

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KNOWLEDGE-CENTRIC DATA SELECTION FOR EFFEC- TIVE DOMAIN ADAPTATION OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain adaptation of language models is critical for specialized applications in fields, but its success hinges on high-quality data selection rather than sheer volume. Current methods, such as heuristic filters, perplexity pruning, and embedding-based clustering, often fail to address domain-specific redundancy and noisy or overlapping data. As a result, training becomes inefficient and resource-intensive, and models may overfit to frequent linguistic patterns rather than capturing core knowledge. **The resulting data-induced inefficiency limits model generalization and translates directly into prohibitive curation and computational costs. For high-stakes domains, this inefficiency is particularly detrimental, as even minor errors carry significant consequences.** We propose a knowledge-centric approach that redefines data quality around discrete knowledge procedures and theorems. Our framework introduces Knowledge Coverage Entropy (KCE), a metric quantifying knowledge diversity, and Entropy-Driven Selection (EDS), which optimizes data selection for compact, high-quality datasets. Experiments in supervised fine-tuning (SFT) and retrieval-augmented generation (RAG) demonstrate EDS’s efficacy. In SFT on the MATH-500 benchmark, at matched data budgets, our method consistently yields the best post-training accuracy among data selection methods. In RAG on medical datasets, our method delivers the best retrieval quality with mean reciprocal rank (MRR) improvements of approximately 11% to 42% and substantial coverage gains while using significantly fewer samples. Enhanced performance in both SFT and RAG demonstrates that KCE offers a principled metric for data quality, and that EDS facilitates efficient in domain-specific tasks.

1 INTRODUCTION

Domain adaptation tailors general-purpose language models for specialized tasks, embedding domain-specific knowledge and reasoning (Howard & Ruder, 2018; Longpre et al., 2023; Seto et al., 2025; Parmar et al., 2024). Unlike broad fluency training, adaptation via supervised fine-tuning (SFT) or retrieval-augmented generation (RAG) prioritizes precise, context-relevant concepts (Shum et al., 2024; Muennighoff et al., 2025a). Effective adaptation hinges on data quality, not volume, requiring corpora that capture essential knowledge for model internalization (Pang et al., 2025; Xia et al., 2024b; Liu et al., 2023). Uncurated datasets yield diminishing returns or degraded performance under minimum description length principles (Li & Vitányi, 2008), emphasizing the need for high-quality selection to optimize learning, efficiency, and robustness (Longpre et al., 2023; Seto et al., 2025).

Current methods, including heuristic filters (e.g., text length, readability) (Xia et al., 2024b; Liu et al., 2023), perplexity-based pruning (Pang et al., 2025; Ankner et al., 2024), model loss-based filtering (IFD) (Li et al., 2024b), per-example gradients (LESS) (Xia et al., 2024a), embedding-based clustering (Xie et al., 2024), and entropy-driven approaches (Song et al., 2012; Lairez, 2022), predominantly operate at the token or embedding level. These approaches manage large corpora but struggle to identify domain-specific knowledge redundancy, such as rephrased definitions or overlapping evidence (Lee et al., 2022; Hei et al., 2024). Because they cannot reliably distinguish genuine novel knowledge from mere stylistic or lexical variations, they often resort to unscalable manual

054 curation (Liu et al., 2024; Wang et al., 2024). Consequently, SFT models memorize frequent sur-
 055 face patterns and falter on edge cases, while RAG systems retrieve irrelevant or redundant passages,
 056 increasing computational cost and harming generalization (Amiraz et al., 2025; Hager et al., 2024;
 057 Fayyaz et al., 2025). In high-stakes domains such as medicine or law, these token-level limitations
 058 translate directly into elevated risks.

059 **Empirical studies underscore these challenges.** Noisy SFT datasets containing incorrect or mis-
 060 aligned pairs degrade model accuracy and introduce biases (Liu et al., 2024; Wang et al., 2024),
 061 while unfiltered RAG datasets reduce retrieval precision (Amiraz et al., 2025). Unsupervised cur-
 062 ricula also fail to address conceptual overlap without proper validation (Ankner et al., 2024; Pang
 063 et al., 2025). Current methods, whether heuristic, perplexity-based, loss-based, gradient-based, or
 064 embedding-clustering operate solely at the token, sequence, or embedding level. Consequently, they
 065 are blind to semantic equivalence across surface variations: different expressions of the same ele-
 066 ment are often discarded, rephrased definitions, logically equivalent proofs, or clinically identical
 067 guidelines are not recognized as redundant. This fundamental limitation leads to knowledge-level
 068 redundancy, poor coverage of rare but critical concepts, and the well-documented degradation in
 069 both SFT generalization and RAG retrieval precision.

070 To bridge these gaps, we introduce a knowledge-centric paradigm that operates on discrete, au-
 071 ditable knowledge units (e.g., mathematical theorems, clinical guidelines, legal principles) rather
 072 than tokens or continuous embeddings. Instead of approximating importance through proxies (per-
 073 perplexity, loss, or gradient norms), our framework constructs a binary knowledge coverage matrix and
 074 do greedy via Knowledge Coverage Entropy (KCE) and Entropy-Driven Selection (EDS) algorithm.
 075 Our approach shifting from surface-level statistics to knowledge-level accounting, directly optimizes
 076 the balance of key knowledge and maximizes novel knowledge.

077 In this data selection framework, KCE quantifies diversity and balance over discrete knowledge
 078 units, and EDS prioritizes novel, high-information samples to reduce redundancy. By leverag-
 079 ing entropy to emphasize informative coverage, the framework strengthens supervised fine-tuning
 080 learning signals and improves retrieval-augmented generation retrieval precision. On the MATH-
 081 500 benchmark, at matched data budgets, KCE-selected data yields the best post-training accuracy
 082 among data selection methods and reaches 456/500 with substantially fewer samples. In medical
 083 retrieval-augmented generation, the framework delivers the best retrieval quality with mean recip-
 084 rocal rank improvements of approximately 11% to 42% alongside large coverage gains under sig-
 085 nificant data reduction. These results establish KCE and EDS as principled tools for efficient and
 086 high-performance domain adaptation.

087 2 METHODOLOGY

089 The Entropy-Driven Selection (EDS) methodology selects a diverse and informative subset of
 090 data samples by maximizing Knowledge Coverage Entropy (KCE) within a binary information-
 091 knowledge matrix. This approach constructs a matrix representing knowledge points across samples,
 092 computes entropy-based scores to quantify diversity, and employs a set-aware lazy-greedy algorithm
 093 to optimize subset selection under cardinality constraints.

095 2.1 BINARY INFORMATION-KNOWLEDGE MATRIX

097 We construct a knowledge set \mathcal{K} of domain-relevant concepts and map each data sample to a binary
 098 vector over \mathcal{K} , forming a matrix $\mathbf{B} \in \{0, 1\}^{n \times m}$, where n is the number of samples, $m = |\mathcal{K}|$ is the
 099 number of knowledge points, and $\mathbf{B}_{i,j} = 1$ if sample i covers knowledge point j , and 0 otherwise.
 100 The matrix \mathbf{B} is built using Qwen-max-0125 (Team, 2025) with task-specific prompts to extract
 101 and tag concepts, as detailed in Appendix C. Only knowledge points that appear at least $n = 50$
 102 times in the dataset are included, and ablation study on the knowledge-point matrix is presented in
 103 Appendix B.1. This matrix underpins the computation of Knowledge Coverage Entropy (KCE).

104 2.2 COVERAGE PROBABILITY DEFINITIONS

106 For the matrix $\mathbf{B} \in \{0, 1\}^{n \times m}$, we define the smoothed coverage probability for sample a as $P_a =$
 107 $\frac{\sum_{j=1}^m \mathbf{B}_{a,j} + \alpha}{m + \alpha m}$, where $\alpha = 10^{-6}$ ensures numerical stability. The joint probability distribution is

108 computed as $P_{i,j} = \frac{\mathbf{B}_{i,j} + \alpha/(nm)}{\sum_{i=1}^n \sum_{j=1}^m (\mathbf{B}_{i,j} + \alpha/(nm))}$. These probabilities support entropy calculations,
 109 with further details in Appendix B.2.
 110

111 2.3 KNOWLEDGE COVERAGE ENTROPY (KCE)

113 For a subset $S \subseteq \{1, \dots, n\}$ of size $|S| = h$, KCE is defined as
 114

$$115 \quad H(S) = - \sum_{j=1}^m p_j \log_2 p_j, \quad p_j = \frac{1}{h} \sum_{a \in S} \mathbf{B}_{a,j},$$

117 where p_j denotes the average coverage of knowledge point j within S . To enable consistent com-
 118 parison across subsets of different sizes, the entropy is normalized as
 119

$$120 \quad H_n(S) = \frac{H(S)}{h}.$$

122 To approximate the integral defined over a potentially infinite-dimensional knowledge space, we
 123 employ Monte Carlo sampling by drawing a finite number of points from the base measure. Further
 124 theoretical results for the infinite-dimensional case, together with corresponding upper bounds, are
 125 detailed in Appendix B.2.

126 Although this set-based formulation captures knowledge diversity effectively, its computation be-
 127 comes costly when n is large due to the dependence on subset interactions. To improve scalability,
 128 we introduce a computationally efficient approximation that assigns each sample an independent,
 129 single-pass score.

130 Let $\mathbf{B} \in \{0, 1\}^{n \times m}$ be the binary information–knowledge matrix, where $\mathbf{B}_{a,j} = 1$ indicates that
 131 sample a covers knowledge point j . The row-wise coverage probability for sample a is defined as
 132

$$133 \quad P_a = \frac{1}{m} \sum_{j=1}^m \mathbf{B}_{a,j},$$

135 with corresponding entropy

$$136 \quad H(a) = -P_a \log_2 P_a.$$

137 To incorporate knowledge importance, a weight vector $\mathbf{k} \in \mathbb{R}^m$ assigns importance k_i to knowledge
 138 point i . The resulting scoring function for sample a is
 139

$$140 \quad \text{Score}(a) = H(a) \cdot \left(1 + \gamma \sum_{i=1}^m k_i \mathbf{B}_{a,i} \right),$$

142 where γ controls the strength of knowledge-aware weighting. The top- s samples ranked by this
 143 score are selected.
 144

145 This single-pass approach achieves linear-time complexity and scales efficiently to large datasets.
 146 However, its independence assumption ignores set-level interactions; therefore, it does not inherit
 147 the submodular guarantees of the lazy-greedy selection strategy described in the main text.

