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ABSTRACT

Domain adaptation of language models is critical for specialized applications
in fields, but its success hinges on high-quality data selection rather than sheer
volume. Current methods, such as heuristic filters, perplexity pruning, and
embedding-based clustering, often fail to address domain-specific redundancy and
noisy or overlapping data. As a result, training becomes inefficient and resource-
intensive, and models may overfit to frequent linguistic patterns rather than captur-
ing core knowledge. The resulting data-induced inefficiency limits model gener-
alization and translates directly into prohibitive curation and computational costs.
For high-stakes domains, this inefficiency is particularly detrimental, as even mi-
nor errors carry significant consequences.. We propose a knowledge-centric ap-
proach that redefines data quality around discrete knowledge procedures and the-
orems. Our framework introduces Knowledge Coverage Entropy (KCE), a metric
quantifying knowledge diversity, and Entropy-Driven Selection (EDS), which op-
timizes data selection for compact, high-quality datasets. Experiments in super-
vised fine-tuning (SFT) and retrieval-augmented generation (RAG) demonstrate
EDS’s efficacy. In SFT on the MATH-500 benchmark, at matched data budgets,
our method consistently yields the best post-training accuracy among data selec-
tion methods. In RAG on medical datasets, our method delivers the best retrieval
quality with mean reciprocal rank (MRR) improvements of approximately 11% to
42% and substantial coverage gains while using significantly fewer samples. En-
hanced performance in both SFT and RAG demonstrates that KCE offers a prin-
cipled metric for data quality, and that EDS facilitates efficient in domain-specific
tasks.

1 INTRODUCTION

Domain adaptation tailors general-purpose language models for specialized tasks, embedding
domain-specific knowledge and reasoning (Howard & Ruder, 2018; Longpre et al., 2023; Seto
et al., 2025; Parmar et al., 2024). Unlike broad fluency training, adaptation via supervised fine-
tuning (SFT) or retrieval-augmented generation (RAG) prioritizes precise, context-relevant concepts
(Shum et al., 2024; Muennighoff et al., 2025a). Effective adaptation hinges on data quality, not vol-
ume, requiring corpora that capture essential knowledge for model internalization (Pang et al., 2025;
Xia et al., 2024b; Liu et al., 2023). Uncurated datasets yield diminishing returns or degraded per-
formance under minimum description length principles (Li & Vitányi, 2008), emphasizing the need
for high-quality selection to optimize learning, efficiency, and robustness (Longpre et al., 2023; Seto
et al., 2025).

Current methods, including heuristic filters (e.g., text length, readability) (Xia et al., 2024b; Liu
et al., 2023), perplexity-based pruning (Pang et al., 2025; Ankner et al., 2024), model loss–based fil-
tering (IFD) (Li et al., 2024b), per-example gradients (LESS) (Xia et al., 2024a), embedding-based
clustering (Xie et al., 2024), and entropy-driven approaches (Song et al., 2012; Lairez, 2022), pre-
dominantly operate at the token or embedding level. These approaches manage large corpora but
struggle to identify domain-specific knowledge redundancy, such as rephrased definitions or overlap-
ping evidence (Lee et al., 2022; Hei et al., 2024). Because they cannot reliably distinguish genuine
novel knowledge from mere stylistic or lexical variations, they often resort to unscalable manual
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curation (Liu et al., 2024; Wang et al., 2024). Consequently, SFT models memorize frequent sur-
face patterns and falter on edge cases, while RAG systems retrieve irrelevant or redundant passages,
increasing computational cost and harming generalization (Amiraz et al., 2025; Hager et al., 2024;
Fayyaz et al., 2025). In high-stakes domains such as medicine or law, these token-level limitations
translate directly into elevated risks.

Empirical studies underscore these challenges. Noisy SFT datasets containing incorrect or mis-
aligned pairs degrade model accuracy and introduce biases (Liu et al., 2024; Wang et al., 2024),
while unfiltered RAG datasets reduce retrieval precision (Amiraz et al., 2025). Unsupervised cur-
ricula also fail to address conceptual overlap without proper validation (Ankner et al., 2024; Pang
et al., 2025). Current methods, whether heuristic, perplexity-based, loss-based, gradient-based, or
embedding-clustering operate solely at the token, sequence, or embedding level. Consequently, they
are blind to semantic equivalence across surface variations: different expressions of the same ele-
ment are often discarded, rephrased definitions, logically equivalent proofs, or clinically identical
guidelines are not recognized as redundant. This fundamental limitation leads to knowledge-level
redundancy, poor coverage of rare but critical concepts, and the well-documented degradation in
both SFT generalization and RAG retrieval precision.

To bridge these gaps, we introduce a knowledge-centric paradigm that operates on discrete, au-
ditable knowledge units (e.g., mathematical theorems, clinical guidelines, legal principles) rather
than tokens or continuous embeddings. Instead of approximating importance through proxies (per-
plexity, loss, or gradient norms), our framework constructs a binary knowledge coverage matrix and
do greedy via Knowledge Coverage Entropy (KCE) and Entropy-Driven Selection (EDS) algorithm.
Our approach shifting from surface-level statistics to knowledge-level accounting, directly optimizes
the balance of key knowledge and maximizes novel knowledge.

In this data selection framework, KCE quantifies diversity and balance over discrete knowledge
units, and EDS prioritizes novel, high-information samples to reduce redundancy. By leverag-
ing entropy to emphasize informative coverage, the framework strengthens supervised fine-tuning
learning signals and improves retrieval-augmented generation retrieval precision. On the MATH-
500 benchmark, at matched data budgets, KCE-selected data yields the best post-training accuracy
among data selection methods and reaches 456/500 with substantially fewer samples. In medical
retrieval-augmented generation, the framework delivers the best retrieval quality with mean recip-
rocal rank improvements of approximately 11% to 42% alongside large coverage gains under sig-
nificant data reduction. These results establish KCE and EDS as principled tools for efficient and
high-performance domain adaptation.

2 METHODOLOGY

The Entropy-Driven Selection (EDS) methodology selects a diverse and informative subset of
data samples by maximizing Knowledge Coverage Entropy (KCE) within a binary information-
knowledge matrix. This approach constructs a matrix representing knowledge points across samples,
computes entropy-based scores to quantify diversity, and employs a set-aware lazy-greedy algorithm
to optimize subset selection under cardinality constraints.

2.1 BINARY INFORMATION-KNOWLEDGE MATRIX

We construct a knowledge set K of domain-relevant concepts and map each data sample to a binary
vector over K, forming a matrix B ∈ {0, 1}n×m, where n is the number of samples, m = |K| is the
number of knowledge points, and Bi,j = 1 if sample i covers knowledge point j, and 0 otherwise.
The matrix B is built using Qwen-max-0125 (Team, 2025) with task-specific prompts to extract
and tag concepts, as detailed in Appendix C. Only knowledge points that appear at least n = 50
times in the dataset are included, and ablation study on the knowledge-point matrix is presented in
Appendix B.1. This matrix underpins the computation of Knowledge Coverage Entropy (KCE).

2.2 COVERAGE PROBABILITY DEFINITIONS

For the matrix B ∈ {0, 1}n×m, we define the smoothed coverage probability for sample a as Pa =∑m
j=1 Ba,j+α

m+αm , where α = 10−6 ensures numerical stability. The joint probability distribution is

2
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computed as Pi,j =
Bi,j+α/(nm)∑n

i=1

∑m
j=1(Bi,j+α/(nm)) . These probabilities support entropy calculations,

with further details in Appendix B.2.

