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ABSTRACT

Variational autoencoders (VAEs) often suffer from posterior collapse, which is
a phenomenon that the learned latent space becomes uninformative. This is re-
lated to local optima of the objective function that are often introduced by a fixed
hyperparameter resembling the data variance. We suggest that this variance pa-
rameter regularizes the VAE and affects its smoothness, which is the magnitude
of its gradient. An inappropriate choice of this parameter causes oversmoothness
and leads to posterior collapse. This is shown theoretically by analysis on the
linear approximated objective function and empirically in general cases. We pro-
pose AR-ELBO, which stands for adaptively regularized ELBO (Evidence Lower
BOund). It controls the strength of regularization by adapting the variance pa-
rameter, and thus avoids oversmoothing the model. Generation models trained by
proposed objectives show improved Fréchet inception distance (FID) of images
generated from the MNIST and CelebA datasets.

1 INTRODUCTION

The variational autoencoder (VAE) framework (Kingma & Welling, 2014; Higgins et al., 2017; Zhao
et al., 2019) is a popular approach to achieve generative modeling in the field of machine learning.
In this framework, a model that approximates the true posterior of observation data, is learned by a
joint training of encoder and decoder, which creates a stochastic mapping between the observation
data and the learned deep latent space. The latent space is assumed to follow a prior distribution. The
generation of a new data sample can be done by sampling the latent space and passing the sample
through the decoder. It is common to assume that both the prior on the latent space and the posterior
of the observation data follow a Gaussian distribution. This setup is also known as the Gaussian
VAE. In this case, the variance of the decoder output is usually modeled as an isotropic matrix σ2

xI
with a scalar parameter σ2

x ≥ 0. Furthermore, in order to deal with the intractable log-likelihood of
the true posterior, the evidence lower bound (ELBO) (Jordan et al., 1999) is adopted as the objective
function instead.

While VAE-based generative models are usually considered to be more stable and easier to train
than generative adversarial networks (Goodfellow et al., 2014), they often suffer from the problem
of posterior collapse (Bowman et al., 2015; Sønderby et al., 2016; Alemi et al., 2017; Xu & Durrett,
2018; He et al., 2019; Razavi et al., 2019a; Ma et al., 2019), in which the latent space has little
information of the input data. The phenomenon is generally mentioned as “the posterior collapses
to the prior in the latent space” (Razavi et al., 2019a). Recently, several works have suggested
that the variance parameter σ2

x in the ELBO is strongly related to posterior collapse. For example,
Lucas et al. (2019) analyzed posterior collapse through the analysis on a linear VAE. It revealed that
an inappropriate choice of σ2

x will introduce sub-optimal local optima and cause posterior collapse.
Moreover, Lucas et al. (2019) reveals that contrary to the popular belief, these local optima are not
introduced by replacing the log-likelihood with the ELBO, but by an excessively large σ2

x. On the
other hand, it can be shown that fixing σ2

x to an excessively small value leads to under-regularization
of the decoder, which can cause overfitting. However, in most implementations of a Gaussian VAE,
the variance parameter σ2

x is a fixed constant regardless of the input data and is usually 1.0. In
another work, Dai & Wipf (2019) proposed a two-stage VAE and treated σ2

x as a training parameter.
Besides the inappropriate choice of the variance parameter, posterior collapse can also induced by
other causes. For example, Dai et al. (2020) found that, small nonlinear perturbation introduced in
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the network architecture can also result into extra sub-optimal local minima. However, in this work
we will keep our focus on the variance parameter.

We suggest that σ2
x affects the strength of regulation over the gradient magnitude of the decoder. We

call the expected gradient magnitude the smoothness throughout this paper. The smaller the gradient
magnitude, the smoother the model. In particular, we would like to focus on the local smoothness of
the model, which is the smoothness evaluated within the neighborhood of the encoded latent variable
of the observation data. Thus, we begin with the following hypothesis:

Main Hypothesis. The value of σ2
x controls the regularization strength of the smoothness of the

decoder. Therefore, an excessively large σ2
x causes oversmoothness, which results in posterior col-

lapse.

Following the hypothesis, the estimation of σ2
x should be related to properties of the approximated

posterior of the latent space, such as its local smoothness. We will start with analyzing how σ2
x

regularizes the local smoothness of the stochastic decoder and then propose new objective functions
that inherently determine σ2

x via maximum likelihood estimation (MLE). This proposed objective
function is named AR-ELBO (Adaptively Regularized ELBO), which controls the regularization
strength via σ2

x. Furthermore, several variations are derived for different parameterizations of vari-
ance parameters.

Our main contributions are listed as follows:

1. We show that our main hypothesis holds for linear approximated ELBO and empirically
holds in the general case in Section 3. This also suggests that the variance parameter σ2

x
should be estimated from properties of the approximated posterior instead of being treated
as a hyperparameter.

2. We propose the AR-ELBO, an ELBO-based objective function that adaptively regularizes
the smoothness of the decoder by MLE of the variance parameter σ2

x in Section 4. Vari-
ations of AR-ELBO for several variance parameterizations of posterior distributions are
also derived. AR-ELBO prevents the model from the posterior collapse induced by over-
smoothing and improves the quality of generation, which is shown in Section 5.

The organization of this paper is as follows. In Section 2, we propose a mathematical definition of
posterior collapse in the form of mutual information. This also includes the conventional definition:
“the posterior collapses to the prior in the latent space”. In Section 3, the theoretical analysis and
empirical support of the main hypothesis are given. We perform an analysis showing that σ2

x affects
the smoothness of the decoder via variance parameters of the latent space learned by the encoder.
In Section 4, we propose new AR-ELBO objective functions for various variance parameterizations
of posterior distributions, which can relieve the decoder from being oversmoothed in the training
and prevent posterior collapse. These objective functions no longer include any hyperparameters
and can adaptively estimate the variance parameter σ2

x from the observation data. It should be noted
that if we adaptively determine σ2

x with the proposed AR-ELBO, the strength of regularization of
the decoder smoothness will gradually decrease as training progresses. In Section 5, we conduct an
experiment on the MNIST and CelebA datasets, which shows that utilizing the proposed AR-ELBO
with the standard Gaussian VAE can be competitive with many other variations of VAE models in
most situations.

Throughout this paper, we use a, a and A for a scalar, a column vector and a matrix, and ln and log
denote the natural logarithm and common logarithm, respectively. Our code is available from the
following URL1.

2 POSTERIOR COLLAPSE IN GAUSSIAN VAE

We begin with the standard formulation of the Gaussian VAE, which is the foundation of our re-
search. A definition of posterior collapse is proposed by using mutual information (MI).

1URL hidden due to blind review.
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2.1 GAUSSIAN VAE

Consider a data space X ⊂ Rdx and a sample set {xi}Ni=1 ⊂ X , where xi ∼ pdata(x). The empirical
distribution p̃data(x) on X can be evaluated by p̃data(x) = 1

N

∑N
n=1 δ(x − xn), where δ(·) denotes

the Dirac delta function. In the standard VAE framework, a latent space Z ⊂ Rdz is learned and the
sampled latent variables z ∈ Z are used to generate data samples x′ ∈ X . Let qφ(z|x) and pθ(x|z)
denote the stochastic encoder and decoder, respectively. Trainable parameters of the two neural
networks are denoted as φ and θ. The decoder generates data samples by pθ(x) := Ep(z)[pθ(x|z)],
where p(z) is the prior distribution onZ . The encoder and decoder are jointly trained by minimizing
the following objective function:

L = −Epdata(x) [ln pθ(x)] + Epdata(x)DKL (qφ(z|x) ‖ pθ(z|x)) + Epdata(x) [ln pdata(x)]

= DKL (pdata(x) ‖ pθ(x)) + Epdata(x)DKL (qφ(z|x) ‖ pθ(z|x)) . (1)

This objective function was derived in Zhao et al. (2019), which represents everything in the form of
Kullback–Leibler divergence, and is equivalent to ELBO maximization up to an additive constant.

In the context of the Gaussian VAE, the encoder and decoder are assumed to satisfy

qφ(z|x) = N (z|µφ(x),diag(σ2
φ(x))) and pθ(x|z) = N (x|µθ(z), σ2

xI). (2)

The prior p(z) is also assumed to be the Gaussian distribution as p(z) = N (z|0, I). Substituting (2)
into (1) while omitting terms independent of θ and φ leads to the following objective:

J̃σ2
x
(θ, φ) = Ep̃data(x)

[
1

2σ2
x

Eqφ(z|x)[‖x− µθ(z)‖22] +DKL(qφ(z|x) ‖ p(z))

]
, (3)

which can be interpreted as the sum of the expected values of the reconstruction loss and the reg-
ularization term. In the case of a Gaussian prior and posterior, the regularization term is equal to
1
2

∑dz
i=1(σ2

φ,i(x) + µφ,i(x)2 − log σ2
φ,i(x)− 1).

