed.

In the first stage when v; is unknown, the corresponding
base arm Z; has not been triggered yet. Note the in the
simpler case where the ordering of the values are known,
Z; is triggered whenever arm ¢ is ordered before the winner
j. This is because in this case we can deduce that Z; has
to be zero, since otherwise arm ¢ with a higher value v;
would beat arm j and j cannot be the winner. However,
since the ordering is unknown in the general case, we can
no longer carry out the above deduction and it is unclear
whether Z; = 0 or Z; = 1. More specifically, suppose that
in round ¢ we play set S, and item j € S; with value v;
is the winner and value-index pair (v;, j) is observed. For
an arm i € S;, we have not observed v; so do not know
whether v; > v; or v; < v;. For the first case, arms 4 could
take a non-zero value that is not observed, while it takes
zero value for the other case. Importantly, we note that the
triggering of Z; is dependent on whether knowing the value
of v; or not. This is different from the CMAB framework
and thus we cannot simply reduce this setting back to an
equivalent CMAB setting.

On the other hand, when Vj is triggered once and v; be-
comes known, then the corresponding random variable Z; is
triggered whenever the winner value is smaller than v;. We
can immediately conclude that Z; takes value zero. Thus
the analysis for second stage is the same as for the case of
known ordering of values.

A naive approach is to adopt the CUCB algorithm for the
simpler case and introduce 7; as the triggering time for V;.
We update parameters of item ¢ only when 7; # 0. However,

Algorithm 2 CUCB alg. for unknown ordering of values

1: Fori € E,T; + 0,T; + 0 {Num. trig. for Z; and V;}

2: Fori € E, p; < 1, 9; + 1 {Initial est. of params}

3: fort=1,2,...do

4: Fori€ E, p; + 31;)%(”, pi < 1{T; = 0}

5. Fori € E, p; + min{p; + p;, 1}, ; + min{9; +

6: S« Oracle(p, v) {Oracle decides the next action}
7. Play S and observe winner index ¢* and value v;~
8
9

ifTi* = 0 then
: Reset T3+« < 0, [
10:  end if
11: Forie Ss.t.0; >vp:T; T, +1
12:  Fori € Ss.t.0; > v p; + (1—1/T;)p;
13: FOI’ZESSt’Dli’U,*]31(*(171/,11)]374*1/71
14: end for

T +— 1, ’l}l* < Vg

this approach could fail for items ¢ with large v; and small
p;- Note that the estimate of p; will not be updated until v;
is observed. However, the upper bound of 1 for p; is clearly
an overestimate for this type of items, which would cause
large regrets during the period when their values are not
observed. This will be reflected as an undesirable factor in
the regret upper bound.

To remove the extra factor, we propose a variant of the
CUCSB algorithm (Algorithm 2). In this algorithm, we do
not wait to update p; after observing v;. We start with
optimistic initial estimates such that every item has high
chance of being a winner. We use the estimates v; and
pretend that Z; is triggered and takes value zero when v; is
not observed. In this way, the true winners will gradually
stand out, while we are still giving chances to those items
whose values are not observed yet. This intuitively makes
sense as even if v; takes value 1, the above-mentioned type
of items will not be important to our regret analysis due to
their small probability parameter estimates.

Let A . be the gaps as in the case of known ordering of

values. The regret bound for the algorithm for the case of
unknown ordering of values is provided as follows.

Theorem 3.5. Under assumption A, > 0, Algorithm 2
has the following regret bound,

R(T) <c; Zn; <Ak +log (A’“ + 1)) log(T)

min min

n k
+C2Z <<log (AUZZ +1> —|—1> Amax+1> ,
i=1 min

for some positive constants ¢, and cs.

This regret bound in Theorem 3.5 achieves
O((nk/A)log(T)) and agrees with the bound for
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the simpler case in Theorem 3.4 up to constant factors.
The regret bound in Theorem 3.5 implies a O(v/T)
distribution-independent regret bound.