2.3 KNOWLEDGE COVERAGE ENTROPY (KCE)

For a subset S ⊆ {1, . . . , n} of size |S| = h, KCE is defined as

H(S) = −
m∑
j=1

pj log2 pj , pj =
1

h

∑
a∈S

Ba,j ,

where pj denotes the average coverage of knowledge point j within S. To enable consistent com-
parison across subsets of different sizes, the entropy is normalized as

Hn(S) =
H(S)

h
.

To approximate the integral defined over a potentially infinite-dimensional knowledge space, we
employ Monte Carlo sampling by drawing a finite number of points from the base measure. Further
theoretical results for the infinite-dimensional case, together with corresponding upper bounds, are
detailed in Appendix B.2.

Although this set-based formulation captures knowledge diversity effectively, its computation be-
comes costly when n is large due to the dependence on subset interactions. To improve scalability,
we introduce a computationally efficient approximation that assigns each sample an independent,
single-pass score.

Let B ∈ {0, 1}n×m be the binary information–knowledge matrix, where Ba,j = 1 indicates that
sample a covers knowledge point j. The row-wise coverage probability for sample a is defined as

Pa =
1

m

m∑
j=1

Ba,j ,

with corresponding entropy
H(a) = −Pa log2 Pa.

To incorporate knowledge importance, a weight vector k ∈ Rm assigns importance ki to knowledge
point i. The resulting scoring function for sample a is

Score(a) = H(a) ·

(
1 + γ

m∑
i=1

kiBa,i

)
,

where γ controls the strength of knowledge-aware weighting. The top-s samples ranked by this
score are selected.

This single-pass approach achieves linear-time complexity and scales efficiently to large datasets.
However, its independence assumption ignores set-level interactions; therefore, it does not inherit
the submodular guarantees of the lazy-greedy selection strategy described in the main text.

2.4 ENTROPY-DRIVEN SELECTION ALGORITHM (EDS)

The EDS algorithm selects a subset S of size |S| = s that maximizes KCE, addressing a combinato-
rial optimization problem. Below, we describe the optimization goal and the set-aware lazy-greedy
algorithm used to achieve it efficiently, with theoretical justifications provided in Appendices B.5
and B.4.

2.4.1 OPTIMIZATION OBJECTIVE

The goal is to identify a subset S that maximizes KCE:
S∗ = argmax

S⊆{1,...,n},|S|=s

H(S).

This problem is computationally intractable due to its combinatorial nature, necessitating approxi-
mate strategies. We employ a submodular optimization approach, leveraging the diminishing returns
property of KCE (see Appendix B.3).
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2.4.2 SET-AWARE LAZY-GREEDY SELECTION

To maximize KCE efficiently, we define a concave-over-coverage objective:

F (S) =

m∑
j=1

wjf(cj(S)), cj(S) =
∑
a∈S

Ba,j ,

where wj ∈ Rm
+ are weights reflecting the importance of knowledge point j (estimated from the

dataset distribution), and f is a concave, nondecreasing function. This objective is nonnegative,
monotone, and submodular, ensuring that a greedy algorithm achieves a (1 − 1/e) approximation
to the optimal solution, as detailed in Appendix B.3. The subset selection is performed using the
lazy-greedy algorithm (Algorithm 1). The choice of f balances fidelity to KCE (using the entropy-
derived h) and computational efficiency (using log(1 + x)). Each marginal gain evaluation has
complexity O(nnz(Ba,·)), and the lazy-greedy approach scales efficiently with sparse matrices. An
optional early stopping criterion, based on a revenue boundary, is discussed in Appendix B.4.

Algorithm 1: Lazy-Greedy EDS (Set-Aware Selection)

Input: Binary matrix B ∈ 0, 1n×m; weights w ∈ R+m; budget s; concave f ; tolerance ε ≥ 0
Output: Selected indices S
S ← ∅; c← 0m ; // Coverage counts
for a ∈ 1, . . . , n do

Compute initial upper bound Ua on ∆F (∅; a); Push (a, Ua) into max-heapH;
while |S| < s do

(a, Ua)← PopMax(H); // Exact marginal gain using current c

ga ←
∑

j : Ba, j = 1wj

[
f(cj + 1)− f(cj)

]
; Umax ← CurrentMaxKey(H) (or −∞ if

empty); if ga ≥ Umax − ε then
S ← S ∪ a; for j s.t. Ba,j = 1 do

cj ← cj + 1

else
Push(a, ga) back intoH;

return S

2.4.3 WEIGHTED ENTROPY SCORING

To incorporate domain-specific priorities, we encode concept priorities with a weight vector
k ∈ Rm (e.g., from concept frequencies). For sample a, define Pa = 1

m

∑m
j=1 Ba,j and

H(a) = −Pa log2 Pa. The weighted score is

Score(a) = H(a)
(
1 + γ

m∑
i=1

kiBa,i

)
,

where γ trades off diversity and importance. This heuristic steers greedy selection toward diverse
samples emphasizing high-priority concepts. Estimation of k and single-pass variants are in Ap-
pendix 2.3.

3 EXPERIMENTS AND EVALUATIONS

We evaluate our entropy-driven data selection framework in two paradigms: supervised fine-tuning
(SFT) for mathematical chain-of-thought (CoT) and retrieval-augmented generation (RAG). Base-
lines include QuRating (Wettig et al., 2024), SuperFiltering (Li et al., 2024a), Structure Entropy
(Xie et al., 2024), random sampling, and the human-curated S1 subset (Muennighoff et al., 2025a).
For RAG, we construct proprietary diabetes and general medical corpora and compare matched-size
selections across methods. Ablations vary retrieval depth, corpus size, and top-k.

3.1 SUPERVISED FINE-TUNING EVALUATION BENCHMARK

We perform CoT SFT on the S1 data-ablation-full59K pool (Muennighoff et al., 2025b), using the
human-curated 1k subset (simplescaling/s1K-tokenized) (Muennighoff et al., 2025b;a) as a high-
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Knowledge Matrix

Figure 1: Overview of the Entropy-Driven Data Selection (EDS) workflow.

quality reference. Our method selects matched-size subsets (1k, 5k, 10k) under identical preprocess-
ing and prompting, with baselines producing size- and token-matched counterparts. We fine-tune
Qwen-32B-Instruct (Team, 2024) via standard next-token cross-entropy with consistent schedules
across conditions. Selection is guided by knowledge coverage entropy (KCE), computed over a
knowledge–sample matrix to balance per-sample uncertainty (row entropy) and global coverage,
reducing redundancy and promoting diverse reasoning structures. The only difference across condi-
tions is the upstream selection criterion.

We evaluate on the MATH-500 exam set using VLLM inference, reporting exact-answer accuracy.
First, we compare KCE with non-negative knowledge-point weights to prioritize rare but critical
units—against random sampling and the human-curated S1 subset. Next, we test alternative weight-
ing schemes across baseline selectors by generating matched-size subsets and retraining under iden-
tical SFT protocols. We report overall accuracy, sample efficiency, and training stability.

