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ABSTRACT

LLM pre-training requires careful curation of data sources, a process that cur-
rently relies heavily on intuition or costly trial-and-error. Since existing ad hoc
approaches are unlikely to transfer across domains or data types, we present a
unifying framework for data mixture optimization where (mixtures, model scale,
training steps) are chosen to balance cost and potential information gain. Going
beyond the canonical deterministic extrapolation in scaling laws, we present a
sequential decision-making framework where uncertainty in outcomes is explicitly
modeled and sharpened as more measurements are gathered. In particular, we
formulate a multi-scale, multi-fidelity Bayesian Optimization (BO) problem where
information from smaller-scale experiments can systematically inform larger-scale
training decisions. We design an adaptive algorithm that takes into account different
measurement fidelities provided by model scale and training steps and empirically
demonstrate it on a predictor built on 472 pre-training runs with varying data
compositions. Compared to standard BO baselines, instantiating our approach with
even simple kernels and acquisition functions can allow principled decisions across
training models from 20M to 1B parameters and achieve 2.7x and 6x speedups
compared to multi-fidelity BO and random search baselines in finding the best data
mixture for downstream performance under fixed compute budgets. In sum, our
adaptive framework underscores potential efficiency gains achievable by develop-
ing principled and transferrable data mixture optimization methods. Our code is
publicly available at https://github.com/anonWAEWA/ADSO.

Figure 1: Left: The predicted loss as a function of data mixing coefficient and model sizes from a
data-driven predictor on 472 runs with high R2. Notice the highly non-smooth geometry. Middle:
The curvature (2nd Derivative) at these points shows there are points of high irregularities. Right:
A demonstration showing how fitted functional forms like exponential decay would demonstrate a
high predictive error if fitted on smaller model points. In contrast, a Gaussian Process would capture
uncertainty over the points.
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Figure 2: Our multi-scale multi-fidelity Bayesian optimization framework. (a) Given an unknown
optimal training data distribution that we have to find, (b) present methods use heuristics-based
filtering that guesses and checks. (c) Our algorithm treats data mixture optimization as a Bayesian
Optimization problem. (d) Under cost constraint, we explore data mixtures while being cost-aware,
where our costs are determined by the fidelity (model size and training steps) that we evaluate. The
evaluated result then updates our probabilistic belief over the data mixture, model size, and training
steps space, which guides subsequent parameters.

1 INTRODUCTION

Data is the foundational infrastructure that all AI systems build on. Scaling data has been a key
driver of progress in machine learning, particularly in language model training (Deng et al., 2009;
Hoffmann et al., 2022a; Gadre et al., 2024). While this data-centric approach has yielded impressive
performance gains, it incurs substantial computational and financial costs in training state-of-the-art
language models (Hoffmann et al., 2022a; Luccioni et al., 2023). Beyond raw scale, the composition
of training data has emerged as a critical factor: when working with heterogeneous data sources,
the choice of training mixture has been shown to significantly impact model performance (Albalak
et al., 2023a; Goyal et al., 2024a). This recognition has motivated extensive effort in optimizing
data mixing strategies. Some institutions have developed proprietary data mixtures based on domain
expertise and empirical observations (Radford et al., 2021; Jiang et al., 2023; OpenAI, 2024), while
others have proposed systematic heuristics ranging from Wikipedia upsampling to perplexity-guided
data selection (Thrush et al., 2024; Blakeney et al., 2024). However, these approaches are unlikely
to transfer across domains and data types. For instance, when organizations in specialized sectors
such as healthcare or finance seek to train custom language models on proprietary datasets, it remains
unclear whether heuristics developed for public datasets are still effective. Given the substantial
resources required for training high-performance language models, there is a pressing need for a
principled framework to address data mixture optimization.

Recent works have proposed frameworks that attempt to model the relationship between data mixing
coefficients and model performance (Ye et al., 2024; Ge et al., 2025a). However, these approaches
make strong assumptions that warrant careful examination. The functional relationship between
mixing coefficients and performance is likely context-dependent, varying across different data settings
and objectives. Moreover, the assumption in these frameworks that the functional relationship is
independent of model scales remains untested across different model sizes. In our empirical study, we
trained a data-driven predictor on results from 472 random large language model pretraining runs at
various scales, which suggests non-trivial relationships in the performance landscape (see Figure 1).
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Instead, we propose viewing the problem of curating the optimal data mixture as an adaptive opti-
mization problem where practitioners iteratively refine their mixing decisions based on empirical
observations from previous experiments. This framework leverages the intuition that model perfor-
mance exhibits local consistency across similar mixtures and model sizes/scales, while avoiding rigid
assumptions about the global structure of the performance landscape.

