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Abstract
Questions of fairness, robustness, and trans-
parency are paramount to address before de-
ploying NLP systems. Central to these con-
cerns is the question of reliability: Can NLP
systems reliably treat different demographics
fairly and function correctly in diverse and
noisy environments? To address this, we argue
for the need for reliability testing and contextu-
alize it among existing work on improving ac-
countability. We show how adversarial attacks
can be reframed for this goal, via a framework
for developing reliability tests. We argue that
reliability testing — with an emphasis on inter-
disciplinary collaboration — will enable rigor-
ous and targeted testing, and aid in the enact-
ment and enforcement of industry standards.

1 Introduction

Rigorous testing is critical to ensuring a program
works as intended (functionality) when used un-
der real-world conditions (reliability). Hence, it is
troubling that while natural language technologies
are becoming increasingly pervasive in our every-
day lives, there is little assurance that these NLP
systems will not fail catastrophically or amplify dis-
crimination against minority demographics when
exposed to input from outside the training distribu-
tion. Recent examples include GPT-3 (Brown et al.,
2020) agreeing with suggested suicide (Rousseau
et al., 2020), the mistranslation of an innocuous
social media post resulting in a minority’s arrest
(Hern, 2017), and biased grading algorithms that
can negatively impact a minority student’s future
(Feathers, 2019). Additionally, a lack of rigorous
testing, coupled with machine learning’s (ML) im-
plicit assumption of identical training and testing
distributions, may inadvertently result in systems
that discriminate against minorities, who are often
underrepresented in the training data. This can take
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Figure 1: How DOCTOR can integrate with existing
system development workflows. Test (left) and sys-
tem development (right) take place in parallel, separate
teams. Reliability tests can thus be constructed inde-
pendent of the system development team, either by an
internal “red team” or by independent auditors.

the form of misrepresentation of or poorer perfor-
mance for people with disabilities, specific gender,
ethnic, age, or linguistic groups (Hovy and Spruit,
2016; Crawford, 2017; Hutchinson et al., 2020).

Amongst claims of NLP systems achieving human
parity in challenging tasks such as question answer-
ing (Yu et al., 2018), machine translation (Has-
san et al., 2018), and commonsense inference (De-
vlin et al., 2019), research has demonstrated these
systems’ fragility to natural and adversarial noise
(Goodfellow et al., 2015; Belinkov and Bisk, 2018)
and out-of-distribution data (Fisch et al., 2019).
It is also still common practice to equate “test-
ing” with “measuring held-out accuracy”, even as
datasets are revealed to be harmfully biased (Wag-
ner et al., 2015; Geva et al., 2019; Sap et al., 2019).

Many potential harms can be mitigated by detect-
ing them early and preventing the offending model
from being put into production. Hence, in addition
to being mindful of the biases in the NLP pipeline
(Bender and Friedman, 2018; Mitchell et al., 2019;



Waseem et al., 2021) and holding creators account-
able via audits (Raji et al., 2020; Brundage et al.,
2020), we argue for the need to evaluate an NLP
system’s reliability in diverse operating conditions.

Initial research on evaluating out-of-distribution
generalization involved manually-designed chal-
lenge sets (Jia and Liang, 2017; Nie et al., 2020;
Gardner et al., 2020), counterfactuals (Kaushik
et al., 2019; Khashabi et al., 2020; Wu et al., 2021),
biased sampling (Søgaard et al., 2021) or toolk-
its for testing if a system has specific capabilities
(Ribeiro et al., 2020) or robustness to distribution
shifts (Goel et al., 2021). However, most of these
approaches inevitably overestimate a given sys-
tem’s worst-case performance since they do not
mimic the NLP system’s adversarial distribution1.

A promising technique for evaluating worst-case
performance is the adversarial attack. However, al-
though some adversarial attacks explicitly focus on
specific linguistic levels of analysis (Belinkov and
Bisk, 2018; Iyyer et al., 2018; Tan et al., 2020; Eger
and Benz, 2020), many often simply rely on word
embeddings or language models for perturbation
proposal (see §4). While the latter may be useful to
evaluate a system’s robustness to malicious actors,
they are less useful for dimension-specific testing
(e.g., reliability when encountering grammatical
variation). This is because they often perturb the
input across multiple dimensions at once, which
may make the resulting adversaries unnatural.

Hence, in this paper targeted at NLP researchers,
practitioners, and policymakers, we make the case
for reliability testing and reformulate adversarial
attacks as dimension-specific, worst-case tests that
can be used to approximate real-world variation.
We contribute a reliability testing framework —
DOCTOR — that translates safety and fairness con-
cerns around NLP systems into quantitative tests.
We demonstrate how testing dimensions for DOC-
TOR can be drafted for a specific use case. Finally,
we discuss the policy implications, challenges, and
directions for future research on reliability testing.

2 Terminology Definitions

Let’s define key terms to be used in our discussion.

NLP system. The entire text processing pipeline
built to solve a specific task; taking raw text as input
and producing predictions in the form of labels

1The distribution of adversarial cases or failure profile.

(classification) or text (generation). We exclude
raw language models from the discussion since it
is unclear how performance, and hence worst-case
performance, should be evaluated. We do include
NLP systems that use language models internally
(e.g., BERT-based classifiers (Devlin et al., 2019)).