3.2 CONSTRUCTION OF PROPRIETARY RAG CORPORA

We programmatically compile domain-relevant sources (diabetes: textbooks and clinical guidelines;
general medical) (Holt & Flyvbjerg, 2024; Royal Government of Bhutan, Ministry of Health, De-
partment of Medical Service, 2007; fun) and use LLMs to: (i) segment texts into atomic chunks, (ii)
normalize to a controlled vocabulary of knowledge IDs, and (iii) finalize retrieval-ready passages
with titles and structured metadata (knowledge IDs, source, language, timestamps). For each do-
main, we generate 1000 LLM-authored questions with automatic validation and light manual spot
checks. We embed passages with BAAI/bge-large-zh and BAAI/bge-large-en (Chen et al., 2023;
Xiao et al., 2023) and retrieve by cosine similarity (Salton et al., 1975) (top-k). Matched-size cor-
pus variants are produced via our selection, QuRating, SuperFiltering, Structure Entropy, and the
unselected full corpus.

To assess the selected corpora, we compute knowledge-point coverage rate Hit@k (the proportion
of ground-truth knowledge points covered within the top-k retrieved passages) and conventional
MRR, and analyze the accuracy–efficiency trade-off as a function of corpus size. We first evaluate
at top-10 retrieval, where each selection method operates at its theoretical data-efficiency point. We
then vary (i) retrieval depth with k ∈ {5, 10, 20, 50} and (ii) corpus size, always comparing under
matched-size settings.

3.3 RAG EXPERIMENTS AND EVALUATION BENCHMARK

Let Q be the query set with |Q| = N . For each query q ∈ Q, let K(q) denote the required knowledge
points and Rk(q) the set of knowledge points covered by the top-k retrieved entries (from annotated
knowledge IDs).

The per-query knowledge-point hit rate at depth k is:

HitRatek(q) =
|K(q) ∩Rk(q)|
|K(q)|

. (1)
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The average knowledge-point hit rate is:

AverageHitRatek =
1

N

∑
q∈Q

HitRatek(q). (2)

Define rk(q) as the smallest r ∈ {1, 2, . . . , k} such that the union of knowledge points covered by
the top-r retrieved entries contains all elements of K(q). If no such r exists within the top-k entries,
set rk(q) = 0 by convention.

The per-query reciprocal rank is

RR(q) =

{
1

rk(q)
, if rk(q) ≥ 1,

0, if rk(q) = 0.
(3)

The average multi-point MRR (distinct from conventional MRR (Voorhees & Tice, 2000), as it
requires setwise completion of K(q)) is:

AvgMRRk =
1

N

∑
q∈Q

RR(q). (4)

We compute knowledge-point coverage at depth k (Hit@k) and the multi-point MRR, and also
report conventional MRR for comparison. All configurations use identical embedding models,
cosine-similarity retrieval, indexing, and query/annotation sets; selection methods differ only in
the upstream criterion (KCE vs. baselines).

We then conduct two classes of experiments. (i) Fixed-size corpora: for each domain, we construct
a matched-size evaluation corpus (Diabetes: 3K; Medical: 8K) for each selector and vary retrieval
depth with k ∈ {5, 10, 20, 50}. (ii) Variable-size corpora: for each selector, we subsample 1%,
5%, 10%, 20%, and 50% of the full corpus and evaluate at multiple k. To operationalize the “rev-
enue boundary,” we sweep corpus-size–performance curves and select the smallest subset within 1%
relative performance of the maximum Hit@10, yielding the data-efficiency point.

4 RESULTS

4.1 ENTROPY-DRIVEN SFT PERFORMANCE ON MATH-500

To evaluate our SFT data selection algorithm, we conducted experiments on the MATH-500 bench-
mark. Specifically, we compared 28 randomly sampled subsets with 28 entropy-selected subsets
across different dataset sizes. All models were trained with full-parameter fine-tuning (see Table 7)
and trained to convergence using an early stopping criterion (loss ≤ 0.05 with a patience of 5). and
inference was performed with the VLLM framework (Kwon et al., 2023), with the temperature fixed
at 0 to eliminate stochastic variation. The model performance curves are shown in Fig. 2, and the
complete performance results are summarized in Table 10. Across all dataset scales, entropy-based
selection consistently outperforms random sampling, highlighting its ability to identify high-quality
training data. Even relatively small entropy-selected subsets achieve performance comparable to
much larger randomly sampled sets, demonstrating strong data efficiency. Notably, the entropy-
selected subset reaches 450/500 at size 1000, closely matching the manually curated S1 dataset
(452/500), and even exceeds it at size 500 (456/500). This consistent advantage across scales vali-
dates knowledge-point entropy as a principled and effective criterion for data selection.

The training loss trajectories are shown in Figure 4 for models trained on 40K and 50K samples,
selected via entropy-based selection or random sampling. Entropy-selected subsets consistently
converge faster and more stably, with the 40K subset exhibiting a steeper early decline, indicating
stronger gradient signals from high-quality data. Notably, in this experiment, the 40K entropy-
selected subset achieves slightly lower final loss than the 50K subset; this observation highlights the
effectiveness of entropy-driven selection in identifying informative samples, rather than implying
a general principle about optimal dataset size. Overall, entropy-driven selection delivers strong
performance with fewer samples, demonstrating that principled data selection is an efficient and
practical strategy for supervised fine-tuning (SFT) compared to indiscriminate dataset expansion.
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Figure 2: MATH-500 Performance with different trainind data size, The horizontal axis shows the
dataset size, and the vertical axis shows the model’s test scores. The red point at (1000, 452) indi-
cates that the S1 team selected 1000 samples, achieving a score of 452 on the MATH-500 bench-
mark.

4.1.1 SFT EVALUATION OF BASELINE DATA SELECTION ALGORITHMS

We compared our method against several baseline algorithms under LoRA fine-tuning Table 7 across
varying training data sizes, as shown in Figure 3. Overall, our KCE-based method consistently
achieves higher exact answer accuracy than the baseline algorithms (Structure Entropy, QuRating,
and SuperFiltering) at most dataset sizes, demonstrating its effectiveness in selecting high-quality,
informative samples. Notably, KCE with knowledge-point weighting outperforms the unweighted
variant in most cases (e.g., 455 vs. 444 at size 1000, 450 vs. 447 at size 2000), indicating that
incorporating knowledge-point weights helps prioritize rare but critical knowledge units, further
enhancing model performance. These results validate both the superiority of our entropy-driven
selection method and the utility of weighted knowledge coverage for efficient and effective SFT.

Figure 3: For LoRA fine-tuning, datasets of varying sizes were sampled using different algorithms.
The red solid line represents KCE with knowledge-point weighting, the blue solid line represents
KCE without weighting, and the remaining three dotted lines correspond to the other baseline data
filtering algorithms.
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(a) Loss curve on 40K data (b) Loss curve on 50K data

Figure 4: Training loss curves for models trained with entropy-based selection (blue) and random
selection (brown) on 40K (a) and 50K (b) datasets. Entropy-based selection accelerates convergence
and achieves lower, more stable training loss compared to random selection.

4.2 RETRIEVAL EFFICIENCY ON MEDICAL KNOWLEDGE DATASETS

We evaluated our entropy-driven data selection framework, focusing on the proposed Knowledge-
Centric Entropy (KCE) method, on two medical datasets: Diabetes and General Medical, comparing
it with Qurating, Structural Entropy, and Superfiltering. The revenue boundary, illustrated in Fig-
ure 5, indicates where adding more samples yields diminishing returns, allowing redundant data to
be discarded while preserving the most valuable knowledge. As summarized in Table 1, KCE consis-
tently improves retrieval performance. On the General Medical dataset, which is high-dimensional
with many sparse attributes and a less pronounced revenue boundary (as shown in Figure 5), KCE
effectively prioritizes the most informative samples, leading to a notable improvement in MRR. Al-
though the average coverage rate shows a slight decrease, it remains high, demonstrating that KCE
enhances retrieval quality with minimal impact on overall coverage.