We note that our problem does not fit into the standard
CMAB-T framework. As discussed above, we are pretend-
ing that Z; is triggered and takes value zero. This may not
be the ground truth in the case when v; is actually less than
the winner value. Therefore, using the observation Zi(t) =0
will make the estimate biased, not following the standard
CMAB-T framework. In particular, for items with small v;
and large p; values, we clearly underestimate their p; values,
since this type of items could take non-zero value but not
observed due to small v;. On the other hand, intuitively
these items are not important due to small value of v;. This
means we cannot simply apply the regret result of CMAB-T
or follow its analysis to reach our result.

To tackle this difficulty in our analysis, we introduce the
concept of item equivalence. In each round ¢, for every item
¢ with parameters (p;, v;) and Ti,t = 0, we replace it with
equivalent item ¢’ with parameters (p}, v) where p, = p;v;
and v, = 1. Note that items with small v; and large p; are
mapped to equivalent items with large v; and small p;, for
which our improved algorithm can estimate accurately. We
formally justify this equivalence in the regret analysis.

Proof sketch In the following we give a sketch of the
proof of Theorem 3.5. The full proof can be found in Ap-
pendix B.5.

We use a similar framework for regret analysis as the CUCB
method. However, note that one of the key assumptions
for CUCB algorithm fails to hold in our setting, i.e., we do
not always have upper confidence bounds for parameters p;.
Thus, we use new technical steps to account for this.

Firstly, we notice the following fact when replacing item
i with parameters (p;,v;) by its equivalent item i’ with
parameters (p}, v}).

Lemma 3.6. Forany set S € F, if (p',v’) is the equivalent
Sorm of (p,v) as defined above, then rs(p,v) < rg(p’,v’).

Then we consider the contribution of each action to regret
A;. Under the good event F; that the approximation oracle
works well, i.e. rg, (P, ¥) > o OPT(p, ©). By Lemma 3.6,
for each ¢ such that 1 < ¢ < T we have,

a OPT(p},v;) > a OPT(p,v). (3.2)
Thus,

As, < a OPT(p},v;) — 15, (p,v)

< a OPT(p;, v;) — s, (p,v) + 15, (P, ®) — a OPT(

S Ts, (f)vf)) —Ts, (pav)

where the first inequality is due to condition (3.2), the second
inequality is due to the approximation oracle, and the third
inequality is due to monotonicity of rg in p and v. We
call the term inside first bracket as the regret caused by
estimation error A¢ . and the term inside the second bracket
as the regret caused by replacement error Ay . To obtain a
tight regret upper bound, we require that the regret caused
by replacement error over the time horizon 7 is not greater
than the that by estimation error, i.e, under a series of good
events, >, A% < S/ Ag . This would justify the
intuition of using replacement items. Now we look closely
at these two terms separately.

By Lemma 3.3, we have

\S -
s, < Z q; ’Ui/',t(pi,t - P;,t)~
1€Sy

Note that we do not need to include the v; term as v; , =
v; = 1 for all 7 when v; is not observed, and vgyt =0; = v;
after v; is observed. In both cases, there is no estimation
error for v;.

We also apply Lemma 3.3 to the second summation term to
obtain

. .S -p,S
A% <23 P Puilpi i) + Y @ (0], —v).
€Sy i€St

To sum up, we have

S =
Ag, < Eiestsqlp Ug,t(pi,t - p;,t) s
+2 Ziest qu’ vi(pi — pfi,t) + Ziest ‘f (Ug,t —V;).

We bound Ag, by bounding these error terms in different
cases. We can bound the first term by following the proof
of the regret bound for the standard CMAB-T problem,
stated in Theorem A.1 for completeness. To see this, recall
that we have reset the counts 7; and the estimates p; at the
time v; is observed. This is because p;vqt = p;v; when v;
is unknown and p} , = p; afterwards. However, for both
stages our estimates are accurate in the sense that p; always
lies within the confidence interval which decreases as the
counter number increases.

For the second term, we note that p} , = p;v; in the first
stage, and p, = p; after v; is observed. Therefore, the
contribution to regret by the second term is zero in the
second stage. For the first stage, this term can be analyzed
in the similar way as the last term. The key observation is
that p; — p; ; = pi(1 — v;) < p;. This will be the key for
removing the extra factor.