Reliability. Defined by IEEE (2017) as the “de-
gree to which a system, product or component per-
forms specified functions under specified condi-
tions for a specified period of time”. We prefer
this term over robustness2 to challenge the NLP
community’s common framing of inputs from out-
side the training distribution as “noisy”. The notion
of reliability requires us to explicitly consider the
specific, diverse environments (i.e., communities)
a system will operate in. This is crucial to reducing
the NLP’s negative impact on the underrepresented.

Dimension. An axis along which variation can
occur in the real world, similar to Plank (2016)’s
variety space. A taxonomy of possible dimensions
can be found in Table 1 (Appendix).

Adversarial attack. A method of perturbing the
input to degrade a target model’s accuracy (Good-
fellow et al., 2015). In computer vision, this is
achieved by adding adversarial noise to the image,
optimized to be maximally damaging to the model.
§4 describes how this is done in the NLP context.

Stakeholder. A person who is (in-)directly im-
pacted by the NLP system’s predictions.

Actor. Someone who has influence over a) the
design of an NLP system and its reliability testing
regime; b) whether the system is deployed; and
c) who it can interact with. Within the context of
our discussion, actors are likely to be regulators,
experts, and stakeholder advocates.

Expert. An actor who has specialized knowl-
edge, such as ethicists, linguists, domain experts,
social scientists, or NLP practitioners.

3 The Case for Reliability Testing in NLP

The accelerating interest in building NLP-based
products that impact many lives has led to ur-
gent questions of fairness, safety, and accountabil-
ity (Hovy and Spruit, 2016; Bender et al., 2021),

2The “degree to which a system or component can func-
tion correctly in the presence of invalid inputs or stressful
environmental conditions” (IEEE, 2017).



prompting research into algorithmic bias (Boluk-
basi et al., 2016; Blodgett et al., 2020), explainabil-
ity (Ribeiro et al., 2016; Danilevsky et al., 2020),
robustness (Jia and Liang, 2017), etc. Research is
also emerging on best practices for productizing
ML: from detailed dataset documentation (Bender
and Friedman, 2018; Gebru et al., 2018), model
documentation for highlighting important but of-
ten unreported details such as its training data, in-
tended use, and caveats (Mitchell et al., 2019), and
documentation best practices (Partnership on AI,
2019), to institutional mechanisms such as audit-
ing (Raji et al., 2020) to enforce accountability and
red-teaming (Brundage et al., 2020) to address de-
veloper blind spots, not to mention studies on the
impact of organizational structures on responsible
AI initiatives (Rakova et al., 2020).

Calls for increased accountability and transparency
are gaining traction among governments (116th
U.S. Congress, 2019; NIST, 2019; European Com-
mission, 2020; Smith, 2020; California State Leg-
islature, 2020; FDA, 2021) and customers increas-
ingly cite ethical concerns as a reason for not en-
gaging AI service providers (EIU, 2020).

While there has been significant discussion around
best practices for dataset and model creation, work
to ensure NLP systems are evaluated in a man-
ner representative of their operational conditions
has only just begun. Initial work in constructing
representative tests focuses on enabling develop-
ment teams to easily evaluate their models’ lin-
guistic capabilities (Ribeiro et al., 2020) and ac-
curacy on subpopulations and distribution shifts
(Goel et al., 2021). However, there is a clear need
for a paradigm that allows experts and stakeholder
advocates to collaboratively develop tests that are
representative of the practical and ethical concerns
of an NLP system’s target demographic. We argue
that reliability testing, by reframing the concept of
adversarial attacks, has the potential to fill this gap.

3.1 What is reliability testing?

Despite the recent advances in neural architectures
resulting in breakthrough performance on bench-
mark datasets, research into adversarial examples
and out-of-distribution generalization has found
ML systems to be particularly vulnerable to slight
perturbations in the input (Goodfellow et al., 2015)
and natural distribution shifts (Fisch et al., 2019).
While these perturbations are often chosen to max-

imize model failure, they highlight serious reliabil-
ity issues for putting ML models into production
since they show that these models could fail catas-
trophically in naturally noisy, diverse, real-world
environments (Saria and Subbaswamy, 2019). Ad-
ditionally, bias can seep into the system at multiple
stages of the NLP lifecycle (Shah et al., 2020), re-
sulting in discrimination against minority groups
(O’Neil, 2016). The good news, however, is that
rigorous testing can help to highlight potential is-
sues before the systems are deployed.

The need for rigorous testing in NLP is reflected in
ACL 2020 giving the Best Paper Award to Check-
List (Ribeiro et al., 2020), which applied the idea of
behavior testing from software engineering to test-
ing NLP systems. While invaluable as a first step
towards the development of comprehensive test-
ing methodology, the current implementation of
CheckList may still overestimate the reliability of
NLP systems since the individual test examples are
largely manually constructed. Importantly, with the
complexity and scale of current models, humans
cannot accurately determine a model’s adversarial
distribution (i.e., the examples that cause model
failure). Consequently, the test examples they con-
struct are unlikely to be the worst-case examples
for the model. Automated assistance is needed.

Therefore, we propose to perform reliability test-
ing, which can be thought of as one component
of behavior testing. We categorize reliability tests
as average-case tests or the worst-case tests. As
their names suggest, average-case and worst-case
tests estimate the expected and lower-bound per-
formance, respectively, when the NLP system is
exposed to the phenomena modeled by the tests.
Average-case tests are conceptually similar to Wu
et al. (2021)’s counterfactuals, which is contem-
poraneous work, while worst-case tests are most
similar to adversarial attacks (§4).