148 2.4 ENTROPY-DRIVEN SELECTION ALGORITHM (EDS)

150 The EDS algorithm selects a subset S of size $|S| = s$ that maximizes KCE, addressing a combinatorial
 151 optimization problem. Below, we describe the optimization goal and the set-aware lazy-greedy
 152 algorithm used to achieve it efficiently, with theoretical justifications provided in Appendices B.5
 153 and B.4.

154 2.4.1 OPTIMIZATION OBJECTIVE

155 The goal is to identify a subset S that maximizes KCE:

$$156 \quad S^* = \arg \max_{S \subseteq \{1, \dots, n\}, |S|=s} H(S).$$

158 This problem is computationally intractable due to its combinatorial nature, necessitating approxi-
 159 mate strategies. We employ a submodular optimization approach, leveraging the diminishing returns
 160 property of KCE (see Appendix B.3).

162 2.4.2 SET-AWARE LAZY-GREEDY SELECTION
163

164 To maximize KCE efficiently, we define a concave-over-coverage objective:

165
$$F(S) = \sum_{j=1}^m w_j f(c_j(S)), \quad c_j(S) = \sum_{a \in S} \mathbf{B}_{a,j},$$

166
167

168 where $w_j \in \mathbb{R}_+^m$ are weights reflecting the importance of knowledge point j (estimated from the
169 dataset distribution), and f is a concave, nondecreasing function. This objective is nonnegative,
170 monotone, and submodular, ensuring that a greedy algorithm achieves a $(1 - 1/e)$ approximation
171 to the optimal solution, as detailed in Appendix B.3. The subset selection is performed using the
172 lazy-greedy algorithm (Algorithm 1). The choice of f balances fidelity to KCE (using the entropy-
173 derived h) and computational efficiency (using $\log(1 + x)$). Each marginal gain evaluation has
174 complexity $O(\text{nnz}(\mathbf{B}_{a,:}))$, and the lazy-greedy approach scales efficiently with sparse matrices. An
175 optional early stopping criterion, based on a revenue boundary, is discussed in Appendix B.4.
176177 **Algorithm 1: Lazy-Greedy EDS (Set-Aware Selection)**
178179 **Input:** Binary matrix $\mathbf{B} \in \{0, 1\}^{n \times m}$; weights $w \in \mathbb{R}^{+m}$; budget s ; concave f ; tolerance $\varepsilon \geq 0$
180 **Output:** Selected indices S
181 $S \leftarrow \emptyset; c \leftarrow \mathbf{0}_m;$ // Coverage counts
182 **for** $a \in 1, \dots, n$ **do**
183 | Compute initial upper bound U_a on $\Delta F(\emptyset; a)$; Push (a, U_a) into max-heap \mathcal{H} ;
184 **while** $|S| < s$ **do**
185 | $(a, U_a) \leftarrow \text{PopMax}(\mathcal{H})$; // Exact marginal gain using current c
186 | $g_a \leftarrow \sum j : \mathbf{B}_{a,j} = 1 w_j [f(c_j + 1) - f(c_j)]; U_{\max} \leftarrow \text{CurrentMaxKey}(\mathcal{H})$ (or $-\infty$ if
187 | empty); **if** $g_a \geq U_{\max} - \varepsilon$ **then**
188 | | $S \leftarrow S \cup a$; **for** j s.t. $\mathbf{B}_{a,j} = 1$ **do**
189 | | | $c_j \leftarrow c_j + 1$
190 | **else**
191 | | Push (a, g_a) back into \mathcal{H} ;
192 **return** S

193 2.4.3 WEIGHTED ENTROPY SCORING

194 To incorporate domain-specific priorities, we encode concept priorities with a weight vector
195 $\mathbf{k} \in \mathbb{R}^m$ (e.g., from concept frequencies). For sample a , define $P_a = \frac{1}{m} \sum_{j=1}^m \mathbf{B}_{a,j}$ and
196 $H(a) = -P_a \log_2 P_a$. The weighted score is
197

198
$$\text{Score}(a) = H(a) \left(1 + \gamma \sum_{i=1}^m k_i \mathbf{B}_{a,i}\right),$$

199

200 where γ trades off diversity and importance. This heuristic steers greedy selection toward diverse
201 samples emphasizing high-priority concepts. Estimation of \mathbf{k} and single-pass variants are in Ap-
202 pendix 2.3.
203204 3 EXPERIMENTS AND EVALUATIONS
205206 We evaluate our entropy-driven data selection framework in two paradigms: supervised fine-tuning
207 (SFT) for mathematical chain-of-thought (CoT) and retrieval-augmented generation (RAG). Base-
208 lines include QuRating (Wettig et al., 2024), SuperFiltering (Li et al., 2024a), Structure Entropy
209 (Xie et al., 2024), random sampling, and the human-curated S1 subset (Muennighoff et al., 2025a).
210 For RAG, we construct proprietary diabetes and general medical corpora and compare matched-size
211 selections across methods. Ablations vary retrieval depth, corpus size, and top- k .
212213 3.1 SUPERVISED FINE-TUNING EVALUATION BENCHMARK
214215 We perform CoT SFT on the S1 data-ablation-full59K pool (Muennighoff et al., 2025b), using the
216 human-curated 1k subset (simplescaling/s1K-tokenized) (Muennighoff et al., 2025b;a) as a high-

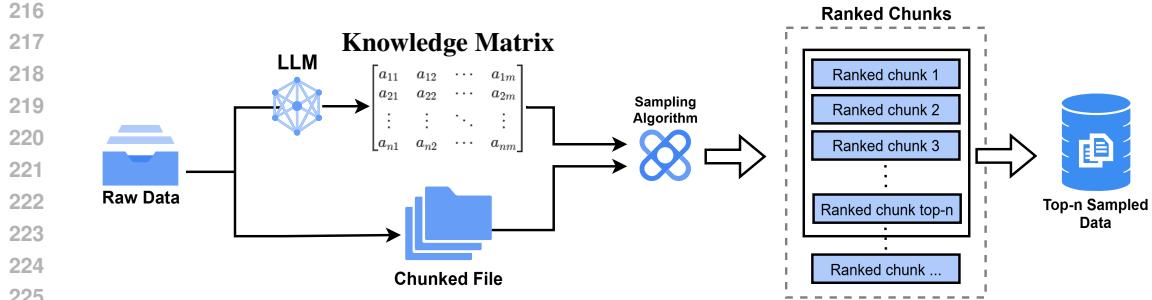


Figure 1: Overview of the Entropy-Driven Data Selection (EDS) workflow.

quality reference. Our method selects matched-size subsets (1k, 5k, 10k) under identical preprocessing and prompting, with baselines producing size- and token-matched counterparts. We fine-tune Qwen-32B-Instruct (Team, 2024) via standard next-token cross-entropy with consistent schedules across conditions. Selection is guided by knowledge coverage entropy (KCE), computed over a knowledge–sample matrix to balance per-sample uncertainty (row entropy) and global coverage, reducing redundancy and promoting diverse reasoning structures. The only difference across conditions is the upstream selection criterion.

We evaluate on the MATH-500 exam set using VLLM inference, reporting exact-answer accuracy. First, we compare KCE with non-negative knowledge-point weights to prioritize rare but critical units—against random sampling and the human-curated S1 subset. Next, we test alternative weighting schemes across baseline selectors by generating matched-size subsets and retraining under identical SFT protocols. We report overall accuracy, sample efficiency, and training stability.

3.2 CONSTRUCTION OF PROPRIETARY RAG CORPORA

We programmatically compile domain-relevant sources (diabetes: textbooks and clinical guidelines; general medical) (Holt & Flyvbjerg, 2024; Royal Government of Bhutan, Ministry of Health, Department of Medical Service, 2007; fun) and use LLMs to: (i) segment texts into atomic chunks, (ii) normalize to a controlled vocabulary of knowledge IDs, and (iii) finalize retrieval-ready passages with titles and structured metadata (knowledge IDs, source, language, timestamps). For each domain, we generate 1000 LLM-authored questions with automatic validation and light manual spot checks. We embed passages with BAAI/bge-large-zh and BAAI/bge-large-en (Chen et al., 2023; Xiao et al., 2023) and retrieve by cosine similarity (Salton et al., 1975) (top- k). Matched-size corpus variants are produced via our selection, QuRating, SuperFiltering, Structure Entropy, and the unselected full corpus.

To assess the selected corpora, we compute knowledge-point coverage rate Hit@ k (the proportion of ground-truth knowledge points covered within the top- k retrieved passages) and conventional MRR, and analyze the accuracy–efficiency trade-off as a function of corpus size. We first evaluate at top-10 retrieval, where each selection method operates at its theoretical data-efficiency point. We then vary (i) retrieval depth with $k \in \{5, 10, 20, 50\}$ and (ii) corpus size, always comparing under matched-size settings.

3.3 RAG EXPERIMENTS AND EVALUATION BENCHMARK

Let Q be the query set with $|Q| = N$. For each query $q \in Q$, let $K(q)$ denote the required knowledge points and $R_k(q)$ the set of knowledge points covered by the top- k retrieved entries (from annotated knowledge IDs).

The per-query knowledge-point hit rate at depth k is:

$$\text{HitRate}_k(q) = \frac{|K(q) \cap R_k(q)|}{|K(q)|}. \quad (1)$$

270 The average knowledge-point hit rate is:
 271

$$272 \text{AverageHitRate}_k = \frac{1}{N} \sum_{q \in Q} \text{HitRate}_k(q). \quad (2)$$

273

275 Define $r_k(q)$ as the smallest $r \in \{1, 2, \dots, k\}$ such that the union of knowledge points covered by
 276 the top- r retrieved entries contains all elements of $K(q)$. If no such r exists within the top- k entries,
 277 set $r_k(q) = 0$ by convention.

278 The per-query reciprocal rank is
 279

$$280 \text{RR}(q) = \begin{cases} \frac{1}{r_k(q)}, & \text{if } r_k(q) \geq 1, \\ 281 0, & \text{if } r_k(q) = 0. \end{cases} \quad (3)$$

282

283 The average multi-point MRR (distinct from conventional MRR (Voorhees & Tice, 2000), as it
 284 requires setwise completion of $K(q)$) is:
 285

$$286 \text{AvgMRR}_k = \frac{1}{N} \sum_{q \in Q} \text{RR}(q). \quad (4)$$

287

289 We compute knowledge-point coverage at depth k (Hit@ k) and the multi-point MRR, and also
 290 report conventional MRR for comparison. All configurations use identical embedding models,
 291 cosine-similarity retrieval, indexing, and query/annotation sets; selection methods differ only in
 292 the upstream criterion (KCE vs. baselines).