_ 1finally, we note that the analysis for the last summation term

15 the same as the simpler case, since there is no change to
the triggering process of V;’s. Summing up the bounds over

= (rs,(p,v) — rs,(P},v})) + (rs, (P}, v}) — rs,(p,v)), time horizon T', we can prove the main theorem.
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Figure 1.

4. Arbitrary distributions with finite supports
We discuss the case of arbitrary discrete distributions with
finite supports. We show that it is possible to turn a set
of multi-valued variables equivalently into a set of binary
variables. This implies that our algorithms and regret bounds
apply to the general case of discrete distributions with finite
supports.

To see this, let X; be a random variable with an arbitrary dis-
crete distribution with finite support as defined in Section 2.
Recall that PI‘[XZ = Ui,j] = Dij» fOI'j S {0, 1,..., 57;},
where v; ; € [0,1] and v, = 0. Let X;1,...,X;,, be
independent binary random variables such that X; ; takes
value v; ; with probability p; ;, and value 0 otherwise. We
consider max{X;; | j € [s;]}, which takes values in

{O, Vil ,Ui,(gi}. Let
Pi,j : .
—=Ph 1< j<sy
T R e R C %)
Di,si if j = s;.

Then note that max{X, ; | j € [s;]} has the same distri-
bution as the original random variable X;. In this way, we
establish the equivalence between binary variables and any
discrete variables with finite support in terms of the max
operator. This means that we can use our algorithm to solve
the k-MAX bandit for any such finite-valued variables.

For example, if we know all the possible values, we can
order them, and then use the algorithm with known value
orders. For the case we do not know the possible values, we
can use the algorithm with unknown value orders. We make
slight modifications to relax the requirement of knowing
item distribution support sizes. The key is that we introduce
a counter o (%) to denote the number of observed values of
X; and dynamically maintain a list of values for X;. We
use a fictitious arm with value 1 as a placeholder for those
base arms whose values are not yet observed. The UCBs of
binary base arm parameters are mapped back to the multi-
valued form using (4.1). We refer to the k-MAX PTAS in
(Chen et al., 2016a) as our offline approximation oracle. For
space reasons, more details are included in Appendix C.

2000

3000
Rounds

4000 5000 0 1000 2000 3000

Rounds

4000 5000

Cumulative regrets for Algorithm 2 for different distributions of arm outcomes as defined in Appendix D.

S. Numerical results

We perform experiments to evaluate performance of Algo-
rithm 2 on some specific problem instances. We compare
our algorithm with two baseline methods: the well-known
UCB algorithm treating each set of size k as one arm, and
standard CUCB algorithm for semi-bandit CMAB setting.
We use the greedy algorithm as the offline oracle.

We consider settings with n = 9 arms and sets of cardinal-
ity k = 3. We tested on three different arm distributions
representing different scenarios. We expect the algorithm to
perform well for all three cases. For space reasons, we show
the detailed setup and regret plots in Appendix D. We run
each experiment for horizon time 7' = 5000. In each round,
we select arms according to the offline oracle and sample
their values for updates. We compare the reward to that of
optimal set S*. We repeat the experiments for 20 times and
average over the cumulative regrets.

Results Figure 1 shows the regrets of Algorithm 2 and two
baseline methods for the three cases. We can see that our
algorithm achieve much lower regrets compared to the UCB
algorithm. Our regret curve is close to that of CUCB method
under semi-bandit CMAB setting, which confirms that we
do not lose much when we have much fewer feedback.

6. Conclusion

We studied the k-MAX combinatorial multi-armed bandit
problem under maximum value-index feedback. This feed-
back lies in between semi-bandit and full-bandit feedback,
and provides much less information than under semi-bandit
feedback. We proposed a CUCB algorithm for the case
when the ordering of values is known. For the case when
the value ordering is uknown, we proposed a new algorithm
based on the concept of item equivalence. We showed that
algorithms guarantee a regret upper bound that is matching
that under semi-bandit feedback up to constant factors.