Our approach parallels boundary value testing in
software engineering: In boundary value testing,
tests evaluate a program’s ability to handle edge
cases using test examples drawn from the extremes
of the ranges the program is expected to handle.
Similarly, reliability testing aims to quantify the
system’s reliability under diverse and potentially
extreme conditions. This allows teams to perform
better quality control of their NLP systems and in-
troduce more nuance into discussions of why and
when models fail (§5). Finally, we note that reliabil-



ity testing and standards are established practices
in engineering industries (e.g., aerospace (Nelson,
2003; Wilkinson et al., 2016)) and advocate for NL
engineering to be at parity with these fields.

3.2 Evaluating worst-case performance in a
label-scarce world

A proposed approach for testing robustness to nat-
ural and adverse distribution shifts is to construct
test sets using data from different domains or writ-
ing styles (Miller et al., 2020; Hendrycks et al.,
2020), or to use a human vs. model method of con-
structing challenge sets (Nie et al., 2020; Zhang
et al., 2019b). While they are the gold standard,
such datasets are expensive to construct,3 making
it infeasible to manually create worst-case test ex-
amples for each NLP system being evaluated. Con-
sequently, these challenge sets necessarily overesti-
mate each system’s worst-case performance when
the inference distribution differs from the train-
ing one. Additionally, due to their crowdsourced
nature, these challenge sets inevitably introduce
distribution shifts across multiple dimensions at
once, and even their own biases (Geva et al., 2019),
unless explicitly controlled for. Building individ-
ual challenge sets for each dimension would be
prohibitively expensive due to combinatorial ex-
plosion, even before having to account for concept
drift (Widmer and Kubat, 1996). This coupling
complicates efforts to design a nuanced and com-
prehensive testing regime. Hence, simulating vari-
ation in a controlled manner via reliability tests
can be a complementary method of evaluating the
system’s out-of-distribution generalization ability.

4 Adversarial Attacks as Reliability Tests

We first give a brief introduction to adversarial
attacks in NLP before showing how they can be
used for reliability testing. We refer the reader to
Zhang et al. (2020b) for a comprehensive survey.

Existing work on NLP adversarial attacks perturbs
the input at various levels of linguistic analysis:
phonology (Eger and Benz, 2020), orthography
(Ebrahimi et al., 2018), morphology (Tan et al.,
2020), lexicon (Alzantot et al., 2018; Jin et al.,
2020), and syntax (Iyyer et al., 2018).

Early work did not place any constraints on the
attacks and merely used the degradation to a tar-

3Dua et al. (2019) reports a cost of 60k USD for 96k
question–answer pairs.

Algorithm 1 General Reliability Test
Require: Data distribution Dd = {X ,Y} modeling the di-

mension of interest d, NLP system M, Source dataset
X ∼ X , Desired labels Y ′ ∼ Y , Scoring function S.

Ensure: Average- or worst-case examples X ′, Result r.
1: X ′ ← {∅}, r ← 0
2: for x, y′ in X,Y ′ do
3: C ← SAMPLECANDIDATES(X )
4: switch TestType do
5: case AverageCaseTest
6: s← MEAN(S(y′,M(C)))
7: X ′ ← X ′ ∪ C
8: case WorstCaseTest
9: x′, s← argminxc∈C S(y

′,M(xc))

10: X ′ ← X ′ ∪ {x′}
11: r ← r + s
12: end for
13: r ← r

|X|
14: return X ′, r

get model’s accuracy as the measure of success.
However, this often resulted in the semantics and
expected prediction changing, leading to an over-
estimation of the attack’s success. Recent attacks
aim to preserve the original input’s semantics. A
popular approach has been to substitute words with
their synonyms using word embeddings or a lan-
guage model as a measure of semantic similarity
(Alzantot et al., 2018; Ribeiro et al., 2018; Michel
et al., 2019; Ren et al., 2019; Zhang et al., 2019a;
Li et al., 2019; Jin et al., 2020; Garg and Ramakr-
ishnan, 2020; Li et al., 2020a).

Focusing on maximally degrading model accuracy
overlooks the key feature of adversarial attacks: the
ability to find the worst-case example for a model
from an arbitrary distribution. Many recent attacks
perturb the input across multiple dimensions at
once, which may make the result unnatural. By
constraining our sample perturbations to a distribu-
tion modeling a specific dimension of interest, the
performance on the generated adversaries is a valid
lower bound performance for that dimension. Said
another way, adversarial attacks can be reframed as
interpretable reliability tests if we constrain them
to meaningful distributions.

This is the key element of our approach as detailed
in Alg. 1. We specify either an average (Lines 5–7)
or worse case test (Lines 8–10), but conditioned
on the data distribution D that models a particular
dimension of interest d. The resultant reliability
score gauges real-world performance and the worst-
case variant returns the adversarial examples that
cause worst-case performance. When invariance to
input variation is expected, y′ is equivalent to the



source label y. Note that by ignoring the average-
case test logic and removing d, we recover the
general adversarial attack algorithm.

However, the key difference between an adversar-
ial robustness mindset and a testing one is the lat-
ter’s emphasis on identifying ways in which natural
phenomena or ethical concerns can be operational-
ized as reliability tests. This change in perspective
opens up new avenues for interdisciplinary research
that will allow researchers and practitioners to have
more nuanced discussions about model reliability
and can be used to design comprehensive reliability
testing regimes. We describe such a framework for
interdisciplinary collaboration next.