293 We then conduct two classes of experiments. (i) Fixed-size corpora: for each domain, we construct
 294 a matched-size evaluation corpus (Diabetes: 3K; Medical: 8K) for each selector and vary retrieval
 295 depth with $k \in \{5, 10, 20, 50\}$. (ii) Variable-size corpora: for each selector, we subsample 1%,
 296 5%, 10%, 20%, and 50% of the full corpus and evaluate at multiple k . To operationalize the “rev-
 297 enue boundary,” we sweep corpus-size–performance curves and select the smallest subset within 1%
 298 relative performance of the maximum Hit@10, yielding the data-efficiency point.

300 4 RESULTS

301

302 4.1 ENTROPY-DRIVEN SFT PERFORMANCE ON MATH-500

303

304 To evaluate our SFT data selection algorithm, we conducted experiments on the MATH-500 bench-
 305 mark. Specifically, we compared 28 randomly sampled subsets with 28 entropy-selected subsets
 306 across different dataset sizes. All models were trained with full-parameter fine-tuning (see Table 7)
 307 and trained to convergence using an early stopping criterion (loss ≤ 0.05 with a patience of 5), and
 308 inference was performed with the VLLM framework (Kwon et al., 2023), with the temperature fixed
 309 at 0 to eliminate stochastic variation. The model performance curves are shown in Fig. 2, and the
 310 complete performance results are summarized in Table 10. Across all dataset scales, entropy-based
 311 selection consistently outperforms random sampling, highlighting its ability to identify high-quality
 312 training data. Even relatively small entropy-selected subsets achieve performance comparable to
 313 much larger randomly sampled sets, demonstrating strong data efficiency. Notably, the entropy-
 314 selected subset reaches 450/500 at size 1000, closely matching the manually curated S1 dataset
 315 (452/500), and even exceeds it at size 500 (456/500). This consistent advantage across scales vali-
 316 dates knowledge-point entropy as a principled and effective criterion for data selection.

317 The training loss trajectories are shown in Figure 4 for models trained on 40K and 50K samples,
 318 selected via entropy-based selection or random sampling. Entropy-selected subsets consistently
 319 converge faster and more stably, with the 40K subset exhibiting a steeper early decline, indicating
 320 stronger gradient signals from high-quality data. Notably, in this experiment, the 40K entropy-
 321 selected subset achieves slightly lower final loss than the 50K subset; this observation highlights the
 322 effectiveness of entropy-driven selection in identifying informative samples, rather than implying
 323 a general principle about optimal dataset size. Overall, entropy-driven selection delivers strong
 324 performance with fewer samples, demonstrating that principled data selection is an efficient and
 325 practical strategy for supervised fine-tuning (SFT) compared to indiscriminate dataset expansion.

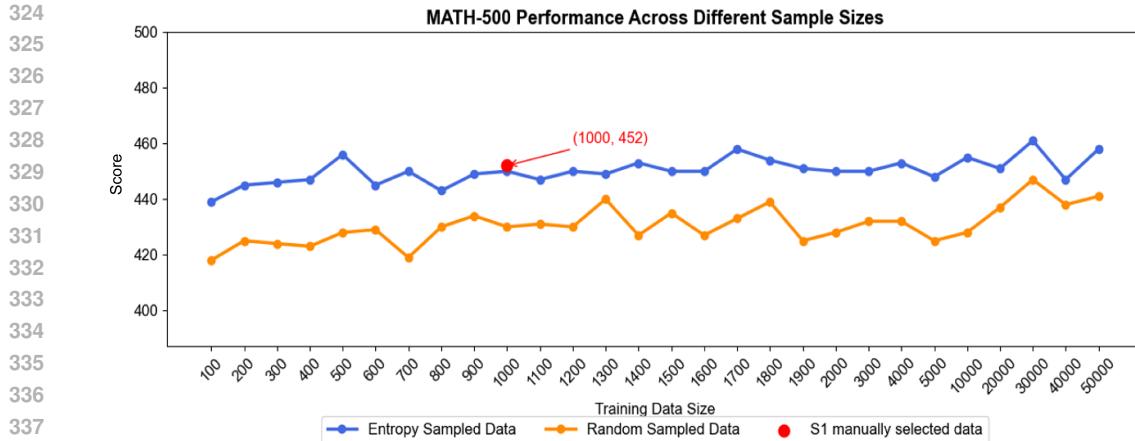


Figure 2: MATH-500 Performance with different training data size. The horizontal axis shows the dataset size, and the vertical axis shows the model’s test scores. The red point at (1000, 452) indicates that the S1 team selected 1000 samples, achieving a score of 452 on the MATH-500 benchmark.

4.1.1 SFT EVALUATION OF BASELINE DATA SELECTION ALGORITHMS

We compared our method against several baseline algorithms under LoRA fine-tuning Table 7 across varying training data sizes, as shown in Figure 3. Overall, our KCE-based method consistently achieves higher exact answer accuracy than the baseline algorithms (Structure Entropy, QuRating, and SuperFiltering) at most dataset sizes, demonstrating its effectiveness in selecting high-quality, informative samples. Notably, KCE with knowledge-point weighting outperforms the unweighted variant in most cases (e.g., 455 vs. 444 at size 1000, 450 vs. 447 at size 2000), indicating that incorporating knowledge-point weights helps prioritize rare but critical knowledge units, further enhancing model performance. These results validate both the superiority of our entropy-driven selection method and the utility of weighted knowledge coverage for efficient and effective SFT.

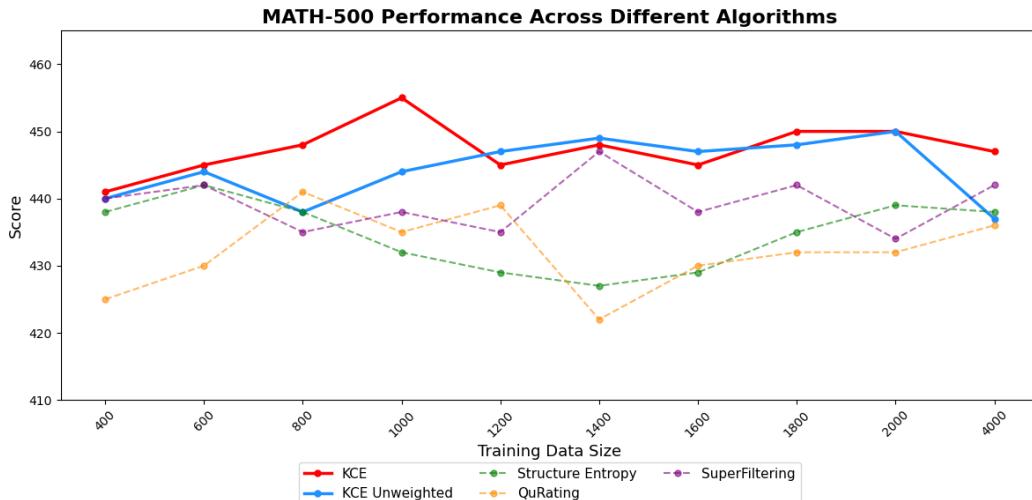
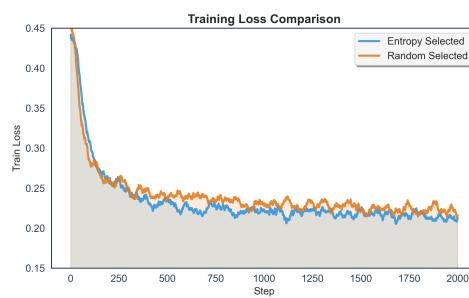


Figure 3: For LoRA fine-tuning, datasets of varying sizes were sampled using different algorithms. The red solid line represents KCE with knowledge-point weighting, the blue solid line represents KCE without weighting, and the remaining three dotted lines correspond to the other baseline data filtering algorithms.



390 Figure 4: Training loss curves for models trained with entropy-based selection (blue) and random
 391 selection (brown) on 40K (a) and 50K (b) datasets. Entropy-based selection accelerates convergence
 392 and achieves lower, more stable training loss compared to random selection.

4.2 RETRIEVAL EFFICIENCY ON MEDICAL KNOWLEDGE DATASETS

396 We evaluated our entropy-driven data selection framework, focusing on the proposed Knowledge-
 397 Centric Entropy (KCE) method, on two medical datasets: Diabetes and General Medical, comparing
 398 it with Qurating, Structural Entropy, and Superfiltering. The revenue boundary, illustrated in Figure
 399 5, indicates where adding more samples yields diminishing returns, allowing redundant data to
 400 be discarded while preserving the most valuable knowledge. As summarized in Table 1, KCE consis-
 401 tently improves retrieval performance. On the General Medical dataset, which is high-dimensional
 402 with many sparse attributes and a less pronounced revenue boundary (as shown in Figure 5), KCE
 403 effectively prioritizes the most informative samples, leading to a notable improvement in MRR. Al-
 404 though the average coverage rate shows a slight decrease, it remains high, demonstrating that KCE
 405 enhances retrieval quality with minimal impact on overall coverage.

406 Table 1: Evaluation of data selection algorithms on RAG metrics. Reported metrics are average cov-
 407 erage rate and MRR. KCE achieves higher coverage and MRR with reduced dataset size compared
 408 to other methods.

409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420

Dataset	Algorithm	Avg. MRR	Avg. Coverage Rate	Data Size
Diabetes	Full Dataset	0.4314	75.5%	12K
	KCE	0.4802	79.3%	3K
	Structure Entropy	0.3372	61.9%	3K
	QuRating	0.3699	70.0%	3K
	Superfiltering	0.3695	68.7%	3K
Medical	Full Dataset	0.4511	73.9%	20K
	KCE	0.4685	72.9%	8K
	Structure Entropy	0.3952	67.6%	8K
	QuRating	0.3992	68.7%	8K
	Superfiltering	0.4227	69.2%	8K

421 For the **Diabetes** dataset (251 Attributes), KCE achieves the highest coverage rate and MRR among
 422 all selection methods, increasing coverage from 75.5% to 79.3% and MRR from 0.431 to 0.480,
 423 while reducing the dataset size from 12K to 3K. In the **General Medical** dataset (1,122 Attributes),
 424 KCE maintains coverage, slightly decreasing from 73.9% to 72.9%, and further improves MRR
 425 from 0.451 to 0.468, despite a significant reduction in data size from 20K to 8K.