2.2 POSTERIOR COLLAPSE

Posterior collapse is a major problem, where the encoder learns to map inputs to the latent space
while ignoring the data distribution. In this phenomenon, the MI between input data and recon-
structed data through the encoder-decoder path is reduced because the latent space has less informa-
tion about the data distribution. Here, we suggest the following definition of posterior collapse.
Definition 1. Posterior collapse is defined as the MI I(x; x′) becoming nearly zero, where x′ :=
µθ(z) with z ∼ qφ(z|x).

In many works (Bowman et al., 2015; Sønderby et al., 2016; Alemi et al., 2017; He et al., 2019;
Razavi et al., 2019a), the phenomenon denoted as posterior collapse has been mathematically rep-
resented as Epdata(x)DKL(qφ(z|x) ‖ p(z)) → 0, which we hereafter refer to as KL collapse (Xu &
Durrett, 2018). However, posterior collapse is not always caused by the diminished KL divergence,
i.e., posterior collapse with Epdata(x)DKL(qφ(z|x) ‖ p(z)) 6= 0 can occur. The proposed definition of
posterior collapse includes KL collapse from the following theorem, which is proven in Appendix A.
Theorem 2. I(x; x′)→ 0 as Epdata(x)DKL(qφ(z|x) ‖ p(z))→ 0 holds for any pθ(x|z).

In Appendix E, it is demonstrated that posterior collapse can happen even if the KL divergence is
nonzero when the posterior variance is fixed in Z .

3 VARIANCE PARAMETER σ2
x AND THE LOCAL SMOOTHNESS

In this section, we provide mathematical and empirical support of the main hypothesis. Throughout
this section, we adopt the following parameterization for the encoder for simplicity: qφ,σ2

z
(z|x) =

N (z|µφ(x), σ2
zI), where the variance is parameterized as an isotropic matrix unlike the conventional

VAE. A similar analysis on the conventional VAE can be found in Appendix B. It begins with
showing that the choice of σ2

x affects the convergence point of σ2
z , which is the variance parameter

of the latent space. Then, we show that σ2
z acts as the weight of the gradient penalty, which is
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implicitly included in (3). This supports the main hypothesis that the over-regulation imposed by a
large σ2

x via σ2
z causes the oversmoothness of the decoder and leads to posterior collapse. It is also

empirically supported by observing the tendencies of the convergence point of σ2
z , the smoothness

and the MI I(x,x′). Ultimately, these items of evidence motivated us to develop a method that
adapts σ2

x to prevent oversmoothing of the decoder.

3.1 REGULARIZATION EFFECT OF σ2
x IN LINEAR APPROXIMATED ELBO

The effect of σ2
x on the convergence point of the variance parameter σ2

z can be observed
from two extreme cases, σ2

x → 0+ and σ2
x → ∞. In the first case, J̃σ2

x
reduces to

Ep̃data(x)Eqφ,σ2z (z|x)[‖x − µθ(z)‖22], and it becomes zero only if σ2
z = 0. In the second case,

J̃σ2
x

reduces to Ep̃data(x)DKL(qφ,σ2
z
(z|x) ‖ p(z)), and σ2

z becomes 1 at the minimum point, from
DKL(qφ,σ2

z
(z|x) ‖ p(z)) = dz

2 (σ2
z − log σ2

z − 1) + ‖µφ(x)‖22. This shows that a small σ2
x makes σ2

z

converge to a value around 0, while a large σ2
x makes σ2

z converge to a value around 1.

If σ2
z is sufficiently small, as the training progresses to a certain extent, the perturbed decoding

process µθ(z + εz) around z = µφ(x) with εz ∼ N (εz|0, σ2
zI) can be approximated as a linear

function. The ELBO can be approximated as follows by using the linear approximation of µθ(·) and
omitting terms independent of θ and φ:

J̃σ2
x
(θ, φ, σ2

z) ≈ 1

2σ2
x

Ep̃data(x)

[
‖x−µθ(µφ(x))‖22 +σ2

z ‖∇µθ(µφ(x))‖2F +2σ2
x ‖µφ(x)‖22

]
. (4)

In the approximation above, ‖ · ‖F is the Frobenius norm and σ2
z is treated as a function parameter.

The derivation of the above approximation can be found in Appendix B. Equation (4) decomposes
the objective function into three terms: a reconstruction error term, gradient penalty term and L2

regularization term. As one can see from (4), σ2
z regularizes the smoothness of the decoder by

penalizing its gradient norm in training. Although the linear approximation above is derived for
the simplified VAE parameterization, we also provide the linear approximation of the ELBO for the
standard VAE parameterization (2) in Appendix B, where the second term in (4) becomes a weighted
gradient penalty.

Summarizing the above observations shows that σ2
x affects the smoothness via σ2

z , while σ2
z di-

rectly regularizes the smoothness. This means that if σ2
x is excessively large, it will cause over-

regularization of the decoder and suppress I(z,x′)(≥ I(x,x′)), which finally leads to posterior
collapse. To avoid such over-regularization, σ2

x and σ2
z should be determined appropriately. In ad-

dition, an experiment shows that posterior collapse can be triggered by directly manipulating σ2
z , as

discussed in Appendix E.

3.2 EMPIRICAL STUDY ON SMOOTHNESS OF DECODER IN THE GENERAL CASE

Section 3.1 shows the impact of σ2
x on the regularization of the decoder smoothness through the

linear approximated objective function. To support the main hypothesis in the general case, an ex-
periment on the MNIST dataset (LeCun et al., 1998) is conducted. Several criteria are accessed
to provide evidence for the regularization effect of σ2

x on the decoder smoothness and its conse-
quential effect on MI I(x,x′). To confirm that σ2

x affects the smoothness via σ2
z , we conduct the

experiment for two cases: stochastic encoding and deterministic encoding. While the stochastic
encoder qφ,σ2

z
(z|x) is used in the former case, a VAE equipped with a deterministic encoder, i.e.,

σ2
z is fixed to zero during the training, is investigated in the latter case. Observing the difference

between the two cases provides empirical support for Section 3.1. To investigate the relation be-
tween σ2

x and the smoothness of the decoder clearly, common generalization techniques such as
batch normalization (Ioffe & Szegedy, 2015; Santurkar et al., 2018) and weight decay are not used.

Criteria We used several criteria to observe the impact of σ2
x in the experiment, such as the recon-

struction error (MSE), KL divergence value Ep̃data(x)DKL(qφ(z|x) ‖ p(z)) and the final converged
value of σ2

z . In addition, we also estimate the local smoothness of the decoder and the MI between x
and x′, denoted as I(x,x′). To access the local smoothness, the expected local smoothness (ELS)
is introduced, which is the lower bound of the Lipschitz constant of the decoder. Consider a sam-
ple that is decoded with perturbation µθ(µφ(x) + εz), where the perturbation follows a zero-mean
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Table 1: Evaluation of various criteria for different σ2
x: the expected value of ‖x′ − x‖22 (MSE),

KL divergence, the converged value of σ2
z , the upper bound of the MI I(x′; z), the expected gap

(perturbation variance s2z are set to 10−2 and 10−3) and expected local smoothness (ELS).

log σ2
x

Stochastic encoding Deterministic encoding

MSE KL σ2
z MI Expected gap ELS MSE MI Expected gap ELS

10−2 10−3 10−2 10−3

0.0 52.74 0.00 1.00 0.03 6.31e-5 6.35e-6 3.97e-4 5.95 12.5 74.6 25.3 7.43e+2
−0.1 18.03 9.39 9.56e-2 9.7 1.05 0.108 6.76 5.69 14.7 69.1 22.5 6.82e+2
−0.2 15.15 10.93 6.48e-2 12.5 1.30 0.135 8.34 5.38 17.9 63.4 20.7 6.37e+2
−0.3 13.08 12.54 4.36e-2 16.0 1.51 0.157 9.72 5.37 21.4 58.1 17.9 5.78e+2
−0.4 11.38 14.13 3.01e-2 20.6 1.77 0.184 1.14e+1 5.31 25.8 58.2 15.5 5.40e+2
−0.5 10.18 15.30 2.14e-2 26.3 1.99 0.208 1.28e+1 5.26 30.6 53.1 12.9 4.74e+2
−0.6 9.16 16.72 1.55e-2 33.2 2.16 0.227 1.40e+1 5.14 38.9 48.9 11.8 4.42e+2
−0.7 8.25 18.05 1.11e-2 42.3 2.31 0.244 1.50e+1 5.17 46.1 45.5 10.1 3.98e+2
−0.8 7.72 19.27 8.21e-3 52.9 2.40 0.254 1.56e+1 5.06 58.0 43.2 9.15 3.71e+2
−0.9 7.13 20.55 5.97e-3 64.9 2.43 0.257 1.58e+1 4.98 71.9 39.2 7.83 3.29e+2
−1.0 6.70 21.75 4.45e-3 82.3 2.57 0.272 1.67e+1 5.01 89.1 35.3 6.61 2.89e+2

Guassian distribution with variance s2z , εz ∼ N (εz|0, s2zI). Let εz and ε′z be i.i.d. random variables.
We define the expected gap ∆2(s2z) as

∆2(s2z) := Epdata(x)EN (εz|0,s2zI)N (ε′z|0,s2zI)[∆
2(x, εz, ε

′
z)] (5)

with ∆2(x, εz, ε
′
z) := ‖µθ(µφ(x) + εz)− µθ(µφ(x) + ε′z)‖22.