5 A Framework for Reliability Testing

We introduce and then describe our general frame-
work, DOCTOR, for testing the reliability of NLP
systems. DOCTOR comprises six steps:

1. Define reliability requirements

2. Operationalize dimensions as distributions

3. Construct tests

4. Test system and report results

5. Observe deployed system’s behavior

6. Refine reliability requirements and tests

Defining reliability requirements. Before any
tests are constructed, experts and stakeholder advo-
cates should work together to understand the demo-
graphics and values of the communities the NLP
system will interact with (Friedman and Hendry,
2019) and the system’s impact on their lives. The
latter is also known as algorithmic risk assess-
ment (Ada Lovelace Institute and DataKind UK,
2021). There are three critical questions to address:
1) Along what dimensions should the model be
tested? 2) What metrics should be used to mea-
sure system performance? 3) What are acceptable
performance thresholds for each dimension?

Question 1 can be further broken down into: a) gen-
eral linguistic phenomena, such as alternative
spellings or code-mixing; b) task-specific quirks,
e.g., an essay grading system should not use text
length to predict score; c) sensitive attributes, such
as gender, ethnicity, sexual orientation, age, or dis-
ability status. This presents an opportunity for inter-
disciplinary expert collaboration: Linguists are best
equipped to contribute to discussions around (a),

domain experts to (b), and ethicists and social sci-
entists to (c). However, we recognize that such
collaboration may not be feasible for every NLP
system being tested. It is more realistic to expect
ethicists to be involved when applying DOCTOR at
the company and industry levels, and ethics-trained
NLP practitioners to answer these questions within
the development team. We provide a taxonomy of
potential dimensions in Table 1 (Appendix).

Since it is likely unfeasible to test every possible di-
mension, stakeholder advocates should be involved
to ensure their values and interests are accurately
represented and prioritized (Hagerty and Rubinov,
2019), while experts should ensure the dimensions
identified can be feasibly tested. A similar ap-
proach to that of community juries4 may be taken.
We recommend using this question to evaluate the
feasibility of operationalizing potential dimensions:
“What is the system’s performance when exposed
to variation along dimension d?”. For example,
rather than simply “gender”, a better-defined di-
mension would be “gender pronouns”. With this
understanding, experts and policymakers can then
create a set of reliability requirements, comprising
the testing dimensions, performance metric(s), and
passing thresholds.

Next, we recommend using the same metrics
for held-out, average-case, and worst-case perfor-
mance for easy comparison. These often vary from
task to task and are still a subject of active research
(Novikova et al., 2017; Reiter, 2018; Kryscinski
et al., 2019), hence the question of the right met-
ric to use is beyond the scope of this paper. Fi-
nally, ethicists, in consultation with the other afore-
mentioned experts and stakeholders, will determine
acceptable thresholds for worst-case performance.
The system under test must perform above said
thresholds when exposed to variation along those
dimensions in order to pass. For worst-case perfor-
mance, we recommend reporting thresholds as rel-
ative differences (δ) between the average-case and
worst-case performance. These questions may help
in applying this step and deciding if specific NLP
solutions should even exist (Leins et al., 2020):

• Who will interact with the NLP system, in what
context, and using which language varieties?

• What are the distinguishing features of these va-
rieties compared to those used for training?

4docs.microsoft.com/en-us/azure/.../community-jury

https://docs.microsoft.com/en-us/azure/architecture/guide/responsible-innovation/community-jury


• What is the (short- and long-term) impact on the
community’s most underrepresented members if
the system performs more poorly for them?

We note that our framework is general enough to
be applied at various levels of organization: within
the development team, within the company (com-
pliance team, internal auditor), and within the in-
dustry (self-regulation or independent regulator).
However, we expect the exact set of dimensions,
metrics and acceptable thresholds defined in Step 1
to vary depending on the reliability concerns of
the actors at each level. For example, independent
regulators will be most concerned with establishing
minimum safety and fairness standards that all NLP
systems used in their industries must meet, while
compliance teams may wish to have stricter and
more comprehensive standards for brand reasons.
Developers can use DOCTOR to meet the other
two levels of requirements and understand their
system’s behaviour better with targeted testing.

Operationalizing dimensions. While the ab-
stractness of dimensions allows people who are
not NLP practitioners to participate in drafting the
set of reliability requirements, there is no way to
test NLP systems using fuzzy concepts. Therefore,
every dimension the system is to be tested along
must be operationalizable as a distribution from
which perturbed examples can be sampled in order
for NLP practitioners to realize them as tests.

Since average-case tests attempt to estimate a sys-
tem’s expected performance in its deployed envi-
ronment, the availability of datasets that reflect
real-world distributions is paramount to ensure that
the tests themselves are unbiased. This is less of an
issue for worst-case tests; the tests only needs to
know which perturbations that are possible, but not
how frequently they occur in the real world. Figur-
ing out key dimensions for different classes of NLP
tasks and exploring ways of operationalizing them
as reliability tests are also promising directions for
future research. Such research would help NLP
practitioners and policymakers define reliability
requirements that can be feasibly implemented.

Constructing tests. Next, average- and worst-
case tests are constructed (Alg. 1). Average-case
tests can be data-driven and could take the form
of manually curated datasets or model-based per-
turbation generation (e.g., PolyJuice (Wu et al.,
2021)), while worst-case tests can be rule-based

(e.g., Morpheus (Tan et al., 2020)) or model-based
(e.g., BERT-Attack (Li et al., 2020a)). We recom-
mend constructing tests that do not require access
to the NLP model’s parameters (black-box assump-
tion); this not only yields more system-agnostic
tests, but also allows for (some) tests to be created
independently from the system development team.
If the black-box assumption proves limiting, the
community can establish a standard set of items
an NLP system should export for testing purposes,
e.g., network gradients if the system uses a neural
model. Regardless of assumption, keeping the reg-
ulators’ test implementations separate and hidden
from the system developers is critical for stake-
holders and regulators to trust the results. This
separation also reduces overfitting to the test suite.