Sequential optimization of data mixtures necessitates comprehending which data compositions suffer
the highest uncertainty and sharpening beliefs on performance as more observations are gathered.
In particular, good adaptive policies must distinguish between aleatoric and epistemic uncertainty:
epistemic uncertainty can be reduced with more data, while aleatoric is irreducible. Measurements
must be planned to maximally reduce epistemic uncertainty on future runs by balancing exploration
and exploitation.

We formulate this sequential optimization framework as a Bayesian optimization problem: we
maintain probabilistic beliefs on the performance of various data mixtures and model scales, and we
use these beliefs to choose the next model scale to train, on what data mixture, and for how long.
Once we fit and evaluate this new model, we use its performance to update our beliefs (Hutter et al.,
2011; Falkner et al., 2018; Frazier, 2018).

In traditional BO, the cost of each new observation is the same, and we aim to optimize an objective
while observing the smallest number of points possible. Our setting is more complicated – the cost of
training a new model and observing its performance is affected by (1) the number of steps for which
the model is trained and (2) the scale of the model (the number of parameters therein).

The number of steps for which a model is trained affects the quality of the observation – the more
steps we use to train the model, the more accurately the results will reflect the utility of training on the
data mixture in question. Previous work has handled this conundrum using so-called multi-fidelity
Bayesian optimization, in which evaluations are ‘stopped early’ during the training process if it
becomes clear the information revealed during additional training steps will not be worth the expense
(Swersky et al., 2014; Domhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a).

Our setting is distinguished by the second factor above – we also want to use data gathered on smaller
model scales to guide our search over parameters for larger models. Importantly, varying model
scale differs fundamentally from traditional fidelity dimensions like training steps. When training for
z steps, we naturally obtain observations for all intermediate steps up to z. In contrast, evaluating
a model of size m provides no inherent information about the performance of smaller or larger
architectures. This raises interesting questions about how to appropriately treat and exploit the this
structure, opening new methodological directions for investigations.

Luckily, in contrast to conventional hyperparameters like learning rate or momentum, where optimal
configurations exhibit complex scaling behavior across model sizes (Yang et al., 2022), recent
empirical evidence suggests that optimal data mixture compositions enjoy greater transferability from
smaller to larger model architectures (Ye et al., 2024; Ge et al., 2025a). This transferability property
enables the strategic use of smaller-scale evaluations to identify optimal data mixture configurations
that remain effective at target model scales, substantially reducing the computational cost of the
optimization process.

The main contributions of the paper are as follows:

• We propose Multi-Fidelity Multi-Scale Bayesian Optimization settings, combining the works
in optimizing hyperparameters and scaling laws under one intellectual framework. Our
Bayesian Optimization approach better explores different data mixtures and model scales to
deliver the best terminal model 2.7x faster in achieving optimal downstream task perfor-
mance. (Section 4)

• We show how smaller model sizes affect the predictive utility of larger runs (e.g. how much
does training runs below 500M help predict the losses on 1B) by ablating predictors over
training runs of different model scales. (Section 3.3)

• We show how earlier training steps improve the predictive utility of others (e.g. given
constant FLOPs for hyperparameter search, we show it’s better to have 5 full train runs
and 10 half train runs vs 10 full train runs) by ablating predictors of different train steps.
(Section 3.4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a paper at DATA-FM workshop @ ICLR 2025

2 PROBLEM FORMULATION: MULTI-SCALE MULTI-FIDELITY OPTIMIZATION

We have access to a set of n datasets D = {d1, d2, . . . , dn}, and wish to train a model comprising
m∗ parameters for z∗ training steps using T datapoints. We study the problem of finding the optimal
fraction of our data budget T to draw from each of our n datasets. Let wiT denote the number of
points we draw from dataset i, with w = {w1, w2, ..., wn} ∈ ∆n, where ∆n is the n-dimensional
probability simplex.

