
Journal of Data-centric Machine Learning Research (2024) Submitted 08/02; Revised 03/03; Published 05/04

OODRobustBench: a benchmark and large-scale analysis of
adversarial robustness under distribution shift

Lin Li lin.3.li@kcl.ac.uk
King’s College London

Yifei Wang yifei w@mit.edu
MIT

Chawin Sitawarin chawins@berkeley.edu
UC Berkeley

Michael Spratling michael.spratling@kcl.ac.uk

King’s College London

Abstract

Existing works have made great progress in improving adversarial robustness, but typically
test their method only on data from the same distribution as the training data, i.e. in-
distribution (ID) testing. As a result, it is unclear how such robustness generalizes under
input distribution shifts, i.e. out-of-distribution (OOD) testing. To address this issue we
propose a benchmark named OODRobustBench to comprehensively assess OOD adversarial
robustness using 23 dataset-wise shifts (i.e. naturalistic shifts in input distribution) and 6
threat-wise shifts (i.e., unforeseen adversarial threat models). OODRobustBench is used
to assess 706 robust models using 60.7K adversarial evaluations. This large-scale analysis
shows that: 1) adversarial robustness suffers from a severe OOD generalization issue; 2) ID
robustness correlates strongly with OOD robustness in a positive linear way. The latter
enables the prediction of OOD robustness from ID robustness. We then predict and verify
that existing methods are unlikely to achieve high OOD robustness. Novel methods are
therefore required to achieve OOD robustness beyond our prediction. To facilitate the
development of these methods, we investigate a wide range of techniques and identify several
promising directions.

Keywords: adversarial robustness, OOD generalization, benchmark, distribution shift

1 Introduction

Adversarial attack poses a serious threat to real-world machine learning models, and various
approaches have been developed to defend against such attacks. Previous work (Athalye
et al., 2018) has shown that adversarial evaluation is critical to the study of adversarial
robustness since an unreliable evaluation can often give a false sense of robustness. However,
we believe that even state-of-the-art evaluation benchmarks (like RobustBench Croce et al.,
2021) suffer from a severe limitation: they only consider ID generalization where test data
comes from the same distribution as the training data. Since distribution shifts are inevitable

©2024 Lin Li, Yifei Wang, Chawin Sitawarin, Michael Spratling.



A Benchmark and Large-scale Analysis of OOD Adversarial Robustness

  

Out of Distribution Adversarial Evaluation

Threat shift: ID data + Unforeseen threatDataset shift: OOD data + Seen threat (e.g. Linf eval for Linf AT)

ImageNet-v2

ImageNet-R

ImageNet-A

ObjectNet

Gaussian noise

Brightness

Glass blur

Fog

Natural shift: Corruption shift:

LPA

StAdv

PPGD

ReColor

Larger ε

Different p-norm

non-Lp threat: Lp threat:

Contrast

Frost

...

...

20 30 40 50 60 70

ID Robustness

10

20

30

40

50

60

70

O
O

D
R

ob
us

tn
es

s

Intercept=-6.30, Slope=0.64

R2=0.99, RCC=1.00

Natural

20 30 40 50 60 70

ID Robustness

10

20

30

40

50

60

70

O
O

D
R

ob
us

tn
es

s

Intercept=-4.16, Slope=0.79

R2=0.98, RCC=0.99

Corruption

20 30 40 50 60 70

ID Seen Robustness

10

20

30

40

50

60

70

ID
U

ns
ee

n
R

ob
us

tn
es

s

Intercept=0.67, Slope=0.37

R2=0.62, RCC=0.85

non-`p

20 30 40 50 60 70

ID Seen Robustness

20

30

40

50

60

70

ID
U

ns
ee

n
R

ob
us

tn
es

s

Intercept=13.11, Slope=0.66

R2=0.98, RCC=0.98

`p

CNN ViT ConViT No Extra Synthetic Extra Real Extra Model Sizey = x

Figure 1: The construction of OODRobustBench (top) and the correlation between ID and
OOD robustness for CIFAR10 ℓ∞ (bottom). Each marker represents a model
and is annotated by its training set-up. The solid blue line is the fitted linear
correlation. The dashed gray line (y = x) represents perfect generalization where
OOD robustness equals ID robustness. Deviation from the dashed line indicates
robustness degradation under the respective distribution shift.

in the real world, it is crucial to assess how adversarial robustness is affected when the test
distribution differs from the training one.

Although OOD generalization has been extensively studied for clean accuracy (Hendrycks
and Dietterich, 2019; Taori et al., 2020; Miller et al., 2021; Baek et al., 2022; Zhao et al.,
2022; Yang et al., 2022), there is little known about the OOD generalization of adversarial
robustness. To fill this void, this paper presents for the first time, a comprehensive bench-
mark, OODRobustBench, for assessing out-of-distribution adversarial robustness. With
OODRobustBench, we analyze the OOD generalization behavior of 706 well-trained robust
models (a total of 60.7K adversarial evaluations). This model zoo covers a diversity of
architectures, robust training methods, data augmentation techniques and training set-ups
to ensure the conclusions drawn from this assessment are general and comprehensive. This
large-scale analysis reveals that:

• Adversarial robustness suffers from a severe OOD generalization issue. Ro-
bustness degrades on average by 18%/31%/24% under distribution shifts for CIFAR10
ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞ respectively.

• ID and OOD accuracy/robustness have a strong linear correlation under
many shifts (visualized in Fig. 1). This enables the prediction of OOD performance
from ID performance.
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The findings above are rigorously identified by a large-scale, systematic, analysis for
the first time. Furthermore, our analysis also offer several novel insights into the OOD
generalization behavior of adversarial robustness:

• The higher the ID robustness of the model, the more robustness degrades
under distribution shift. This suggests that while great progress has been made on
improving ID robustness, we only gain diminishing returns under distribution shift.

• An abnormal catastrophic drop in robustness under noise shifts is observed
in some methods. For instance, under Gaussian noise shift, HAT (Rade and Moosavi-
Dezfooli, 2022) suffers from a severe drop of robustness by 46% whereas the average
drop is 9%.

• Adversarial training boosts the correlation between ID and OOD per-
formance under corruption shifts, and thus, improves the fidelity of using ID
performance for model selection and OOD performance prediction.

• ℓp robustness correlates poorly with non-ℓp robustness. This implies that
improving ℓp robustness does not necessarily lead to higher non-ℓp robustness. It is
also unreliable to predict non-ℓp robustness using ℓp robustness.

Last, we investigate how to achieve OOD adversarial robustness. First, based on the
discovered linear trend, we predict the best available OOD performance for the existing
ℓp-based robustness methodology and find that existing methods are unlikely to achieve
high OOD adversarial robustness (e.g. the predicted upper bound of OOD robustness
under the dataset shifts is only 43% on ImageNet ℓ∞). Next, we examine a wide range of
techniques for achieving OOD adversarial robustness beyond the above prediction. Most
of these techniques have limited or no benefit. However, we do identify several adversarial
training methods (Dai et al., 2022; Pang et al., 2020; Ding et al., 2020; Bai et al., 2023) that
have the potential to exceed the prediction and produce higher OOD adversarial robustness.
To ensure safe deployment in the wild, we advocate for the assessment of OOD robustness
in future models and for the development of new approaches that can cope with distribution
shifts better and achieve OOD robustness beyond our prediction.

Related works are discussed in App. A.

2 OOD Adversarial Robustness Benchmark

2.1 OODRobustBench

OODRobustBench focuses on two types of distribution shifts: dataset shift and threat shift.
Dataset shift, OODd, denotes the distributional difference between training and test raw
datasets. Threat shift, OODt, denotes the difference between training and evaluation threat
models, a special type of distribution shift. The original test set drawn from the same
distribution as the training set is considered ID. The variant dataset with the same classes
yet where the distribution of the inputs differs is considered OOD.