Testing systems. A possible model for test own-
ership is to have independently implemented tests
at the three levels of organization described above
(team, company, industry). At the development
team level, reliability tests can be used to diag-
nose weaknesses with the goal of improving the
NLP system for a specific use case and set of target
users. Compared to unconstrained adversarial ex-
amples, contrasting worst-case examples that have
been constrained along specific dimensions with
non-worst-case examples will likely yield greater
intuition into the model’s inner workings. Study-
ing how modifications (to the architecture, training
data and process) affect the system’s reliability on
each dimension will also give engineers insight into
the factors affecting system reliability. These tests
should be executed and updated regularly during
development, according to software engineering
best practices such as Agile (Beck et al., 2001).

Red teams are company-internal teams tasked with
finding security vulnerabilities in their developed
software or systems. Brundage et al. (2020) pro-
pose to apply the concept of red teaming to surface
flaws in an AI system’s safety and security. In
companies that maintain multiple NLP systems,
we propose employing similar, specialized teams
composed of NLP experts to build and maintain
reliability tests that ensure their NLP systems ad-
here to company-level reliability standards. These
tests will likely be less task-/domain-specific than
those developed by engineering teams due to their
wider scope, while the reliability standards may
be created and maintained by compliance teams
or the red teams themselves. Making these stan-



dards available for public scrutiny and ensuring
their products meet them will enable companies
to build trust with their users. To ensure all NLP
systems meet the company’s reliability standards,
these reliability tests should be executed as a part
of regular internal audits (Raji et al., 2020), inves-
tigative audits after incidents, and before major
releases (especially if it is the system’s first release
or if it received a major update). They may also be
regularly executed on randomly chosen production
systems and trigger an alert upon failure.

At the independent regulator level, reliability tests
would likely be carried out during product certifi-
cation (e.g., ANSI/ISO certification) and external
audits. These industry-level reliability standards
and tests may be developed in a similar manner to
the company-level ones. However, we expect them
to be more general and less comprehensive than
the latter, analogous to minimum safety standards
such as IEC 60335-1 (IEC, 2020). Naturally, high
risk applications and NLP systems used in regu-
lated industries should comply with more stringent
requirements (European Commission, 2021).

Our proposed framework is also highly compatible
with the use of model cards (Mitchell et al., 2019)
for auditing and transparent reporting (Raji et al.,
2020). In addition to performance on task-related
metrics, model cards surface information and as-
sumptions about a machine learning system and
training process that may not be readily available
otherwise. When a system has passed all tests and
is ready to be deployed, its average- and worst-case
performance on all tested dimensions can be in-
cluded as an extra section on the accompanying
model card. In addition, the perturbed examples
generated during testing and their labels (x′, y′)
can be stored for audit purposes or examined to
ensure that the tests are performing as expected.

Observing and Refining requirements. It is
crucial to regularly monitor the systems’ impact
post-launch and add, update, or re-prioritize di-
mensions and thresholds accordingly. Monitoring
large-scale deployments can be done via commu-
nity juries, in which stakeholders who will be likely
impacted (or their advocates) give feedback on their
pain points and raise concerns about potential neg-
ative effects. Smaller teams without the resources
to organize community juries can set up avenues
(e.g., online forms) for affected stakeholders to give
feedback, raise concerns, and seek remediation.

6 From Concerns to Dimensions

We now illustrate how reliability concerns can be
converted into concrete testing dimensions (Step 1)
by considering the scenario of applying automated
text scoring to short answers and essays from stu-
dents in the multilingual population of Singapore.
We study a second scenario in Appendix A. Au-
tomated Text Scoring (ATS) systems are increas-
ingly used to grade tests and essays (Markoff, 2013;
Feathers, 2019). While they can provide instant
feedback and help teachers and test agencies cope
with large loads, studies have shown that they often
exhibit demographic and language biases, such as
scoring African- and Indian-American males lower
on the GRE Argument task compared to human
graders (Bridgeman et al., 2012; Ramineni and
Williamson, 2018). Since the results of some tests
will affect the futures of the test takers (Salaky,
2018), the scoring algorithms used must be suffi-
ciently reliable. Hence, let us imagine that Singa-
pore’s education ministry has decided to create a
standard set of reliability requirements that all ATS
systems used in education must adhere to.

Linguistic landscape. A mix of language vari-
eties are used in Singapore: a prestige English vari-
ety, a colloquial English variety, three other official
languages (Chinese, Malay, and Tamil), and a large
number of other languages. English is the lingua
franca, with fluency in the prestige variety corre-
lating with socioeconomic status (Vaish and Tan,
2008). A significant portion of the population does
not speak English at home. Subjects other than
languages are taught in English.

Stakeholder impact. The key stakeholders af-
fected by ATS systems would be students in
schools and universities. The consequences of
lower scores could be life-altering for the stu-
dent who is unable to enroll in the major of their
choice. At the population level, biases in an ATS
system trained on normally sampled data would
unfairly discriminate against already underrepre-
sented groups. Additionally, biases against dis-
fluent or ungrammatical text when they are not
the tested attributes would result in discrimination
against students with a lower socioeconomic status
or for whom English is a second language.