4.2.1 RETRIEVE WITH VARYING DATA SIZES

426 To evaluate the robustness of data selection algorithms under varying dataset sizes, we conducted
 427 experiments on the Diabetes and General Medical datasets using 1%, 5%, 10%, 20%, and 50%
 428 subsets. Overall, KCE demonstrates strong coverage and ranking quality across most scales. For
 429 instance, as shown in Table 2, on the Diabetes dataset, KCE attains 68.2%, 79.3%, 86.4%, and 90.1%
 430 coverage for the top 5, 10, 20, and 50 retrieved entries, generally outperforming Structure Entropy

432 and QuRating. While Superfiltering occasionally matches or slightly exceeds KCE at smaller subset
 433 sizes, KCE provides more consistent gains at larger scales. Similarly, on the Medical dataset, KCE
 434 achieves 62.6%, 72.9%, 81.6%, and 89.0% coverage for the corresponding top retrieved entries,
 435 highlighting its robustness in prioritizing high-value knowledge. These results indicate that KCE is
 436 effective and reliable even when dataset subsets are limited or sparse.

438 Table 2: RAG evaluation of different data selection algorithms across varying dataset sizes (% of
 439 full dataset). Metrics reported are average coverage rate (%) and MRR. **Bolded entries indicate our
 440 proposed method (KCE) and do not necessarily correspond to the best-performing results.**

Dataset	Algorithm	Data Size (% of full dataset)				
		1%	5%	10%	20%	50%
Diabetes	KCE	59.4	62.8	66.9	77.10	79.8
		0.3620	0.3562	0.3679	0.4452	0.4885
	Structure Entropy	22.9	41.8	54.6	60.5	68.5
		0.1385	0.2516	0.3102	0.3229	0.3959
	QuRating	17.1	33.0	50.2	62.1	71.3
		0.08	0.17	0.2826	0.339	0.408
Medical	Superfiltering	49.1	68.9	72.9	74.5	75.0
		0.2443	0.3731	0.4083	0.4416	0.4342
	KCE	32.5	48.2	67.0	73.5	74.8
		0.1927	0.2825	0.3855	0.4568	0.4805
	Structure Entropy	22.1	46.7	58.0	63.7	69.5
		0.1393	0.2828	0.3343	0.3835	0.4143
Medical	QuRating	13.3	23.1	52.8	59.7	70.3
		0.0850	0.1300	0.2973	0.3641	0.4301
	Superfiltering	41.4	50.9	65.9	70.0	73.9
		0.2324	0.2816	0.3843	0.4288	0.4511

4.2.2 RETRIEVE WITH DIFFERENT TOP-K

463 In this experiment, we evaluated retrieval performance on fixed-size datasets (Diabetes top 3K and
 464 Medical top 8K) by varying the top- k retrieved items from 5 to 50 to assess how well each algorithm
 465 ranks the most relevant knowledge. KCE consistently outperforms other methods across all top-
 466 k settings. For example in Table 3, on the Diabetes dataset, KCE achieves Top@10 coverage of
 467 79.3% with MRR 0.4802, compared to Structure Entropy (61.9% / 0.3372), QuRating (70.0% /
 468 0.3699), and Superfiltering (68.7% / 0.3695). Similarly, on the Medical dataset, KCE attains superior
 469 coverage and ranking quality across Top@5 to Top@50 (e.g., Top@50 coverage 89.0% with MRR
 470 0.4762), demonstrating its persistent advantage in prioritizing high-value knowledge over competing
 algorithms.

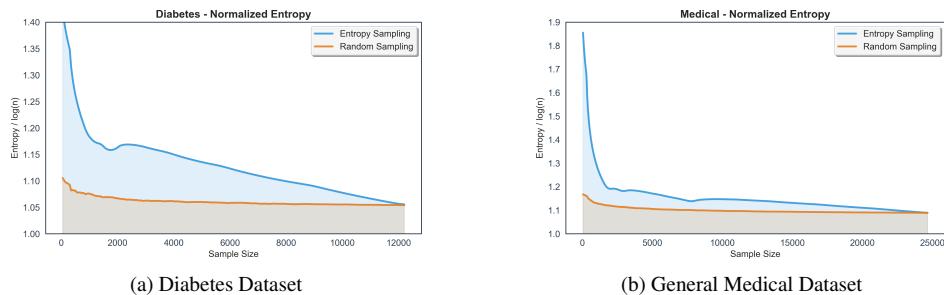
471 These results demonstrate that KCE consistently outperforms other algorithms in retaining essential
 472 knowledge and improving retrieval quality. By effectively prioritizing high-value information and
 473 removing redundancy, KCE enables substantial dataset reduction without sacrificing performance,
 474 reducing computational cost and enhancing retrieval-augmented generation on both low- and high-
 475 dimensional medical datasets.

4.3 REVENUE BOUNDARIES AND INFORMATION GAIN ACROSS DOMAINS

479 Entropy-based sampling improves data utilization efficiency on both Diabetes and General Medical
 480 datasets. Normalized entropy curves show that entropy-selected subsets achieve higher information
 481 gain per sample than unfiltered data, with a clear revenue boundary beyond which additional samples
 482 provide diminishing returns. In low-sample regimes, steeper slopes indicate faster acquisition of
 483 high-value data, while flattening slopes mark diminishing marginal returns and a natural stopping
 484 criterion. Across domains, entropy-based sampling consistently attains higher coverage efficiency
 485 than random selection, enabling the construction of compact, high-quality datasets for LLM training
 and retrieval-augmented generation.

486
 487 Table 3: RAG evaluation of different data selection algorithms across varying top retrieval sizes
 488 (Top@5, 10, 20, 50). Metrics reported are average coverage rate (%) and MRR. KCE consistently
 489 achieves higher coverage and MRR than other methods across all top-k settings.

490	491	Dataset	Algorithm	Retrieve Top Entries			
				Top@5	Top@10	Top@20	Top@50
492	493	Diabetes top3K	KCE	68.2	79.3	86.4	90.1
			0.4655	0.4802	0.4853	0.4867	
			Structure Entropy	50.1	61.9	74.9	85.6
			0.3209	0.3372	0.3465	0.3510	
			QuRating	54.4	70.0	81.6	89.5
			0.3491	0.3699	0.3778	0.3808	
494	495	Medical top8K	Superfiltering	54.6	68.7	78.2	89.5
			0.3503	0.3695	0.3761	0.3798	
			KCE	62.6	72.9	81.6	89.0
			0.4539	0.4685	0.4737	0.4762	
			Structure Entropy	57.0	67.6	76.0	84.9
			0.3810	0.3952	0.4018	0.4044	
496	497	Medical top8K	QuRating	57.4	68.7	77.4	85.4
			0.3838	0.3992	0.4052	0.4079	
			Superfiltering	58.0	69.2	77.1	84.7
			0.4076	0.4227	0.4281	0.4308	



500
 501 Figure 5: Comparison of normalized entropy vs. sample size for two datasets using entropy sam-
 502 pling (blue line with orange variability) and random sampling (brown line). (a) Diabetes Dataset
 503 (0–12,000 samples, entropy 1.0–1.4). (b) General Medical Dataset (0–25,000 samples, entropy
 504 1.0–1.9). Entropy sampling consistently yields higher normalized entropy than random sampling.
 505

5 DISCUSSION

525 In this work, we propose a knowledge-centric data selection framework for domain adaptation, for-
 526 malized through Knowledge Coverage Entropy (KCE) and instantiated via an entropy-driven, sub-
 527 modular selection algorithm (EDS). The approach models discrete knowledge units and prioritizes
 528 coverage diversity under cardinality constraints, aiming to reduce redundancy and improve sample
 529 efficiency in both supervised fine-tuning and retrieval-augmented generation in domain adaptation
 530 of large language models. Empirical results on MATH-500 and medical RAG indicate consistent
 531 gains with smaller datasets and more stable training dynamics.

540 **6 REPRODUCIBILITY STATEMENT**
541542 To ensure reproducibility of our results, all code used for data processing, model training, and eval-
543 uation will be provided in a zip file as part of the supplementary materials. Detailed descriptions
544 of the datasets, preprocessing steps, and experimental settings are included in the main text and
545 appendices. This will allow readers to reproduce the reported experiments and verify the findings.
546547 **REFERENCES**
548549 **Funpang medical dataset.** [https://huggingface.co/datasets/FunPang/medical_](https://huggingface.co/datasets/FunPang/medical_dataset)
550 [dataset](#). Accessed: 2025-08-26.551 Chen Amiraz, Florin Cuconasu, Simone Filice, and Zohar Karnin. The distracting effect: Under-
552 standing irrelevant passages in rag, 2025. URL <https://arxiv.org/abs/2505.06914>.
553554 Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L. Leavitt, and Man-
555 sheej Paul. Perplexed by perplexity: Perplexity-based data pruning with small reference models,
556 2024. URL <https://arxiv.org/abs/2405.20541>.557 **Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:**
558 **Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-**
559 **tillation, 2023.**560 **Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,**
561 **Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John**
562 **Schulman. Training verifiers to solve math word problems.** *arXiv preprint arXiv:2110.14168*,
563 **2021.**564 **Mohsen Fayyaz, Ali Modarressi, Hinrich Schuetze, and Nanyun Peng. Collapse of dense retrievers:**
565 **Short, early, and literal biases outranking factual evidence, 2025.** URL <https://arxiv.org/abs/2503.05037>.566 **Ronald A Fisher. On the mathematical foundations of theoretical statistics.** *Philosophical transac-*
567 *tions of the Royal Society of London. Series A, containing papers of a mathematical or physical*
568 *character*, 222(594-604):309–368, 1922.569 **Ashwin Kumar Gururajan, Enrique Lopez-Cuena, Jordi Bayarri-Planas, Adrian Tormos, Daniel**
570 **Hinjos, Pablo Bernabeu-Perez, Anna Arias-Duart, Pablo Agustin Martin-Torres, Lucia Urcelay-**
571 **Ganzabal, Marta Gonzalez-Mallo, Sergio Alvarez-Napagao, Eduard Ayguadé-Parra, and Ulises**
572 **Cortés Dario Garcia-Gasulla. Aloe: A family of fine-tuned open healthcare llms, 2024.**573 **Paul Hager, Friederike Jungmann, Robbie Holland, Kunal Bhagat, Inga Hubrecht, Manuel Knauer,**
574 **Jakob Vielhauer, Marcus Makowski, Rickmer Braren, Georgios Kaassis, and Daniel Rueckert.**
575 **Evaluation and mitigation of the limitations of large language models in clinical decision-making.**
576 ***Nature Medicine*, 30(9):2613–2622, 2024. doi: 10.1038/s41591-024-03097-1.**577 **Zijian Hei, Weiling Liu, Wenjie Ou, Juyi Qiao, Junming Jiao, Guowen Song, Ting Tian, and Yi Lin.**
578 **Dr-rag: Applying dynamic document relevance to retrieval-augmented generation for question-**
579 **answering, 2024.** URL <https://arxiv.org/abs/2406.07348>.580 **Richard IG Holt and Allan Flyvbjerg. *Textbook of diabetes*.** John Wiley & Sons, 2024.581 **Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.**
582 ***arXiv preprint arXiv:1801.06146*, 2018.**583 **Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-**
584 **ease does this patient have? a large-scale open domain question answering dataset from medical**
585 **exams.** *arXiv preprint arXiv:2009.13081*, 2020.586 **Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.**
587 **Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model**
588 **serving with pagedattention.** In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
589 *Systems Principles*, 2023.