Future work may consider whether the same regret bound
can be achieved for the k.~-MAX problem under full-bandit
feedback, and consider CMAB problems under feedback
that lies in between semi-bandit and full-bandit feedback.
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A. CMAB-T framework and additional notation

We review the framework and results for the classical CMAB problem with triggered arms considered by (Wang and Chen,
2017). In this problem, the expected reward is a function of action S and expectation vector p of base arms. Denote the
probability that action S’ triggers arm ¢ as p; % It is assumed that in each round the value of tri ggered arms are observed by
the agent. The CUCB algorithm (Chen et al., 2013) is used to estimate the expectation vector p directly from samples.

The following is Theorem 1 in (Wang and Chen, 2017) for the standard CMAB problem with triggered arms (CMAB-T). It
is assumed that the CMAB-T problem instance satisfies monotonicity and 1-norm TPM bounded smoothness (Definition 3.2
with b; = B for all ¢ € [n]). We will use some proof steps and result of this theorem in proofs of our results.

Theorem A.1. For the CUCB algorithm on a CMAB-T problem instance satisfying monotonicity and 1-norm TPM bounded
smoothness, we have the following distribution-dependent regret bound,

1 = 2Bk 2
R(T) < 576B%k (Z N) log(T') + (Z (log (Ai + 1) + 2)) %Amax +4Bn

j=—1 —min i=1 min

>0,A5>0 As.

where Ay = infg, g i
We next give various definitions used in our analysis. The definitions are given specifically to binary distributions.
We define two sets of triggering probability (TP) groups. Let j be a positive integer. For the set Z of base arms we define
the triggering probability group S; ; as

Siyj={SeF|277 <gP® <2t}

We define the triggering probability group Si, ; for the set V of base arms similarly. We note that the triggering probability
groups divide actions that trigger arm ¢ into separated groups such that the actions in the same group contribute similarly to
the regret bound.

Let N; ;,+ be the counter of the cumulative number of times ¢ in TP group .S; ; is selected at the end of round ¢. Under clear
context, we also use IV; ; + to denote the counter of the cumulative number of times 7 in TP group S ; is selected at the end
of round ¢.

We define the event-filtered regret for a sequence of events {&;} as
R(T,{&}) =T a OPT(p,v) —E [Z 1(&)rs, (p, v)}
t=1
which means that the regret is accounted for in round ¢ only if event £; occurs in round ¢.

We next define four good events as follows:

E1 The approximation oracle works well, i.e.

Fi={rs,(p,0) > a OPT(p,v)}.

E2 The parameter vector p is estimated well, i.e. for every ¢ € [n] and ¢ > 1,

Ni = {lpit—1 — pil < pis}

where p; ;1 is the estimator of p; at round ¢ and p; ; := \/3 log(t)/(2T;,1-1).

E3 Triggering is nice for Z given a set of integers {j{ ., }ic[n i-6. for every TP group S; ; defined by arm i and
1 < j < ji . under the condition /61og(t)/(N; j1—1/3)277 < 1, thereis Tj—1 > £ N; j1—1277. We denote this
event with \V.

E4 Triggering is nice for V, i.e. for every arm ¢ € F, under the condition N; ;1 > ?;pi_1 log(t)2j, there is ﬂ7t_1 #0.
Equivalently, we can define this event in terms of TP group S; ; by removing the factor of pi_l. We denote this event
with /.
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Note that events E1, E2 and E3 are also used in (Wang and Chen, 2017), and event E4 is newly defined for our problem. We
can easily show the following bound for the probability of the event E4 using the Hoeffding’s inequality.

Lemma A.2. For each round t > 1, we have Pr(—N}) < n/t2.

B. Proofs
B.1. Proof of Lemma 3.1
Without loss of generality, consider S = {1, ..., k} under assumption vy > - - > vy. The expected regret can be written as

rs(p,v) =prvr + (L= p1)peva + -+ (L = p1) -+ (1 — pr—1)Pkve.
It is clear from the expression that g (p, v) is monotonic increasing in v;.

Let us consider rg(p, v) for arbitrarily fixed v. Taking derivative with respect to p;, we have

d
dvaS(Pa”) =1 =p1)- (L =pi-1) |vi = Pit1vit1 — Z(l = pit1) - (1 = pj)pjt10541

j>i

We claim that the term inside the bracket is greater than zero. This can be shown as follows,

Vi = Pit1Vit1 — Z(l —pit1) - (1 = pj)Pj+1v41
i>i
vi(1 = piv1) = (1 = pir1)pitavive — (L = piy1)(1 — pit2)pitavies — -
(1 = pit1)(L = pir2) - (1 = pe—1)(vi — pror)
(1= pit1)(L = pit2) -~ (1 — pr)vs
0

vV IV IV IV

Thus, the reward function is monotonic increasing in p;.