Dataset shift. To represent diverse data distribution in the wild, OODRobustBench
includes multiple types of dataset shifts from two sources: natural and corruption. For natural
shifts, we adopt four different variant datasets per source dataset: CIFAR10.1 (Recht et al.,
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Figure 2: Performance degradation under distribution shifts for CIFAR10 ℓ∞ models.

2018), CIFAR10.2 (Lu et al., 2020), CINIC (Darlow et al., 2018), and CIFAR10-R (Hendrycks
et al., 2021a) for CIFAR10, and ImageNet-v2 (Recht et al., 2019), ImageNet-A (Hendrycks
et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), and ObjectNet (Barbu et al., 2019)
for ImageNet. For corruption shifts, we adopt, from the corruption benchmarks (Hendrycks
and Dietterich, 2019), 15 types of common corruption in four categories: Noise (gaussian,
impulse, shot), Blur (motion, defocus, glass, zoom), Weather (fog, snow, frost) and Digital
(brightness, contrast, elastic, pixelate, JPEG). Each corruption has five levels of severity.
Overall, the dataset-shift testbed consists of 79 (4 + 15 × 5) subsets. App. B.1 gives the
details of the above datasets and data processing.

Accuracy and robustness are evaluated on the ID and OOD dataset. To compute the
overall performance of OODd, we first average the result of natural and corruption shifts:

Rc(f) = Ei∈{corruptions},j∈{severity}Ri,j(f) (1)

Rn(f) = Ei∈{naturals}Ri(f) (2)

where R(·) returns accuracy or adversarial robustness and f denotes the model to be assessed.
Next, we average the above two results to get the overall performance of the dataset shift as

Rood(f) = (Rc(f) +Rn(f))/2 (3)

Threat shift. OODRobustBench adopts six unforeseen attacks as in Laidlaw et al.
(2021); Dai et al. (2022) to simulate threat shifts. They are categorized into two groups, ℓp
and non-ℓp, according to whether they are bounded by the ℓp norm or not. The ℓp shift group
includes MM attacks with the same p-norm but larger ϵ and with different p-norm. The
non-ℓp shift group includes the imperceptible, PPGD and LPA, and perceptible, ReColor
and StAdv, attacks. The overall robustness under threat shift, OODt, is simply the mean of
these six unforeseen attacks. These attacks are selected because they cover a wide range
of different scenarios of threat shift and each of them is representative of its corresponding
category (100+ cites). We are aware of alternative non-ℓp attacks (Kaufmann et al., 2023)
but do not include them due to the constraint of computational resource.

The configuration of above attacks is described in App. B.2. Criteria for robust models
are described in App. C.1 and are the same as RobustBench Croce et al. (2021).

2.2 OOD Performance and Ranking

The results for CIFAR10 ℓ∞, ℓ2 and ImageNet ℓ∞ are in Tabs. 1, 2 and 3 respectively.
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Table 1: Performance, evaluated with OODRobustBench, of state-of-the-art models trained
on CIFAR10 to be robust to ℓ∞ attacks. Top 3 results under each metric are
highlighted by bold and/or underscore. Severe ranking discrepancies are marked
in red. The column “OOD” gives the mean of the robustness to OODd and OODt.
The total number of models is 396.

Method
Accuracy (%) Robustness (%) Ranking

ID OODd ID OODd OODt OOD ID OOD

Wang et al. (2023) (WRN-70-16) 93.2 76.0 70.7 44.4 35.8 40.1 1 2
Bai et al. (2023) 95.2 79.0 69.5 43.3 46.7 45.0 2 1
Cui et al. (2023) 92.1 74.8 67.7 42.4 35.4 38.9 3 4
Wang et al. (2023) (WRN28-10) 92.4 75.0 67.3 42.3 35.2 38.8 4 5
Rebuffi et al. (2021) 92.2 74.8 66.7 42.6 33.6 38.1 5 9
Gowal et al. (2021b) 88.7 70.6 66.2 42.7 33.6 38.2 6 8
Gowal et al. (2021a) 91.1 73.2 66.0 42.5 34.0 38.2 7 7
Huang et al. (2023) 91.5 73.8 65.8 41.7 33.3 37.5 8 12
Rebuffi et al. (2021) 88.5 70.6 64.8 41.4 33.9 37.6 9 10
Xu et al. (2022) 93.6 77.2 64.7 39.6 37.0 38.3 10 6
Sehwag et al. (2022) 87.2 69.2 62.7 40.7 32.3 36.5 17 15
Rade and Moosavi-Dezfooli (2022) 88.1 69.4 60.9 35.1 30.2 32.6 22 57
Wu et al. (2020) 88.2 69.8 60.1 38.2 31.3 34.8 26 27
Carmon et al. (2019) 89.6 71.5 59.8 36.7 31.1 33.9 28 38
Wang et al. (2020) 87.5 70.2 56.7 35.5 32.6 34.0 52 35
Pang et al. (2020) 85.1 66.9 53.8 32.4 46.2 39.3 70 3
Zhang et al. (2020) 84.5 65.9 53.6 32.9 31.8 32.4 71 59
Rice et al. (2020) 85.3 66.4 53.5 32.0 27.8 29.9 72 89
Zhang et al. (2019) 84.9 66.5 52.6 31.6 26.5 29.1 76 99
Wong et al. (2020) 83.3 64.9 43.3 25.3 24.8 25.0 111 112

Robustness degrades significantly under distribution shift. For models trained
to be robust for CIFAR10 ℓ∞ (Fig. 2), CIFAR10 ℓ2 (Fig. 7) and ImageNet ℓ∞ (Fig. 8),
the average drop in robustness (ID adversarial accuracy - OOD adversarial accuracy) is
18%/20%/27% under dataset shift and 18%/42%/22% under threat shift.

The higher the ID robustness of the model, the more robustness degrades
under the shifts. For example, the top method in Tab. 1 degrades by 30% of robustness,
while the bottom method degrades by only 18%. This suggests that while the great progress
has been made on improving ID robustness, we only gain diminishing returns under the
distribution shifts.

Robustness degradation under noise shifts can be abnormally catastrophic
(the outliers under noise shifts in Fig. 2). This issue is most severe on Rade and Moosavi-
Dezfooli (2022) whose robustness falls by 43%/46%/38% under impulse/Gaussian/shot noise,
whereas the average drop is 12%/9%/8% (discussed in App. E). A similar yet milder drop is
also observed on Debenedetti et al. (2023) and models trained with some advanced data
augmentations like AutoAugment (Cubuk et al., 2019).

Higher ID robustness generally implies higher OOD robustness but not always
(see the last two columns of Tabs. 1, 2 and 3). For example, in Tab. 1, the ranking of Rade
and Moosavi-Dezfooli (2022) drops from 22 to 57 due to catastrophic degradation, while the
ranking of Pang et al. (2020) jumps from 70 to 3 due to its superior robustness under threat
shift (analyzed in App. G.3).
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Figure 3: R2 of regression between ID and OOD performance for Standardly-Trained (ST)
and Adversarially-Trained (AT) models under various dataset shifts for CIFAR10
ℓ∞. Higher R2 implies stronger linear correlation. The results for ST models
were copied from Miller et al. (2021). Some results of ST are missing (blank cells)
because they were not reported in Miller et al. (2021).

3 Linear Trend and OOD Prediction

It was previously observed that OOD accuracy is strongly correlated with ID accuracy
under many dataset shifts for Standardly-Trained (ST) models (Miller et al., 2021). This
property is important since it enables the model selection and OOD performance prediction
through ID performance. Nevertheless, it is unclear if such correlation still holds for
adversarial robustness. This is particularly intriguing because accuracy and robustness
usually go in opposite directions: i.e. there is a trade-off between accuracy and robustness
(Tsipras et al., 2019). Furthermore, the threat shifts as a scenario of OOD are unique to
adversarial evaluation and were, thus, never explored in the previous studies of accuracy
trends. Surprisingly, we find that ID and OOD robustness also have a linear correlation
under many distribution shifts. It is even more surprising that the correlation for AT models
is much stronger than that for ST models.