As s2z decereases, the ratio ∆2(s2z)/(2s
2
z) converges and becomes an indicator of

Ep̃data(x)[‖∇µθ(µφ(x))‖2F ], which is regularized by σ2
z in (4). Therefore, we can now define

the ELS as

Ep̃data(x)[‖∇µθ(µφ(x))‖2F ]. (6)

Further details of the ELS are described in Appendix C. As a reference, we estimate the upper bound
of I(x,x′), which is I(x′; z), by Monte Carlo estimation.

Results Table 1 summarizes the results for different σ2
x. In the stochastic encoding case, a larger σ2

x
consistently leads to a larger σ2

z . This results in a smaller expected gap, a smaller ELS and a lower
upper bound of MI. This supports the main hypothesis that a larger σ2

x makes the decoder smoother.
In the case of σ2

x = 1.0, all the criteria except MSE become nearly zero, where KL collapse and
posterior collapse both occur due to the over-regularization of the smoothness of the latent space.
On the other hand, in the deterministic encoding case, the ELS increases with σ2

x. This is because
σ2
x does not directly regularize the decoder via the gradient penalty as in (4). As a result, the MI

upper bound does not shrink to zero even if σ2
x = 1.0, where posterior collapse occurs in the case of

stochastic encoding. The difference in the results between the two cases clearly suggests that a large
σ2
x triggers the oversmoothness via σ2

z , which is consistent with the discussion in Section 3.1. These
results provide empirical support of the main hypothesis as well as the discussion in Section 3.1.
Further details and examples of images are shown in Appendix D.

3.3 DIFFICULTY OF CHOOSING AN APPROPRIATE σ2
x

According to previous sections, a large σ2
x will cause oversmoothness. Therefore, we consider the

case of fixing σ2
x to a sufficiently small value to avoid the problem. We arrive at the following

theorem, whose proof can be found in Appendix F:

Theorem 3. Consider the global optimum of Jσ2
x
(θ, φ, σ2

z) w.r.t. a given σ2
x. If σ2

x → 0, then
σ2
z → 0.

In Theorem 3, Jσ2
x
(θ, φ, σ2

z) is optimized on the basis of the true data distribution instead of the
empirical data distribution. According to the theorem, σ2

z converges to zero as σ2
x approaches zero,

which leads to zero gradient penalty for the decoder as the VAE training progresses. In practice, we
have no access to pdata(x), but we have access to the empirical distribution p̃data(x). Theorem 3 is
satisfied even when pdata(x) is replaced with p̃data(x). In this case, where σ2

x is chosen to be small,
the optimization process of J̃σ2

x
will fit pθ,σ2

x
(x) to the empirical distribution p̃data(x), which usually

results in overfitting.
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As shown above, choosing an appropriate σ2
x that avoids both oversmoothness and overfitting is

nontrivial. Moreover, it is likely that σ2
x should be adapted depending on the status of training.

Therefore, it is intuitive to adapt σ2
x instead of fixing it, which will be described in the next section.

4 ADAPTIVELY REGULARIZED ELBO

A modified ELBO-based objective function is proposed, which can be interpreted as an implicit
update scheme that simultaneously updates σ2

x and the rest of the parameters. We also derive corre-
sponding objective functions for models with different variance parameterizations.

4.1 ELBO WITH ADAPTIVE σ2
x

In this subsection, we newly optimize the VAE objective function (1) w.r.t. all the parameters includ-
ing σ2

x, which is usually fixed in existing implementations. Following the process of establishing (3)
but keeping the terms related to σ2

x, we arrive at:

J̃ (θ, φ, σ2
x) = Ep̃data(x)

[
1

2σ2
x

Eqφ(z|x)
[
‖x− µθ(z)‖22

]
+DKL (qφ(z|x) ‖ p(z))

]
+
dx
2

lnσ2
x. (7)

From the partial derivative of J̃ w.r.t. σ2
x, the MLE of σ2

x, denoted as σ̂2
x, can be evaluated with

the other parameters fixed. Then, the ordinary network parameters θ and φ can be updated by
optimizing (7) with the variance σ2

x fixed. This combination of MLE and the alternative update
between (θ, φ) and σ2

x guarantees that (i) if θ and φ are fixed, then there exists σ̂2
x such that

J̃ (θ, φ, σ̂2
x) ≤ J̃ (θ, φ, σ2

x) and (ii) for the σ̂2
x obtained in the previous step, there exist θ̂ and φ̂,

such that J̃ (θ̂, φ̂, σ̂2
x) ≤ J̃ (θ, φ, σ̂2

x). In this respect, the convergence of the optimization is assured
and the parameter σ2

x is kept as the MLE during the whole training stage. This inspired us to develop
a weight scheduling scheme for σ̂2

x, leading to a modified ELBO-based objective function. Consider
the trainable network parameters (θ, φ) and the variance parameter σ2

x. The update of the objective
J̃ (θ, φ, σ2

x) is divided as

σ2(t+1)
x =

1

dx
Ep̃data(x)Eqφ(t) (z|x)

[
‖x− µθ(t)(z)‖22

]
(8a)

θ(t+1), φ(t+1) = arg min
θ,φ

J̃
σ
2(t+1)
x

(θ, φ), (8b)

where t is the iteration index. The step updating (θ, φ) is the same as that in the standard VAE;
the step updating σ2

x in (8a) can be interpreted as determining an appropriate balance between the
reconstruction error and the KL term in J̃σ2

x
(θ, φ). As the learning progresses, the parameter σ2

x will
decrease along with the MSE Ep̃data(x)Eqφ(z|x)[‖x−µθ(z)‖22], which is consistent with the discussion
in Dai & Wipf (2019).

Proposed objective function (AR-ELBO) The update scheme above can be further simplified by
substituting (8a) into (7), which converts J̃ (θ, φ, σ̂2

x) into

J̃AR(θ, φ) =
dx
2

lnEp̃data(x)Eqφ(z|x)
[
‖x− µθ(z)‖22

]
+ Ep̃data(x)DKL (qφ(z|x) ‖ p(z)) , (9)

where all constant terms w.r.t. the parameters are omitted. Optimizing (9) also makes σ2
x remain

as the MLE during the VAE training. Moreover, (9) is equivalent to the standard Gaussian VAE
plus weight balancing with (8b). This relieves the VAE from the problem of imbalance between the
KL divergence term and the reconstruction loss. Also, as stated by Theorem 3, decreasing σ2

x also
decreases σ2

z . This gradually relieves the regularization of the ELS (6), which can be observed from
(4). However, this eventually diminishes the gradient penalty; therefore, we suggest using early-
stopping and learning rate scheduling to deal with this situation, which can give the decoder both
appropriate smoothness and generalization capability.

4.2 OBJECTIVES FOR VARIOUS PARAMETERIZATIONS

In the standard VAE given by (2), the variance of the decoded distribution on X , denoted as Σx, is
modeled as an identity matrix, i.e., Σx = σ2

xI. In this case, σ2
x is simply a scalar value and the re-

construction objective is the same as conventional MSE and is minimized as in (9). However, out of
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Table 2: Parameterizations of posterior variance in X and corresponding reconstruction objectives.

Variance model (Σx) Reconstruction objective (J̃rec(θ, φ, Σ̂x))

(Iso-I) σ2
xI

dx
2 lnEp̃data(x)Eqφ(z|x)[‖x− µθ(z)‖22]

(Iso-D) σ2
x(z)I dx

2 Ep̃data(x)Eqφ(z|x)[ln ‖x− µθ(z)‖22]

(Diag-I) diag(σ2
x) 1

2

∑dx
i=1 lnEp̃data(x)Eqφ(z|x)[(xi − µθ,i(z))2]

(Diag-D) diag(σ2
x(z)) 1

2

∑dx
i=1 Ep̃data(x)Eqφ(z|x)[ln(xi − µθ,i(z))2]

curiosity, we would like to explore three other variance parameterizations in addition to (2) and de-
rive corresponding reconstruction objectives for these cases, in which the reconstruction objectives
are no longer equal to MSE.

In fact, the variance Σx can not only be parameterized by an isotropic/diagonal matrix but also
be chosen to be independent or dependent on z. We denote these in Table 2 as Iso-I (Isotropic-
Independent), Iso-D (Isotropic-Dependent), Diag-I (Diagonal-Independent) and Diag-D (Diagonal-
Dependent). The first case, Iso-I, corresponds to the standard variance model Σx = σ2

xI. For these
parameterizations, the corresponding objectives may be summarized as

J̃AR(θ, φ, Σ̂x) = J̃rec(θ, φ, Σ̂x) + Ep̃data(x)DKL (q(z|x) ‖ p(z)) (10a)

J̃rec(θ, φ,Σx) =
1

2
Ep̃data(x)Eq(z|x)

[
trace

(
Σ−1x (x− µθ(z))(x− µθ(z))>

)
+ ln |Σx|

]
. (10b)

By evaluating the partial derivative of J̃rec w.r.t. Σx, i.e., using its MLE, the reconstruction loss
J̃rec corresponding to each case can be derived. All the derivations can be found in Appendix G.
The final reconstruction objectives with different parameterizations of Σx are listed in Table 2. It
is interesting to note that the reconstruction error for each dimension in the data space has to be
calculated separately for Diag-D; meanwhile, only MSE for the whole minibatch is needed in Iso-I.
Considering the optimization stability in practical situations, we suggest adding a small constant,
e.g., 10−6, before taking the logarithm except for in the case of Iso-I.