Table 1: Evaluation of data selection algorithms on RAG metrics. Reported metrics are average cov-
erage rate and MRR. KCE achieves higher coverage and MRR with reduced dataset size compared
to other methods.

Dataset Algorithm Avg. MRR Avg. Coverage Rate Data Size

Diabetes

Full Dataset 0.4314 75.5% 12K
KCE 0.4802 79.3% 3K

Structure Entropy 0.3372 61.9% 3K
QuRating 0.3699 70.0% 3K

Superfiltering 0.3695 68.7% 3K

Medical

Full Dataset 0.4511 73.9% 20K
KCE 0.4685 72.9% 8K

Structure Entropy 0.3952 67.6% 8K
QuRating 0.3992 68.7% 8K

Superfiltering 0.4227 69.2% 8K

For the Diabetes dataset (251 Attributes), KCE achieves the highest coverage rate and MRR among
all selection methods, increasing coverage from 75.5% to 79.3% and MRR from 0.431 to 0.480,
while reducing the dataset size from 12K to 3K. In the General Medical dataset (1,122 Attributes),
KCE maintains coverage, slightly decreasing from 73.9% to 72.9%, and further improves MRR
from 0.451 to 0.468, despite a significant reduction in data size from 20K to 8K.

4.2.1 RETRIEVE WITH VARYING DATA SIZES

To evaluate the robustness of data selection algorithms under varying dataset sizes, we conducted
experiments on the Diabetes and General Medical datasets using 1%, 5%, 10%, 20%, and 50%
subsets. Overall, KCE demonstrates strong coverage and ranking quality across most scales. For
instance, as shown in Table 2, on the Diabetes dataset, KCE attains 68.2%, 79.3%, 86.4%, and 90.1%
coverage for the top 5, 10, 20, and 50 retrieved entries, generally outperforming Structure Entropy
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and QuRating. While Superfiltering occasionally matches or slightly exceeds KCE at smaller subset
sizes, KCE provides more consistent gains at larger scales. Similarly, on the Medical dataset, KCE
achieves 62.6%, 72.9%, 81.6%, and 89.0% coverage for the corresponding top retrieved entries,
highlighting its robustness in prioritizing high-value knowledge. These results indicate that KCE is
effective and reliable even when dataset subsets are limited or sparse.

Table 2: RAG evaluation of different data selection algorithms across varying dataset sizes (% of
full dataset). Metrics reported are average coverage rate (%) and MRR. Bolded entries indicate our
proposed method (KCE) and do not necessarily correspond to the best-performing results.

Dataset Algorithm Data Size (% of full dataset)
1% 5% 10% 20% 50%

Diabetes

KCE 59.4 62.8 66.9 77.10 79.8
0.3620 0.3562 0.3679 0.4452 0.4885

Structure Entropy 22.9 41.8 54.6 60.5 68.5
0.1385 0.2516 0.3102 0.3229 0.3959

QuRating 17.1 33.0 50.2 62.1 71.3
0.08 0.17 0.2826 0.339 0.408

Superfiltering 49.1 68.9 72.9 74.5 75.0
0.2443 0.3731 0.4083 0.4416 0.4342

Medical

KCE 32.5 48.2 67.0 73.5 74.8
0.1927 0.2825 0.3855 0.4568 0.4805

Structure Entropy 22.1 46.7 58.0 63.7 69.5
0.1393 0.2828 0.3343 0.3835 0.4143

QuRating 13.3 23.1 52.8 59.7 70.3
0.0850 0.1300 0.2973 0.3641 0.4301

Superfiltering 41.4 50.9 65.9 70.0 73.9
0.2324 0.2816 0.3843 0.4288 0.4511

4.2.2 RETRIEVE WITH DIFFERENT TOP-K

In this experiment, we evaluated retrieval performance on fixed-size datasets (Diabetes top 3K and
Medical top 8K) by varying the top-k retrieved items from 5 to 50 to assess how well each algorithm
ranks the most relevant knowledge. KCE consistently outperforms other methods across all top-
k settings. For example in Table 3, on the Diabetes dataset, KCE achieves Top@10 coverage of
79.3% with MRR 0.4802, compared to Structure Entropy (61.9% / 0.3372), QuRating (70.0% /
0.3699), and Superfiltering (68.7% / 0.3695). Similarly, on the Medical dataset, KCE attains superior
coverage and ranking quality across Top@5 to Top@50 (e.g., Top@50 coverage 89.0% with MRR
0.4762), demonstrating its persistent advantage in prioritizing high-value knowledge over competing
algorithms.

These results demonstrate that KCE consistently outperforms other algorithms in retaining essential
knowledge and improving retrieval quality. By effectively prioritizing high-value information and
removing redundancy, KCE enables substantial dataset reduction without sacrificing performance,
reducing computational cost and enhancing retrieval-augmented generation on both low- and high-
dimensional medical datasets.

4.3 REVENUE BOUNDARIES AND INFORMATION GAIN ACROSS DOMAINS

Entropy-based sampling improves data utilization efficiency on both Diabetes and General Medical
datasets. Normalized entropy curves show that entropy-selected subsets achieve higher information
gain per sample than unfiltered data, with a clear revenue boundary beyond which additional samples
provide diminishing returns. In low-sample regimes, steeper slopes indicate faster acquisition of
high-value data, while flattening slopes mark diminishing marginal returns and a natural stopping
criterion. Across domains, entropy-based sampling consistently attains higher coverage efficiency
than random selection, enabling the construction of compact, high-quality datasets for LLM training
and retrieval-augmented generation.
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Table 3: RAG evaluation of different data selection algorithms across varying top retrieval sizes
(Top@5, 10, 20, 50). Metrics reported are average coverage rate (%) and MRR. KCE consistently
achieves higher coverage and MRR than other methods across all top-k settings.

Dataset Algorithm Retrieve Top Entries
Top@5 Top@10 Top@20 Top@50

Diabetes top3K

KCE 68.2 79.3 86.4 90.1
0.4655 0.4802 0.4853 0.4867

Structure Entropy 50.1 61.9 74.9 85.6
0.3209 0.3372 0.3465 0.3510

QuRating 54.4 70.0 81.6 89.5
0.3491 0.3699 0.3778 0.3808

Superfiltering 54.6 68.7 78.2 89.5
0.3503 0.3695 0.3761 0.3798

Medical top8K

KCE 62.6 72.9 81.6 89.0
0.4539 0.4685 0.4737 0.4762

Structure Entropy 57.0 67.6 76.0 84.9
0.3810 0.3952 0.4018 0.4044

QuRating 57.4 68.7 77.4 85.4
0.3838 0.3992 0.4052 0.4079

Superfiltering 58.0 69.2 77.1 84.7
0.4076 0.4227 0.4281 0.4308

(a) Diabetes Dataset (b) General Medical Dataset

Figure 5: Comparison of normalized entropy vs. sample size for two datasets using entropy sam-
pling (blue line with orange variability) and random sampling (brown line). (a) Diabetes Dataset
(0–12,000 samples, entropy 1.0–1.4). (b) General Medical Dataset (0–25,000 samples, entropy
1.0–1.9). Entropy sampling consistently yields higher normalized entropy than random sampling.

