
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLVING NORMALIZED CUT PROBLEM WITH CON-
STRAINED ACTION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of Normalized Cut (NC) in weighted graphs where the
shape of the partitions follow an apriori pattern, namely they must approximately
be shaped like rings and wedges on a planar graph. Classical methods like spectral
clustering and METIS do not have a provision to specify such constraints and nei-
ther do newer methods that combine GNNs and Reinforcement Learning as they
are based on initialization from classical methods. The key insight that underpins
our approach, Wedge and Ring Transformers (WRT), is based on representing a
graph using polar coordinates and then using a multi-head transformer with a PPO
objective to optimize the non-differential NC objective. To the best of our knowl-
edge, WRT is the first method to explicitly constrain the shape of NC and opens
up possibility of providing a principled approach for fine-grained shape-controlled
generation of graph partitions. On the theoretical front we provide new Cheeger
inequalities that connect the spectral properties of a graph with algebraic prop-
erties that capture the shape of the partitions. Comparisons with adaptations of
strong baselines attest to the strength of WRT.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful heuristic for tackling complex combinato-
rial optimization (CO) problems Grinsztajn (2023); Wang & Tang (2021); Mazyavkina et al. (2021).
Two key insights underpin the use of RL in CO: first, the search space of CO can be encoded into a
vector embedding; second, gradients can be computed even when the objective is a black-box func-
tion or non-differentiable. A significant advantage of RL frameworks is that once trained, they can
solve new instances of CO problems without starting from scratch Dong et al. (2020).

In this work we present another dimension of the use of transformed-based RL for graph partitioning,
namely the ability to encode and optimize complex partition shapes that are part of the problem
specification. We focus on the Normalized Cut (NC) of a graph, which is suitable to balance the
simulating traffic on road networks. While our use case is inspired by a specific problem in road
vehicle traffic simulation, our approach is general and can be applied in many other scenarios where
shapes of graph partitions are application dependent.

Motivational Use Case: Road networks in modern cities are often organized as concentric rings
of roads centered at a city downtown followed by wedge structures connecting the outer ring. For
microscopic traffic simulation, where the movement of every vehicle is modeled in a simulator, it
often becomes necessary to partition the road network and assign each partition to a separate simu-
lator in order to reduce the overall simulation time. We thus want to ensure that the partitions apriori
respect the natural physical topology of the road network. Directly using classical approaches like
METIS, spectral clustering or modern GNN based RL solutions provide no provision to constrain
the generation of partition shapes justifying the need for a new approach.

Ring and Wedge Representation: The key insight of our is to convert complex graph structures
into simpler representations (either as a line or a circle), reducing the complexity of the partitioning
problem. This transformation makes the graph more amenable to being processed by Transformer-
based models, which excel at sequential data processing. In the ring transformation, nodes are
projected onto the x-axis according to their radial distance from the center, preserving the node order
and partitioning properties. Similarly, in the wedge transformation, nodes are projected onto a unit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ringness

WRT METIS Spectral CluterNet NeuroCUT

Wedgeness

WRT

METIS

Spectral

ClusterNet

NeuroCUT

(a) Partition Visualization

(b) Ringness and Wedgeness Curve (c) Quantification of Ringness and Wedgeness

Figure 1: Compared with other methods, WRT has the minimal Normalized Cut, and also achieves
the highest Ringness and Wedgeness (which is formally defined in Section 3). NeuroCUT is initial-
ized by METIS partition, and fails to find a better one, which causes the same result.

circle, focusing on their angular positions. These transformations allow us to apply Transformers,
which can scale more effectively to large graphs compared to traditional GNNs.

After transforming the graph, we apply Proximal Policy Optimization (PPO)Schulman et al. (2017)
to solve the partitioning problem. Our approach leverages the ability of Transformers to capture
both local interactions and global patterns across the entire graph. We demonstrate that our method
outperforms existing RL-based and traditional methods, particularly in handling weighted planar
graphs. In additional to optimizing Normalized Cut, we explicitly measure the ringness and wedge-
ness of the generated partitions. We give performance visualization in Figure 1. In Figure 1(a), a
snapshot of the partitions generated by different methods shows that other methods except our pro-
posed method WRT tend to mix nodes from different partitions, resulting in high Normalized Cut.
Figures 1(b) and 1(c) introduce Ringness and Wedgeness metrics to evaluate how closely a partition
aligns with ring and wedge structures. Our proposed method, WRT, achieves the lowest Normalized
Cut while maintaining the highest Ringness and Wedgeness scores.

Our main contributions are as follows:

• A novel RL-based approach to minimize Normalized Cut on planar weighted graphs.

• The introduction of the ring-wedge partitioning scheme (WRT), which simplifies graph
structures for more efficient processing by Transformer models, and use two-stage training
process which improves partitioning performance and stability.