The following result is based on a large-scale analysis including over 60K OOD evaluations
of 706 models. They cover diverse training set-ups. More detail is given in App. C.2.

3.1 Linear Trend under Dataset Shift

This section studies how ID and OOD accuracy/robustness correlate under dataset shifts.
We fit a linear regression on four pairs of metrics (Acc-Acc, Rob-Rob, Acc-Rob, and Rob-Acc)
for each dataset shift and each training setup (CIFAR10 ℓ∞, CIFAR10 ℓ2 and ImageNet ℓ∞).
Taking Acc-Rob as an example, a linear model is fitted with ID accuracy as the observed
variable x and OOD adversarial robustness as the target variable y. The result for each
shift is given in App. H. Below are the major findings.

ID accuracy (resp. robustness) strongly correlates with OOD accuracy (resp.
robustness) in a linear relationship for most dataset shifts in Figs. 3, 9 and 10. This
suggests for these shifts ID performance is a good indication of OOD performance, and
more importantly, OOD performance can be reliably predicted by ID performance using
the fitted linear model. Nevertheless, under some shifts like CIFAR10-R and ImageNet-A,
ID and OOD performance are only weakly correlated.

AT models exhibit a stronger linear correlation between ID and OOD accuracy
under most corruption shifts on CIFAR10 in Figs. 3 and 9. The improvement is dramatic for
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Figure 4: R2 of regression between seen and unforeseen robustness, i.e., threat shift.

particular shifts. For example, R2 surges from nearly 0 (no linear correlation) for ST models
to around 0.8 (evident linear correlation) for AT models with Gaussian and shot noise data
shifts. Adversarial training hence improves the faithfulness of using ID performance for
model selection and OOD performance prediction.

Last, we observe no evident correlation when ID and OOD metrics misalign,
i.e., Acc-Rob and Rob-Acc for CIFAR10, but weak correlation for ImageNet ℓ∞ as
shown in Fig. 11. This is due to the varied trade-off between accuracy and robustness of
different models (discussed in details in App. F.1)

3.2 Linear Trend under Threat Shift

This section studies the relationship between seen and unforeseen robustness. Both seen and
unforeseen robustness are computed using only ID data yet with different attacks. Linear
regression is then conducted between seen robustness (x) and unforeseen robustness (y). The
result of regression for each threat shift is given in App. I. The sensitivity of the regression
results to the composition of the model zoo is discussed in App. F.

ℓp robustness correlates poorly with non-ℓp robustness. R2 of the regression
between ID ℓp robustness and PPGD, LPA and StAdv robustness is low in Fig. 4. In
contrast, ℓp robustness correlates strongly with ℓp robustness of different ϵ and
p-norm. R2 of their regression is higher than 0.7 across all assessed set-ups in Fig. 4.

3.3 Unsupervised OOD Robustness Prediction

The linear trends discovered above enable the prediction of OOD performance only if labeled
OOD data is available. There is a line of works (Baek et al., 2022; Deng and Zheng,
2021; Garg et al., 2021) showing that OOD accuracy can be predicted with only unlabeled
OOD data. We find that OOD adversarial robustness can be predicted, similarly, in an
unsupervised manner. The results are described in App. F.2.

4 Incompetence of Existing Methods in OOD Adversarial Robustness

4.1 Predicted Upper Limit of OOD Adversarial Robustness

Based on the precise linear trend observed above for existing robust training methods, we can
predict the OOD performance of a model trained by such a method from its ID performance
using the fitted linear model. Furthermore, we can extrapolate from current trends to
predict the maximum OOD robustness that can be expected from a hypothetical future
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Figure 5: The estimated upper limit of OOD robustness, and the slope, of OOD robustness
from ID robustness under various distribution shifts for CIFAR10 ℓ∞.

model that achieves perfect robustness on ID data (assuming the linear trend continues):
slope× 100 + intercept. This estimates the best OOD performance one can expect by fully
exploiting existing robust training techniques.

We find that continuously improving ID ℓp robustness following existing practice
is unlikely to achieve high OOD adversarial robustness. The upper limit of OOD
robustness under dataset shift, OODd, is 66%/71%/43% for CIFAR10 ℓ∞ (Fig. 5), CIFAR10
ℓ2 (Fig. 13) and ImageNet ℓ∞ (Fig. 14) respectively, and under threat shift OODt is
52%/35%/52% correspondingly. One of the accounts for this issue is that the existing
methods have poor conversion rate to OOD robustness from ID robustness as shown by the
slope of the linear trend in Figs. 5, 13 and 14.

4.2 Improving OOD Adversarial Robustness

To inspire the design of methods that have OOD robustness exceeding the above prediction,
this section investigates methods that have the potential to be effective for boosting the
OOD generalization of robustness. The specific set-ups and results are described in App. G.

In summary, most evaluated techniques, including training with extra data, data augmen-
tation, advanced model architectures, scaling-up models and unsupervised representation
learning, achieve relatively limited or even no adversarial effective robustness. This suggests
that applying them is unlikely to significantly change the linear trend in Sec. 3 and thus the
predicted upper limit of OOD robustness (Sec. 4). In contrast, the methods identified in
App. G.3 show the promise in achieving OOD performance beyond our prediction. Another
promising direction is to combine OOD generalization methods with adversarial training.

5 Conclusions

This work proposes a new benchmark to assess OOD adversarial robustness, provides many
insights into the generalization of existing robust models under distribution shift and identifies
several robust interventions beneficial to OOD generalization. We have analyzed the OOD
robustness of hundreds of diverse models to ensure that we obtain generally applicable
insights. As we focus on general trends, our analysis does not provide a detailed investigation
into individual methods or explain the observed outliers such as the catastrophic robustness
degradation. However, OODRobustBench provides a tool for performing such more detailed
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investigations in the future. It also provides a means of measuring progress towards models
that are more robust in real-world conditions and will, hopefully, spur the future development
of such models.
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Appendix A. Related Works

Robustness under dataset shift. Early work (Sehwag et al., 2019) studied the generaliza-
tion of robustness to novel classes that are unseen during training. On the other hand, our
setup only considers the input distribution shift and not the unforeseen classes. Recently,
Sun et al. (2022b) studied the OOD generalization of certified robustness under corruption
shifts for a few state-of-the-art methods. In contrast, we focus on empirical robustness
instead of certified robustness. Alhamoud et al. (2023) is the most relevant work. They
studied the generalization of robustness from multiple source domains to an unseen domain.
Different from them, the models we examine are trained on only one source domain, which
is the most common set-up in the existing works of adversarial training (Croce et al., 2021).
Moreover, we also cover much more diverse distribution shifts, models and training methods
than Sun et al. (2022b) and Alhamoud et al. (2023) so that the conclusion drawn in this
work is more general and comprehensive.

Except for a few exceptions (Geirhos et al., 2020; Sun et al., 2022a; Rusak et al., 2020;
Ford et al., 2019), previous work on generalization to input distribution shifts has not
considered adversarial robustness. Hence, work on robustness to OOD data and adversarial
attacks has generally happened in parallel, as exemplified by RobustBench (Croce et al.,
2021) which provides independent benchmarks for assessing performance on corrupt data
and adversarial threats.