5 DISCUSSION

In this work, we propose a knowledge-centric data selection framework for domain adaptation, for-
malized through Knowledge Coverage Entropy (KCE) and instantiated via an entropy-driven, sub-
modular selection algorithm (EDS). The approach models discrete knowledge units and prioritizes
coverage diversity under cardinality constraints, aiming to reduce redundancy and improve sample
efficiency in both supervised fine-tuning and retrieval-augmented generation in domain adaptation
of large language models. Empirical results on MATH-500 and medical RAG indicate consistent
gains with smaller datasets and more stable training dynamics.
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6 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code used for data processing, model training, and eval-
uation will be provided in a zip file as part of the supplementary materials. Detailed descriptions
of the datasets, preprocessing steps, and experimental settings are included in the main text and
appendices. This will allow readers to reproduce the reported experiments and verify the findings.
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A USE OF LLM

The text of this article has been refined with the assistance of a large language model (LLM). All
scholarly opinions, factual content, and final expressions remain the responsibility of the authors;
the model was used solely to enhance the clarity, readability, and linguistic quality of the manuscript.

B LIMITATION

While the proposed entropy-driven Selection framework demonstrates promising results, it is not
without limitations. First, the method assumes a certain degree of redundancy in the corpus, as the
entropy computation relies on overlapping knowledge points across samples to establish informative
distributions. Consequently, the approach may underperform on highly sparse datasets with minimal
overlap. Second, the framework presumes that each information unit contains multiple knowledge
points, providing sufficient variability to compute knowledge-point entropy. In cases where samples
are extremely atomic—e.g., containing only a single knowledge point—the resulting knowledge
matrix becomes nearly diagonal, rendering Knowledge Coverage Entropy computation ineffective.

Additionally, we currently represent the Information–Knowledge Matrix as binary, indicating
whether a sample fully covers a knowledge point or not. While this simplification facilitates com-
putation and aligns with the current entropy formulation, it neglects partial or graded coverage. We
acknowledge this limitation and note that a probabilistic or weighted representation could better
capture the degree of knowledge coverage in future work.

B.1 ABLATION STUDY ON THE KNOWLEDGE MATRIX CONSTRUCTION

The ablation study of the knowledge matrix comprises two main parts. The first part examines the
system’s robustness to different frequency thresholds, defined as the minimum number of occur-
rences required for a knowledge point to be included, and evaluates the effect of weighted entropy
on performance. The second part investigates the impact of using different scoring sources—LLMs
versus human experts—on the construction of the knowledge matrix and analyzes whether these
variations affect the algorithm’s overall performance.

For this study, we use the GSM8K dataset (Cobbe et al., 2021) and train two model sets: DeepSeek-
Distill-Qwen-7B and Qwen3-8B with 2k selected data (full set 7.9k) and LoRA adaptation (see
Table 8). To evaluate the robustness of our data selection method, we compare performance across
(1) different numbers of selected concepts k, (2) weighted vs. unweighted variants, and (3) multiple
model scales. The results show that our method is highly stable across all dimensions. The detailed
performances are list in Table 4 and Table 5

Table 4: Performance of different models under the weighted scoring scheme for six configurations
of the knowledge frequency threshold k (minimum occurrences of a knowledge point). The number
in parentheses indicates the resulting number of knowledge units after applying the KCE module.

Model k=10(189) k=15(123) k=20(97) k=25(78) k=30(64) k=50(45)
ds-distill-qwen-7B 829 841 826 832 844 828

qwen2-0.5B 314 314 294 326 312 315
qwen3-8B 1206 1196 1192 1193 1206 1200

Table 5: Unweighted

Model k=10(189) k=15(123) k=20(97) k=25(78) k=30(64) k=50(45)
ds-distill-qwen-7B 810 789 808 787 808 803

qwen2-0.5B 320 334 316 310 317 315
qwen3-8B 1196 1207 1197 1203 1185 1203

First, performance remains nearly unchanged as k varies from 10 to 50, even though the number of
selected concepts is reduced by more than 70% (from 189 to 45). The fluctuation in model accuracy
stays within 1–5% across all models, demonstrating that our selection procedure is not sensitive to
the exact choice of k.
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Second, the weighted variant consistently exhibits lower variance than the unweighted version. This
confirms that the weighting mechanism effectively filters out noisy or low-importance concepts,
leading to more reliable improvements. For the smaller 0.5B model, the benefit of weighting is
less pronounced, which is likely due to the limited capacity of small models to fully exploit the
training data. Nonetheless, even in this low-capacity regime, the weighted (task-optimized) strategy
remains more balanced acrSecond, the weighted variant consistently exhibits lower variance than
the unweighted version.

Finally, the same trend holds across three models with very different capacities (0.5B, 7B, 8B),
showing that the robustness of our approach is model-agnostic. The consistency across k, across
weighting strategies, and across model scales provides strong evidence that our knowledge selection
mechanism is inherently robust.

The ablation study on different knowledge extractors was conducted using the MedQA-CoT-
LLaMA31 datasets (Jin et al., 2020; Gururajan et al., 2024). We constructed three versions of
the knowledge matrix using Qwen-Max and Qwen-7B-Instruct and doctor rectified Qwen-max as
the knowledge extractors. Since this dataset does not come with an established benchmark for eval-
uating the correctness of extracted knowledge points, we randomly sampled five subsets from the
full training corpus as pseudo–test sets, each containing 1000 questions. The extraction accuracy on
these five subsets is reported in Table 6. This training extracted 4k data out of 10K full set, and used
the same LoRA config in previous study (See Table 8)

Table 6: Extraction accuracy of Qwen-Max and Qwen-7B-Instruct evaluated on five randomly sam-
pled subsets (1000 questions each).

Model set1 set2 set3 set4 set5
Qwen-max 126/1000 132/1000 119/1000 119/1000 120/1000

qwen-7B-Inst 126/1000 128/1000 125/1000 125/1000 117/1000
Rectified Qwen-max 126/1000 132/1000 120/1000 119/1000 120/1000

Across the five sampled subsets, three extractors exhibit highly consistent performance with only
minor fluctuations, indicating that our knowledge extraction pipeline is robust to model scale. Even
though knowledge extracted by a smaller model may not be as precise as that from a larger model,
the robustness of our knowledge matrix ensures that downstream training remains stable, which is
particularly valuable in scenarios with limited computational resources. While the pseudo–test sets
offer an approximate evaluation, incorporating human experts (e.g., medical professionals) would
provide a more reliable assessment and capture domain-specific nuances beyond model capability,
further improving the accuracy and trustworthiness of the resulting knowledge matrix.

B.2 KNOWLEDGE COVERAGE ENTROPY DEFINITION AND BOUNDS

The Knowledge Coverage Entropy (KCE) measures the diversity of knowledge coverage in a subset
S ⊆ {1, . . . , n} of size |S| = h from a dataset represented by a binary matrix B ∈ {0, 1}n×m,
where Bi,j = 1 if sample i covers knowledge point j, and 0 otherwise. To ensure numerical
stability, we apply additive smoothing:

B′ = B+
α

nm
, α = 10−6,

and normalize to obtain a joint probability distribution:

Pi,j =
B′

i,j∑n
i=1

∑m
j=1 B

′
i,j

.

The KCE for subset S is defined as

H(S) = −
m∑
j=1

pj log2 pj , pj =
1

h

∑
a∈S

Ba,j .