• Our extensive experiments on synthetic and real-world graphs show that our algorithm have
the best performance and scales to graphs with different sizes effectively.

2 RELATED WORK AND PRELIMINARIES

2.1 GRAPH PARTITIONING

Graph partitioning Buluç et al. (2016) is widely used in graph-related applications, especially for
enabling parallel or distributed graph processing. Partitioning a graph into k blocks of equal size
while minimizing cuts is NP-complete Hyafil & Rivest (1973). Exact methods focus on bipartition-
ing Hager et al. (2009) or few partitions (k ≤ 4) Ferreira et al. (1998), while approximate algorithms
include spectral partitioning Donath & Hoffman (1973) and graph-growing techniques George &
Liu (1981). More powerful methods involve iterative refinement, such as node-swapping for bi-
partitioning Kernighan & Lin (1970), extendable to k-way local search Karypis & Kumar (1996).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Other approaches include the bubble framework Diekmann et al. (2000) and diffusion-based meth-
ods Meyerhenke et al. (2009); Pellegrini (2007). State-of-the-art techniques rely on multilevel par-
titioning Karypis & Kumar (1999), which coarsen the graph and refine the partition iteratively.

The most well-known tool is METIS Met (2023); Karypis & Kumar (1999), which uses multilevel
recursive bisection and k-way algorithms, with parallel support via ParMetis Par (2023). Other
tools include Scotch sco (2023); Pellegrini (2007) and KaHIP Sanders & Schulz (2011) use various
advanced techniques. However, these methods are suboptimal for minimizing normalized cuts in
spider-web-shaped structures common in urban traffic planning.

2.2 ML-BASED GRAPH PARTITIONING ALGORITHMS

Recent research has explored machine learning methods for graph partitioning, particularly using
GNNs. GNNs aggregate node and edge features via message passing. In Gatti et al. (2022a), a spec-
tral method is proposed where one GNN approximates eigenvectors of the graph Laplacian, which
are then used by another GNN for partitioning. The RL-based method in Gatti et al. (2022b) refines
partitions in a multilevel scheme. NeuroCUT Shah et al. (2024) introduces a reinforcement learn-
ing framework that generalizes across various partitioning objectives using GNNs. It demonstrates
flexibility for different objectives and unseen partition numbers. ClusterNet Wilder et al. (2019)
integrates graph learning and optimization with a differentiable k-means clustering layer, simpli-
fying optimization tasks like community detection and facility location. However, neither of these
methods handles weighted graphs, making them unsuitable in our scenarios.

Although GNNs excel at aggregating multi-hop neighbor features, they struggle to globally ag-
gregate features without information loss, which is critical for combinatorial problems like graph
partitioning. Our work addresses these limitations by introducing graph transformation methods
and applying Transformer to learn global features.

2.3 REINFORCEMENT LEARNING

In our work, we use Reinforcement Learning, specifically PPO to train the model with non-
differential optimizing targets. Proximal Policy Optimization (PPO) Schulman et al. (2017) is
a widely-used RL algorithm that optimizes the policy by minimizing a clipped surrogate ob-
jective, ensuring limited deviation from the old policy πold. The PPO objective maximizes
Et [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)], where rt(θ) =

πθ(at|st)
πθold (at|st) and At is the advantage.

3 PROBLEM DESCRIPTION

Let G = (V,E,W, o) be a weighted planar graph, with vertex set V , edge set E, edge weights W ,
and a predefined center o. A k-way partition P ofG is defined as a partition {p1, ..., pk} of V , where⋃k

i=1 = V and ∀i ̸= j, pi ∩ pj = ∅.

We introduce the definition of the Normalized Cut as follows: For each partition pi, we define

Cut(G, pi) =
∑

u∈pi⊗v∈pi

W (eu,v) V olume(G, pi) =
∑

u,v∈pi

W (eu,v) + Cut(G, pi), (1)

where ⊗ represents the XOR operator. The normalized cut of a partition P on graph G is then
defined as

NC(G,P) = max
i∈{1..k}

Cut(G, pi)

V olume(G, pi)
. (2)

We aim to find partitions that minimize the normalized cut, a known NP-complete problem, and
thus we focus on approximate solutions. The goal is to learn a mapping function fθ(G) = P that
minimizes NC(G,P).

Instead of considering the entire space of possible partitions, we restrict our attention to partitions
with specific structures, namely those where each partition is either ring-shaped or wedge-shaped.
We also allow for ”fuzzy” rings and wedges, where a small number of nodes are swapped to adjacent

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Input Graph (b) Ring Partition (c) Wedge Partition (d) Post Refinement

Figure 2: Graph partitioning with Ring and Wedge to minimize the Normalized Cut. We firstly do
ring partitions as (b), to choose different radii to partition the graph into rings. Then for the out-most
ring, we do partitions based on different angles as (c). Finally, we do post refinement to improve the
final partition performance as (d).

partitions. This relaxation helps achieve partitions with a smaller normalized cut, particularly for
graphs derived from real-world applications.