Robustness against unforeseen adversarial threat models. It was observed
that naive adversarial training (Madry et al., 2018) with only one single ℓp threat model
generalizes poorly to unforeseen ℓp threat models, e.g., higher perturbation bound (Stutz
et al., 2020), different p-norm (Tramer and Boneh, 2019; Maini et al., 2020; Croce and Hein,
2022), or non-ℓp threat models including color transformation ReColor (Laidlaw and Feizi,
2019), spatial transformation StAdv (Xiao et al., 2018), LPIPS-bounded attacks PPGD
and LPA (Laidlaw et al., 2021) and many others (Kaufmann et al., 2023). We complement
the existing works by conducting a large-scale analysis on the unforeseen robustness of ℓp
robust models trained by varied methods and training set-ups. We are thus able to provide
new insights into the generalization of robustness to unforeseen threat models and identify
effective yet previously unknown approaches to enhance unforeseen robustness.

A line of works (Tramer and Boneh, 2019; Maini et al., 2020) defends against a union
of ℓp threat models by training with multiple ℓp threat models jointly, which makes these
threat models no longer unforeseen. PAT (Laidlaw et al., 2021) replaces ℓp bound with
LPIPS (Zhang et al., 2018) in adversarial training and achieves high robustness against
several unforeseen attacks. Alternatively, Dai et al. (2022) proposes variation regularization
in addition to ℓp adversarial training and improves unforeseen robustness.

A.1 Comparison with Related Works

Is the linear trend of robustness really expected given the linear trend of accuracy?

No. There is a well-known trade-off between accuracy and robustness in the ID setting
(Tsipras et al., 2019). We further confirm this fact for the models we evaluate in Fig. 11 in
the appendix. This means that accuracy and robustness usually go in opposite directions
making the linear trend we discover in both particularly interesting. Furthermore, the threat
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shifts as a scenario of OOD are unique to adversarial evaluation and were thus never explored
in the previous studies of accuracy trends.

How does the linear trends observed by us differ from the previously discovered
ones?

Robust models exhibit a stronger linear correlation between ID and OOD accuracy
for most corruption shifts (Fig. 3). Particularly, the boost on linearity is dramatic for
shifts including Impulse, Shot and Gaussian noises, Glass blur, Pixelate, and JPEG. For
instance, R2 surges from 0 (no linear correlation) for non-robust models to 0.84 (evident
linear correlation) for robust models with Gaussian noise data shifts. This suggests that, for
robust models, predicting OOD accuracy from ID accuracy is more faithful and applicable
to more shifts.

The linear trend of robustness is even stronger than that of accuracy for dataset shifts
(Fig. 3) but with a lower slope (Sec. 4). The latter leads to a predicted upper limit of
OOD robustness that is way lower than that of OOD accuracy suggesting that the OOD
generalization of robustness is much more challenging.

How does our analysis differ from the similar analysis in the prior works?

The scale of these previous works is rather small. For instance, RobustBench observes
linear correlation only for three shifts on CIFAR-10 based on 39 models with either ResNet
or WideResNet architectures. In such a narrow setting, it is actually neither surprising
to see a linear trend nor reliable for predicting OOD performance. By contrast, our
conclusion is derived from much more shifts on CIFAR-10 and ImageNet based on 706
models. Importantly, our model zoo covers a diverse set of architectures, robust training
methods, data augmentation techniques, and training set-ups. This makes our conclusion
more generalizable and the observed (almost perfect) linear trend much more significant.

Similarly, the existing works only test a few models under threat shifts. Those methods
are usually just the baseline AT method plus different architectures or the relevant defenses,
e.g., jointly trained with multiple threats. It is unclear how the state-of-the-art robust
models perform under threat shifts. By conducting a large-scale analysis, we find that those
SOTA models generalize poorly to other threats while also discovering several methods that
have relatively inferior ID performance but superior OOD robustness under threat shift. Our
analysis therefore facilitates future works in this direction by identifying what techniques
are ineffective and what are promising.

How does you benchmark differ from RobustBench?

Our benchmark focuses on OOD adversarial robustness while RobustBench focuses on ID
adversarial robustness. Specifically, our benchmark contrasts RobustBench in the datasets
and the attacks. We use CIFAR-10.1, CIFAR-10.2, CINIC, and CIFAR-10-R (ImageNet-
V2, ImagetNet-A, ImageNet-R, ObjectNet) to simulate input data distribution shift for
the source datasets CIFAR-10 (ImageNet), while RobustBench only uses the latter source
datasets. We use PPGD, LPA, ReColor, StAdv, Linf-12/255, L2-0.5 (PPGD, LPA, ReColor,
StAdv, Linf-8/255, L2-1) to simulate threat shift for the training threats Linf-8/255 (L2-0.5),
while RobustBench only evaluates the same threats as the training ones.
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Appendix B. Benchmark Set-up

B.1 Datasets

This section introduces the OOD datasets of natural shifts. For ImageNet, we have:

• ImageNet-V2 is a reproduction of ImageNet using a completely new set of images.
It has the same 1000 classes as ImageNet and each class has 10 images so 10K images
in total.

• ImageNet-A is an adversarially-selected reproduction of ImageNet. The images in
this dataset were selected to be those most misclassified by an ensemble of ResNet-50s.
It has 200 ImageNet classes and 7.5K images.

• ImageNet-R contains various artistic renditions of objects from ImageNet, so there
is a domain shift. It has 30K images and 200 ImageNet classes.

• ObjectNet is a large real-world dataset for object recognition. It is constructed with
controls to randomize background, object rotation and viewpoint. It has 313 classes
but only 104 classes compatible with ImageNet classes so we only use this subset. The
selected subset includes 17.2K images.

For CIFAR10, we have:

• CIFAR10.1 is a reproduction of CIFAR10 using a completely new set of images.
It has 2K images sampled from the same source as CIFAR10, i.e., 80M TinyImages
(Torralba et al., 2008). It has the same number of classes as CIFAR10.

• CIFAR10.2 is another reproduction of CIFAR10. It has 12K (10k for training and 2k
for test) images sampled from the same source as CIFAR10, i.e., 80M TinyImages. It
has the same number of classes as CIFAR10. We only use the test set of CIFAR10.2.

• CINIC is a downscaled subset of ImageNet with the same image resolution and classes
as CIFAR10. Its test set has 90K images in total, of which 20K images are from
CIFAR10 and 70K images are from ImageNet. We use only the ImageNet part.

• CIFAR10-R is a new dataset created by us. The images in CIFAR10-R and CIFAR10
have different styles so there is a domain shift. We follow the same procedure as CINIC
to downscale the images from ImageNet-R to the same resolution as CIFAR10 and
select images from the classes of ImageNet corresponding to CIFAR10 classes. We
follow the same class mapping between ImageNet and CIFAR10 as CINIC. Note that
ImageNet-R does not have images of the ImageNet classes corresponding to CIFAR10
classes of ”airplane” and ”horse”, so there are only 8 classes in CIFAR10-R.

In practice, we evaluate models using a random sample of 5K images from each of the
ImageNet variant datasets, and 10K images from each of the CIFAR10 variant datasets,
if those datasets contain more images than that number. This is done to accelerate the
evaluation and follows the practice used in RobustBench (Croce et al., 2021).
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Figure 6: Comparison of MM5 adversarial accuracy against AutoAttack adversarial accuracy.
Each data point represents a model.

B.2 Adversarial Evaluation

To evaluate a model, OODRobustBench performs 80 (79 for OODd and 1 for ID) runs of
adversarial evaluation for seen robustness evaluation. This makes computationally expensive
attacks like AutoAttack (Croce and Hein, 2020) impractical to use. To balance efficiency
and effectiveness, we use MM5 (Gao et al., 2022) to evaluate robustness since it is about 32×
faster than AutoAttack while achieving similar results (verified below). The perturbation
bound ϵ is 8/255 for CIFAR10 ℓ∞, 0.5 for CIFAR10 ℓ2 and 4/255 for ImageNet ℓ∞.