The maximum entropy occurs when pj = 1/m, yielding H(S) ≤ log2 m. For the joint distribution
over nm outcomes, the upper bound is

H(S) ≤ log2(nm) = log2 n+ log2 m.
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The normalized entropy is

Hn(S) =
H(S)

log2 h
,

with Hn(S) ≤ 1 + log2 m
log2 n . As n → ∞, Hn(S) → 1 (or less with redundancy). Redundancy in B

(e.g., samples covering identical points) reduces H(S) to ≈ log2 m, exhibiting sublinear growth.

Monte Carlo approximation. To extend KCE to a potentially infinite-dimensional knowledge
space X , we replace the integral

H(S) = −
∫
X
p(x) log2 p(x) dµ(x), p(x) =

1

h

∑
a∈S

Ba(x),

with a Monte Carlo estimator. We draw M samples {xt}Mt=1 from the base measure µ, and approxi-
mate the entropy by

Ĥ(S) = − 1

M

M∑
t=1

p̂(xt) log2 p̂(xt), p̂(xt) =
1

h

∑
a∈S

Ba(xt).

This estimator is unbiased and converges at a rate O(M−1/2), independent of the dimensionality of
X .

Knowledge-weighted variant. When incorporating importance weights k(x), the weighted en-
tropy

Hk(S) = −
∫
X
p(x) log2 p(x) k(x) dµ(x)

is approximated by

Ĥk(S) = −
1

M

M∑
t=1

k(xt) p̂(xt) log2 p̂(xt).

B.3 SUBMODULARITY OF KNOWLEDGE COVERAGE ENTROPY

The effectiveness of the greedy algorithm relies on the submodular properties of KCE. Let B ∈
{0, 1}n×m be the binary matrix, and H(S) = −

∑m
j=1 pj log2 pj the KCE for subset S, where

pj = 1
|S|
∑

a∈S Ba,j . Although KCE is not strictly submodular, it exhibits diminishing marginal
gains. For nested subsets SA ⊆ SB and a sample a /∈ SB , the marginal gain satisfies

∆H(SA; a) = H(SA ∪ {a})−H(SA) ≥ ∆H(SB ; a).

To derive this, consider the entropy function H(p) = −
∑

j pj log2 pj , which is concave in the
probability vector p. When adding sample a to subset S, define the coverage distribution induced
by a as

δj =
Ba,j∑
j Ba,j

, ca =
∑
j

Ba,j ,

and let K(S) =
∑

a∈S

∑
j Ba,j be the total coverage of S. The mixing parameter is

λ =
ca

K(S) + ca
.

The updated probability vector p′ is a convex combination:

p′j = (1− λ)pj + λ δj .

Since H(p) is concave, by Jensen’s inequality applied to the convex combination,

H(p′) ≥ (1− λ)H(p) + λH(δ),
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which yields the marginal gain bound

∆H = H(p′)−H(p) ≥ λ
(
H(δ)−H(p)

)
.

Because the Hessian of H(p) is negative semi-definite, entropy changes are smaller when p is
near uniform (as in larger sets). For |SB | > |SA|, K(SB) > K(SA), so λB < λA, and the
distribution pB is closer to uniform, reducing ∆H(SB ; a). Alternatively, one can approximate
∆H ≈ −DKL(p

′ ∥ p), where DKL decreases with set size due to smaller λ, reinforcing the inequal-
ity for non-redundant a. This property supports the greedy algorithm’s effectiveness, as detailed in
the main text.

B.4 INFORMATION GAIN AND REVENUE BOUNDARY

The information gain (IG) monitors the marginal contribution of adding samples to a subset. For
a binary matrix B ∈ {0, 1}n×m and subset St of size t, the normalized entropy is Hn(St) =
H(St)/ log2 t, where H(St) = −

∑m
j=1 pj log2 pj and pj = 1

t

∑
a∈St

Ba,j . The discrete informa-
tion gain is

IG(t) = Hn(St)−Hn(St−1).

Due to diminishing returns (see Appendix B.3), IG(t) decays as t increases. The revenue boundary
is defined as

t∗ = min{ t : IG(t) < δ },
where δ > 0 is a task-specific threshold. To derive the decay, note that entropy is subadditive: for a
new sample a with row entropy H(a) = −Pa log2 Pa, where Pa = 1

m

∑m
j=1 Ba,j ,

H(S ∪ {a}) ≤ H(S) +H(a),

and H(a) ≤ log2 m for uniform coverage. The marginal gain is

∆H = H(S ∪ {a})−H(S) ≤ H(a).

Accounting for redundancy,

∆H = H(a | S) = H(a)− I(a;S),

where I(a;S) is the mutual information measuring overlap. For large t, the expected ∆Ht
log2 m

t ,
as new samples cover at most m/t new points on average (pigeonhole principle). Entropy concavity
implies successive gains diminish:

∆Ht ≤
∆Ht−1

1 + ϵ
, ϵ > 0,

in redundant regimes. Summing the series,

H(St) = H(S1) +

t∑
k=2

∆Hk ≤ H(S1) +

t∑
k=2

O

(
1

k

)
= H(S1) +O(log t).

Thus, Hn(St) = O(1), and

IG(t) ≈ ∆Ht

log2 t
= O

(
1

t log t

)
,

which asymptotically simplifies to O(1/t). This decay justifies the revenue boundary for efficient
stopping.

B.5 MUTUAL INFORMATION APPROXIMATION

Maximizing KCE approximates maximizing mutual information I(R;C) between samples (rows R)
and knowledge points (columns C). Let B ∈ {0, 1}n×m be the binary matrix, and S ⊆ {1, . . . , n}
a subset. Define R as a uniform random variable over S and C as a knowledge point conditioned
on coverage. The joint entropy is H(R,C) = H(S), where H(S) = −

∑m
j=1 pj log2 pj , pj =

1
|S|
∑

a∈S Ba,j . The mutual information is

I(R;C) = H(R) +H(C)−H(R,C) = log2 |S|+H(C)−H(S),
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where H(R) = log2 |S| (uniform over rows) and H(C) = −
∑m

j=1 P (·, j) log2 P (·, j), with

P (·, j) = 1

|S|
∑
a∈S

Ba,j (column marginals).

Maximizing I(R;C) requires maximizing H(C) (broad coverage) while minimizing H(S) (low
redundancy). Per-sample row entropy H(a) = −Pa log2 Pa, where Pa = 1

m

∑m
j=1 Ba,j , peaks at

Pa ≈ 0.5, favoring balanced samples that diversify C and reduce H(C | R). Under row indepen-
dence, H(S) = H(R) +H(C), so I(R;C) = 0; selection induces correlations, increasing I . The
score

Score(a) = H(a) ·
(
1 + γ

m∑
i=1

kiBa,i

)
prioritizes task-relevant balance, approximating greedy I(R;C) maximization (similar to submod-
ular set cover).

B.6 DATA DISTRIBUTION EFFECTS IN SUPERVISED FINE-TUNING

In supervised fine-tuning (SFT), let z denote the logits, pθ the predicted probability via softmax, q
the target distribution, and L the cross-entropy loss (Ouyang et al., 2022):

L(θ) = −
m∑
i=1

qi log pθ,i, pθ,i =
ezi∑
j e

zj
. (5)

The gradient with respect to logits is
∇zL = pθ − q. (6)

The Fisher information matrix with respect to logits (Fisher, 1922) is defined as

Fz(q) = EY ∼ q
[
(∇zL(Y ))(∇zL(Y ))⊤

]
, (7)

where Y is a one-hot random variable drawn from q. Expanding this gives

Fz(q) = (pθ − q)(pθ − q)⊤ +Cov(Y ). (8)
Near convergence, pθ ≈ q, so the rank-one term vanishes, and we have

Fz(q) ≈ Cov(Y ) = diag(q)− qq⊤. (9)
The expected squared gradient norm is

E[||∇zL||22] = Tr(Fz(q)) = 1−
∑

i = 1mq2i , (10)

which is maximized for uniform q (high diversity) and minimized for skewed q (low diversity).