B.2. Proof of Lemma 3.3
For the purpose of this proof only, we assume that the items are ordered in decreasing order of values for both v and v’.

Letp = (p1,...,px) and p’ = (p},...,p}), and p(¥) = p/, pli) = (P13 Pjs Pigrs- - Pg)s for 1 < j < k, and
p®) = p. Similarly, let v = (v1,...,v) and v’ = (v},...,v}), and v = o', v10) = (U1, 0,05, V4,0, 0), for
1<5< k, and v®) = v.

Since v > v/, the item ordering is preserved, i.e., v > v9 > ... > v’ , > v} and we have,
J+1 k

re(@P, o) =prog 4+ (L=p1) - (1= pj)pjvs + (1 =p1) - (1= )Pl vy + -
and . ‘
re(pU ™D, 0V ) = prog + -+ (T=p1) -+ (L= pm )P + (1= p1) -+ (1= )Pl avfpr + -
Note that the only difference is caused by position j. By definition of triggering probabilities g; S and q; S we can write,
j j - - .S
rs(p?, v9) — rg(pV D, 0 =|gP% (pju; — plvf — > (1=l - (1= pi_)pivi(p; — b))
i>j
S ,S
<¢¥7pjlv; — Vi +qF"vjlp; — )l
.S
+ @07 (P 1V 1 + (1= Php)Vpe + )Py — )]
S ~p,S
<2q"vjlp; — Pl + @7 v; — vj]

where the first inequality is due to the triangle inequality and the second inequality is due to the monotonicity property. Note
that if we have p > p’, we only need to consider the first two terms in the second line.

Summing up over j we can obtain the statement of the lemma.
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B.3. Proof of Theorem 3.4

We consider the contribution of each action to regret A,, for every t > 1. Let M; := A’ . Recall that Ag =
max{a - OPTp ., — r5(p,v),0}. Assume that Ag, > Mg, where Mg = max;es M;. Note that if Ag, < Mg, then
Ag, = 0, since we have either an empty set, or Ag, < Mg, < M, for some i € S;.

By the smoothness condition, we have

A < rs, (ptvvt) —Ts, pa Z qL7 pz t— pz + Z qz Uz,t - Ui)«
1€Sy 1€St

Since Ag, > Mg,, we add and subtract Mg, from the last expression and we have,

Ag, < Ms,+2<2ql (i —pi) + Y@ UL,t_Ui)>

1€St 1€St
< 2 E p,S i, i) — —_ 2 E ~P’S Vit — V) — = .
(zGS K p r ) 4k> i (iGS K (U ! ‘ ) 4k

Let us call the first term Agt and the second term Ag . We bound Ag, by bounding the two summation terms individually.

Note that for A’gt we can bound following the same procedure as in the proof for Theorem A.1. However, we cannot use the
same procedure for Ag . The key difference is that our estimate for v; will not be more and more accurate as the number of
selections of the item ¢ increases. We know the exact value of v; as soon as it is triggered once. We assume that arm ¢ is in
TP group S; ;. Let j; be the index of the TP group with S; € S; ;,. We take jZ,. = [log(4k/M; +1)].

e Case 1: 1 < j; < ji ... In this case, (jf’s < 2.9,
FS (0 — i) <2-277 T, = 0}
Under the good event N, ! when N; Git—1 =3 log(t) - 27, the contribution to regret is zero. Otherwise, it is bounded as
~p,S [ — — s
@ (Ui —vi) <2-2770
* Case 2: j; > ji . In this case,
M
~p,S (- — i i
qu (Vi —w;) <2271 < T
Thus, the term does not contribute to regret in this case.