To verify the effectiveness of MM5, we compare its result with the result of AutoAttack
on the ID dataset across all publicly available models from RobustBench for CIFAR10 ℓ∞,
CIFAR10 ℓ2 and ImageNet ℓ∞. As shown in Fig. 6, almost all models1 are approximately
on the line of y = x (gray dashed line) suggesting that their MM5 adversarial accuracy is
very close to AA adversarial accuracy. Specifically, the mean gap between MM5 and AA
adversarial accuracy is 0.16 and the standard deviation is 0.32.

We follow the same setting as Laidlaw et al. (2021); Dai et al. (2022) to configure
the unforeseen attacks since this has been well tested to be effective. The ℓp attacks use
ϵ = 12/255 and ϵ = 0.5 for ℓ∞ and ℓ2 threats on CIFAR10 ℓ∞, ϵ = 8/255 and ϵ = 1 for ℓ∞
and ℓ2 threats on CIFAR10 ℓ2 and on ImageNet ℓ∞. The perturbation bound is 0.5 for
PPGD, 0.5 for LPA, 0.05 for StAdv and 0.06 for ReColor. The number of iterations is 40
for PPGD and LPA regardless of dataset, is 100 for StAdv and ReColor on CIFAR10 and
200 on ImageNet.

1. Two models, Ding et al. (2020) and Xu et al. (2022), are observed to have a slightly higher adversarial
accuracy compared to the corresponding AutoAttack results. We use MM+ (Gao et al., 2022) attack to
evaluate these two models for a more reliable evaluation and the result of MM+ is close to AutoAttack.
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Appendix C. Model Zoo

C.1 Criteria for Robust Models

We follow the same criteria as the popular benchmarks (RobustBench (Croce et al., 2021),
MultiRobustBench (Dai et al., 2023), etc), which only include robust models that (1) have
in general non-zero gradients w.r.t. the inputs, (2) have a fully deterministic forward pass
(i.e. no randomness) and (3) do not have an optimization loop. These criteria include most
AT models, while excluding most preprocessing methods because they rely on randomness
like Guo et al. (2018) or inner optimization loop like Samangouei et al. (2018) which leads to
false security, i.e., high robustness to the non-adaptive attack but vulnerable to the adaptive
attack.

Meanwhile, we acknowledge that evaluating dynamic preprocessing-based defenses is
still an active area of research. It is tricky (Croce et al., 2022), and there has not been a
consensus on how to evaluate them. So now, we exclude them for a more reliable evaluation.
We will keep maintaining this benchmark, and we would be happy to include them in the
future if the community has reached a consensus on that (e.g., if these models are merged
into RobustBench).

C.2 Model Zoo

Our model zoo consists of 706 models, of which:

• 396 models are trained on CIFAR10 by ℓ∞ 8/255

• 239 models are trained on CIFAR10 by ℓ2 0.5

• 56 models are trained on ImageNet by ℓ∞ 4/255

• 10 models are trained on CIFAR10 for non-ℓp adversarial robustness

• 5 models are trained on CIFAR10 for common corruption robustness

Among the above models, 66 models of CIFAR10 ℓ∞, 19 models of CIFAR10 ℓ2 and 18
models of ImageNet ℓ∞ are retrieved from RobustBench. 84 models are retrieved from the
published works including Li et al. (2023); Li and Spratling (2023c,b,a); Liu et al. (2023);
Singh et al. (2023); Dai et al. (2022); Hsiung et al. (2023); Mao et al. (2022). The remaining
models are trained by ourselves.

We locally train additional models with varying architectures and training parameters to
complement the public models from RobustBench on CIFAR-10. We consider 20 model ar-
chitectures: DenseNet-121 (Huang et al., 2017), GoogLeNet (Szegedy et al., 2015), Inception-
V3 (Szegedy et al., 2016), VGG-11/13/16/19 (Simonyan and Zisserman, 2015), ResNet-
34/50/101/152 (He et al., 2016), EfficientNet-B0 (Tan and Le, 2019), MobileNet-V2 (Sandler
et al., 2018), DLA (Yu et al., 2018), ResNeXt-29 (2x64d/4x64d/32x4d/8x64d) (Xie et al.,
2017), SeNet-18 (Hu et al., 2018), and ConvMixer (Trockman and Kolter, 2023). For each
architecture, we vary the training procedure to obtain 15 models across four adversarial
training methods: PGD (Madry et al., 2018), TRADES (Zhang et al., 2019), PGD-SCORE,
and TRADES-SCORE (Pang et al., 2022).

We train all models under both ℓ∞ and ℓ2 threat models with the following steps:

23



A Benchmark and Large-scale Analysis of OOD Adversarial Robustness

O
O
D
d

N
at

ur
al

C
IF

A
R
10

.1

C
IF

A
R
10

.2

C
IN

IC

C
IF

A
R
10

-R

C
or

ru
pt

io
n

Im
pu

lse
no

ise

G
au

ss
ia
n

no
ise

Sh
ot

no
ise

M
ot

io
n

bl
ur

D
ef
oc

us
bl

ur

G
la
ss

bl
ur

Zoo
m

bl
ur

Sn
ow Fo

g
Fr

os
t

B
rig

ht
ne

ss

C
on

tr
as

t

Pix
el
at

e

JP
EG

Ela
st
ic

0

20

40

60
ID
−

O
O

D
(%

)
Accuracy

Robustness

O
O
D
t

PPG
D

LPA

St
A
dv

R
eC

ol
or `∞ ` 2

20

40

60

80

Figure 7: Degradation of accuracy and robustness under various distribution shifts for
CIFAR10 ℓ2.

1. We use PGD adversarial training to train eight models with batch size ∈ {128, 512}, a
learning rate ∈ {0.1, 0.05}, and weight decay ∈ {10−4, 10−5}. We also save the overall
best hyperparameter choice. For the ℓ2 threat model, we fix the learning rate to 0.1
since we observe that with ℓ∞, 0.1 is strictly better than 0.05.

2. Using the best hyperparameter choice, we train one model with PGD-SCORE, three
with TRADES, and three with TRADES-SCORE. For TRADES and TRADES-
SCORE, we take their β parameter from 0.1, 0.3, 1.0.

After training, we observe that some locally trained models exhibit inferior accuracy
and/or robustness that is abnormally lower than others. The influence of inferior models
on the correlation analysis is discussed in App. F. Finally, we filter out all models with an
overall performance (accuracy + robustness) below 110. This threshold is determined to
exclude only those evidently inferior models so that the size of model zoo (557 after filtering)
is still large enough to ensure the generality and comprehensiveness of the conclusions drawn
on it.

Appendix D. Additional Result

D.1 Benchmark

• Tab. 2: benchmark result of state-of-the-art methods for CIFAR10 ℓ2.

• Tab. 3: benchmark result of state-of-the-art methods for ImageNet ℓ∞.

D.2 Performance Degradation Distribution

• Fig. 7: performance degradation distribution for CIFAR10 ℓ2

• Fig. 8: performance degradation distribution for ImageNet ℓ∞.
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Table 2: Performance, evaluated with OODRobustBench, of state-of-the-art models trained
on CIFAR10 to be robust to ℓ2 attacks. Top 3 results under each metric are
highlighted by bold and/or underscore. The column “OOD” gives the overall
OOD robustness which is the mean of the robustness to OODd and OODt.

Method
Accuracy Robustness Ranking (Rob.)