Although the proposed objective functions are capable of determining Σx appropriately, it should
be noted that a gap still exists between the prior p(z) and the aggregated posterior qφ(z) obtained
by the proposed methods. The cause can be observed from the reformulated (1) (see Appendix H):

L = DKL (pdata(x) ‖ pθ(x)) +DKL (pdata(x)qφ(z|x) ‖ qφ(z)pθ(x|z)) +DKL(qφ(z) ‖ p(z)) .
(11)

The first two terms in (11) can eventually become dominant in the VAE training. As a consequence,
generation through sampling latent variables from the prior can cause off-distribution samples to
be generated. To overcome this prior–posterior mismatch, at least two approaches can be adopted:
(i) conduct another posterior estimation after the ordinary VAE training (van den Oord et al., 2017;
Razavi et al., 2019b; Dai & Wipf, 2019; Ghosh et al., 2020; Morrow & Chiu, 2020) or (ii) add
another regularizing term to the objective function (Makhzani et al., 2015; Tolstikhin et al., 2018;
Zhao et al., 2019). The former approach is adopted in our work since it is effective (Ghosh et al.,
2020) and is applicable to any VAE variation.

To summarize, the proposed AR-ELBO regularizes the Gaussian VAE with appropriate weighting
for the gradient penalty without the need for an extra hyperparameter. Moreover, the remaining
mismatch between the prior and posterior is mitigated by an extra pass of posterior estimation. A
detailed discussion comparing the proposed objective function with previous works can be found in
Appendix I.

5 EXPERIMENTS

We compare the proposed methods with the following models: VAE, RAE (Ghosh et al., 2020),
WAE-MMD (Tolstikhin et al., 2018) and plain autoencoder (AE). The quality of generated im-
ages is evaluated using Fréchet Inception Distance (FID) (Heusel et al., 2017) on the MNIST and

7
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Table 3: Numerical evaluation on MNIST and CelebA. The MSE of sample reconstruction is evalu-
ated on the test set. The quality of generated samples is measured by FID for three cases: sampling
the latent variables from the prior and from the estimated posterior by 2nd VAE and GMM.

MNIST CelebA

MSE FID MSE FID
Prior 2ndVAE GMM-10 Prior 2ndVAE GMM-10 GMM-100

VAE (σ2
x = 1.0) 20.25 55.85 182.64 58.96 121.91 55.46 139.32 54.66 53.94

WAE-MMD 4.34 22.76 15.00 13.70 62.66 52.89 51.32 43.57 41.88
AE 4.31 – 20.66 13.20 61.44 – 62.34 46.47 43.41
RAE 4.28 – 18.54 13.68 61.49 – 57.26 46.50 43.89
RAE-GP 4.30 – 18.89 13.71 61.48 – 54.54 43.63 41.10
Iso-I w/ trainable Σ†x 4.28 20.93 14.83‡ 13.39 61.42 63.21 63.12‡ 51.40 49.61
Diag-I w/ trainable Σ†x 5.70 26.08 18.44 15.72 62.65 59.66 54.75 45.86 43.50
Iso-D w/ trainable Σ†x 4.45 27.40 16.38 13.67 65.29 195.58 53.13 50.09 47.31
Diag-D w/ trainable Σ†x 5.33 146.43 26.02 27.90 85.33∗ 354.20∗ 217.06∗ 188.30∗ 188.05∗

Ours (Iso-I w/ AR-ELBO) 4.40 22.78 15.77 12.21 62.02 82.20 52.48 42.82 41.03
Ours (Diag-I w/ AR-ELBO) 5.35 24.15 17.18 13.38 63.51 87.44 53.60 45.85 42.83
Ours (Iso-D w/ AR-ELBO) 4.31 22.94 17.57 12.89 61.38 78.24 49.97 43.27 40.39
Ours (Diag-D w/ AR-ELBO) 6.80 16.64 10.49 10.05 70.75 64.40 55.30 46.63 45.27
†
Σx is learned as a trainable parameter like in Dai & Wipf (2019). However, the work does not include Diag-I,
Iso-D and Diag-D parameterizations.
‡

2ndVAE is the second-stage VAE proposed in Dai & Wipf (2019) after the main VAE.
∗

The training of Diag-D with a trainable Σx does not converge to a feasible local optima. Moreover, the trend of
MSE diverges with that of the loss function. Therefore, the result which achieves the best MSE on the test set is
reported here. On the other hand, Diag-D with the proposed AR-ELBO does not suffer from this issue.

CelebA (Liu et al., 2015) datasets with the default train/test split. Regarding the prior–posterior
mismatch, three approaches are tested on all the models. The first approach is the conventional
case, which samples the latent variables from the prior. The other two approaches are applied after
the ordinary training. The second approach forms an aggregated posterior qφ(z) by a second-stage
VAE (Dai & Wipf, 2019). The third approach uses a Gaussian mixture model (GMM) with 10 to
100 components (Ghosh et al., 2020) to fit the posterior. The baseline is the standard VAE, and two
methods of choosing σ2

x are tested: (i) σ2
x fixed to 1.0 as in general implementations; and (ii) σ2

x
learned with (7) by an optimizer as an usual trainable parameter (Dai & Wipf, 2019). In RAE, its
objective function is the sum of the reconstruction error, the regularization of the decoder and the
L2 regularization of the latent space. In RAE-GP, gradient penalty is used as the regularization of
the decoder. The objective function of RAE-GP is equivalent to (4) except for that the weighting
parameters are determined manually. For WAE-MMD, inverse multi-quadratic kernels with seven
scales are used as proposed by Tolstikhin et al. (2018). Note that both WAE and RAE have hy-
perparameters in their objective functions. In contrast, the other methods, as well as the proposed
objective functions, include no hyperparameters. However, regarding the major factor that affects
the smoothness of the decoder, the proposed methods and VAE control smoothness by regularizing
terms in their objective functions, while WAE and AE rely only on the network architecture and
generalization techniques.

The latent space dimensions for MNIST and CelebA were set to dz = 16 and 64, respectively,
consistent with Ghosh et al. (2020). A common network architecture, which is adopted from Chen
et al. (2016) and described in Appendix J, is used for all models. In Table 3, we report the evaluation
result of each method as: (i) the MSE of the reconstructed test data and (ii) the FID of generated
images. The proposed methods (Diag-I, Iso-D and Diag-D) except for Iso-I do not necessarily
achieve the best MSE, since the MSE is no longer the reconstruction loss for them. In the case
of sampling z ∈ Z from the prior, a low FID is achieved by WAE due to the relatively strong
regularization of the aggregated posterior with MMD. The images generated by the proposed method
achieve the best FID score on MNIST, and is competitive on CelebA. It should be noted that the
learned σ2

x values on MNIST and CelebA from Iso-I are 0.0056 and 0.0050, respectively, which are
much smaller than 1.0. Examples of reconstructed and generated images are shown in Appendix K.

As shown in Table 3, different parameterizations of variances can affect the FID greatly. In order
to clearly observe the advantage of estimating Σx by MLE rather than estimating it as an usual
trainable parameter, we examined the two approaches on all the four parameterizations (Iso-I, Iso-
D, Diag-I and Diag-D): (i) solve (10b) using MLE as (9) (AR-ELBO); (ii) simply treat Σx as a

8
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Table 4: Evaluation of FID scores of interpolated images on MNIST and CelebA. The interpolation
ratio for each image pair is designated as (i) the mid-point; and (ii) a random-point between the two.

MNIST CelebA
Mid-point Random-point Mid-point Random-point

VAE (σ2
x = 1.0) 62.18 63.86 57.87 55.54

WAE-MMD 17.27 12.41 41.93 38.80
AE 18.49 12.81 50.35 45.01
RAE 17.71 12.99 48.78 43.97
RAE-GP 17.98 12.96 45.22 40.58
Iso-I w/ trainable Σx 15.66 12.73 52.01 48.83
Diag-I w/ trainable Σx 17.34 14.77 44.22 41.23
Iso-D w/ trainable Σx 17.03 13.33 48.51 43.97
Diag-D w/ trainable Σx 51.65 31.66 238.74 212.39
Ours (Iso-I w/ AR-ELBO) 14.77 11.27 42.59 39.19
Ours (Diag-I w/ AR-ELBO) 17.24 13.08 45.55 41.92
Ours (Iso-D w/ AR-ELBO) 15.30 12.01 42.49 38.93
Ours (Diag-D w/ AR-ELBO) 11.96 8.68 46.86 44.15

trainable parameter (Dai & Wipf, 2019). The comparative result can be obtained from the bottom
eight lines of Table 3. It shows that applying AR-ELBO improves FID scores in most of the cases.