Let µ(w,m, z) denote the performance of a model comprising m parameters trained for z training
steps with dataset proportions w on some downstream task of interest. We seek to solve the following
optimization problem

argmax
w

µ(w,m∗, z∗) (1)

We have a budget B with which we can experiment with different values of w, m, and z. Each
evaluation of µ(w,m, z) incurs a cost c(m, z).

Using m∗ parameters and z∗ steps every time we evaluate a new set of weights would quickly exhaust
our budget. Instead, therefore, we might probe a particular set of weights on a smaller model with m
parameters, or with z < z∗ training steps – while the resulting observation µ(w,m, z) would be less
informative than µ(w,m∗, z∗), it would be considerably cheaper and still provide a valuable update
to our posterior. This technique is called multi-fidelity Bayesian optimization.

Traditional approaches to fidelity-aware Bayesian optimization primarily address scenarios in which
the model architecture m remains fixed and only the number of training steps z is varied (Swersky
et al., 2014; Domhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a). We add a layer of
complexity by also considering model scale. It is interesting to note that a fundamental distinction
between model scale and number of training steps is that in the course of evaluating a model trained
for z training steps, we must also evaluate that model for all steps z′ < z. No such hierarchical
relationship exists for evaluations across different model scales. This structural difference suggests
promising avenues for novel methodological developments in multi-fidelity optimization theory,
though such extensions lie beyond the scope of our present work.

In this paper, we propose a novel way to take advantage of this additional degree of freedom. To
reduce the computational burden of evaluating our technique, we test it on a ‘predictor’ comprising a
surrogate model trained on 472 pretraining runs across diverse data mixture coefficients and model
scales. This predictor can accurately predict training loss trajectories for any given model scale and set
of mixture coefficients. We then evaluate various Bayesian optimization methods using this surrogate
model, assessing their efficacy in both optimizing the predicted utility functions and identifying
optimal data mixtures among the sampled configurations at our target scale of 1B parameters.

3 PREDICTORS OVER DATA MIXTURE AND SCALE

In this section, we discuss the training of the predictor we will use to test our optimization methods.
This predictor serves two purposes in our paper (1) as we mentioned above, it allows us to reduce
the computational burden required to test our optimization method by evaluating its performance on
predicted losses (2) it allows us to develop high-level intuition about the way runs involving smaller
models or fewer training steps can inform larger runs. The training of such a predictor is not required
to use the optimization technique we develop in this paper but serves as a justification for the overall
validity of our multi-scale, multi-fidelity formulation.

3.1 PRETRAINING - COLLECTING PREDICTOR’S DATA

We pretrained 472 language models using the OLMo 2 package (OLMo et al., 2024) and data
from SlimPajama (Shen et al., 2024), a deduplicated version of RedPajama (Weber et al., 2024).
Slimpajama contains seven data categories – Wikipedia, StackExchange, Github, ArXiv, Book,
CommonCrawl, and C4. We used only data from the first five categories to train the language models
while holding out the data from CommonCrawl and C4 to simulate data mixture optimization in
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out-of-distribution settings. For each run, we randomly sample the data mixture proportions from a
Dirichlet distribution to uniformly sample from the probability simplex and train the models for 196
training steps. Under this setup, we trained models ranging from 20M to 1B parameters. Additional
details on the pretraining setup are provided in Appendix A.

3.2 PREDICTOR TRAINING

Our predictor is a multilayer perceptron (MLP) comprising 5,000 parameters that for a given model,
predicts its cross-entropy loss over eleven different datasets: the model’s training data, each category
in RedPajama listed above, and two additional datasets: CommonCrawl and C4. In addition, the
model is evaluated on three downstream tasks: hellaswag, piqa, arc easy.

The model takes the following inputs (1) the model size (2) the number of steps the model is trained
for (3) the proportion of each of the five dataset categories mentioned above used in training. All
runs are trained with the same number of tokens. The model is trained to minimize the R2 between
predicted and true values.

We now turn to various insights that can be obtained from this predictor.