594 Didier Lairez. What entropy really is : the contribution of information theory, 2022. URL <https://arxiv.org/abs/2204.05747>.
595
596

597 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyan Zhang, Douglas Eck, Chris Callison-
598 Burch, and Nicholas Carlini. Deduplicating training data makes language models better, 2022.
599 URL <https://arxiv.org/abs/2107.06499>.

600 Ming Li and Paul Vitányi. *An introduction to Kolmogorov complexity and its applications*. Springer,
601 3 edition, 2008.
602

603 Ming Li, Yong Zhang, Shuai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and
604 Tianyi Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. In Lun-
605 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meet-
606 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14255–
607 14273, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. URL
608 <https://aclanthology.org/2024.acl-long.769>.
609

609 Ming Li, Yong Zhang, Zhitao Li, Juhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
610 Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
611 selection for instruction tuning, 2024b. URL <https://arxiv.org/abs/2308.12032>.
612

612 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
613 ment? a comprehensive study of automatic data selection in instruction tuning. *arXiv preprint
614 arXiv:2312.15685*, 2023.
615

616 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
617 ment? a comprehensive study of automatic data selection in instruction tuning, 2024. URL
618 <https://arxiv.org/abs/2312.15685>.
619

619 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
620 Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide to
621 training data: Measuring the effects of data age, domain coverage, quality, toxicity, 2023. URL
622 <https://arxiv.org/abs/2305.13169>.
623

623 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
624 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
625 scaling. *arXiv preprint arXiv:2501.19393*, 2025a.
626

627 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
628 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
629 scaling, 2025b. URL <https://arxiv.org/abs/2501.19393>.
630

630 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
631 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
632 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
633 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
634 URL <https://arxiv.org/abs/2203.02155>.
635

636 Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, and Yang Liu. To-
637 ken cleaning: Fine-grained data selection for llm supervised fine-tuning. *arXiv preprint
638 arXiv:2502.01968*, 2025.
639

639 Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Bo Liu, Aastha Jhunjhunwala, Zhilin
640 Wang, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Data, data everywhere: A
641 guide for pretraining dataset construction, 2024. URL <https://arxiv.org/abs/2407.06380>.
642

643 Royal Government of Bhutan, Ministry of Health, Department of Medical Service. *Managing Di-
644 abetes Mellitus: Guide for Health Workers*. Royal Government of Bhutan, Ministry of Health,
645 Department of Medical Service, Thimphu, Bhutan, August 2007.
646

647 Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

648 Skyler Seto, Maartje ter Hoeve, Maureen de Seyssel, and David Grangier. Assessing the role of
 649 data quality in training bilingual language models, 2025. URL <https://arxiv.org/abs/2506.12966>.
 650

651 KaShun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
 652 chain-of-thought from labeled data, 2024. URL <https://arxiv.org/abs/2302.12822>.
 653

654 Yan Song, Prescott Klassen, Fei Xia, and Chunyu Kit. Entropy-based training data selection for
 655 domain adaptation. In *Proceedings of COLING 2012: Posters*, pp. 1191–1200, 2012.
 656

657 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.
 658

659 Qwen Team. Qwen_max_0125. <https://www.alibabacloud.com/help/en/model-studio/what-is-qwen-llm>, 2025. Accessed: 2025-09-11.
 660

661 Ellen M. Voorhees and Dawn M. Tice. The TREC-8 question answering track. In M. Gavrilidiou, G. Carayannis, S. Markantonatou, S. Piperidis, and G. Stainhauer (eds.), *Proceedings of the Second International Conference on Language Resources and Evaluation (LREC'00)*, Athens, Greece, May 2000. European Language Resources Association (ELRA). URL <https://aclanthology.org/L00-1018/>.
 662

663 Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng Shang, Xin Jiang,
 664 and Qun Liu. Data management for training large language models: A survey, 2024. URL
 665 <https://arxiv.org/abs/2312.01700>.
 666

667 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. QuRating: Selecting high-
 668 quality data for training language models. In *International Conference on Machine Learning
 669 (ICML)*, 2024.
 670

671 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
 672 lecting influential data for targeted instruction tuning, 2024a. URL <https://arxiv.org/abs/2402.04333>.
 673

674 Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and Junyang Lin.
 675 Rethinking data selection at scale: Random selection is almost all you need. *arXiv preprint
 676 arXiv:2410.09335*, 2024b.
 677

678 Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
 679 advance general chinese embedding, 2023.
 680

681 Tianchi Xie, Jiangning Zhu, Guozu Ma, Minzhi Lin, Wei Chen, Weikai Yang, and Shixia Liu.
 682 Structural-entropy-based sample selection for efficient and effective learning. *arXiv preprint
 683 arXiv:2410.02268*, 2024.
 684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A USE OF LLM**
703704 The text of this article has been refined with the assistance of a large language model (LLM). All
705 scholarly opinions, factual content, and final expressions remain the responsibility of the authors;
706 the model was used solely to enhance the clarity, readability, and linguistic quality of the manuscript.
707708 **B LIMITATION**
709710 While the proposed entropy-driven Selection framework demonstrates promising results, it is not
711 without limitations. First, the method assumes a certain degree of redundancy in the corpus, as the
712 entropy computation relies on overlapping knowledge points across samples to establish informative
713 distributions. Consequently, the approach may underperform on highly sparse datasets with minimal
714 overlap. Second, the framework presumes that each information unit contains multiple knowledge
715 points, providing sufficient variability to compute knowledge-point entropy. In cases where samples
716 are extremely atomic—e.g., containing only a single knowledge point—the resulting knowledge
717 matrix becomes nearly diagonal, rendering Knowledge Coverage Entropy computation ineffective.718 Additionally, we currently represent the Information–Knowledge Matrix as binary, indicating
719 whether a sample fully covers a knowledge point or not. While this simplification facilitates com-
720 putation and aligns with the current entropy formulation, it neglects partial or graded coverage. We
721 acknowledge this limitation and note that a probabilistic or weighted representation could better
722 capture the degree of knowledge coverage in future work.
723724 **B.1 ABLATION STUDY ON THE KNOWLEDGE MATRIX CONSTRUCTION**
725726 The ablation study of the knowledge matrix comprises two main parts. The first part examines the
727 system’s robustness to different frequency thresholds, defined as the minimum number of occur-
728 rences required for a knowledge point to be included, and evaluates the effect of weighted entropy
729 on performance. The second part investigates the impact of using different scoring sources—LLMs
730 versus human experts—on the construction of the knowledge matrix and analyzes whether these
731 variations affect the algorithm’s overall performance.732 For this study, we use the GSM8K dataset (Cobbe et al., 2021) and train two model sets: DeepSeek-
733 Distill-Qwen-7B and Qwen3-8B with 2k selected data (full set 7.9k) and LoRA adaptation (see
734 Table 8). To evaluate the robustness of our data selection method, we compare performance across
735 (1) different numbers of selected concepts k , (2) weighted vs. unweighted variants, and (3) multiple
736 model scales. The results show that our method is highly stable across all dimensions. The detailed
737 performances are list in Table 4 and Table 5
738739 Table 4: Performance of different models under the weighted scoring scheme for six configura-
740 tions of the knowledge frequency threshold k (minimum occurrences of a knowledge point). The number
741 in parentheses indicates the resulting number of knowledge units after applying the KCE module.742

Model	$k=10(189)$	$k=15(123)$	$k=20(97)$	$k=25(78)$	$k=30(64)$	$k=50(45)$
ds-distill-qwen-7B	829	841	826	832	844	828
qwen2-0.5B	314	314	294	326	312	315
qwen3-8B	1206	1196	1192	1193	1206	1200

743 **Table 5: Unweighted**
744745

Model	$k=10(189)$	$k=15(123)$	$k=20(97)$	$k=25(78)$	$k=30(64)$	$k=50(45)$
ds-distill-qwen-7B	810	789	808	787	808	803
qwen2-0.5B	320	334	316	310	317	315
qwen3-8B	1196	1207	1197	1203	1185	1203

753 First, performance remains nearly unchanged as k varies from 10 to 50, even though the number of
754 selected concepts is reduced by more than 70% (from 189 to 45). The fluctuation in model accuracy
755 stays within 1–5% across all models, demonstrating that our selection procedure is not sensitive to
the exact choice of k .

Second, the weighted variant consistently exhibits lower variance than the unweighted version. This confirms that the weighting mechanism effectively filters out noisy or low-importance concepts, leading to more reliable improvements. For the smaller 0.5B model, the benefit of weighting is less pronounced, which is likely due to the limited capacity of small models to fully exploit the training data. Nonetheless, even in this low-capacity regime, the weighted (task-optimized) strategy remains more balanced acrSecond, the weighted variant consistently exhibits lower variance than the unweighted version.

Finally, the same trend holds across three models with very different capacities (0.5B, 7B, 8B), showing that the robustness of our approach is model-agnostic. The consistency across k, across weighting strategies, and across model scales provides strong evidence that our knowledge selection mechanism is inherently robust.