Furthermore, in order to examine the feasibility of these learned latent spaces, we also evaluated the
FID scores of the images generated by interpolating two latent variables with ratios between [0, 1]
with all the models above. The proposed method still shows the best performance in terms of FID
on MNIST and is competitive on CelebA. This result suggests the feasibility of proposed method on
downstream tasks. The detail and image samples can be found in Appendix L.

6 CONCLUSION

We analyzed the posterior collapse phenomenon on the Gaussian VAE and investigated how strongly
the variance parameter impacts the local smoothness of the decoder. The relation between the
variance parameter and the local smoothness is examined both theoretically and empirically. We
proposed optimization schemes to regulate the local smoothness appropriately, which leads to the
prevention of posterior collapse due to oversmoothness. The proposed AR-ELBO implicitly opti-
mizes the variance parameter to avoid over-regularizing of the smoothness. In addition, we proposed
several parameterizations (Iso-D, Diag-I, Diag-D) of posterior variances, which are the extensions
of the conventional VAE (Iso-I). The corresponding AR-ELBOs for these parameterizations are
also derived. Our experiments show that the Gaussian VAE equipped with the proposed objective
functions is competitive with other state-of-the-art models in terms of FID for both generated and
interpolated images. Moreover, the proposed method remains stable in the most complicated pa-
rameterization (Diag-D). In this work, the prior–posterior mismatch was covered by extra posterior
estimation methods; however, we would like to seek a thorough solution for this in the future.
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A PROOF OF THEOREM 2

Let x be the input sample. We denote its corresponding latent space vector as z and the reconstructed
sample as x′. We have the following relation:

I(x; z) ≥ I(x; x′), (12)

which can be proved similarly to the proof of Lemma 5 in Appendix F. On the other hand, I(x; z)
can be evaluated by using the definition of the MI as

I(x; z) = DKL(p̃data(x)qφ(z|x) ‖ p̃data(x)qφ(z))

= Ep̃data(x)Eqφ(z|x)[ln qφ(z|x)− ln qφ(z)]

= Ep̃data(x)DKL(qφ(z|x) ‖ p(z))−DKL(qφ(z) ‖ p(z)) (13)

≤ Ep̃data(x)DKL(qφ(z|x) ‖ p(z)), (14)

where I(x; z), DKL(qφ(z|x) ‖ p(z)) and DKL(qφ(z) ‖ p(z)) are all non-negative. Inequalities (12)
and (14) lead to the proof.
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B LINEAR APPROXIMATION OF THE ELBO-BASED OBJECTIVE Jσ2
x

We start with parameterizing the encoder while following the assumption in (2). Given a sufficiently
small perturbation with p(εz) = N (z|0,diag(σ2

φ(x))), the linear approximation of µθ(·) at µφ(x)
can be represented as

µθ(µφ(x) + εz) = µθ(µφ(x)) + Jµθ (µφ(x))εz, (15)

where Jµθ (µφ(x)) represents the Jacobian matrix of µθ(z) at z = µφ(x). Substituting (15) into (3)
leads to

Eqφ(z|x)[‖x− µθ(z)‖22]

= EN (z|0,diag(σ2
φ(x)))

[
‖x− (µθ(µφ(x)) + Jµθ (µφ(x))εz)‖22

]
= ‖x− µθ(µφ(x))‖22 + EN (z|0,diag(σ2

φ(x)))

[
ε>z Jµθ (µφ(x))>Jµθ (µφ(x))εz

]
+ EN (z|0,diag(σ2

φ(x)))

[
(x− µθ(µφ(x)))>Jµθ (µφ(x))εz

]︸ ︷︷ ︸
=0

, (16)

where the last term is zero under the assumption that the perturbation is sufficiently small. The
expectation in the second right-hand-side term can be evaluated as

EN (z|0,diag(σ2
φ(x)))

[
ε>z Jµθ (µφ(x))>Jµθ (µφ(x))εz

]
= trace

(
EN (z|0,diag(σ2

φ(x)))

[
εzε
>
z

]
Jµθ (µφ(x))>Jµθ (µφ(x))

)
= trace

(
diag(σ2

φ(x))Jµθ (µφ(x))>Jµθ (µφ(x))
)

=

dx∑
i=1

dz∑
j=1

σ2
φ,j(x)

(
∂µθ,i(z)

∂zj

∣∣∣∣
z=µφ(z)

)2

, (17)

which can be interpreted as the gradient penalty for the decoder weighted by σ2
φ(x). By substituting

the above result into (3), its linear approximation can be obtained as

J̃σ2
x
(θ, φ) ≈ 1

2σ2
x

Ep̃data(x)

[
‖x− µθ(µφ(x))‖22

+

dx∑
i=1

dz∑
j=1

σ2
φ,j(x)

(
∂µθ,i(z)

∂zj

∣∣∣∣
z=µφ(x)

)2

+ 2σ2
x‖µφ(x)‖22

]
. (18)

In the case of the simplified parameterization described in Section 3, the second right-hand-side
term in (18) can be further reduced to σ2

z‖∇µθ(µφ(x))‖2F . In the simplified case, the perturbation
follows a multivariate i.i.d. Gaussian distribution, εz ∼ N (z|0, σ2

zI). Under this assumption, we
have

Ep(εz)
[
ε>z Jµθ (µφ(x))>Jµθ (µφ(x))εz

]
= Ep(εz)

[
ε>z

(
dz∑
i=1

λiui(x)ui(x)>

)
εz

]

=

dz∑
i=1

λiui(x)>Ep(εz)[εzε
>
z ]ui(x)

= 2σ2
z

dz∑
i=1

λi, (19)

where λi is the ith eigenvalue of Jµθ (µφ(x))Jµθ (µφ(x))>, which is a symmetrical positive definite
matrix, and the corresponding eigenvectors are (ui(x))dzi=1. Following the simplified assumption,
the second right-hand-side term in (16) now becomes EN (z|0,σ2

zI)

[
ε>z Jµθ (µφ(x))>Jµθ (µφ(x))εz

]
.

Combining (19) and the fact that
∑dz
i=1 λi = trace(Jµθ (µφ(x))Jµθ (µφ(x))>) =
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‖∇µθ(µφ(x))‖22, we can finally obtain the following linear approximation for the simplified pa-
rameterization:

EN (z|0,σ2
zI)

[
ε>z Jµθ (µφ(x))>Jµθ (µφ(x))εz

]
= EN (z|0,σ2

zI)

[
trace

(
Jµθ (µφ(x))>Jµθ (µφ(x))

)]
= σ2

z

dx∑
i=1

dz∑
j=1

(
∂µθ,i(z)

∂zj

∣∣∣∣
z=µφ(z)

)2

= σ2
z ‖∇µθ(µφ(x))‖2F . (20)

C EXPECTED LOCAL SMOOTHNESS OF DECODER

Here, we describe the relation between the expected local smoothness Ep̃data(x)[‖∇µθ(µφ(x))‖2F ]

and the expected gap ∆2(s2z). First, consider the relation
∆2(x, εz, ε

′
z) := ‖µθ(µφ(x) + εz)− µθ(µφ(x) + ε′z)‖22 = Kθ(µφ(x), εz, ε

′
z)

2‖εz − ε′z‖22,
(21)

with the perturbation εz following the Gaussian distributionN (εz|0, s2zI). Applying the expectation
operator to (21) leads to

∆2(x, εz, ε
′
z) = Ep(εz,ε′z)

[
Kθ(µφ(x), εz, ε

′
z)

2‖εz − ε′z‖22
]

(22)

≤ Ep(εz,ε′z)
[
Kθ(µφ(x), εz, ε

′
z)

2
]
Ep(εz,ε′z)

[
‖εz − ε′z‖22

]
(23)

=: 2K2
θ (µφ(x), s2z)dzs

2
z, (24)

where p(εz, ε′z) := N (εz|0, s2zI)N (ε′z|0, s2zI), εz − ε′z ∼ N (εz − ε′z|0, 2s2zI) and K2
θ (µφ(x)) :=

Ep(εz,ε′z)
[
Kθ(µφ(x), εz, ε

′
z)

2
]
. Note that in (23), we assume that K2

θ (µφ(x)) is independent of εz
and ε′z . Consider the case that the variance s2z is sufficiently small to approximate µθ(z) linearly
around z = µφ(x), which is perturbed with variance s2z . In such a case, Kθ(µφ(x), εz, ε

′
z) is

independent of εz and ε′z , which fits the assumption in (23). Under this local linearity assumption,
K2
θ (µφ(x)) is bounded as

K2
θ (µφ(x), s2z) ≤ K2

θ , (25)
where Kθ denotes the Lipschitz constant of the decoder.