From this perspective, selecting datasets with high Knowledge Coverage Entropy (KCE) promotes
a more uniform empirical knowledge distribution pj(S), ensuring that minibatches sampled from S
maintain high average gradient norms. This leads to faster and more stable convergence during SFT
by avoiding overly skewed label distributions that would produce weak learning signals. In other
words, maximizing row entropy H(q) through KCE naturally aligns the data distribution to enhance
both gradient strength and training efficiency.

B.6.1 EFFICIENCY IN MODEL TRAINING

To validate the Revenue Boundary Theory, we prepared two sets of sampled datasets: (1) 28 subsets
randomly sampled from the original dataset, with sizes ranging from 100 to 50,000; and (2) 28
subsets selected using the Entropy-Driven Data Selection algorithm. We trained 56 models in total
using these datasets and visualized their performance trends.

B.6.2 NORMALIZED ENTROPY AND INFORMATION GAIN

We conducted experiments on mathematical dataset by applying the proposed Entropy-Driven Data
Selection algorithm to generate subsets with sizes ranging from 100 to 30,000. For each subset,
we computed the normalized entropy and visualized its variation trend as the sample size increased.
Furthermore, we plotted the information gain efficiency curves for both datasets to illustrate the
points of maximum efficiency.
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B.7 ALTERNATIVE JOINT ENTROPY FORMULATION

An alternative joint entropy formulation is

Hjoint(S) = −
∑
i∈S

m∑
j=1

Pi,j log2 Pi,j ,

where

Pi,j =
B′

i,j∑n
i=1

∑m
j=1 B

′
i,j

, B′ = B+
α

nm
, α = 10−6.

This accounts for row and column dependencies but is computationally costly and sensitive to re-
dundancy. The marginal KCE in the main text is more efficient for diversity-focused selection.

B.8 STOCHASTIC-GREEDY VARIANT

A stochastic-greedy variant samples a subset R of size r ≈ n
s log 1

ε at each iteration, selecting

a⋆ = argmax
a∈R

∆F (S; a).

This achieves a (1− 1/e− ε) guarantee with reduced computational cost.

B.9 HYBRID OBJECTIVE

A hybrid objective combines coverage and similarity:

Fhybrid(S) = λ

m∑
j=1

wjf
(
cj(S)

)
+ (1− λ)

n∑
x=1

max
a∈S

sim(x, a),

where f is concave, and the second term is a facility-location function over a similarity graph. Both
terms are submodular, preserving the (1− 1/e) guarantee of the lazy-greedy algorithm.

B.10 PARAMETER SENSITIVITY ANALYSIS

We conducted a sensitivity analysis of KCE with respect to the smoothing parameter α and the
weight balance γ on sample sizes 500 and 1000. The normalized KCE (Hn) remains nearly constant
across α ∈ [0.1, 2.0] and γ ∈ [0, 1]. For instance, with sample size 500, Hn varies only from 1.2300
to 1.2320 (< 0.2%), and with sample size 1000, from 1.2037 to 1.2062 (< 0.3%). These small
variations indicate that KCE is robust to both α and γ, and the algorithm reliably selects diverse
knowledge subsets without significant sensitivity to hyperparameter choices.

B.11 EMPIRICAL VALIDATION VIA SIMULATIONS

To empirically validate the decay in information gain, experiments were conducted on four datasets,
with knowledge points m ranging from 200 to 1000 and sample sizes n between 20,000 and 60,000,
averaged over 5 runs. Across all datasets, the normalized entropy grows sublinearly:

Hn(S) =
H(S)

logm
, H(S) = −

m∑
i=1

pi log pi,

where pi denotes the empirical frequency of knowledge point i in the subset S. The information
gain (IG) at step t is defined as the marginal increase in entropy:

IG(t) = Hn(St)−Hn(St−1), St = St−1 ∪ {xt}.

Empirically, IG(t) starts high (approximately 0.99 at t = 1) and decays to near-zero (around 10−7

by t = 1000), following an overall O(1/t) trend:

IG(t) ≈ c

t
, c > 0.
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Moreover, we examine the slope of IG(t), i.e., its discrete derivative:

∆IG(t) = IG(t+ 1)− IG(t).

On the diabetes dataset, the slope decreases from approximately

∆IG ≈ −0.1× 10−4 (at the best advantage point)

to
∆IG ≈ −1× 10−6, after which it stabilizes.

This behavior confirms diminishing returns and validates the revenue boundary condition, where

IG(t) < δ for t ≥ Tδ.

Simulations on random binary matrices (e.g., m = 251, varying n) show Hn(S) peaking early
and IG(n) decaying from ∼ 1.22 to near-zero, confirming theorems. For entropy-selected subsets,
I(R;C) is 10–20% higher than random, tying theory to empirical wins.

B.12 COMPUTATIONAL COMPLEXITY ANALYSIS

The lazy-greedy algorithm has time complexity that scales with the sparsity of the matrix B. Each
exact marginal gain evaluation is O

(
nnz(Ba,·)

)
, where nnz denotes the number of non-zero entries

in row a. The lazy variant reduces the number of full evaluations by using upper bounds in the
heap, leading to near-linear time in the total number of non-zero entries in B for sparse matrices.
For dense matrices, the complexity is O(nm log n) in the worst case, but practical datasets are often
sparse. The single-pass approximation is O(nm), linear in the matrix size. Memory requirements
are O(n+m) for the heap and counts, making it scalable for large n and m.

Remarks and interpretation.

• The quantity 1 −
∑

i q
2
i is closely related to the Gini impurity and measures the distri-

butional uncertainty: it is zero for a one-hot (deterministic) q and maximized when q is
uniform.

• The derivation above is performed in the logit space. For the Fisher information with
respect to model parameters θ, one needs to apply the Jacobian chain rule Fθ =
J⊤
z→θFzJz→θ; nevertheless, the qualitative conclusion—uncertainty in q increases the ex-

pected gradient magnitude—remains valid.
• The approximation Fz(q) ≈ Cov(Y ) relies on p ≈ q. When the model is far from well cal-

ibrated, the additional term (p−q)(p−q)⊤ may be non-negligible and should be accounted
for.

C KNOWLEDGE DISTIL PROMPT

Prompt Example:

”You are a medical knowledge summarization assistant. ”

”Task: Summarize the given text and extract only concise knowledge points directly related to dia-
betes. ”

”Requirements:”

”1. Focus only on diabetes and its directly related aspects (symptoms, complications, treatments,
risk factors, diagnostic methods, pathophysiology).”

”2. If there is **no diabetes-related content**, output exactly: NO”

”3. The output must consist only of short words or phrases (concise terms). ”

”4. Do not output personal names, study names, or any content unrelated to diabetes. ”

”5. Do not add external knowledge, only use the given content. ”

”6. Output multiple knowledge points separated by commas, without extra text or explanations. ”
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”Example: In diabetes management, α-glucosidase inhibitors may cause gastrointestinal side ef-
fects such as flatulence, abdominal discomfort, and diarrhea, particularly with high doses relative
to carbohydrate intake, but these improve with gradual titration. Hypoglycemia is rare, and drug
interactions are minimal, though concomitant use with motility agents or cholestyramine is not rec-
ommended. In the STOP-NIDDM trial, 31% of acarbose-treated patients discontinued early due to
adverse effects compared to 19% with placebo.”