Finally, NLP systems have also been known to be
overly sensitive to alternative spellings (Belinkov
and Bisk, 2018). When used to score subject tests,
this could result in the ATS system unfairly penaliz-



ing dyslexic students (Coleman et al., 2009). Since
education is often credited with enabling social
mobility,5 unfair grading may perpetuate systemic
discrimination and increase social inequality.

Dimension. We can generally categorize written
tests into those that test for content correctness
(e.g., essay questions in a history test), and those
that test for language skills (e.g., proper use of
grammar). While there are tests that simultane-
ously assess both aspects, modern ATS systems
often grade them separately (Ke and Ng, 2019).
We treat each aspect as a separate test here.

When grading students on content correctness, we
would expect the ATS system to ignore linguistic
variation and sensitive attributes as long as they do
not affect the answer’s validity. Hence, we would
expect variation in these dimensions to have no ef-
fect on scores: answer length, language/vocabulary
simplicity, alternative spellings/misspellings of
non-keywords, grammatical variation, syntactic
variation (especially those resembling transfer from
a first language), and proxies for sensitive attributes.
On the other hand, the system should be able to
differentiate proper answers from those aimed at
gaming the test (Chin, 2020; Ding et al., 2020).

When grading students on language skills, however,
we would expect ATS systems to be only sensitive
to the relevant skill. For example, when assessing
grammar use, we would expect the system to be
sensitive to grammatical errors (from the perspec-
tive of the language variety the student is expected
to use), but not to the other dimensions mentioned
above (e.g., misspellings).

Actors. Relevant experts include teachers of the
subjects where the ATS systems will be deployed,
linguists, and computer scientists. The stakeholders
(students) may be represented by student unions (at
the university level) or focus groups comprising a
representative sample of the student population.

7 Implications for Policy
There is a mounting effort to increase accountabil-
ity and transparency around the development and
use of NLP systems to prevent them from ampli-
fying societal biases. DOCTOR is highly comple-
mentary to the model card approach increasingly
adopted6 to surface oft hidden details about NLP

5www.encyclopedia.com/.../education-and-mobility
6huggingface.co/models;
github.com/ivylee/model-cards-and-datasheets;

models: Developers simply need to list the tested
dimensions, metrics, and score on each dimension
in the model card. Crucially, reliability tests can
be used to highlight fairness issues in NLP sys-
tems by including sensitive attributes for the target
population, but it is paramount these requirements
reflect local concerns rather than any prescriptivist
perspective (Sambasivan et al., 2021).

At the same time, the ability to conduct quantitative,
targeted reliability testing along specifiable dimen-
sions paves the way for reliability standards to be
established, with varying levels of stringency and
rigor for different use cases and industries. We envi-
sion minimum safety and fairness standards being
established for applications that are non-sensitive,
not safety-critical, and used in unregulated indus-
tries, analogous to standards for household appli-
ances. Naturally, applications at greater risks (Li
et al., 2020b) of causing harm upon failure should
be held to stricter standards. Policymakers are start-
ing to propose and implement regulations to en-
force transparency and accountability in the use of
AI systems. For example, the European Union’s
General Data Protection Regulation grants data sub-
jects the right to obtain “meaningful information
about the logic involved” in automated decision
systems (EU, 2016). The EU is developing AI-
specific regulation (European Commission, 2020):
e.g., requiring developers of high-risk AI systems
to report their “capabilities and limitations, ... [and]
the conditions under which they can be expected to
function as intended”. In the U.S., a proposed bill
of the state of Washington will require public agen-
cies to report “any potential impacts of the auto-
mated decision system on civil rights and liberties
and potential disparate impacts on marginalized
communities” before using automated decision sys-
tems (Washington State Legislature, 2021).

One may note that language in the proposed regula-
tion is intentionally vague. There are many ways to
measure bias and fairness, depending on the type
of model, context of use, and goal of the system.
Today, companies developing AI systems employ
the definitions they believe most reasonable (or
perhaps easiest to implement), but regulation will
need to be more specific for there to be meaningful
compliance. DOCTOR’s requirement to explicitly
define specific dimensions instead of a vague no-
tion of reliability will help policymakers in this

blog.einstein.ai/model-cards-for-ai-model-transparency
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regard, and can inform the ongoing development of
national (NIST, 2019) and international standards7.

While external algorithm audits are becoming pop-
ular, testing remains a challenge since companies
wishing to protect their intellectual property may
be resistant to sharing their code (Johnson, 2021),
and implementing custom tests for each system
is unscalable. Our approach to reliability testing
offers a potential solution to this conundrum by
treating NLP systems as black boxes. If reliabil-
ity tests become a legal requirement, regulatory
authorities will be able to mandate independently
conducted reliability tests for transparency. Such
standards, combined with certification programs
(e.g., IEEE’s Ethics Certification Program for Au-
tonomous and Intelligent Systems8), will further
incentivize the development of responsible NLP, as
the companies purchasing NLP systems will insist
on certified systems to protect them from both le-
gal and brand risk. To avoid confusion, we expect
certification to occur for individual NLP systems
(e.g., an end-to-end question answering system for
customer enquiries), rather than for general pur-
pose language models that will be further trained
to perform some specific NLP task. While con-
crete standards and certification programs that can
serve this purpose do not yet exist, we believe that
they eventually will and hope our paper will inform
their development. This multi-pronged approach
can help to mitigate NLP’s potential harms while
increasing public trust in language technology.