3.3 SMALL MODELS HELP PREDICT LARGER MODELS OUTCOMES

Train Test
E1 half of 1B runs remaining 1B runs
E2 half of 1B runs remaining 1B runs + 700M runs
E3 half of 1B runs remaining 1B runs + all smaller runs
E4 half of 700M runs remaining 700M runs
E5 half of 700M runs remaining 700M runs + 500 runs

Table 1: Model size experiments

Dataset E1 E2 E3 E4 E5
wikipedia 0.75 0.96 0.94 0.73 0.88
arxiv 0.68 0.92 0.93 0.59 0.82
github 0.66 0.95 0.95 0.62 0.87
book 0.83 0.97 0.97 0.79 0.92
stackexchange 0.73 0.95 0.95 0.68 0.90
commoncrawl 0.84 0.98 0.98 0.81 0.94
c4 0.86 0.99 0.98 0.82 0.95
arceasy 0.92 0.94 0.94 0.88 0.90
hellaswag 0.97 0.98 0.97 0.94 0.96
piqa 0.94 0.96 0.96 0.90 0.93

Table 2: Results of the experiments listed in table 1, averaged over 3 random seeds. Notice that
E2 > E1 and E5 > E4 – our ability to predict the performance of larger models is considerably
enhanced by insights from smaller models. Note also that E3 ≈ E2; adding information about much
smaller models does not seem to help.

We begin by investigating the extent to which smaller model runs can inform the dynamics of larger
ones. Table 1 details these experiments, and Table 2 lists the results of the experiment.

We note that – as expected – information garnered from training runs on smaller models seems to
considerably increase the accuracy of our predictions on larger models, motivating our hope that a
carefully crafted optimization algorithm can exploit the relationship.

Unsurprisingly, we note that the closer in scale the smaller models are to the larger model about
which we wish to make a prediction, the more useful the information is. We, therefore, expect
our optimization algorithm to ‘step through’ model scales, starting with small and cheap models to

5
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identify promising data mixtures, and then progressing to larger and larger models, all the while
refining the data mixtures it considers optimal.

3.4 EARLIER TRAINING STEPS HELP PREDICT LATER TRAINING STEPS

The second central premise of our approach is that given a fixed computer budget, it is better to
attempt many runs for fewer training steps than fewer runs for a larger number of training steps.

To test this hypothesis, we carry out three additional experiments. In each of these experiments,
we attempt to predict the final losses in 30% of our model runs (evenly distributed across model
sizes). The MLP for each of these experiments is trained on (1) a set of complete runs, one for each
model size (2) a set of ‘truncated’ runs, evenly distributed across model sizes. In E6, we use 16 runs
truncated at 196 training steps, in E7, we use 22 runs truncated at 130 training steps, and in E8, we
use 32 runs truncated at 85 steps; thus, these experiments are trained on numbers generated with the
same FLOPS budget.

Dataset E6 E7 E8

R2 0.69 0.77 0.82
R2(log) 0.74 0.82 0.85

Table 3: Notice the predictive power of our MLP is strongest when it is trained on many runs for
fewer steps. Results averaged over 3 runs. This validates that given a fixed compute budget, it is
better to have more runs with fewer training steps than fewer runs for a large number of training steps.

4 BAYESIAN OPTIMIZATION METHODS

In this section, we describe the Bayesian optimization methods we employ to solve the data mixture
problem and evaluate the efficacy of our proposed framework.

4.1 MULTI-FIDELITY MULTI-SCALE GAUSSIAN PROCESS (MFMS-GP)

Algorithm 1 Multi-fidelity Multi-scale Gaussian Process (MFMS-GP)
Require: Probability space ∆n, model-scale space M, training-step space Z , and cost function

c(·, ·)
1: Initialize Gaussian Process (GP) surrogate model with three RBF kernels over ∆n, M, and Z

and a linear mean function
2: Randomly sample points from ∆n, M, and Z to initialize hyperparameters of GP.
3: Initialize history H with the randomly sampled points
4: for each optimization iteration do
5: for each (m, z) ∈ M×Z do
6: Optimize EI within (m, z) using gradient descent
7: end for
8: Select next configuration λnext = (wnext,mnext, znext) using Expected Improvement per Unit

(EIpu):
EIpu(λ) =

EI(λ)
c(m,z) ▷ EI per unit cost

9: Evaluate µ(λnext)
10: Store results in H
11: Update posterior of GP with H
12: end for
13: return best configuration λ∗ = argmaxλ∈H µ(λ)

We implement a Gaussian Process (GP) surrogate model for our multi-fidelity multi-scale setting.
The kernel of the GP is a product of three separate RBF kernels for the data proportion, the model
scale, and the training step dimensions. To enable learning the positive correlation between model
performance and both model scales and training steps, we use a linear mean function.