We next calculate the filtered regret under the good events mentioned above and the event that Ag, > Mg,. Note that

T

R(T {As, > Ms,}, Fi, A7 <y +ZA

For the event E3 we set j¢ .. = log(4v;k/M; + 1). By Theorem A.1 in Appendix A, we know that under good events El,
E2 and E3, the first term is bounded by

T k
> AL <1152k (Z MQ ) log(T) + 4 (Z vz)

t=1 i=1

and the corresponding filtered regrets for the case where events E1, E2 or E3 fail to hold are bounded by,

R(Ty _‘]:t) < (1 - B)T . Amuw

" s = dv;k
-, < — ax-
R(T,-NY) < (Zlog(Mi +1)>Am
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Now we focus on bounding the contribution of the second term to regret. Note that under event E4,

n oo NijrT-1

T
DA% =2.0 > (M)
t=1

i=1j=1 s=0

where j (T)
[ 2277 ifs < 3log(T) 2
wj (M, s) = { 0 if s > 3log(T) - 2/

For every arm ¢ and j > 1, we have

Nijr—1 31og(T)-2J'z‘
Z K, (M, s) Z K, (M, s) = 6log(T).
s=0
2

1)) log(T).

_‘/< P_‘ max 7Amax~
R(T,-N; ;rj\/ 76n

Hence, the contribution of the second term to regret is bounded by

ZZ’%, (Mi, Ni,ji i1 <6<Zlog<

t=1,;c8,

The filtered regrets for the case when event E4 fails to hold is bounded by,

We obtain the distribution-dependent regret by adding up the filtered regrets calculated above. The corresponding distribution-
independent regret is implied by taking M; = /16nk/T for every i € [n].

B.4. Proof of Lemma 3.6

Without loss of generality assume that S = [k] and vy > vy > -+ > vg. Recall that we can write
rs(p,v) =pivr + (1 —p1)pava+ ...+ (1 —p1) ... (1 — pr—1)PrVs-

Now for p = (p1,...,px) and p’ = (p},...,p}), let

y _

p(J (plla"'apg'vpj—&-l,"'apk)

and define similarly v(/) for v and v’. After changing p; to p| = pyv; and v to v} = 1,
re(PM, vM) = pror + (1= pron)pava + -+ + (L= prv1) -+ (1 = pr—1)prvi.
Clearly we have rg(p"),v(")) > r5(p, v). Following the same argument, we can see that 75 (p(®, v®)) > rg(p™M) vM).

Continuing this way to rg (p(k), v(k)) we can prove the lemma.

B.5. Proof of Theorem 3.5
By the general smoothness condition, we have

As, < a0, (pie —pi) +2 ) a5 uilpi —p)) + Y @0 (], — o).

1€Sy 1€St 1€St

Key step: bounding the contribution of each action to regret Let M; = A! Assume that Ag, > Mg, where

min*
Mg = max;eg M;. As in the known value ordering case, we can bound Ag, such that,

Ao, < Mg, +2 (z - 1)+ 23 Pl - )+ S L - >)

i€St i€S} 1€St
— Mi . Mi
[(Zqz,s i (it — pé,t)—8k>+2<zqf,svi ) > (Z p.S ”_UZ)_%N.
i€St 1€ES 1€St
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Let j; be the index of the TP group of S; such that S; € .S; ;,. We bound Ag, by bounding the three summation terms in
(B.1) separately.

* Bounding the first term. Recall that we reset the T; ; and V; ; ; at the time we observe v;. This is because p;’t = P;v;
and v ;, = 1 when v; is unknown (first stage) and p; , = p; and v; , = v; after v; is observed (second stage). A key
observation is that within both stages our estimates are accurate in the sense that under event E2, the approximation
error decreases as the counter number increases in the following way.