ID OODd ID OODd OODt OOD ID OOD

Wang et al. (2023) (WRN-70-16) 95.54 80.04 84.97 60.83 36.65 48.74 1 1
Wang et al. (2023) (WRN-28-10) 95.16 79.28 83.69 59.39 35.04 47.21 2 2
Rebuffi et al. (2021) (WRN-70-16-cutmix-extra) 95.74 79.90 82.36 57.94 31.71 44.82 3 4
Gowal et al. (2021a) (extra) 94.74 78.78 80.56 56.18 30.48 43.33 4 6
Rebuffi et al. (2021) (WRN-70-16-cutmix-ddpm) 92.41 75.95 80.42 56.82 34.58 45.70 5 3
Augustin et al. (2020) (WRN-34-10-extra) 93.97 77.40 78.81 54.71 31.62 43.16 6 7
Rebuffi et al. (2021) (WRN-28-10-cutmix-ddpm) 91.79 75.26 78.79 55.63 33.32 44.48 7 5
Sehwag et al. (2022) 90.93 74.00 77.29 54.33 29.44 41.88 8 8
Augustin et al. (2020) (WRN-34-10) 92.23 76.43 76.27 52.83 29.25 41.04 9 11
Rade and Moosavi-Dezfooli (2022) 90.57 73.55 76.14 53.35 29.69 41.52 10 9
Rebuffi et al. (2021) (R18-cutmix-ddpm) 90.33 72.96 75.87 52.21 30.06 41.14 11 10
Gowal et al. (2021a) 90.89 74.71 74.51 52.20 25.76 38.98 12 15
Sehwag et al. (2022) (R18) 89.76 72.31 74.42 51.76 26.68 39.22 13 13
Wu et al. (2020) 88.51 71.23 73.66 51.53 27.50 39.52 14 12
Augustin et al. (2020) 91.07 74.24 72.99 49.32 28.72 39.02 15 14
Engstrom et al. (2019) 90.83 73.85 69.25 46.65 17.71 32.18 16 16
Rice et al. (2020) 88.67 71.27 67.69 44.76 18.58 31.67 17 17
Rony et al. (2019) 89.04 71.77 66.46 44.54 18.31 31.42 18 18
Ding et al. (2020) 88.00 72.32 66.09 43.79 16.52 30.15 19 20
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Figure 8: Degradation of accuracy and robustness under various distribution shifts for
ImageNet ℓ∞.

D.3 Correlation Between ID and OOD Performance under Dataset Shifts

• Fig. 9: R2 of regressions for Acc-Acc and Rob-Rob for CIFAR10 ℓ2.

• Fig. 10: R2 of regressions for Acc-Acc and Rob-Rob for ImageNet ℓ∞.

• Fig. 11: R2 of regressions for Acc-Rob and Rob-Acc for CIFAR10 ℓ∞, CIFAR10 ℓ2
and ImageNet ℓ∞.
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Table 3: Performance, evaluated with OODRobustBench, of state-of-the-art models trained
on ImageNet to be robust to ℓ∞ attacks. Top 3 results under each metric are
highlighted by bold and/or underscore. The column “OOD” gives the overall
OOD robustness which is the mean of the robustness to OODd and OODt.

Method
Accuracy Robustness Ranking (Rob.)

ID OODd ID OODd OODt OOD ID OOD

Liu et al. (2023) (Swin-L) 78.92 45.84 59.82 23.59 29.88 26.74 1 1
Liu et al. (2023) (ConvNeXt-L) 78.02 44.74 58.76 23.35 30.10 26.72 2 2
Singh et al. (2023)(ConvNeXt-L-ConvStem) 77.00 44.05 57.82 23.09 27.98 25.53 3 3
Liu et al. (2023) (Swin-B) 76.16 42.58 56.26 21.45 27.02 24.24 4 7
Singh et al. (2023) (ConvNeXt-B-ConvStem) 75.88 42.29 56.24 21.77 27.89 24.83 5 5
Liu et al. (2023) (ConvNeXt-B) 76.70 43.06 56.02 21.74 26.97 24.36 6 6
Singh et al. (2023) (ViT-B-ConvStem) 76.30 44.67 54.90 21.76 28.98 25.37 7 4
Singh et al. (2023) (ConvNeXt-S-ConvStem) 74.08 39.55 52.66 19.35 26.87 23.11 8 9
Singh et al. (2023) (ConvNeXt-B) 75.08 40.68 52.44 20.09 26.06 23.07 9 10
Liu et al. (2023) (Swin-S) 75.20 40.84 52.10 19.67 24.73 22.20 10 12
Liu et al. (2023) (ConvNeXt-S) 75.64 40.91 51.66 19.40 25.00 22.20 11 11
Singh et al. (2023) (ConvNeXt-T-ConvStem) 72.70 38.15 49.46 17.97 25.32 21.65 12 14
Singh et al. (2023) (ViT-S-ConvStem) 72.58 39.24 48.46 17.83 25.43 21.63 13 15
Singh et al. (2023) (ViT-B) 72.98 42.38 48.34 20.43 26.26 23.34 14 8
Debenedetti et al. (2023) (XCiT-L12) 73.78 38.10 47.88 15.84 23.22 19.53 15 18
Singh et al. (2023) (ViT-M) 71.78 39.88 47.34 18.95 25.25 22.10 16 13
Singh et al. (2023) (ConvNeXt-T) 71.88 37.70 46.98 17.13 21.36 19.25 17 19
Mao et al. (2022) (Swin-B) 74.14 38.45 46.54 15.36 22.19 18.78 18 20
Liu et al. (2023)(ViT-B) 72.84 39.88 45.90 18.01 22.95 20.48 19 16
Debenedetti et al. (2023) (XCiT-M12) 74.04 37.00 45.76 14.73 22.82 18.77 20 21
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Figure 9: R2 of regression between ID and OOD performance for Standardly-Trained (ST)
and Adversarially-Trained (AT) models under various dataset shifts for CIFAR10
ℓ2. Higher R2 implies stronger linear correlation. The result of ST models is
copied from Miller et al. (2021).
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Figure 10: R2 of regression between ID and OOD performance for Standardly-Trained (ST)
and Adversarially-Trained (AT) models under various dataset shifts for ImageNet
ℓ∞. Higher R2 implies stronger linear correlation. The result of ST models is
copied from Miller et al. (2021).
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Figure 12: The estimated upper limit of OOD accuracy and the conversion rate, a.k.a. slope,
to OOD accuracy from ID accuracy under various distribution shifts for CIFAR10
ℓ∞.

D.4 Predicted Upper Limit of OOD Accuracy and Robustness

• Fig. 12: the estimated upper limit of OOD accuracy and the conversion rate for
CIFAR10 ℓ∞.

• Fig. 13: the estimated upper limit of OOD performance and the conversion rate for
CIFAR10 ℓ2.

• Fig. 14: the estimated upper limit of OOD performance and the conversion rate for
ImageNet ℓ∞.

Appendix E. Catastrophic degradation of robustness

We observe this issue on only one implementation, using WideResNet28-10 with extra
synthetic data (model id: Rade2021Helper ddpm on RobustBench), from Rade and Moosavi-
Dezfooli (2022) for CIFAR10 ℓ∞. There are three other implementations of this method on
RobustBench. None of them, including the one using ResNet18 with extra synthetic data,
is observed to suffer from this issue. It seems that catastrophic degradation in this case is
specific to the implementation or training dynamics.

On the other hand, catastrophic degradation consistently happens on the models trained
with AutoAugment or IDBH but not other tested data augmentations. It suggests the
possibility that a certain image transformation operation exclusively used by AutoAugment
and IDBH cause this issue. Besides, catastrophic degradation also consistently happens on
the models trained using the receipt of Debenedetti et al. (2023) under Gaussian and shot
noise shifts. However, it employs a wide range of training techniques, so further experiments
are required to identify the specific cause.
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Figure 13: The estimated upper limit of OOD performance and the conversion rate, a.k.a.
slope, to OOD performance from ID performance under various distribution
shifts for CIFAR10 ℓ2.
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Figure 14: The estimated upper limit of OOD performance and the conversion rate, a.k.a.
slope, to OOD performance from ID performance under various distribution
shifts for ImageNet ℓ∞.
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Appendix F. How Inferior Models Affect the Correlation Analysis

This section studies the influence of the construction of model zoo on the result of correlation.
We use the overall performance (accuracy + robustness) to filter out inferior models. As we
increasing the threshold of overall performance for filtering, the average overall performance
of the model zoo increases, the number of included models decreases and the weight of
the models from other published sources on the regression grows up. Our locally trained
models are normally inferior to the public models regarding the performance since the latter
employs better optimized and more effective training methods and settings. The training
methods and settings of public models are also much more diverse.