6
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For the acquisition function, we use Expected Improvement (EI). EI aims to quantify the expected
gain over the current best-observed function value, EI(x) := E [max(y∗ − f(x), 0)], where the ex-
pectation is taken over the posterior distribution predicted by the surrogate models, and y∗ represents
the current best-observed function value, given by y∗ := f(xmin) (Frazier, 2018). The EI function
quantifies the expected improvement in the objective value compared to the current best, thereby
encouraging the selection of points that are likely to yield better performance.

Equipped with EI, the usual Bayesian optimization approach proceeds by optimizing EI over the
parameter space to find the most promising point to evaluate, using gradient-based methods such as
L-BFGS-B (Zhu et al., 1997). However, motivated by the fact that the parameter space is discrete
over parameter counts (m) and training steps (z), we optimize EI over each unique tuple (m, z).
Then, to account for the fact that evaluation for each tuple incurs varying costs (c(m, z)), we chose to
evaluate the point that has the greatest EI per unit cost (EIpu) (Lee et al., 2020).

4.2 BASELINES: MULTI-FIDELITY BAYESIAN OPTIMIZATION

Algorithm 2 Hyperband with Random Forest, EI
Require: Probability space ∆n, training-step space Z , target model scale m∗, and cost function

c(m∗, ·)
1: Initialize random forest surrogate model RF
2: Set initial design with Random Sampling
3: Initialize history H = ∅
4: for each Hyperband iteration do
5: Split the total computation budget into s brackets
6: for each bracket si do
7: Generate initial configurations w1, . . . ,wn at lowest fidelity z = 1
8: for each fidelity z from 1 to z∗ do
9: Evaluate configurations wi at fidelity z

10: Store results in H
11: Fit RF on H
12: Select next λnext using Expected Improvement
13: Update H with new evaluations
14: end for
15: end for
16: end for
17: return best configuration λ∗ = argmaxλ∈H µ(λ,m∗, z∗)

As a baseline for multi-fidelity Bayesian optimization, we use Hyperband implemented by SMAC:
Sequential Model-Based Optimization for General Algorithm Configuration (Lindauer et al., 2022).
This multi-fidelity Bayesian optimization uses a random forest as a surrogate model, expected im-
provement as the acquisition function, and uses Hyperband (Li et al., 2018b), which is an early
stopping technique that focuses on efficiently evaluating multiple parameter configurations by pro-
gressively eliminating poorly performing candidates, and exploring many combinations with fewer
resources. Since the multi-fideltiy framework does not offer an straightforward way to incorporate
the additional dimension of model scale, throughout the optimization, we fix the number of model’s
parameters to the target model scale m∗.

4.3 BASELINES: RANDOM AND GRID SEARCH

Random and Grid Search selects hyperparameters that are uniformly drawn from our data proportion
space. We then run it against the largest model size and training steps.

5 RESULTS

To initiate the hyperparameters of MFMS-GP, we randomly select 20 configurations up to training
step z = 9 to fit the kernel and mean functions’ parameters using the Adam optimizer (Kingma and
Ba, 2014). The cost of evaluating these configurations are accounted for. Additionally, since it is

7
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Figure 3: On maximizing accuracy in the downstream tasks, our multi-scale multi-fidelity approach
achieves more than 2.7x speedup and finds the best configuration the fastest.
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Figure 4: On minimizing the validation cross-entropy losses, our multi-scale multi-fidelity approach
achieves more than 2.7x speedup and finds the best configuration the fastest.

prohibitively expensive to optimize EI for each of 196 training steps, for multi-fidelity multi-scale GP,
we limit the space of training steps to be Z = {60, 120, 197}. Additional details of the experiments
are available in Appendix B

All experiments are run over 5 seeds, and the plots show a 1 standard deviation bound. The number of
evaluations (the x-axis) are in terms of training FLOPS needed to train one 1B model at 100 training
steps. As an example, for Random Search, the 1200 evaluation budget would allow sampling 6 full
runs.

Since MFMS-GP relies on GP posterior and potentially noisy EI optimizations to select model scales
and training steps, it may take a while to sample points at the target scale and fidelity. Therefore, we
add an additional plot, MFMS-GP full-scale, that shows the performance one would have gotten if
one takes the best configuration MFMS-GP has observed, and simply set the model scale and training
steps to the target m∗ and z∗.