3log(t)
2T -1

Pii — iy < 2pi =2

We note that for the second stage where v; is observed, this term is similar to the Agt term in the known value ordering
case. Specifically, under event E3,

18log(t) 1
279 - Nijit—1’

Dit _p;ﬂ: < min {

and

- . 72 - 2=Jiv2 log(T .
qf’svz/‘,t(pi,t —pg’t) < mm{\/ ¥ 7 log( )’2,2 szz}.
1,5i,t—1

For the event E3, let ji .. = [log(8v;k/M; + 1)]. In the case j; > ji .. + 1, this term does not contribute to regret as
we have,

_ M,
¢ (piv — i) <2-270 <

Similarly, for 1 < j; < ji .., there is no contribution to regret if N; j ;—1 > l;, 7(M;) where

4608 - 27902 k? log(T
lj,T(M) = \\ M?2 ( )J )

For the first stage, we note that T ;1 > N, j ;1. This does not require the event E3 to hold, as triggering is always
nice for Z; in the first stage. Thus for the first stage we have,

_ . 6log(t
iyjit—1

and

- ) 24 - (277:)2log(T i
qf’svg7t(pivt — p;,t) < min {\/ (N ) (T) .22 Jl}
4,Ji,t—1
Now we take ji .. = log(8k/M; + 1). We redefine j% . to consider different subsets of TP groups. Again, there
is no contribution to regret in the case j; > j} . + 1. For 1 < j; < 37, this term does not contribute to regret if
Ni,j,tfl Z l‘;“T(M’L) where

L) = {1536-(2‘;4)2k log(T)J .

Bounding the second term. Take ji . = log(8k/M; + 1). Similarly as the first term, in the case j; > j¢ .. + 1, the
contribution to regret is non-positive. For 1 < j; < jp..., as p; , = p;v;, we have

aF%vi(pi = ply) <2277 pivi(1 - vy).

Under the event E4, we know that the contribution to regret is zero if IV; ;, ;—1 > 3p; ! log(T) - 27. Otherwise, it is
upper bounded by 2 - 2 Jip;.
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* Bounding the third term. Take ji,. = log(8k/M; + 1). In the case j; > ji .. + 1, the contribution to regret is
non-positive. For 1 < j; < jfnax, we have ¢; < < 2.2 Jip,, thus
~n.,S /— —g. ~ —q. ad
@Fo (v —v) <2-270pip; =227 - 1{T;, = 0}.

Under the event E4, we know that the contribution to regret is zero if IV; ;, ;—1 > 3p; 1 log(T) - 27. Otherwise, it is
upper bounded by _
P (Ui —vi) < 2-2797p;

Note that this bound is the same as the bound for the second term.

Summing over the time horizon Next, we sum up Ag, over time 7" and calculate the filtered regret under the above
mentioned good events and the event that Ag, > Mg,, i.e, R({As, > Mg, }, Fi, Ny, NENY).

By equation (B.1), we know that the filtered regret can be upper bounded by sum of three terms over the time horizon 7'. By
Theorem A.1 in Appendix A, we know under good events E1, E2 and E3, the second stage of the first term is bounded by

n

(Zqz i(Diy — p::,t)]g\ii>§2304k<zz\;l>log +4sz

1€ESy i=1
and the corresponding filtered regrets for the case when E1, E2 or E3 fail to hold are bounded by,
R(Ta _‘]:t) < (1 - 6)TAmax

2

R(T, ﬁ./\/‘ts) S 7T?TLAmax

8
R(T,~N?) < le ( vk >A
To bound the first term, we also need to derive a bound for the first stage when the value is not observed. This is bounded by,

M U (M)
2 (Z q; 7S(?i,t_p2,t) 8/5)

» 24 - (2-31)2 1og(T
4277+ 3 2 (279¢)? log(T)
1€S}

M=

N . .
Ni).fi,t—l:l i,Ji,t—1

4279 44, /Ui 1 (M;)\/24 - (2791)2 log(T)
n 1
< 256k <Z M_) log(T) + 4n.

i=1 "

M= I
it i

By the analysis for the Algorithm 3.4, we know that

T
ZZ (Z q; ,S(U;t —;) — i{;) < 12210g <]8\f +1> log(T).

t=1 \ieS; =1

Similarly we can bound

T n
M; 8k
S / 2
3 (st s ) <203 (5 4 1) )

t=1 1€St

The filtered regret for the case where event (E4) fails to hold is bounded by,

2

T
_‘N/ < Z _‘Nl maz > EnAma)v

We obtain the distribution-dependent regret by adding up the filtered regrets calculated above. Similarly as before, the
distribution-dependent regret is implied by taking M; = /64nk /T for every i € [n].
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Algorithm 3 CUCB algorithm for arbitrary distributions with finite supports