”Response: α-glucosidase inhibitors, gastrointestinal side effects, hypoglycemia rare, acarbose”
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D KNOWLEDGE POINT EXAMPLE

diabetes cardiovascular disease genetic factors insulin resistance
insulin secretion diabetes complications diabetes management diagnostic criteria
type 2 diabetes GLP-1 cardiovascular benefits complications
diabetes care HbA1c type 1 diabetes insulin
diabetic complications cardiovascular risk chronic kidney disease continuous glucose monitoring
coronary heart disease congestive heart failure diabetic ketoacidosis diabetic retinopathy
GIP impaired fasting glucose impaired glucose tolerance glucose metabolism
hyperglycemia beta-cell dysfunction liraglutide oral glucose tolerance test
endothelial dysfunction oxidative stress proliferative diabetic retinopa-

thy
glucose monitoring

inflammation neuropathy retinopathy type 1 diabetes mellitus
type 2 diabetes mellitus thiazolidinediones insulin sensitivity urinary albumin excretion
Diabetes polyuria diabetic neuropathy albuminuria
sulfonylureas metformin blood pressure management microaneurysms
peripheral neuropathy nephropathy nausea insulin deficiency
mortality hepatic glucose production blood glucose regulation insulin production
glucose regulation Diabetic retinopathy diabetes treatment insulin therapy
hypoglycemia risk renal failure diabetic nephropathy Type 1 diabetes
MODY pancreatic beta cells hypertension glucagon
lifestyle modifications oral hypoglycemic agents proteinuria glycemic control
insulin pumps rosiglitazone pioglitazone severe hypoglycemia
insulin use cardiovascular risk reduction microalbuminuria blood pressure control
UKPDS blood glucose control insulin treatment patient education
pregnancy gestational diabetes mellitus fasting plasma glucose chronic hyperglycemia
microvascular complications foot ulcers macrovascular disease weight loss
ketoacidosis gestational diabetes Type 2 diabetes elevated blood glucose
increased diabetes risk T1DM T2DM Type 1 diabetes mellitus
Type 2 diabetes mellitus disease progression obesity physical inactivity
glucocorticoids infections Gestational diabetes mellitus macrosomia
type 2 diabetes mellitus
(T2DM)

fasting glucose DCCT islet autoantibodies

children environmental factors increased risk islet autoimmunity
prevention weight gain Diabetic ketoacidosis hypoglycemia
cardiovascular mortality risk factors macrovascular complications vascular complications
metabolic syndrome dyslipidemia diabetes risk physical activity
family history β-cell dysfunction free fatty acids impaired insulin secretion
type 2 diabetes risk diabetes prevalence Diabetes prevalence undiagnosed diabetes
smoking age glucose intolerance coronary artery disease
early detection adolescents risk factor stroke
infection cardiovascular risk factors end-stage renal disease myocardial infarction
diet quality of life lifestyle interventions weight reduction
ACE inhibitors diabetes prevention genetic predisposition exercise
smoking cessation Metformin low- and middle-income coun-

tries
overweight

alcohol consumption hyperinsulinemia insulin administration depression
combination therapy blood pressure comorbidities glucose homeostasis
insulin release hypoglycemia prevention blood glucose levels Sulfonylureas
β-cell function DPP-4 inhibitors exenatide glucose uptake
lipolysis insulin signaling impaired glucose metabolism skeletal muscle
TNF-α adipose tissue growth hormone liver
gluconeogenesis counter-regulatory hormones monogenic diabetes insulin secretagogues
NAFLD atherosclerosis neonatal diabetes increased mortality
HbA1c levels metabolic control sulfonylurea glucagon suppression
delayed gastric emptying osmotic diuresis vomiting HbA1c reduction
glibenclamide α-glucosidase inhibitors asymptomatic cardiovascular disease risk
dehydration heart failure lifestyle changes drug interactions
blood glucose monitoring insulin dose adjustment hypoglycemia unawareness polydipsia
screening HbA1c self-management diabetes education
autonomic neuropathy gastroparesis eating disorders erectile dysfunction
diabetes self-management blood glucose management carbohydrate intake insulin-treated diabetes
glycaemic control cardiovascular events cardiovascular outcomes clinical trials
renal impairment cognitive impairment anxiety Thiazolidinediones
GLP-1 receptor agonists basal insulin gastrointestinal side effects depressive symptoms
older adults urinary tract infections islet transplantation hyperglycaemia
hypoglycaemia hypoglycaemia risk SGLT-2 inhibitors severe hypoglycaemia
glycaemic management dyslipidaemia semaglutide

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E SUPPLEMENTARY TABLES

Table 7: Main Training Configurations and LoRA Parameter

Training Configurations

Parameter Value
Learning Rate 1× 10−5

Epochs 5
Method Full Parameter
Model Qwen2.5 32B Instruct
Evaluation Dataset MATH-500
Early Stop Threshold Loss ≤ 0.05
Early Stop Patience 5 steps
Deepspeed Stage Zero Stage 3

LoRA Parameter

Parameter Value
Learning Rate 5× 10−5

Epochs 5
Method LoRA
PEFT q,k,v,o,down,gate,up
LoRA Rank 64
LoRA Alpha 128
LoRA Dropout 0.1
Early Stop Threshold Loss ≤ 0.15
Early Stop Patience 5 steps
Deepspeed Stage Zero Stage 3

Table 8: Ablation Training Configurations
Parameter Value
Learning Rate 1× 10−5

Epochs 3
Method LoRA
PEFT q,k,v,o,down,gate,up
LoRA Rank 8
LoRA Alpha 32
LoRA Dropout 0.05
Early Stop Threshold Loss ≤ 0.2
Early Stop Patience 3 steps
Deepspeed Stage Zero Stage 1

Table 9: MATH-500 Performance Across Different Sample Sizes and different Algorithms on
LORA fine tune

Training Data Size KCE KCE Unweighted Struct Entropy QuRating Superfiltering
400 441 440 438 425 440
600 445 444 442 430 442
800 448 438 438 441 435

1000 455 444 432 435 438
1200 445 447 429 439 435
1400 448 449 427 422 447
1600 445 447 429 430 438
1800 450 448 435 432 442
2000 450 450 439 432 434
4000 447 437 438 436 442
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Table 10: MATH-500 Performance Across Different Sample Sizes with full parameter fine tuning.
The table reports scores for models trained on subsets selected by entropy sampling, random sam-
pling, and the manually curated S1 dataset (1000 samples).

Training Data Size Entropy Sampled Data Random Sampled Data S1 Manually Selected
100 439 418 –
200 445 425 –
300 446 424 –
400 447 423 –
500 456 428 –
600 445 429 –
700 450 419 –
800 443 430 –
900 449 434 –

1000 450 430 452
1100 447 431 –
1200 450 430 –
1300 449 440 –
1400 453 427 –
1500 450 435 –
1600 450 427 –
1700 458 433 –
1800 454 439 –
1900 451 425 –
2000 450 428 –
3000 450 432 –
4000 453 432 –
5000 448 425 –

10000 455 428 –
20000 451 437 –
30000 461 447 –
40000 447 438 –
50000 458 441 –
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