Following the assumption, K2
θ (µφ(x), s2z) can be formulated by invoking (15) as

K2
θ (µφ(x), s2z) =

Ep(εz,ε′z)[‖µθ(µφ(x) + εz)− µθ(µφ(x) + ε′z)‖22]

Ep(εz,ε′z)[‖εz − ε′z‖22]

=
Ep(εz,ε′z)[(εz − ε′z)

>Jµθ (µφ(x))>Jµθ (µφ(x))(εz − ε′z)]

2dzs2z

=
trace

(
Ep(εz,ε′z)[(εz − ε′z)(εz − ε′z)

>]Jµθ (µφ(x))>Jµθ (µφ(x))
)

2dzs2z

=
trace

(
Jµθ (µφ(x))>Jµθ (µφ(x))

)
dz

. (26)

Applying the expectation operator to (26) leads to
K2
θ (s2z) := Ep̃data

[
K2
θ (µφ(x), s2z)

]
=

Ep̃data(x)

[
trace

(
Jµθ (µφ(x))>Jµθ (µφ(x))

)]
dz

=
Ep̃data

[
‖∇µθ(µφ(x))‖2F

]
dz

. (27)

Finally, combining (24) and (27) yields the following connection between the expected gap and the
expected local smoothness:

∆2(s2z) = 2Ep̃data

[
‖∇µθ(µφ(x))‖2F

]
s2z. (28)
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D EXPERIMENTAL DETAILS FOR SECTION 3.2

D.1 EXPERIMENTAL SETUP

In the experiment, the model is trained with the Adam optimizer with a learning rate of 10−3. The
dimension of the latent space is set to 8. We run 200 epochs with a minibatch size of 64 for all σ2

x.
We use the following DNN architectures for the encoder and decoder, respectively:

x ∈ R28×28 → Conv64 → ReLU size of (64, 14, 14)

→ Conv128 → ReLU→ Reshape(128, 7, 7) size of (128, 7, 7)

→ Flatten→ FC1024 → ReLU

→ FC16,

z ∈ R16 → FC1024 → ReLU

→ FC128×7×7 → ReLU size of (128, 7, 7)

→ ConvT64 → ReLU size of (64, 14, 14)

→ ConvT1 → Sigmoid size of (1, 28, 28).

Here, FCk, Convk, ConvTk and ReLU denote the fully connected layer mapping to Rk, the con-
volutional layer mapping to k channels, the transpose convolutional layer mapping to k channels
and the rectified linear units (ReLU), respectively. The 3-tuple (channels,height,width) in the
right column represents the output shape of each layer. In all the Convk and ConvTk layers, 4× 4
convolutional filters are used with a common stride of (2, 2).

Regarding the evaluation of criteria, MSE and KL are evaluated on the training set because the aim
of the experiment is to validate the relation between σ2

z and the smoothness of the decoder. The
upper bound of the MI is obtained by calculating

−Ep̃data(x)Eqφ,σ2z (z|x)
[
lnEp̃data(x′) exp

(
− 1

2σ2
z

‖z− µφ(x′)‖22
)]
− dx

2
(29)

for each minibatch and then taking their mean, where the batch size is 10, 000 for all the evaluations.

D.2 SAMPLES OF GENERATED IMAGES AND T-SNE VISUALIZATION OF LATENT SPACES

Figure 1 shows several images decoded from µφ(x) + εz with εz ∼ N (εz|0, s2zI) for the cases
with σ2

x = 1.0 and 0.1. Posterior collapse can be observed from these blurry images decoded from
the stochastic encoding case with σ2

x = 1.0. This is due to the removal of batch normalization,
which makes σ2

x = 1.0 become an inappropriate choice. However, if σ2
x is determined or adapted

appropriately such as by using the proposed method, posterior collapse will not happen. In the other
settings, the tendency of how the image changes with the perturbation is similar, as shown in Table 1.

Stochastic encoding Deterministic encoding

Figure 1: Images in red boxes are the original images sampled from the MNIST dataset. The images
in blue boxes are reconstructed by µθ(µφ(x)). The other images are decoded from neighbor points
of µφ(x), which are perturbed by εz ∼ N (εz|0, s2zI).

The latent spaces are also visualized via t-SNE (Maaten & Hinton, 2008) in Figure 2. The dots
with different colors represent the latent vectors encoded from images of different labels (numbers),
and the pink dots are the sampling points generated from the prior p(z). As mentioned earlier,
to observe the effect of σ2

x clearly, we remove batch normalization, which usually helps prevent
posterior collapse to a certain extent. As a result, the latent space with σ2

x = 1.0 completely collapses
and qφ(z) approaches p(z) as shown in Figures 1 and 2(a). In this case, both KL collapse and
posterior collapse occur.

14
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(a) log σ2
x = 0.0 (b) log σ2

x = −0.2 (c) log σ2
x = −0.4

(d) log σ2
x = −0.6 (e) log σ2

x = −0.8 (f) log σ2
x = −1.0

Figure 2: Visualization of latent space via t-SNE. Pink dots are sampling points generated from the
prior p(z).

Table 5: Evaluation of various criteria for different σ2
z . These criteria are the expected value of

‖x′−x‖22 (MSE), KL divergence, the upper bound of MI I(x′, z), the expected gap (the perturbation
variance s2z is set to 10−2 and 10−3) and expected local smoothness (ELS).

log σ2
z MSE KL MI Expected gap ELS

10−2 10−3

1.0 52.74 26.79 8.0e-3 6.20e-6 6.15e-7 3.81e-5
0.9 52.74 19.48 6.8e-3 7.19e-6 7.11e-7 4.42e-5
0.8 22.96 134.83 8.5e+1 2.03e-2 2.03e-3 1.27e-1
0.7 20.50 139.09 1.0e+2 2.37e-2 2.37e-3 1.48e-1
0.6 19.30 132.61 1.2e+2 2.87e-2 2.87e-3 1.80e-1
0.5 17.38 132.05 1.7e+2 3.44e-2 3.44e-3 2.16e-1
0.4 15.91 128.96 1.9e+2 3.94e-2 3.94e-3 2.47e-1
0.3 14.63 125.97 2.3e+2 4.50e-2 4.50e-3 2.82e-1
0.2 13.50 122.07 2.8e+2 5.16e-2 5.16e-3 3.23e-1
0.1 12.40 118.89 3.1e+2 5.83e-2 5.81e-3 3.67e-1
0.0 11.71 112.50 3.6e+2 6.79e-2 6.80e-3 4.26e-1
−0.1 10.97 107.32 4.0e+2 7.53e-2 7.55e-3 4.74e-1
−0.2 10.23 103.87 4.2e+2 8.69e-2 8.70e-3 5.46e-1
−0.3 9.63 98.48 4.6e+2 9.84e-2 9.88e-3 6.18e-1
−0.4 9.12 93.86 5.2e+2 1.12e-1 1.12e-2 7.05e-1
−0.5 8.71 88.35 5.2e+2 1.25e-1 1.26e-2 7.88e-1
−0.6 8.26 83.68 5.9e+2 1.42e-1 1.43e-2 8.94e-1
−0.7 7.82 79.70 6.6e+2 1.62e-1 1.62e-2 1.02
−0.8 7.55 74.75 7.1e+2 1.80e-1 1.80e-2 1.13
−0.9 7.26 70.63 7.3e+2 2.04e-1 2.05e-2 1.29
−1.0 7.05 66.14 7.6e+2 2.28e-1 2.30e-2 1.45

E FIXING THE POSTERIOR VARIANCE OF LATENT SPACE

From the previous sections, we know that σ2
x affects the smoothness via σ2

x. However, it would be
interesting to see what will happen if σ2

z is fixed while σ2
x is optimized. In this experiment, the vari-

ance parameter σ2
z is fixed while σ2

x is optimized with the AR-ELBO (9) under the parameterization
in Section 3. The other settings remain the same as those in Section 3.2. We evaluate the numerical
results for different σ2

z with the criteria listed in Section 3.2. According to Table 5, the tendencies
of the expected gap and ELS show that a large σ2

z makes the decoder smoother, which is consistent
with the discussion in Section 3.1. However, the tendency of the KL divergence is different from
that in Section 3.2. Although a larger σ2

z consistently leads to a smaller MI, and eventually the MI
collapses to zero; the KL divergence still remains far from zero, which means that posterior collapse

15
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(a) log σ2
z = 1.0 (b) log σ2

z = 0.6 (c) log σ2
z = 0.2

(d) log σ2
z = −0.2 (e) log σ2

z = −0.6 (f) log σ2
z = −1.0

Figure 3: Visualization of latent space via t-SNE. Pink dots are sampling points generated from the
prior p(z).

can happen without KL collapse. This phenomenon can be visually confirmed by observing the
t-SNE plot in Figure 3. The cause of this phenomenon can be roughly reasoned from the linear ap-
proximated ELBO (4), in which σ2

z directly affects the gradient penalty and causes oversmoothness.
It should be pointed out that the strength of L2 regularization in (4) is gradually decreased with
decreasing σ2

x; therefore, it does not dominate the whole objective function. As a result, the mean of
the approximated posterior qφ(z) is far from the mean of the prior p(z) (which is 0), and therefore
DKL(qφ(z) ‖ p(z)) in (13) does not diminish to zero.