In Figures 3 & 4, we see that both of the plots for our MFMS-GP algorithm have a 2.6 to 3.3x speedup
in finding the configuration that achieves the highest accuracy. The advantage of the MFMS-GP
method speaks to the tremendous potential of considering our framework for large scale language
model training.

6 RELATED WORKS

Data Mixtures Several approaches aim to move beyond heuristic methods for data mixture by
leveraging algorithmic techniques. Albalak et al. (2023b) propose an online data mixing strategy
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using a non-stochastic bandit algorithm to dynamically adjust data proportions during training,
maximizing perplexity. DoReMi Xie et al. (2023) focuses on identifying and emphasizing the
”hardest” datasets for a base model through distributionally robust language modeling to improve
training efficiency. Ge et al. (2025b) models a joint scaling behavior of domain proportions and
training steps, we push this further through modeling the model scale. Goyal et al. (2024b) delve
into the quality-quantity tradeoff in data, exploring how data filtering and repetition affect model
performance and introducing scaling laws that account for data utility decay. These works highlight
the increasing interest in principled and adaptive methods for data mixture optimization, yet often
focus on fixed model scales, contrasting with our multi-scale approach.

Scaling Laws Scaling laws provide crucial insights into the relationship between model size, training
compute, and performance in large language models (Kaplan et al., 2020). Hoffmann et al. (2022b)
established foundational scaling laws demonstrating predictable performance improvements with
increased compute, model parameters, and training data. Muennighoff et al. (2023) investigate
the impact of data repetition in data-constrained scenarios, showing diminishing returns beyond
a certain repetition threshold. Ruan et al. (2024) propose observational scaling laws based on
”principal capabilities” to explain and predict language model performance across diverse models
and benchmarks. These scaling law studies inform our framework by providing a theoretical basis for
understanding performance variations across model scales and data mixtures, allowing us to integrate
these insights into a multi-fidelity multi-scale Bayesian optimization approach.

Bayesian Optimization Data mixture optimization, like hyperparameter tuning, benefits from ef-
ficient search strategies. Approaches range from full configuration selection with methods like
Bayesian Optimization (BO) to configuration evaluation which employs early termination of un-
promising runs. Early BO methods Hutter et al. (2011) used Gaussian Processes (GPs) to model the
relationship between hyperparameters and model performance, subsequent works explored random
forests (Lindauer et al., 2022) and Parzen estimators (Bergstra et al., 2011) as surrogate models.

Early stopping techniques like Hyperband (Li et al., 2018b) focus on efficiently evaluating multiple
parameter configurations by progressively eliminating poorly performing candidates, and exploring
many combinations with fewer resources. More recent methods like BOHB (Falkner et al., 2018)
combine these ideas, leveraging the BO exploration of Parzen estimators with the multi-fidelity
benefits of Hyperband. Our work, ADSO, is the first to explore a multi-scale multi-fidelity approach
for data mixture optimization.

7 CONCLUSION AND FUTURE WORK

This work introduces a principled framework, multi-fidelity multi-scale Bayesian optimization, for
optimizing data mixture compositions in large language model training, a critical challenge in modern
AI system development. Our framework unifies recent advances in predicting optimal data mixtures
across scales with classical multi-fidelity Bayesian optimization techniques. Based on this unified
framework, we implemented the Gaussian process using the RBF kernels and expected-improvement-
per-unit acquisition function to balance the information gain and the cost of exploring new points in
the functional landscape. We find that the method achieves optimal downstream task performance 2.7
times faster than traditional multi-fidelity approaches by strategically exploring the joint space of
data mixtures and model scales.

In addition, we empirically demonstrate two key insights that inform future efficient optimization
of data mixtures. First, our analysis reveals that training runs on smaller models (below 500M
parameters) provide valuable predictive signals for optimizing larger architectures (1B parameters).
Second, we establish that partial training runs can effectively inform full-scale training decisions.
Specifically, our results show that a combination of full and partial training runs (e.g. 5 complete and
10 half-length runs) yields better predictive utility than an equal-compute allocation of full training
runs alone (e.g. 10 complete runs).