8 Challenges and Future Directions

While DOCTOR is a useful starting point to im-
plement reliability testing for NLP systems, we
observe key challenges to its widespread adoption.
First, identifying and prioritizing the dimensions
that can attest a system’s reliability and fairness.
The former is relatively straightforward and can
be achieved via collaboration with experts (e.g., as
part of the U.S. NIST’s future AI standards (NIST,
2019)). The latter, however, is a question of values
and power (Noble, 2018; Mohamed et al., 2020;
Leins et al., 2020), and should be addressed via a
code of ethics and ensuring that all stakeholders
are adequately represented at the decision table.

Second, our proposed method of reliability testing
may suffer from similar issues plaguing automatic

7ethicsstandards.org/p7000
8standards.ieee.org/industry-connections/ecpais.html

evaluation metrics for natural language generation
(Novikova et al., 2017; Reiter, 2018; Kryscinski
et al., 2019): due to the tests’ synthetic nature they
may not fully capture the nuances of reality. For
example, if a test’s objective were to test an NLP
system’s reliability when interacting with African
American English (AAE) speakers, would it be
possible to guarantee (in practice) that all gener-
ated examples fall within the distribution of AAE
texts? Potential research directions would be to
design adversary generation techniques that can
offer such guarantees or incorporate human feed-
back (Nguyen et al., 2017; Kreutzer et al., 2018;
Stiennon et al., 2020).

9 Conclusion

Once language technologies leave the lab and start
impacting real lives, concerns around safety, fair-
ness, and accountability cease to be thought ex-
periments. While it is clear that NLP can have
a positive impact on our lives, from typing auto-
completion to revitalizing endangered languages
(Zhang et al., 2020a), it also has the potential to
perpetuate harmful stereotypes (Bolukbasi et al.,
2016; Sap et al., 2019), perform disproportionately
poorly for underrepresented groups (Hern, 2017;
Bridgeman et al., 2012), and even erase already
marginalized communities (Bender et al., 2021).

Trust in our tools stems from an assurance that
stakeholders will remain unharmed, even in the
worst-case scenario. In many mature industries,
this takes the form of reliability standards. How-
ever, for standards to be enacted and enforced, we
must first operationalize “reliability”. Hence, we
argue for the need for reliability testing (especially
worst-case testing) in NLP by contextualizing it
among existing work on promoting accountability
and improving generalization beyond the training
distribution. Next, we showed how adversarial at-
tacks can be reframed as worst-case tests. Finally,
we proposed a possible paradigm, DOCTOR, for
how reliability concerns can be realized as quantita-
tive tests, and discussed how this framework can be
used at different levels of organization or industry.
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Broader Impact

Much like how we expect to not be exposed to
harmful electric shocks when using electrical ap-
pliances, we should expect some minimum levels
of safety and fairness for the NLP systems we in-
teract with in our everyday lives. As mentioned in
§1, §3, and §7, standards and regulations for AI
systems are in the process of being developed for
this purpose, especially for applications deemed
“high-risk”, e.g., healthcare (European Commis-
sion, 2020). Reliability testing, and our proposed
framework, is one way to approach the problem of
enacting enforceable standards and regulations.

However, the flip side of heavily regulating ev-
ery single application of NLP is that it may slow
down innovation. Therefore, it is important that
the level of regulation for a particular application
is proportionate to its potential for harm (Daten
Ethik Kommission, 2019). Our framework can be
adapted to different levels of risk by scaling down
the implementation of some steps (e.g., the method
and depth in which stakeholder consultation hap-
pens or the comprehensiveness of the set of testing
dimensions) for low-risk applications.

Finally, it is important to ensure that any tests, stan-
dards, or regulations developed adequately repre-
sents the needs of the most vulnerable stakeholders,
instead of constructing them in a prescriptivist man-
ner (Hagerty and Rubinov, 2019). Hence, DOC-
TOR places a strong emphasis on involving stake-
holder advocates and analyzing the impact of an
application of NLP on the target community.
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Appendix
A Testing Dimensions: Detecting Violent

Content on Social Media
In this second case study, we apply DOCTOR for
measuring the reliability of a violent content de-
tection system for English social media posts. Al-
though we limit this discussion to the U.S., this is a
growing global problem (Laub, 2019) that can lead
to deadly outcomes (Rajagopalan et al., 2018). In
this hypothetical use case, the NLP system may au-
tomatically remove violent content or alert content
moderators to potential violations of the social me-
dia company’s acceptable use policy. Moderators
can decide if specific content should be removed,
and if necessary, notify law enforcement to avert
pending violence (e.g., threats against individuals,
planned violent events). As a result of the 1996
Communications Decency Act9, social media plat-
forms have broad latitude (Klonick, 2018) to de-
velop their own policies for acceptable content and
how they handle it. In this scenario, the compliance
officer of the company developing the system is re-
sponsible for making sure it does not discriminate
against specific user demographics.

Research has shown that hate speech can lead to
hateful actions (Marsters, 2019). In many cases,
individuals posted their intents online prior to com-
mitting violence (Cohen et al., 2014). When iden-
tifying content to remove and especially when in-
volving law enforcement, it is important to distin-
guish between “Hunters" — those who act — and
“Howlers" — those who do not (Marsters, 2019).
This is to avoid wrongly detaining individuals who
have no intention of committing violence, even
if their words are indefensible. Between these ex-
tremes, posters may harass, stalk, dox, or otherwise
abuse victims from a distance, therefore it is still
necessary to flag, remove, and potentially track or
document violent content.