F PROOF OF THEOREM 3

According to Theorem 4 in Dai & Wipf (2019), we know that
lim
σ2
x→0

Epdata(x)Eqφ,σ2z (z|x)
[
‖x− µθ(z)‖22

]
= 0, (30)

which also leads to σ̂2
x → 0 (σ2

x → 0). Here, σ̂2
x is estimated through MLE and is given by

σ̂2
x =

1

dx
Ep̃data(x)Eqφ,σ2z (z|x)

[
‖x− µθ(z)‖22

]
. (31)

To prove Theorem 3, we need the following auxiliary theorem:
Theorem 4. In the training stage of VAE, we have σ2

z → 0 (σ̂2
x → 0).

First, we state the two lemmas with proofs.
Lemma 5. In a VAE, I(x,x′) ≤ I(z, ze) always holds, where ze is the encoded latent variable
ze = µφ(x) with x ∼ pdata(x).

Proof. The data processing flow of the VAE is x → ze → z → x′; ze = µφ(x), z = ze + εz , and
x′ = µθ(z), where εz ∼ N (εz|0, σ2

zI). The MI I(x; z,x′) can be represented as
I(x; z,x′) = I(x; x′) + I(x; z|x′) (32)

= I(x; z) + I(x; x′|z). (33)
Since x and x′ are conditionally independent on the given z, it follows that I(x; x′|z) = 0. From
the non-negativity of MI, we have I(x; z) ≥ I(x; x′). Repeating the same procedure for I(x; ze, z)
leads to the proof.
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Lemma 6. The MI between x and x′ diverges to positive infinity as σ2
x → 0, where x′ is obtained

from x ∼ pdata(x) as x′ = µθ(µφ(x) + εz).

Proof. A lower bound of I(x; x′) is

I(x; x′) = DKL(pdata(x)pθ,φ(x′|x) ‖ pdata(x)pθ,φ(x′))

= Epdata(x)Epθ,φ(x′|x) [ln pθ,φ(x′|x)− ln pθ,φ(x′)]

= H [pθ,φ(x′)]− Epdata(x)H [pθ,φ(x′|x)]

≥ H [pθ,φ(x′)]− Epdata(x)H(σ̂2
xI), (34)

where pθ,φ(x′|x) := Eqφ(z|x)[pθ(x′|z)] and pθ,φ(x′) := Epdata(x)Eqφ(z|x)[pθ(x′|z)]. Here, we de-
note the differential entropy of the Gaussian with variance σ̂2

xI as

H(σ̂2
xI) :=

1

2
ln(2πeσ̂2dx

x ). (35)

Since σ̂2
x → 0 as σ2

x → 0, H[pθ,φ(x′)] → H[pdata(x)] and H(σ̂2
x) → −∞ in the inequality of (34).

Therefore, I(x; x′)→∞ as σ2
x → 0.

Now we prove Theorem 3. The MI I(z; ze) satisfies

I(z; ze) = DKL

(
qφ(ze)qσ2

z
(z|ze) ‖ qφ(ze)qφ,σ2

z
(z)
)

= Eqφ(ze)Eqσ2z (z|ze)

[
ln qσ2

z
(z|ze)− ln qφ,σ2

z
(z)
]

= H
[
qφ,σ2

z
(z)
]
− Eqφ(ze)H

[
qσ2
z
(z|ze)

]
≤ H(Σφ,σ2

z
)−H(σ2

zI)

=
dz
2

ln

(
det(Σφ,σ2

z
)

σ2
z

)
, (36)

where Σφ,σ2
z

denotes the variance of qφ,σ2
z
(z). Invoking Lemma 5 and (36) leads to

I(x; x′) ≤ dz
2

ln

(
det(Σφ,σ2

z
)

σ2
z

)
. (37)

Now, consider σ2
z 6→ 0 as L → 0. According to Lemma 6, it follows that det(Σφ,σ2

z
) → +∞,

which contradicts the fact that qφ,σ2
z
(z) → p(z). Thus, we must have σ2

z → 0 as σ2
x converges to

zero.

G DERIVATION OF PROPOSED OBJECTIVES

Here, we derive the objectives listed in Table 2. Consider an arbitrary Σx without any condition.
The MLE of Σx, Σ̂x, can be obtained by

Σ̂x = Ep̃data(x)Eqφ(z|x)
[
(x− µθ(z))(x− µθ(z))>

]
. (38)

From the partial derivative of J̃rec(θ, φ,Σx) w.r.t. Σx, we have

∂J̃rec(θ, φ,Σx)

∂Σx
=

1

2

(
Ep̃dataEqφ(z|x)

[
(x− µθ(z))(x− µθ(z))>

]
+ Σ−1x

)
. (39)

The MLE of Σ̂x and the objectives for the different parameterizations are described in the following.

G.1 ISO-I

For Iso-I, the MLE of σ2
x can be given as

σ̂2
x =

1

dx
Ep̃data(x)Eqφ(z|x)

[
‖x− µθ(z)‖22

]
. (40)
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Substituting (40) into (7) leads to

J̃AR(θ, φ, σ̂2
x) = Ep̃data(x)

[
1

2σ̂2
x

Eqφ(z|x)[‖x− µθ(z)‖22] +DKL(qφ(z|x) ‖ p(z))

]
+
dx
2

ln σ̂2
x

=
dx
2

+ Ep̃data(x)DKL(qφ(z|x) ‖ p(z))

+
dx
2

lnEp̃data(x)Eqφ(z|x)
[
‖x− µθ(z)‖22

]
− dx

2
ln dx, (41)

where the first and fourth terms are constants and thus omitted in (9).

G.2 ISO-D

First, substitute Σx = σ2
x(z)I into (10b):

J̃rec(θ, φ,Σx) = Ep̃data(x)Eqφ(z|x)
[

1

2σ2
x(z)

‖x− µθ(z)‖22 +
dx
2

lnσ2
x(z)

]
. (42)

Also, we know that the MLE of σ2
x(z) is

σ̂2
x(z) =

1

dx
‖x− µθ(z)‖22 . (43)

Substituting (43) into (42) leads to the reconstruction objective of Iso-D:

J̃rec(θ, φ, Σ̂x) = Ep̃data(x)Eqφ(z|x)
[

1

2σ̂2
x(z)

‖x− µθ(z)‖22 +
dx
2

ln σ̂2
x(z)

]
(44)

=
dx
2

+
dx
2
Ep̃data(x)Eqφ(z|x)

[
ln ‖x− µθ(z)‖22

]
− dx

2
ln dx. (45)

G.3 DIAG-I

First, substitute Σx = diag(σ2
x) into (10b):

J̃rec(θ, φ,Σx) = Ep̃data(x)

[
dx∑
i=1

1

2σ2
x,i

Eqφ(z|x)
[
(xi − µθ,i(z))

2
]]

+

dx∑
i=1

1

2
lnσ2

x,i. (46)

Also, we know that the MLE of σ2
x,i is

σ̂2
x,i = Ep̃data(x)Eqφ(z|x)

[
(xi − µθ,i(z))

2
]
. (47)

Substituting (47) into (46) leads to the reconstruction objective for Diag-I:

J̃rec(θ, φ, Σ̂x) = Ep̃data(x)

[
dx∑
i=1

1

2σ̂2
x,i

Eqφ(z|x)
[
(xi − µθ,i(z))

2
]]

+

dx∑
i=1

1

2
ln σ̂2

x,i (48)

=
dx
2

+
1

2

dx∑
i=1

lnEp̃data(x)Eqφ(z|x)
[
(xi − µθ,i(z))

2
]
. (49)

G.4 DIAG-D

First, substitute Σx = diag(σ2
x(z)) into (10b):

J̃rec(θ, φ,Σx) = Ep̃data(x)Eqφ(z|x)

[
dx∑
i=1

(
1

2σ2
x,i(z)

(xi − µθ,i(z))
2

+
1

2
lnσ2

x,i(z)

)]
. (50)

Also, we know that the MLE of σ2
x,i(z) is

σ̂2
x,i(z) = (xi − µθ,i(z))

2
. (51)
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Substituting (51) into (50) leads to the reconstruction objective for Diag-D:

J̃rec(θ, φ, Σ̂x) = Ep̃data(x)Eqφ(z|x)

[
dx∑
i=1

(
1

2σ̂2
x,i(z)

(xi − µθ,i(z))
2

+
1

2
ln σ̂2

x,i(z)

)]
(52)

=
dx
2

+
1

2

dx∑
i=1

Ep̃data(x)Eqφ(z|x)
[
ln (xi − µθ,i(z))

2
]
. (53)

H DERIVATION OF (11)

The KL divergence terms of (1) can be represented as

Epdata(x)DKL(qφ(z|x) ‖ pθ(z|x)) = Epdata(x)qφ(z|x)[ln qφ(z|x)− ln pθ(z|x)] (54)

= Epdata(x)qφ(z|x)

[
ln
pdata(x)qφ(z|x)

p(z)pθ(x|z)

]
and

Epdata(x)qφ(z|x) [ln qφ(z)− ln p(z)] = DKL(qφ(z) ‖ p(z)). (55)

Substituting the two equations above into (1), then L can be reformulated into (11).