The correlation for particular shifts varies considerably as more inferior models removed.
R2 declines considerably under CIFAR10-R, noise, fog, glass blur, frost and contrast for
both Acc-Acc and Rob-Rob on CIFAR10 ℓ∞ (Fig. 15) and ℓ2 (Fig. 16). A similar trend
is also observed for threat shifts, ReColor and different p-norm for CIFAR10 ℓ∞ as shown
in Fig. 17. It suggests that the weak correlation under these shifts mainly results from
those high-performance public models, and is likely related to the fact that these models
include much diverse training methods and settings. For example, all observed catastrophic
degradation under the noise shifts occur in the public models. Note that the locally trained
models have a large diversity in model architectures particularly within the family of CNNs,
but it seems that this architectural diversity does not effect the correlation as much as other
factors.

In contrast, correlation is improved for most threat shifts for CIFAR10 ℓ2 as shown in
Fig. 17. As shown in Fig. 30, the locally trained (inferior) models and the public (high-
performance) models have divergent linear trends (most evident in the plot of PPGD).
That’s why removing models from either group will enhance the correlation. Note that such
divergence is not evident in the figures of CIFAR10 ℓ∞ (Fig. 29) and ImageNet ℓ∞ (Fig. 31).

F.1 No Evident Correlation when ID and OOD Metrics Misalign

Inferior models also cause OOD robustness to not consistently increase with the ID accuracy,
i.e., the poor correlation between ID accuracy (robustness) and OOD robustness (accuracy)
because they have high accuracy yet poor robustness. These models are mainly produced by
some of our custom training receipts and take a considerable proportion of our CIFAR-10
model zoo, whereas the model zoo of ImageNet is dominated by ones from public sources.

F.2 Unsupervised OOD Robustness Prediction

We study here if OOD adversarial robustness can be predicted, similarly, in an unsupervised
manner2. We run the experiments with CIFAR-10 ℓ∞ models for CIFAR-10.1 and Impulse
noise shifts (Fig. 18) and find that a linear trend is also observed in the agreement between
the predictions of any pair of two robust models: R2 is 0.99 for CIFAR-10.1 shift and 0.95
for Impulse noise shift. This suggests that the unsupervised method (Baek et al., 2022) is
also effective in predicting OOD adversarial robustness.

2. We ignore here the label requirement for adversarial attacks and assume that adversarial examples are
already generated.
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Figure 15: How R2 under various dataset shifts changes as the models with lower overall
performance are removed from regression for CIFAR10 ℓ∞. Each row, with the
filtering threshold labeled at the lead, corresponds to a new filtered model zoo
and the regression conducted it. ”NC” refers to No Custom models, so all models
are retrieved from either RobustBench or other published works.
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Figure 16: How R2 under various dataset shifts changes as the models with lower overall
performance are removed from regression for CIFAR10 ℓ2. Each row, with the
filtering threshold labeled at the lead, corresponds to a new filtered model zoo
and the regression conducted it. ”NC” refers to No Custom models, so all models
are retrieved from either RobustBench or other published works.
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Figure 17: How R2 under various threat shifts changes as the models with lower overall
performance are removed from regression. Each row, with the filtering threshold
labeled at the lead, corresponds to a new filtered model zoo and the regression
conducted it. ”NC” refers to No Custom models, so all models are retrieved from
either RobustBench or other published works.
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Figure 18: Correlation between ID and OOD prediction agreement on adversarial examples
for CIFAR10 ℓ∞ AT models. Each data point represents the prediction agreement
of a pair of two models.
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Table 4: The effect of training with extra data on the OOD generalization of accuracy and
robustness.

Dataset
Threat

Training
Model Extra ID OODd OODt

Model Architecture Data Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 Linf

Gowal
et al.
(2021a)

WideResNet70-16
- 85.29 57.24 66.98 35.90 -0.56 0.30 29.39 -2.18

Synthetic 88.74 66.24 70.68 42.76 -0.08 0.74 33.65 -2.13
Real 91.10 66.03 73.24 42.58 0.26 0.71 34.00 -1.67

Appendix G. Effective Robust Intervention

The effectiveness is quantified by two metrics: OOD performance and effective performance.
Effective performance measures the extra resilience of a model under distribution shift when
compared to a group of models by adapting the metric of “Effective Robustness” Taori et al.
(2020):

R′(f) = Rood(f)− β(Rid(f)) (4)

where β(·) is a linear mapping from ID to OOD metric fitted on a group of models. We
name this metric effective robustness (adversarial effective robustness) when Rid and Rood

are accuracy (robustness). A positive adversarial effective robustness means that f achieves
adversarial robustness above what the linear trend predicts based on its ID performance,
i.e., f is advantageous over the fitted models on OOD generalization. Note that higher
adversarial effective robustness is not equivalent to higher OOD robustness since the model
may have a lower ID robustness.

All models used in this analysis are retrieved from RobustBench or other published
works to ensure they are well-trained by the techniques to be examined. For each robust
intervention, some general training setting, the reference to the source of models and the
detailed performance are summarized in the following tables:

• Tab. 4: training with extra data.

• Tab. 5: training with advanced data augmentation.

• Tab. 6: training with advanced model architectures.

• Tab. 7: scaling models up.

• Tab. 8: training techniques of VR, HE, MMA and AS.

The specific experiment setting for each model can be found in its original paper.

G.1 Data

Training with extra data boosts both robustness and adversarial effective robustness
compared to training schemes without extra data (see Fig. 19a). There is no clear advantage
to training with extra real data (Carmon et al., 2019) rather than synthetic data (Gowal
et al., 2021b) except for the adversarial effective robustness under threat shift which is
improved more by real data.
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Table 5: The effect of data augmentation on the OOD generalization of accuracy and
robustness. The results reported in Fig. 19b are the mean of the results on ViT
and WideResNets.

Dataset
Threat

Training
Model Data ID OODd OODt

Model Architecture Augmentation Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 Linf

Li and
Spratling
(2023c)

ViT-B

RandomCrop 83.23 47.02 66.48 28.85 0.86 0.54 27.36 0.57
Cutout 84.22 49.57 67.23 30.68 0.69 0.56 29.74 1.75
CutMix 80.92 47.45 63.93 29.89 0.48 1.27 30.48 3.49
TrivialAugment 80.33 46.61 64.59 29.56 1.69 1.54 30.40 3.80
AutoAugment 82.75 48.11 65.89 29.78 0.73 0.69 30.90 3.60
IDBH 86.92 51.55 70.51 32.08 1.45 0.54 30.59 1.68

WideResNet34-10

RandomCrop 86.52 52.42 68.11 31.55 -0.58 -0.61 26.47 -2.84
Cutout 86.77 53.31 68.40 31.03 -0.53 -1.76 27.00 -2.74
CutMix 87.41 53.89 68.97 31.71 -0.55 -1.50 28.50 -1.50
TrivialAugment 86.98 54.18 69.85 32.94 0.73 -0.47 28.62 -1.52
AutoAugment 87.93 55.10 70.05 32.17 0.04 -1.90 29.06 -1.51
IDBH 88.62 55.56 70.96 32.99 0.30 -1.41 28.58 -2.21

Table 6: The effect of model architecture on the OOD generalization of accuracy and
robustness.