The ablation study on different knowledge extractors was conducted using the MedQA-CoT-LLaMA31 datasets (Jin et al., 2020; Gururajan et al., 2024). We constructed three versions of the knowledge matrix using Qwen-Max and Qwen-7B-Instruct and doctor rectified Qwen-max as the knowledge extractors. Since this dataset does not come with an established benchmark for evaluating the correctness of extracted knowledge points, we randomly sampled five subsets from the full training corpus as pseudo-test sets, each containing 1000 questions. The extraction accuracy on these five subsets is reported in Table 6. This training extracted 4k data out of 10K full set, and used the same LoRA config in previous study (See Table 8)

Table 6: Extraction accuracy of Qwen-Max and Qwen-7B-Instruct evaluated on five randomly sampled subsets (1000 questions each).

Model	set1	set2	set3	set4	set5
Qwen-max	126/1000	132/1000	119/1000	119/1000	120/1000
qwen-7B-Inst	126/1000	128/1000	125/1000	125/1000	117/1000
Rectified Qwen-max	126/1000	132/1000	120/1000	119/1000	120/1000

Across the five sampled subsets, three extractors exhibit highly consistent performance with only minor fluctuations, indicating that our knowledge extraction pipeline is robust to model scale. Even though knowledge extracted by a smaller model may not be as precise as that from a larger model, the robustness of our knowledge matrix ensures that downstream training remains stable, which is particularly valuable in scenarios with limited computational resources. While the pseudo-test sets offer an approximate evaluation, incorporating human experts (e.g., medical professionals) would provide a more reliable assessment and capture domain-specific nuances beyond model capability, further improving the accuracy and trustworthiness of the resulting knowledge matrix.

B.2 KNOWLEDGE COVERAGE ENTROPY DEFINITION AND BOUNDS

The Knowledge Coverage Entropy (KCE) measures the diversity of knowledge coverage in a subset $S \subseteq \{1, \dots, n\}$ of size $|S| = h$ from a dataset represented by a binary matrix $\mathbf{B} \in \{0, 1\}^{n \times m}$, where $\mathbf{B}_{i,j} = 1$ if sample i covers knowledge point j , and 0 otherwise. To ensure numerical stability, we apply additive smoothing:

$$\mathbf{B}' = \mathbf{B} + \frac{\alpha}{nm}, \quad \alpha = 10^{-6},$$

and normalize to obtain a joint probability distribution:

$$P_{i,j} = \frac{\mathbf{B}'_{i,j}}{\sum_{i=1}^n \sum_{j=1}^m \mathbf{B}'_{i,j}}.$$

The KCE for subset S is defined as

$$H(S) = - \sum_{j=1}^m p_j \log_2 p_j, \quad p_j = \frac{1}{h} \sum_{a \in S} \mathbf{B}_{a,j}.$$

The maximum entropy occurs when $p_j = 1/m$, yielding $H(S) \leq \log_2 m$. For the joint distribution over nm outcomes, the upper bound is

$$H(S) \leq \log_2(nm) = \log_2 n + \log_2 m.$$

810 The normalized entropy is

$$811 \quad 812 \quad 813 \quad H_n(S) = \frac{H(S)}{\log_2 h},$$

814 with $H_n(S) \leq 1 + \frac{\log_2 m}{\log_2 n}$. As $n \rightarrow \infty$, $H_n(S) \rightarrow 1$ (or less with redundancy). Redundancy in \mathbf{B}
 815 (e.g., samples covering identical points) reduces $H(S)$ to $\approx \log_2 m$, exhibiting sublinear growth.
 816

817 **Monte Carlo approximation.** To extend KCE to a potentially infinite-dimensional knowledge
 818 space \mathcal{X} , we replace the integral

$$819 \quad 820 \quad 821 \quad H(S) = - \int_{\mathcal{X}} p(x) \log_2 p(x) d\mu(x), \quad p(x) = \frac{1}{h} \sum_{a \in S} B_a(x),$$

822 with a Monte Carlo estimator. We draw M samples $\{x_t\}_{t=1}^M$ from the base measure μ , and approxi-
 823 mate the entropy by
 824

$$825 \quad 826 \quad 827 \quad \hat{H}(S) = - \frac{1}{M} \sum_{t=1}^M \hat{p}(x_t) \log_2 \hat{p}(x_t), \quad \hat{p}(x_t) = \frac{1}{h} \sum_{a \in S} B_a(x_t).$$

828 This estimator is unbiased and converges at a rate $O(M^{-1/2})$, independent of the dimensionality of
 829 \mathcal{X} .
 830

831 **Knowledge-weighted variant.** When incorporating importance weights $k(x)$, the weighted en-
 832 tropy

$$833 \quad 834 \quad 835 \quad H_k(S) = - \int_{\mathcal{X}} p(x) \log_2 p(x) k(x) d\mu(x)$$

836 is approximated by

$$837 \quad 838 \quad 839 \quad \hat{H}_k(S) = - \frac{1}{M} \sum_{t=1}^M k(x_t) \hat{p}(x_t) \log_2 \hat{p}(x_t).$$

841 B.3 SUBMODULARITY OF KNOWLEDGE COVERAGE ENTROPY

842 The effectiveness of the greedy algorithm relies on the submodular properties of KCE. Let $\mathbf{B} \in$
 843 $\{0, 1\}^{n \times m}$ be the binary matrix, and $H(S) = - \sum_{j=1}^m p_j \log_2 p_j$ the KCE for subset S , where
 844 $p_j = \frac{1}{|S|} \sum_{a \in S} \mathbf{B}_{a,j}$. Although KCE is not strictly submodular, it exhibits diminishing marginal
 845 gains. For nested subsets $S_A \subseteq S_B$ and a sample $a \notin S_B$, the marginal gain satisfies
 846

$$847 \quad \Delta H(S_A; a) = H(S_A \cup \{a\}) - H(S_A) \geq \Delta H(S_B; a).$$

848 To derive this, consider the entropy function $H(p) = - \sum_j p_j \log_2 p_j$, which is concave in the
 849 probability vector p . When adding sample a to subset S , define the coverage distribution induced
 850 by a as
 851

$$852 \quad 853 \quad 854 \quad \delta_j = \frac{\mathbf{B}_{a,j}}{\sum_j \mathbf{B}_{a,j}}, \quad c_a = \sum_j \mathbf{B}_{a,j},$$

855 and let $K(S) = \sum_{a \in S} \sum_j \mathbf{B}_{a,j}$ be the total coverage of S . The mixing parameter is

$$856 \quad 857 \quad 858 \quad \lambda = \frac{c_a}{K(S) + c_a}.$$

859 The updated probability vector p' is a convex combination:

$$860 \quad 861 \quad p'_j = (1 - \lambda)p_j + \lambda \delta_j.$$

862 Since $H(p)$ is concave, by Jensen's inequality applied to the convex combination,
 863

$$H(p') \geq (1 - \lambda)H(p) + \lambda H(\delta),$$

864 which yields the marginal gain bound
 865

$$866 \Delta H = H(p') - H(p) \geq \lambda(H(\delta) - H(p)).$$

867 Because the Hessian of $H(p)$ is negative semi-definite, entropy changes are smaller when p is
 868 near uniform (as in larger sets). For $|S_B| > |S_A|$, $K(S_B) > K(S_A)$, so $\lambda_B < \lambda_A$, and the
 869 distribution p_B is closer to uniform, reducing $\Delta H(S_B; a)$. Alternatively, one can approximate
 870 $\Delta H \approx -D_{\text{KL}}(p' \parallel p)$, where D_{KL} decreases with set size due to smaller λ , reinforcing the inequality
 871 for non-redundant a . This property supports the greedy algorithm's effectiveness, as detailed in
 872 the main text.

873
 874 **B.4 INFORMATION GAIN AND REVENUE BOUNDARY**

875 The information gain (IG) monitors the marginal contribution of adding samples to a subset. For
 876 a binary matrix $\mathbf{B} \in \{0, 1\}^{n \times m}$ and subset S_t of size t , the normalized entropy is $H_n(S_t) =$
 877 $H(S_t) / \log_2 t$, where $H(S_t) = -\sum_{j=1}^m p_j \log_2 p_j$ and $p_j = \frac{1}{t} \sum_{a \in S_t} \mathbf{B}_{a,j}$. The discrete information
 878 gain is

$$879 \quad IG(t) = H_n(S_t) - H_n(S_{t-1}).$$

880 Due to diminishing returns (see Appendix B.3), $IG(t)$ decays as t increases. The revenue boundary
 881 is defined as

$$882 \quad t^* = \min\{t : IG(t) < \delta\},$$

883 where $\delta > 0$ is a task-specific threshold. To derive the decay, note that entropy is subadditive: for a
 884 new sample a with row entropy $H(a) = -P_a \log_2 P_a$, where $P_a = \frac{1}{m} \sum_{j=1}^m \mathbf{B}_{a,j}$,

$$885 \quad H(S \cup \{a\}) \leq H(S) + H(a),$$

886 and $H(a) \leq \log_2 m$ for uniform coverage. The marginal gain is
 887

$$888 \quad \Delta H = H(S \cup \{a\}) - H(S) \leq H(a).$$

889 Accounting for redundancy,

$$890 \quad \Delta H = H(a \mid S) = H(a) - I(a; S),$$

891 where $I(a; S)$ is the mutual information measuring overlap. For large t , the expected $\Delta H_t \frac{\log_2 m}{t}$,
 892 as new samples cover at most m/t new points on average (pigeonhole principle). Entropy concavity
 893 implies successive gains diminish:

$$894 \quad \Delta H_t \leq \frac{\Delta H_{t-1}}{1 + \epsilon}, \quad \epsilon > 0,$$

895 in redundant regimes. Summing the series,
 896

$$901 \quad H(S_t) = H(S_1) + \sum_{k=2}^t \Delta H_k \leq H(S_1) + \sum_{k=2}^t O\left(\frac{1}{k}\right) = H(S_1) + O(\log t).$$

902 Thus, $H_n(S_t) = O(1)$, and

$$903 \quad IG(t) \approx \frac{\Delta H_t}{\log_2 t} = O\left(\frac{1}{t \log t}\right),$$

904 which asymptotically simplifies to $O(1/t)$. This decay justifies the revenue boundary for efficient
 905 stopping.