Our partitioning strategy follows a three-step process: first, we perform a ring partition on the entire
graph, then we apply a wedge partition to the outermost rings, and finally, we refine the resulting
partitions to further reduce the normalized cut. Figure 2 illustrates these three steps.

Ring Partition: A Ring Partition of the graphG with respect to the center o, denoted by P r, divides
G into kr distinct concentric rings. Define the radii as 0 = r0 ≤ r1 ≤ r2 ≤ · · · ≤ rkr−1 < rkr

.
These radii partition G into kr rings, where the i-th ring, denoted as pri , contains all nodes with a
distance to the center o between ri−1 and ri.

Wedge Partition: A Wedge Partition, denoted as Pw, divides the outermost ring prkr
into multiple

wedge-shaped sections. The partitioning angles are given by 0 ≤ a1 ≤ a2 ≤ · · · ≤ akw
< 2π.

These angles split prkr
into kw wedge parts, where the i-th wedge, pwi , contains the nodes whose

polar angles are between [ai, ai+1), except for the wedge pwkw
, which contains nodes whose angles

fall within either [0, a1) or [akw
, 2π).

This type of partition divdes the graph into kr − 1 inner rings and kw wedges on the outermost
ring (see Figure 2). Specifically, if kr = 1, the entire graph is partitioned solely by wedges and,
conversely, if kw = 1 the graph is partitioned solely by rings. For simplicity, when a graph G is
partitioned by a Ring-Wedge Partition with kr and kw, we define k = kr + kw − 1, with pk = prk
when k < kr, and pk = pwk−kr+1 when k >= kr. And we define the total partition strategy as
P = {p1, ..., pk}.
We also propose the Ringness and Wedgeness to evaluate whether a partition is close to the ring
shape or wedge shape. The definition of Ringness and Wedgeness can be found in the Appendix.

Besides the practical aspects, partitions structured as a combination of ring and wedge subsets seem
also theoretically well behaved. For example, on a simple class of graphs, they satisfy bounds similar
to the ones that are satisfied by partitions achieving minimum normalized cut. In the next section,
we provide these bounds for the class of spider web graphs.

4 CHEEGER BOUND FOR RING AND WEDGE PARTITION

In the graph partitioning context there exists bounds on the Cheeger constant in terms of the nor-
malized Laplacian eigenvalues, see for example Chung (1997) for bisection and Lee et al. (2014)
for more general k-partitions. Intuitively, the Cheeger constant measures the size of the minimal
“bottleneck“ of a graph and it is related to the optimal partition. Since we consider a subset of all
the possible partition classes, namely ring and wedge, we show that the normalized cut defined in
equation 2 satisfies bounds similar to the classical case in the case of unweighted spider web graphs.
Despite being a simpler class of graphs, these bounds give a theoretical justification of the normal-
ized cut definition equation 2 and the ring-wedge shaped partition. (see the proof in Appendix).
Definition: Let Gn,r be an unweighted spider web graph with r rings and n points in each ring,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(c) Wedge Transformation(b) Ring Transformation(a) Input Graph

Figure 3: Example of Wedge Transform and Ring Transform. In Wedge Transform, nodes are
projected to a circle, then the difference of angles of adjacent nodes are adjusted to the same. In
Ring Transform, nodes are projected to a line. The edge connections and their weights are not
changed in both transformation.

and k be an integer. Define the wedge and ring Cheeger constants as:

ϕn,r(k)= min
P=V1∪···∪Vk
wedge partition

NC(Gn,r, P) ψn,r(k)= min
P=V1∪···∪Vk

ring partition

NC(Gn,r, P). (3)

Proposition 1 Let Gn,r be a spider web graph with r rings and N nodes in each ring. Let λCk and
λPk be the eignevalues of the circle and path graphs with n and r vertices respectively. Then

ϕn,r(k) ≤
2r

2r − 1

√
2λCk , 2 ≤ k ≤ n ψn,r(k) ≤

√
2λPk , 2 ≤ k ≤ r. (4)

5 METHODOLOGY

To elaborate on our approach, we begin by introducing the reinforcement learning environment
settings, then we provide a general overview of the agent’s role and its interaction with the environ-
ment to achieve the final partition. We then dive into the detailed structure of the method. Finally,
we discuss training methodologies and post refinement methods aimed at enhancing performance.
For simplicity, we will pre-define the ring partition number kr and wedge partition number kw.
When k-partitioning a graph, we will enumerate all possible ring partition numbers, then select the
one with minimum normalized cut as the result.