Linguistic landscape. We focus solely on En-
glish speakers, but we acknowledge that the actual
linguistic landscape is much more complex (over
350 languages). Posters on social media may speak
English as their first language or as a second lan-
guage and they often code-switch/-mix. Standard
American English is used for business purposes
in the U.S. but there are other frequently used lan-
guage varieties including African American En-
glish (AAE), Cajun Vernacular English, and three

9fcc.gov/general/telecommunications-act-1996

different Latinx (Hispanic) vernacular Englishes.

Stakeholder Impact. The key stakeholders that
will be impacted are those most often facing violent
threats online: minorities, women, immigrants, and
the LGBTQ community (Amnesty International,
2018; Ganesh, 2018; Davidson et al., 2019; Wake-
field, 2020). Additionally, anyone that posts con-
tent on the social media site is a stakeholder. Un-
fortunately, the very communities that are often
the target of violent posts are also often wrongly
flagged as posting toxic content themselves due to
racial biases present in the training data (Sap et al.,
2019; Davidson et al., 2019). Given the risk of
harm to victims if the system misses violent posts
from hunters or misidentifies legitimate content as
violent and notifies law enforcement, it is critical
the right balance of false positives and false nega-
tives is achieved in flagging content.

Dimensions. There are two tasks under consider-
ation here: identifying violent content and identi-
fying Hunters who “truly intend to use lethal vio-
lence” (Marsters, 2019). In the first task, the sys-
tem is looking for content that negatively targets a
socially defined group. Additionally, the content
includes not only hate speech (e.g., profanity, epi-
thets, vulgarity) but also content that incites others
to hatred or violence. Since content written in AAE
has been shown to be flagged as toxic more often
(Sap et al., 2019; Davidson et al., 2019), we must
ensure that the system is reliable when encounter-
ing dialectal variation. Additionally, due to the
casual environment of social media, multilingual
speakers often code-switch and code-mix. Hence,
we expect variation in these dimensions to have
no effect on the system’s predictions: alternative
spellings, morphosyntactic variation, word choice,
code-mixing, idioms, and references to and mani-
festations of sensitive attributes and their proxies.
However, we must expect the system to be sensitive
to in-group and out-group usage of reclaimed slurs
so that the in-group usage does not result in a flag
while out-group usage result in flagged posts.

When identifying hunters, we may expect the sys-
tem to be sensitive to uses of first person pronouns,
certainty adverbs, negative evaluative adjectives,
and modifiers (Marsters, 2019). However, in or-
der to avoid unfairly penalizing vernacular English
speakers we should expect the system’s predictions
to be equally unaffected by variation in the dimen-
sions listed for the first task.

https://www.fcc.gov/general/telecommunications-act-1996


Orthography

Hyphenation
Capitalization
Punctuation

Reduplication of letters
Emojis/emoticons

Homonyms
Disemvoweling (Eger and Benz, 2020)

Homophones (e.g., accept vs. except) (Eger and Benz, 2020)
Accidental misspellings (Belinkov and Bisk, 2018)

Intentional alternative spellings (e.g., Yas, thru, startin)
Open compound concatenation (e.g., couch potato/couchpotato)
Dialectal differences (e.g., favor vs. favour) (Ribeiro et al., 2018)

Mixing writing scripts (Tan and Joty, 2021)
Transliteration

Morphology

Grammatical gender shifts
Grammatical category (Tan et al., 2020)
Dialectal differences (Tan et al., 2020)

Linguistic Clitics

Phenomena

Lexicon

Dialectal variation (e.g., fries vs. chips)
Synonyms/Sememes (Zang et al., 2020)

Vocabulary simplicity/complexity
Cross-lingual synonyms (Tan and Joty, 2021)

Loanwords

Semantics Idioms (e.g., finer than frog hair)

Syntax

Matching number and tense
Word/phrase order (especially for languages without strict word ordering)

Prepositional variation (e.g., stand on line vs. stand in line)
Syntactic variation (Iyyer et al., 2018)

Sentence simplicity/complexity
Code-mixing (Tan and Joty, 2021)

Register (e.g., formality)
Discourse Conversational style (involvement/considerateness) (Tannen et al., 2005)

& Discourse markers / connector words
Pragmatics Cross-cultural differences

Code-switching

Sensitive Attributes

Gender Identity

Gender pronouns
Names

Reclaimed slurs
Genderlects (Tannen, 1991; Dunn, 2014)

Race
Names

Reclaimed slurs
Race-aligned language varieties

Age Age/generation-aligned language styles (Hovy et al., 2020)

Religion Names
Reclaimed slurs

Sexual Orientation Reclaimed slurs

Disability status Associated adjectives (Hutchinson et al., 2020)

Place of origin Location names (e.g., cities, countries)
Figures of speech

Proxies Geographic locations (for ethnicity, socioeconomic status)

Malicious Attacks

Black-box Rule-based (Alzantot et al., 2018; Jin et al., 2020)
Model-based (Garg and Ramakrishnan, 2020; Li et al., 2020a)

Gradient-based HotFlip (Ebrahimi et al., 2018), Universal Triggers (Wallace et al., 2019)

Policy-based Adversarial negotiation agent (Cheng et al., 2019)

Table 1: Taxonomy of possible dimensions with references to linguistics literature and existing adversarial attacks
that could be used as worst-case tests. Linguists are best equipped to decide which linguistic phenomena are high
priority for each use case, ethicists for sensitive attributes, and NLP practitioners for malicious attacks.