906
 907 **B.5 MUTUAL INFORMATION APPROXIMATION**

908 Maximizing KCE approximates maximizing mutual information $I(R; C)$ between samples (rows R)
 909 and knowledge points (columns C). Let $\mathbf{B} \in \{0, 1\}^{n \times m}$ be the binary matrix, and $S \subseteq \{1, \dots, n\}$
 910 a subset. Define R as a uniform random variable over S and C as a knowledge point conditioned
 911 on coverage. The joint entropy is $H(R, C) = H(S)$, where $H(S) = -\sum_{j=1}^m p_j \log_2 p_j$, $p_j =$
 912 $\frac{1}{|S|} \sum_{a \in S} \mathbf{B}_{a,j}$. The mutual information is
 913

$$914 \quad I(R; C) = H(R) + H(C) - H(R, C) = \log_2 |S| + H(C) - H(S),$$

918 where $H(R) = \log_2 |S|$ (uniform over rows) and $H(C) = -\sum_{j=1}^m P(\cdot, j) \log_2 P(\cdot, j)$, with
 919

$$920 \quad P(\cdot, j) = \frac{1}{|S|} \sum_{a \in S} \mathbf{B}_{a,j} \quad (\text{column marginals}).$$

$$921$$

922 Maximizing $I(R; C)$ requires maximizing $H(C)$ (broad coverage) while minimizing $H(S)$ (low
 923 redundancy). Per-sample row entropy $H(a) = -P_a \log_2 P_a$, where $P_a = \frac{1}{m} \sum_{j=1}^m \mathbf{B}_{a,j}$, peaks at
 924 $P_a \approx 0.5$, favoring balanced samples that diversify C and reduce $H(C | R)$. Under row indepen-
 925 dence, $H(S) = H(R) + H(C)$, so $I(R; C) = 0$; selection induces correlations, increasing I . The
 926 score

$$927 \quad \text{Score}(a) = H(a) \cdot \left(1 + \gamma \sum_{i=1}^m k_i \mathbf{B}_{a,i}\right)$$

$$928$$

929 prioritizes task-relevant balance, approximating greedy $I(R; C)$ maximization (similar to submod-
 930 ular set cover).

932 B.6 DATA DISTRIBUTION EFFECTS IN SUPERVISED FINE-TUNING

934 In supervised fine-tuning (SFT), let z denote the logits, p_θ the predicted probability via softmax, q
 935 the target distribution, and L the cross-entropy loss (Ouyang et al., 2022):

$$936 \quad L(\theta) = -\sum_{i=1}^m q_i \log p_{\theta,i}, \quad p_{\theta,i} = \frac{e^{z_i}}{\sum_j e^{z_j}}. \quad (5)$$

$$937$$

$$938$$

939 The gradient with respect to logits is

$$940 \quad \nabla_z L = p_\theta - q. \quad (6)$$

$$941$$

942 The Fisher information matrix with respect to logits (Fisher, 1922) is defined as

$$943 \quad F_z(q) = \mathbb{E}Y \sim q[(\nabla_z L(Y))(\nabla_z L(Y))^\top], \quad (7)$$

$$944$$

945 where Y is a one-hot random variable drawn from q . Expanding this gives

$$946 \quad F_z(q) = (p_\theta - q)(p_\theta - q)^\top + \text{Cov}(Y). \quad (8)$$

$$947$$

948 Near convergence, $p_\theta \approx q$, so the rank-one term vanishes, and we have

$$949 \quad F_z(q) \approx \text{Cov}(Y) = \text{diag}(q) - qq^\top. \quad (9)$$

$$950$$

951 The expected squared gradient norm is

$$952 \quad \mathbb{E}[||\nabla_z L||^2] = \text{Tr}(F_z(q)) = 1 - \sum i = 1^m q_i^2, \quad (10)$$

$$953$$

954 which is maximized for uniform q (high diversity) and minimized for skewed q (low diversity).

955 From this perspective, selecting datasets with high Knowledge Coverage Entropy (KCE) promotes
 956 a more uniform empirical knowledge distribution $p_j(S)$, ensuring that minibatches sampled from S
 957 maintain high average gradient norms. This leads to faster and more stable convergence during SFT
 958 by avoiding overly skewed label distributions that would produce weak learning signals. In other
 959 words, maximizing row entropy $H(q)$ through KCE naturally aligns the data distribution to enhance
 960 both gradient strength and training efficiency.

961 B.6.1 EFFICIENCY IN MODEL TRAINING

962 To validate the Revenue Boundary Theory, we prepared two sets of sampled datasets: (1) 28 subsets
 963 randomly sampled from the original dataset, with sizes ranging from 100 to 50,000; and (2) 28
 964 subsets selected using the Entropy-Driven Data Selection algorithm. We trained 56 models in total
 965 using these datasets and visualized their performance trends.

966 B.6.2 NORMALIZED ENTROPY AND INFORMATION GAIN

967 We conducted experiments on mathematical dataset by applying the proposed Entropy-Driven Data
 968 Selection algorithm to generate subsets with sizes ranging from 100 to 30,000. For each subset,
 969 we computed the normalized entropy and visualized its variation trend as the sample size increased.
 970 Furthermore, we plotted the information gain efficiency curves for both datasets to illustrate the
 971 points of maximum efficiency.

972 B.7 ALTERNATIVE JOINT ENTROPY FORMULATION
973974 An alternative joint entropy formulation is
975

976
$$H_{\text{joint}}(S) = - \sum_{i \in S} \sum_{j=1}^m P_{i,j} \log_2 P_{i,j},$$

977

978 where
979

980
$$P_{i,j} = \frac{\mathbf{B}'_{i,j}}{\sum_{i=1}^n \sum_{j=1}^m \mathbf{B}'_{i,j}}, \quad \mathbf{B}' = \mathbf{B} + \frac{\alpha}{nm}, \quad \alpha = 10^{-6}.$$

981

982 This accounts for row and column dependencies but is computationally costly and sensitive to re-
983 dundancy. The marginal KCE in the main text is more efficient for diversity-focused selection.
984985 B.8 STOCHASTIC-GREEDY VARIANT
986987 A stochastic-greedy variant samples a subset R of size $r \approx \frac{n}{s} \log \frac{1}{\varepsilon}$ at each iteration, selecting
988

989
$$a^* = \arg \max_{a \in R} \Delta F(S; a).$$

990 This achieves a $(1 - 1/e - \varepsilon)$ guarantee with reduced computational cost.
991992 B.9 HYBRID OBJECTIVE
993994 A hybrid objective combines coverage and similarity:
995

996
$$F_{\text{hybrid}}(S) = \lambda \sum_{j=1}^m w_j f(c_j(S)) + (1 - \lambda) \sum_{x=1}^n \max_{a \in S} \text{sim}(x, a),$$

997

998 where f is concave, and the second term is a facility-location function over a similarity graph. Both
999 terms are submodular, preserving the $(1 - 1/e)$ guarantee of the lazy-greedy algorithm.
10001001 B.10 PARAMETER SENSITIVITY ANALYSIS
10021003 We conducted a sensitivity analysis of KCE with respect to the smoothing parameter α and the
1004 weight balance γ on sample sizes 500 and 1000. The normalized KCE (H_n) remains nearly constant
1005 across $\alpha \in [0.1, 2.0]$ and $\gamma \in [0, 1]$. For instance, with sample size 500, H_n varies only from 1.2300
1006 to 1.2320 ($< 0.2\%$), and with sample size 1000, from 1.2037 to 1.2062 ($< 0.3\%$). These small
1007 variations indicate that KCE is robust to both α and γ , and the algorithm reliably selects diverse
1008 knowledge subsets without significant sensitivity to hyperparameter choices.
10091010 B.11 EMPIRICAL VALIDATION VIA SIMULATIONS
10111012 To empirically validate the decay in information gain, experiments were conducted on four datasets,
1013 with knowledge points m ranging from 200 to 1000 and sample sizes n between 20,000 and 60,000,
1014 averaged over 5 runs. Across all datasets, the normalized entropy grows sublinearly:
1015

1016
$$H_n(S) = \frac{H(S)}{\log m}, \quad H(S) = - \sum_{i=1}^m p_i \log p_i,$$

1017

1018 where p_i denotes the empirical frequency of knowledge point i in the subset S . The information
1019 gain (IG) at step t is defined as the marginal increase in entropy:
1020

1021
$$IG(t) = H_n(S_t) - H_n(S_{t-1}), \quad S_t = S_{t-1} \cup \{x_t\}.$$

1022

1023 Empirically, $IG(t)$ starts high (approximately 0.99 at $t = 1$) and decays to near-zero (around 10^{-7}
1024 by $t = 1000$), following an overall $O(1/t)$ trend:
1025

1026
$$IG(t) \approx \frac{c}{t}, \quad c > 0.$$

1026 Moreover, we examine the slope of $IG(t)$, i.e., its discrete derivative:

$$1027 \quad \Delta IG(t) = IG(t+1) - IG(t).$$

1029 On the diabetes dataset, the slope decreases from approximately

$$1030 \quad \Delta IG \approx -0.1 \times 10^{-4} \quad (\text{at the best advantage point})$$

1032 to

$$1033 \quad \Delta IG \approx -1 \times 10^{-6}, \quad \text{after which it stabilizes.}$$

1034 This behavior confirms diminishing returns and validates the revenue boundary condition, where

$$1035 \quad IG(t) < \delta \quad \text{for } t \geq T_\delta.$$

1037 Simulations on random binary matrices (e.g., $m = 251$, varying n) show $H_n(S)$ peaking early
1038 and $IG(n)$ decaying from ~ 1.22 to near-zero, confirming theorems. For entropy-selected subsets,
1039 $I(R; C)$ is 10–20% higher than random, tying theory to empirical wins.

1041 B.12 COMPUTATIONAL COMPLEXITY ANALYSIS

1042 The lazy-greedy algorithm has time complexity that scales with the sparsity of the matrix \mathbf{B} . Each
1043 exact marginal gain evaluation is $O(\text{nnz}(\mathbf{B}_{a,:}))$, where nnz denotes the number of non-zero entries
1044 in row a . The lazy variant reduces the number of full evaluations by using upper bounds in the
1045 heap, leading to near-linear time in the total number of non-zero entries in \mathbf{B} for sparse matrices.
1046 For dense matrices, the complexity is $O(nm \log n)$ in the worst case, but practical datasets are often
1047 sparse. The single-pass approximation is $O(nm)$, linear in the matrix size. Memory requirements
1048 are $O(n + m)$ for the heap and counts, making it scalable for large n and m .