I RELATED WORKS

To the best of our knowledge, Lucas et al. (2019) were among the first to suggest that posterior
collapse may be caused by a sub-optimal σ2

x. In the past, one of the common approaches for dealing
with posterior collapse was to anneal the weight of the KL term in the ELBO. The first such attempt
was KL annealing (Bowman et al., 2015). Bowman et al. (2015) introduced a weighting coefficient
on the KL term in the cost function during training. The weighting scheduling is determined in
advance, e.g., the weight increases monotonically (Bowman et al., 2015; Sønderby et al., 2016) or
changes cyclically (Fu et al., 2019) as the training progresses.

The weighting coefficient also appears in Higgins et al. (2017), and is interpreted as a hyperpa-
rameter that controls the information capacity of the latent space. The suggested value for such
hyperparameter is larger than 1. This is analogous to setting σ2

x larger than the MLE value σ̂2
x for (7)

and (8a), which enforces a stronger smoothness in exchange of better latent space disentanglement.
The differences between Higgins et al. (2017) and the proposed method are: (i) σ2

x changes between
every minibatch; and (ii) the estimation of σ2

x is aimed to prevent the oversmoothness.

Shao et al. (2020) proposed ControlVAE, which combined control theory with the VAE, and applied
PI/PID control to determine the weight on the KL term. Although applying control theory to the
weighting of the KL term makes it possible to reflect the status of the optimization, ControlVAE
needs extra hyperparameters to be tuned in advance. On the other hand, our method can be inter-
preted as automatic KL annealing that estimates σ2

x through MLE without the need of tuning an
extra hyperparameter.

Ghosh et al. (2020) interpreted the stochastic autoencoder with the reparameterization trick as noise
injection process and proposed replacing such a mechanism with an explicit regularized autoencoder
(RAE). RAE regularizes its decoder in several ways: L2 regularization, a gradient penalty (Gulrajani
et al., 2017) and spectral normalization (Miyato et al., 2018). As discussed in Section 3.1, if σ2

z is
sufficiently small, the ELBO can also be approximately represented as a sum of three losses (4),
which correspond to the terms included in the basic RAE objective function. The approximated
objective function (4) can be obtained when RAE with a gradient penalty (RAE-GP) is used and
tuned appropriately.

Dai & Wipf (2019) optimized σ2
x using an optimizer, which is the most similar approach to our

Iso-I model in that (7) is used as an objective function. Our proposed method provides simplified
objective functions that enable the variance parameter to be optimized automatically and guarantee
that σ2

x decreases as the reconstruction loss decreases, enabling the gradient penalty to be gradually
weakened.
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Comparing our work with these works showed that the proposed AR-ELBO and its variations are
also capable of regularizing the Gaussian VAE via weighting of the gradient penalty. In the standard
parameterization such as (2), the second term in (4) is a weighted gradient penalty, which makes it
possible to regularize each dimension of the latent space differently according to the property of the
input data. In addition, the combination of the proposed objective functions together with standard
Gaussian VAE allows implicit gradient regularization on the decoder with lower computational cost
than that of explicitly adding the gradient penalty to the objective function, such as in RAE.

J DETAILS OF EXPERIMENTAL SETUP IN SECTION 5

In this experiment, the Adam optimizer (Kingma & Ba, 2015) is used and the maximum number of
epochs is set to 100 for MNIST and 70 for CelebA. The learning rates are 0.001 for MNIST and
0.0002 for CelebA. A minibatch size of 64 is used. All the FID2 values are evaluated with 10, 000
generated samples.

For the posterior estimation by the second-stage VAE, we adopt the same networks for the encoder
and decoder as those in Dai & Wipf (2019). For GMM fitting, we use the same settings as those in
Ghosh et al. (2020). Experimental details including the network architectures for each dataset are
described in the following.

J.1 MNIST

We construct the encoder and decoder for the MNIST dataset using the architecture in Chen et al.
(2016). The encoder is constructed as

x ∈ R28×28 → Conv64 → ReLU size of (64, 14, 14)

→ Conv128 → ReLU→ Reshape(128, 7, 7) size of (128, 7, 7)

→ Flatten→ FC1024 → BatchNorm→ ReLU

→ FC16×2.

The decoder is constructed as

z ∈ R16 → FC1024 → BatchNorm→ ReLU

→ FC128×7×7 → BatchNorm→ ReLU size of (128, 7, 7)

→ ConvT64 → BatchNorm→ ReLU size of (64, 14, 14)

→ ConvT1 → Sigmoid size of (1, 28, 28).

In all the Convk layers and all the ConvTk layers except for the last, 5×5 convolutional filters with
stride (2, 2) are used. The difference between this architecture and those used in Appendix D.1 is
whether batch normalization is applied or not. Although in the original work of Chen et al. (2016),
the discriminator used leaky ReLU (lReLU), we adopt ReLU for the encoder part, which improves
the performance for all the models evenly.

J.2 CELEBA

The CelebA images are preprocessed with center cropping of 140 × 140, then resized to 64 × 64
as described in Tolstikhin et al. (2018) and Ghosh et al. (2020). It should be noted that the size of
cropping differs among the previous works, and it markedly affects the FID score. We choose the
above cropping size as is the largest among the related works and seems to be the most difficult
case for image generation. Moreover, Tolstikhin et al. (2018) and Ghosh et al. (2020) also used
this cropping size. Similarly to in the previous section, the encoder and decoder are constructed on
the basis of the discriminator and generator for CelebA used in Chen et al. (2016). The encoder is

2We used the PyTorch version of the FID implementation from https://github.com/mseitzer/
pytorch-fid for all the models. However, the result may slightly differ from that obtained with the Tensor-
Flow implementation https://github.com/bioinf-jku/TTUR.
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constructed as
x ∈ R64×64 → Conv128 → ReLU size of (128, 32, 32)

→ Conv256 → BatchNorm→ ReLU size of (256, 16, 16)

→ Conv512 → BatchNorm→ ReLU size of (512, 8, 8)

→ Conv1024 → BatchNorm→ ReLU size of (1024, 4, 4)

→ Flatten→ FC64×2.

The decoder is constructed as
z ∈ R64 → FC8×8×1024

→ ConvT512 → ReLU size of (512, 16, 16)

→ ConvT256 → BatchNorm→ ReLU size of (256, 32, 32)

→ ConvT128 → BatchNorm→ ReLU size of (128, 64, 64)

→ ConvT3 size of (3, 64, 64).

In all the Convk layers and all the ConvTk layers except for the last, 5×5 convolutional filters with
stride (2, 2) are used. We use ReLU instead of leaky ReLU due to the performance consideration
described in the previous subsection. To fit the size of the input images in our experiment, one extra
convolutional layer is added for the encoder and the channel size is twice as large as that in Chen
et al. (2016),

K EXAMPLES OF RECONSTRUCTED AND GENERATED IMAGES IN SECTION 5

We show examples of reconstructed images and images generated by sampling the learned approxi-
mated posterior from the proposed method and other works in Figures 4 and 5.

GT

VAE (               )

WAE-MMD

AE

RAE

RAE-GP

Ours (Iso-I w/ AR-ELBO)

Ours (Diag-I w/ AR-ELBO)

Ours (Iso-D w/ AR-ELBO)

Ours (Diag-D w/ AR-ELBO)

Reconstructions Prior 2nd VAE GMM-10
Random samples

Iso-I w/ trainable 

Diag-I w/ trainable

Iso-D w/ trainable

Diag-D w/ trainable

Figure 4: Reconstructed images and examples of images generated from the prior and the estimated
posterior on MNIST. “GT” stands for ground truth.

L INTERPOLATION OF LATENT VARIABLES

This section aims to investigate the feasibility of the learned latent space of the methods mentioned
in Section 5. If high quality images can be generated by interpolating the latent variables in a latent
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Iso-I w/ trainable

Diag-I w/ trainable

Diag-D w/ trainable

Figure 5: Reconstructed images and examples of images generated from the prior and the estimated
posterior on CelebA.

space, the corresponding latent space is more likely to be feasible for other downstream tasks. There-
fore, in this section, we evaluate the FID scores of images generated by latent variable interpolation
for various models mentioned in section 5.

First, we choose 10,000 random pairs of images from both MNIST and CelebA datasets. The
interpolation is done by applying spherical interpolation (Ghosh et al., 2020) in latent spaces and
then generate the interpolated images with the decoders. In the end, we evaluate the FID of these
interpolated images.

Furthermore, the experiment has been proceeded with two different setups of mixing ratios: (i) a
fixed ratio of 0.5, i.e., the mid-point of two latent variables; and (ii) a uniformly distributed ran-
dom ratio between [0, 1] for each image pair. The result is shown in Table 4, where the proposed
method achieved the best score on MNIST and is competitive on CelebA. This suggests that a gen-
erative model with proper smoothness achieved via the proposed method is also feasible for other
applications such as interpolation and possibly applicable for other semantic controls.
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Figure 6: Examples of interpolated images.
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