Several promising directions emerge for future research. First, extending our framework to more
settings such as language model fine-tuning, data filtering, and more diverse collections of datasets
would validate its generalizability across different data mixing scenarios. From a methodological
perspective, incorporating domain knowledge about the positive correlation between model perfor-
mance and both parameter count and training duration could enhance the Gaussian process kernel
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design. Additionally, the fundamental differences between model scale and training steps as fidelity
dimensions call for deeper methodological investigation in their appropriate treatment in the frame-
work. Finally, exploring alternative acquisition functions, such as knowledge gradient (Poloczek
et al., 2016; Wu et al., 2019), could further improve the framework’s efficiency in navigating the
optimization landscape.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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optimization. In Proceedings of the 25th International Conference on Neural Information Process-
ing Systems, NIPS’11, page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN
9781618395993.

Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does your
data spark joy? performance gains from domain upsampling at the end of training, 2024. URL
https://arxiv.org/abs/2406.03476.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, page 3460–3468. AAAI Press,
2015. ISBN 9781577357384.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter optimiza-
tion at scale. CoRR, abs/1807.01774, 2018. URL http://arxiv.org/abs/1807.01774.

Peter I. Frazier. A tutorial on bayesian optimization, 2018. URL https://arxiv.org/abs/
1807.02811.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor
Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh,
Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff,
and Ludwig Schmidt. Language models scale reliably with over-training and on downstream tasks,
2024. URL https://arxiv.org/abs/2403.08540.

Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: A bivariate data mixing law
for language model pretraining, 2025a. URL https://arxiv.org/abs/2405.14908.

Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: A bivariate data mixing law
for language model pretraining, 2025b. URL https://arxiv.org/abs/2405.14908.

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling
laws for data filtering—data curation cannot be compute agnostic. In 2024 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 22702–22711, 2024a. doi: 10.1109/
CVPR52733.2024.02142.

10

https://arxiv.org/abs/2312.02406
https://arxiv.org/abs/2312.02406
https://arxiv.org/abs/2406.03476
http://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2405.14908
https://arxiv.org/abs/2405.14908


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling
laws for data filtering – data curation cannot be compute agnostic, 2024b. URL https://
arxiv.org/abs/2404.07177.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022a. URL https://arxiv.org/abs/
2203.15556.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022b. URL https://arxiv.org/abs/
2203.15556.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization, LION’05, page 507–523, Berlin, Heidelberg, 2011. Springer-Verlag.
ISBN 9783642255656. doi: 10.1007/978-3-642-25566-3 40. URL https://doi.org/10.
1007/978-3-642-25566-3_40.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-fidelity
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A PRETRAINING RUNS DETAILS

We use the OLMo 2 OLMo et al. (2024) package for training our language models. The model
configurations are

Group d model n heads n layers Runs
20M 256 8 8 115
60M 512 8 8 71
150M 768 12 12 53
300M 1024 16 16 74
500M 1280 16 16 39
700M 1536 16 16 52
1B 2048 16 16 68

Table 4: Model Architecture Details by Group with Number of Runs

The training configurations (learning rate, momentum etc.) are directly taken from OLMo’s configu-
ration files (e.g. 700M) We study the compute optimal regime Hoffmann et al. (2022a): for each 1B
model runs, we used 20B tokens in total for training. In the interest of collecting more runs, all other
model scales are trained on 10B tokens.

B BAYESIAN OPTIMIZATION DETAILS

For MFMS-GP, the cost of evaluating a run at a particular model scale is taken from the number
of FLOPS the corresponding model scale costs during the pretraining runs. The costs are scaled
appropriately such that a unit of cost corresponds FLOPS required to train 1B model for 1 training
step.

The GP hyperparameters are trained using the Adam optimizer with 0.1 learning rate for 50 iterations.

To search for optimal EI within each (m, z) tuple, we initiate 5 random probability weights and
perform a gradient search over the probability simplex.

Occasionally, the GP would be too certain of its posterior prediction such that the optimized EI are
all small in magnitude. Therefore, when the optimal EI is below a certain threshold, we lower the
length scales of the RBF kernels to encourage more exploration. The threshold is set to be 1e−4, and
the length scales would be lowered to 95% of their original values.

As a measure to encourage selecting higher cost evaluations later in the optimization cycle, instead of
using EIpu(λ) =

EI(λ)
c(m,z) , we introduce an additional parameter α that controls the importance of cost,

and pick the configuration that maximizes EI(λ)
c(m,z)α . Initially α = 1, and it decays by 1% for every

step of the Bayesian optimization. You may include other additional sections here.
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