1050 Remarks and interpretation.

- 1052 The quantity $1 - \sum_i q_i^2$ is closely related to the Gini impurity and measures the distributional
1053 uncertainty: it is zero for a one-hot (deterministic) q and maximized when q is uniform.
- 1055 The derivation above is performed in the *logit space*. For the Fisher information with respect to model
1056 parameters θ , one needs to apply the Jacobian chain rule $F_\theta = J_{z \rightarrow \theta}^\top F_z J_{z \rightarrow \theta}$; nevertheless, the qualitative conclusion—uncertainty in q increases the expected
1057 gradient magnitude—remains valid.
- 1059 The approximation $F_z(q) \approx \text{Cov}(Y)$ relies on $p \approx q$. When the model is far from well calibrated,
1060 the additional term $(p - q)(p - q)^\top$ may be non-negligible and should be accounted for.

1062 C KNOWLEDGE DISTIL PROMPT

1064 Prompt Example:

1066 "You are a medical knowledge summarization assistant. "

1068 "Task: Summarize the given text and extract only concise knowledge points directly related to diabetes. "

1070 "Requirements:"

1072 "1. Focus only on diabetes and its directly related aspects (symptoms, complications, treatments,
1073 risk factors, diagnostic methods, pathophysiology)."

1074 "2. If there is **no diabetes-related content**, output exactly: NO"

1076 "3. The output must consist only of short words or phrases (concise terms). "

1077 "4. Do not output personal names, study names, or any content unrelated to diabetes. "

1078 "5. Do not add external knowledge, only use the given content. "

1079 "6. Output multiple knowledge points separated by commas, without extra text or explanations. "

1080
1081 "Example: In diabetes management, α -glucosidase inhibitors may cause gastrointestinal side ef-
1082 fects such as flatulence, abdominal discomfort, and diarrhea, particularly with high doses relative
1083 to carbohydrate intake, but these improve with gradual titration. Hypoglycemia is rare, and drug
1084 interactions are minimal, though concomitant use with motility agents or cholestyramine is not rec-
1085 ommended. In the STOP-NIDDM trial, 31% of acarbose-treated patients discontinued early due to
1086 adverse effects compared to 19% with placebo."

1086 "Response: α -glucosidase inhibitors, gastrointestinal side effects, hypoglycemia rare, acarbose"

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

D KNOWLEDGE POINT EXAMPLE

1134 diabetes	cardiovascular disease	genetic factors	insulin resistance
1135 insulin secretion	diabetes complications	diabetes management	diagnostic criteria
1136 type 2 diabetes	GLP-1	cardiovascular benefits	complications
1137 diabetes care	HbA1c	type 1 diabetes	insulin
1138 diabetic complications	cardiovascular risk	chronic kidney disease	continuous glucose monitoring
1139 coronary heart disease	congestive heart failure	diabetic ketoacidosis	diabetic retinopathy
1140 GIP	impaired fasting glucose	impaired glucose tolerance	glucose metabolism
1141 hyperglycemia	beta-cell dysfunction	liraglutide	oral glucose tolerance test
1142 endothelial dysfunction	oxidative stress	proliferative diabetic retinopathy	glucose monitoring
1143 inflammation	neuropathy	retinopathy	type 1 diabetes mellitus
1144 type 2 diabetes mellitus	thiazolidinediones	insulin sensitivity	urinary albumin excretion
1145 Diabetes	polyuria	diabetic neuropathy	albuminuria
1146 sulfonylureas	metformin	blood pressure management	microaneurysms
1147 peripheral neuropathy	nephropathy	nausea	insulin deficiency
1148 mortality	hepatic glucose production	blood glucose regulation	insulin production
1149 glucose regulation	Diabetic retinopathy	diabetes treatment	insulin therapy
1150 hypoglycemia risk	renal failure	diabetic nephropathy	Type 1 diabetes
1151 MODY	pancreatic beta cells	hypertension	glucagon
1152 lifestyle modifications	oral hypoglycemic agents	proteinuria	glycemic control
1153 insulin pumps	rosiglitazone	pioglitazone	severe hypoglycemia
1154 insulin use	cardiovascular risk reduction	microalbuminuria	blood pressure control
1155 UKPDS	blood glucose control	insulin treatment	patient education
1156 pregnancy	gestational diabetes mellitus	fasting plasma glucose	chronic hyperglycemia
1157 microvascular complications	foot ulcers	macrovascular disease	weight loss
1158 ketoacidosis	gestational diabetes	Type 2 diabetes	elevated blood glucose
1159 increased diabetes risk	T1DM	T2DM	Type 1 diabetes mellitus
1160 Type 2 diabetes mellitus	disease progression	obesity	physical inactivity
1161 glucocorticoids	infections	Gestational diabetes mellitus	macrosomia
1162 type 2 diabetes mellitus (T2DM)	fasting glucose	DCCT	islet autoantibodies
1163 children	environmental factors	increased risk	islet autoimmunity
1164 prevention	weight gain	Diabetic ketoacidosis	hypoglycemia
1165 cardiovascular mortality	risk factors	macrovascular complications	vascular complications
1166 metabolic syndrome	dyslipidemia	diabetes risk	physical activity
1167 family history	β -cell dysfunction	free fatty acids	impaired insulin secretion
1168 type 2 diabetes risk	diabetes prevalence	Diabetes prevalence	undiagnosed diabetes
1169 smoking	age	glucose intolerance	coronary artery disease
1170 early detection	adolescents	risk factor	stroke
1171 infection	cardiovascular risk factors	end-stage renal disease	myocardial infarction
1172 diet	quality of life	lifestyle interventions	weight reduction
1173 ACE inhibitors	diabetes prevention	genetic predisposition	exercise
1174 smoking cessation	Metformin	low- and middle-income countries	overweight
1175 alcohol consumption	hyperinsulinemia	insulin administration	depression
1176 combination therapy	blood pressure	comorbidities	glucose homeostasis
1177 insulin release	hypoglycemia prevention	blood glucose levels	Sulfonylureas
1178 β -cell function	DPP-4 inhibitors	exenatide	glucose uptake
1179 lipolysis	insulin signaling	impaired glucose metabolism	skeletal muscle
1180 TNF- α	adipose tissue	growth hormone	liver
1181 gluconeogenesis	counter-regulatory hormones	monogenic diabetes	insulin secretagogues
1182 NAFLD	atherosclerosis	neonatal diabetes	increased mortality
1183 HbA1c levels	metabolic control	sulfonylurea	glucagon suppression
1184 delayed gastric emptying	osmotic diuresis	vomiting	HbA1c reduction
1185 glibenclamide	α -glucosidase inhibitors	asymptomatic	cardiovascular disease risk
1186 dehydration	heart failure	lifestyle changes	drug interactions
1187 blood glucose monitoring	insulin dose adjustment	hypoglycemia unawareness	polydipsia
1188 screening	HbA1c	self-management	diabetes education
1189 autonomic neuropathy	gastroparesis	eating disorders	erectile dysfunction
1190 diabetes self-management	blood glucose management	carbohydrate intake	insulin-treated diabetes
1191 glycaemic control	cardiovascular events	cardiovascular outcomes	clinical trials
1192 renal impairment	cognitive impairment	anxiety	Thiazolidinediones
1193 GLP-1 receptor agonists	basal insulin	gastrointestinal side effects	depressive symptoms
1194 older adults	urinary tract infections	islet transplantation	hyperglycaemia
1195 hypoglycaemia	hypoglycaemia risk	SGLT-2 inhibitors	severe hypoglycaemia
1196 glycaemic management	dyslipidaemia	semaglutide	

1188 E SUPPLEMENTARY TABLES
11891190 Table 7: Main Training Configurations and LoRA Parameter
1191

1192 Training Configurations		1193 LoRA Parameter	
1194 Parameter	1195 Value	1196 Parameter	1197 Value
1195 Learning Rate	1×10^{-5}	1196 Learning Rate	5×10^{-5}
1196 Epochs	5	1197 Epochs	5
1197 Method	Full Parameter	1198 Method	LoRA
1198 Model	Qwen2.5_32B_Instruct	1199 PEFT	q,k,v,o,down,gate,up
1199 Evaluation Dataset	MATH-500	1200 LoRA Rank	64
1200 Early Stop Threshold	Loss ≤ 0.05	1201 LoRA Alpha	128
1201 Early Stop Patience	5 steps	1202 LoRA Dropout	0.1
1202 Deepspeed Stage	Zero Stage 3	1203 Early Stop Threshold	Loss ≤ 0.15
		1204 Early Stop Patience	5 steps
		1205 Deepspeed Stage	Zero Stage 3

1206 Table 8: Ablation Training Configurations
1207

1208 Parameter	1209 Value
1209 Learning Rate	1×10^{-5}
1210 Epochs	3
1211 Method	LoRA
1212 PEFT	q,k,v,o,down,gate,up
1213 LoRA Rank	8
1214 LoRA Alpha	32
1215 LoRA Dropout	0.05
1216 Early Stop Threshold	Loss ≤ 0.2
1217 Early Stop Patience	3 steps
1218 Deepspeed Stage	Zero Stage 1

1219 Table 9: MATH-500 Performance Across Different Sample Sizes and different Algorithms on
1220 LORA fine tune
1221

1222 Training Data Size	1223 KCE	1224 KCE Unweighted	1225 Struct Entropy	1226 QuRating	1227 Superfiltering
1223 400	441	440	438	425	440
1224 600	445	444	442	430	442
1225 800	448	438	438	441	435
1226 1000	455	444	432	435	438
1227 1200	445	447	429	439	435
1228 1400	448	449	427	422	447
1229 1600	445	447	429	430	438
1230 1800	450	448	435	432	442
1231 2000	450	450	439	432	434
1232 4000	447	437	438	436	442

1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254

1255 Table 10: MATH-500 Performance Across Different Sample Sizes with full parameter fine tuning.
 1256 The table reports scores for models trained on subsets selected by entropy sampling, random sam-
 1257 pling, and the manually curated S1 dataset (1000 samples).

1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283

Training Data Size	Entropy Sampled Data	Random Sampled Data	S1 Manually Selected
100	439	418	—
200	445	425	—
300	446	424	—
400	447	423	—
500	456	428	—
600	445	429	—
700	450	419	—
800	443	430	—
900	449	434	—
1000	450	430	452
1100	447	431	—
1200	450	430	—
1300	449	440	—
1400	453	427	—
1500	450	435	—
1600	450	427	—
1700	458	433	—
1800	454	439	—
1900	451	425	—
2000	450	428	—
3000	450	432	—
4000	453	432	—
5000	448	425	—
10000	455	428	—
20000	451	437	—
30000	461	447	—
40000	447	438	—
50000	458	441	—

1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295