Dataset
Threat

Training
Model Model ID OODd OODt

Model Architecture Size (M) Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

ImageNet ℓ∞ Liu et al. (2023)

ResNet152 60.19 70.92 43.62 34.43 14.13 -1.71 -1.26 17.23 -3.47
ConvNeXt-B 88.59 76.70 56.02 43.06 21.74 1.03 0.33 26.97 -0.63
ViT-B 86.57 72.84 45.90 39.88 18.01 1.78 1.51 22.95 0.98
Swin-B 87.77 76.16 56.26 42.58 21.45 1.10 -0.07 27.02 -0.72

Table 7: The effect of model size on the OOD generalization of accuracy and robustness.
The results reported in Fig. 19d are averaged over three architectures at the
corresponding relatively model size. For example, the result of ”small” is averaged
over WideResNet28-10, ResNet50 and ConvNeXt-S-ConvStem.

Dataset
Threat

Training
Model Model ID OODd OODt

Model Architecture Size Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 ℓ∞
Rebuffi
et al.
(2021)

WideResNet28-10 36.48 87.33 60.88 69.35 38.54 -0.10 0.35 33.63 0.36
WideResNet70-16 266.80 88.54 64.33 70.62 41.01 0.04 0.35 34.12 -0.76
WideResNet106-16 415.48 88.50 64.82 70.65 41.43 0.11 0.42 33.90 -1.22

ImageNet ℓ∞
Liu et al.
(2023)

ResNet50 25.56 65.02 32.02 28.43 9.23 -1.68 -0.53 13.71 -0.52
ResNet101 44.55 68.34 39.76 31.74 12.44 -1.76 -1.08 16.82 -1.72
ResNet152 60.19 70.92 43.62 34.43 14.13 -1.71 -1.26 17.23 -3.47

ImageNet ℓ∞
Singh
et al.
(2023)

ConvNeXt-S-ConvStem 50.26 74.08 52.66 39.55 19.35 0.19 -0.42 26.87 1.14
ConvNeXt-B-ConvStem 88.75 75.88 56.24 42.29 21.77 1.10 0.26 27.89 0.16
ConvNeXt-L-ConvStem 198.13 77.00 57.82 44.05 23.09 1.71 0.80 27.98 -0.63
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Table 8: The effect of different adversarial training methods on the OOD generalization of
accuracy and robustness.

Dataset Threat Training
ID OODd OODt

Acc. Rob. Acc. Rob. EAcc. ERob. Rob. ERob.

CIFAR10 ℓ∞

PGD (Li and Spratling, 2023c) 86.52 52.42 68.11 31.55 -0.58 -0.61 26.47 -2.84
VR-ℓ∞ (Dai et al., 2022) 72.72 49.92 56.12 31.84 0.34 1.47 34.70 6.55

PGD (Rice et al., 2020) 85.34 53.52 66.46 32.07 -1.12 -0.88 27.89 -1.94
HE (Pang et al., 2020) 85.14 53.84 66.96 32.45 -0.43 -0.72 46.20 16.22

PGD (locally-trained) 80.44 38.98 62.40 22.18 -0.60 -0.39 21.77 -1.27
MMA (Ding et al., 2020) 84.37 41.86 68.22 24.65 1.54 0.02 35.12 10.74

PGD Gowal et al. (2021a) 91.10 66.03 73.24 42.58 0.26 0.71 34.00 -1.67
AS Bai et al. (2023) 95.23 69.50 79.09 43.32 2.25 -1.03 46.71 9.41
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Figure 19: The robustness (Rob.) and AER of various robust techniques.
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Table 9: The performance of OOD generalization methods and adversarial self-supervised
learning under distribution shift on CIFAR10 ℓ∞. The architecture is ResNet18
except that CARD-Deck using a WideResNet-18-2. The AER of PLAT and CARD-
Deck is invalid (“-”) because of their (nearly) 0 ID/ODD robustness.

Method
ID OODd OODt

Acc. Rob. Acc. Rob. ERob. AER Rob. AER

PGD 81.13 48.72 62.38 30.20 -1.27 0.68 27.95 0.36
PLAT 94.75 0.16 80.39 0.06 4.00 - 0.00 -
CARD-Deck 96.56 1.00 83.54 0.50 5.46 - 0.00 -
ACL 82.31 49.38 64.19 30.11 -0.56 0.12 28.53 0.64

Advanced data augmentation improves robustness under both types of shifts and
adversarial effective robustness under threat shift over the baseline augmentation Random-
Crop (see Fig. 19b). Nevertheless, advanced data augmentation methods other than TA
(Müller and Hutter, 2021) degrade adversarial effective robustness under dataset shift.

G.2 Model

Advanced model architecture greatly boosts robustness and adversarial effective robust-
ness under both types of shift over the baseline ResNet (He et al., 2016) (Fig. 19c). Among
all tested architectures, ViT (Dosovitskiy et al., 2021) achieves the highest adversarial
effective robustness.

Scaling model up improves robustness under both types of shift and adversarial effective
robustness under dataset shift, but dramatically impairs adversarial effective robustness
under threat shift (Fig. 19d). The latter is because increasing model size greatly improves
ID robustness but not OOD robustness so that the real OOD robustness is much below the
OOD robustness predicted by linear correlation.

G.3 Adversarial Training

VR (Dai et al., 2022), the state-of-the-art defense against unforeseen attacks, greatly
boosts adversarial effective robustness under threat shifts in spite of inferior ID robustness.
Surprisingly, VR also clearly boosts adversarial effective robustness under dataset shift even
though not designed for dealing with these shifts.

Training methods HS (Pang et al., 2020), MMA (Ding et al., 2020) and AS (Bai et al.,
2023) achieve an adversarial effective robustness of 16.22%, 10.74% and 9.41%, respectively,
under threat shift, which are much higher than corresponding models trained with PGD.
Importantly, in contrast to VR, these methods also improve ID robustness resulting in a
further boost on OOD robustness. This makes them a potentially promising defense against
multi-attack (Dai et al., 2023).
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G.4 OOD Generalization Methods

Two leading methods, CARD-Deck (Diffenderfer et al., 2021) (ranked 1st) and PLAT (Kireev
et al., 2022), from the common corruptions leaderboard of RobustBench are evaluated using
our benchmark in Tab. 9. Despite the expected remarkable OOD clean generalization under
OODd shifts, they offer little or no adversarial robustness regardless of ID or OOD setting.
It suggests that OOD generalization methods alone do not help OOD adversarial robustness
unless combined with adversarial training.

G.5 Unsupervised Representation Learning

Unsupervised learning has been observed to train models that generalize to distribution
shifts better than supervised learning (Shi et al., 2023; Shen et al., 2021). However, it is
unclear whether or not unsupervised learning will benefit OOD adversarial robustness. To
test this we evaluated a model trained by Adversarial Contrastive Learning (ACL) (Jiang
et al., 2020) which combines self-supervised contrastive learning with adversarial training.
The effective robustness under dataset shift and threat shift is 0.12% and 0.64% (Tab. 9),
suggesting only marginal benefit in improving OOD robustness.
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Appendix H. Plots of Correlation per Dataset Shift
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Figure 20: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ∞ AT models
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Figure 21: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ∞ AT models
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Figure 22: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ∞ AT models
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Figure 23: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ2 AT models
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Figure 24: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ2 AT models
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Figure 25: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for CIFAR10 ℓ2 AT models
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Figure 26: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for ImageNet ℓ∞ AT models
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Figure 27: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for ImageNet ℓ∞ AT models
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Figure 28: Correlation between ID accuracy and OOD accuracy (odd rows); ID robustness
and OOD robustness (even rows) for ImageNet ℓ∞ AT models
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Figure 29: Correlation between seen and unforeseen robustness on ID data for CIFAR10 ℓ∞
AT models

Appendix I. Plots of Correlation per Threat Shift
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A Benchmark and Large-scale Analysis of OOD Adversarial Robustness
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Figure 30: Correlation between seen and unforeseen robustness on ID data for CIFAR10 ℓ2
AT models
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Figure 31: Correlation between seen and unforeseen robustness on ID data for ImageNet
ℓ∞ AT models
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