1: Fori € E, 0(i) « 0 {Number of known values for arm i}

2: Fort€e E,T; 0+ 0, Ti,O < 0 {Number of triggering times for the fictitious arm}
3: Fori € E, ;o < 1, 0;0 « 1 {Initial estimates of parameters for the fictitious arm}
4: fort=1,2,...do

Fori € Eandj € [0(i)], pij 321%%(,0, pij < 1{T;; = 0} {Confidence radius of parameters}

5

6: Forie Fandj € [o(i)], pi; < min{p; ; + pij, 1}, Ui ; < min{v; j + p; ;, 1}{UCB of parameters}
7:  Transform p to p using Eq. (4.1)
8.
9

S < Oracle(p, v) {Oracle k-MAX PTAS decides the next action}
: Play S and observe winner index ¢* and value v
10:  ifv ¢ {0+ j,7 € [0(i*)]} then
11: o(i*) < o(i*) + 1, T piry ¢ 0, Tpegpiny 6 1, Dix p(iv) <V
12:  endif
13:  Forie Sandj € [o(i)] suchthat o, ; > v: T; j < T; ; + 1
14:  Fori e Sandj € [o(i)] such that o; ; > v: p; ; « (1 —1/T; ;)pi ;
15:  Forie Sandj € [o(i)] suchthat o; ; = v: p; j < (1 —1/T; ;)p; + 1/T; ;
16: end for

C. CUCB algorithm for arbitrary distributions with finite supports

In this section, we present our Algorithm 3 for the general discrete distributions with finite support. The algorithm is an
extension of Algorithm 2, with slight modifications that allow us to relax the assumption of knowing the support sizes of
item distributions.

Recall that we work with binary base arms {X; j,7 € [n], j € [s;]} where s; is the support size of X;. We use a counter
o (%) to denote the number of observed values for X;. We increase this counter and reset the triggering times and probability
estimates for the o (7)th base arm whenever we observe a new value for X;. On the other hand, we use a fictitious arm with
value 1 as placeholder for those base arms whose values remain unobserved. Since we have no information on the support
size, we always keep this fictitious arm and update its probability estimates whenever X is selected in an action.

Note that we convert UCBs of the binary base arms to multi-valued forms according to relationship 4.1 and use the k-MAX
PTAS in (Chen et al., 2016a) as the offline oracle. We give further explanations justifying this usage as follows. In the
equivalent binary form, we would need an oracle such that for each binary arm X, ;, if X; ; € S, then all X 7, " € [s;]
must also be selected. Because of the fact that X; = max{X, ; | j € [s;]}, we just need to convert p to g and use the
k-MAX PTAS as the offline oracle for the equivalent binary case.

D. Supplementary information for simulations
In this section, we provide supplementary information for Section 5 on numerical results.

Setup We consider settings with n = 9 arms and sets of cardinality k = 3 for the following distributions of arms.
D1 v = (0.1,0.2,...,0.9)". pis such that p; = 0.3, for 1 < i < 6, and p; = 0.5, otherwise.

D2 Compared to D1, we introduce an arm ¢ with small v; and large p;. Specifically, for arm 1 we redefine p; = 0.9 and
keep v unchanged.

D3 Compared to D1, we introduce an arm ¢ with large v; and small p;. Specifically, for the last arm we redefine pg = 0.2
and keep vg unchanged. Note that arm 9 has the same expected value as arm 6, but arm 9 is in the optimal set.

Note that the optimal super arm is S* = {7, 8,9} in all cases. Distributions D1, D2 and D3 represent different scenarios. D1
is the base case. In D2, there is a stable arm with low value, while in D3 there is a high-risk high-reward arm. Both are not
easy to observe and cause challenges for our algorithm design, especially the latter type of arms, which can outperform
less-risky arms under the maximum value reward function.

Regret plots We show the regrets of Algorithm 2 and two baseline methods in Figure 1. We plot the 1-approximation regrets
instead of (1 — 1/e)-approximation regret as the offline greedy oracle performs much better than (1 — 1/e)-approximation
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in this case. We can see that our algorithm performs well, achieving much lower regrets in all cases.