5.1 REINFORCEMENT LEARNING ENVIRONMENT

We primarily employ reinforcement learning methods to address the ring-wedge partitioning prob-
lem. The observation space, action space and reward function are defined in the following. The
agent’s final goal is to maximize the reward through interactions with the environment described
above.

Observation Space The observation space S contains the full graph G, the expected ring number
kr, wedge number kw, and the current partition P , denoted by S = {G, kr, kw, P}.
Action Space The agent needs to decide the next partition as action. If it is a Ring Partition, the
action is the radius of next ring, if it is a Wedge Partition the action is the partition angle of the
wedge.

A =

{
r if currently expects a ring partition
a if currently expects a wedge partition

Reward Function When the partition is not over, we use 0 as reward. When the partition is over, i.e.
current partition number achieves pre-defined total partition number, we calculate the Normalized
Cut, and use the negative of it as the reward, as we need to minimize the Normalized Cut, i.e.,
r = −NC(G,P).

5.2 GRAPH TRANSFORMATION

In previous deep learning based graph partitioning methods, most of them chose the combination
of GNN and Reinforcement Learning. However, GNN suffers from only being able to aggregate
global structure of the graph, hence they need an initial partition and do fine-tuning on it, which is
not capable in our situation, as we want the model give ring and wedge partition results directly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Recently, Transformer achieves great success in various areas, it uses Multi-Head Attention to ex-
change information globally, and shows superior performance in various tasks. In our problem,
we need the model to learn the global view of the graph, and we naturally choose Transformer as
the base structure. However, Transformer typically takes sequential input, which is not capable for
graphs. Instead of directly encode graph nodes to Transformer, we apply two transformations, Ring
Transformation and Wedge Transformation, to the graph. The new graphs are equivalent with orig-
inal graph when performing Ring Partition or Wedge Partition, but is re-organized into a sequential
representation, and is able to input to Transformer.

5.2.1 RING TRANSFORMATION

Since the ring partition should not change when rotating the graph around the center o, we can project
each node onto the x-axis. More precisely, if a node has polar coordinates (r,X), the projection will
map it onto the node with coordinate (r, 0). Note that this transformation does not change the order
of the nodes or the partitions. Figure 3 (b) illustrates the projection onto the line. Then we can find
that when the order of nodes on the line are not changed, we can adjust the radius of any point, and
the partition results on new graph are the same as old ones. When we apply the conclusion above,
we can transform a normal graph into a simplified one, that every nodes are with coordinate (X, 0),
where X is the radius order of the node along all nodes. The transformation results is shown in the
right of Figure 2 (b).

5.2.2 WEDGE TRANSFORMATION

Similar to Ring Transformation, we find that when doing wedge partition, the node radius has no
effect, and only the node angle is considered. We project all nodes into a unit circle which has o as
its center. Hence, if (r,X) are the polar coordinates of a node, its projection will have coordinates
(1, X). After projection, we can also change the angles of nodes. If the angle order of a node is X
from N nodes, its new position is on (1, 2πXN) with polar coordination. The Transformation process
is illustrated in Figure 3 (c).

After transformation, nodes of the graph lie on a line or on a circle, hence we can treat the graph as
a sequential input. We can also find that for actions that split nodes i and i + 1 into two partitions
will perform exactly the same final partition results. As the result, we can convert the continuous
action space into discrete ones to decrease the learning difficulties. New action Ai means split node
i and i+ 1 into two partitions.

5.3 RING WEDGE PARTITION PIPELINE

The graph partition pipeline of the Wedge Ring Transformer (WRT) is illustrated in Figure 4 (a).
It sequentially determines partitions through Ring and Wedge Transformations, predicting the next
ring radius or wedge angle until the target partition count is achieved. The model consists of two
components for ring and wedge partitions with similar structures but distinct weights.

Transformation: The appropriate transformation (ring or wedge) is applied based on current re-
quirements.
Pre-Calculation: Essential computations on the transformed graph include: (1) Cut Weight Ci:
Sum of edge weights crossing between nodes i and i + 1. (2) Volume Matrix Vi,j : Total weight of
edges covered between nodes i and j (where i < j).
Wedge Ring Transformer: The Transformer processes node embeddings from the pre-calculation
phase and the current partition status, as depicted in Figure 4 (b).
PPO Header: After receiving node embeddings, the PPO header extracts action probabilities and
critic values. The actor projection header maps hidden size h to dimension 1, followed by a Softmax
layer for action probabilities. Value prediction uses Self-Attention average pooling on node embed-
dings and projects from h to 1. The PPO is employed to execute actions recursively until the graph
is fully partitioned.

During the Ring Partition phase, a dynamic programming algorithm calculates the optimal partition
when the maximum radius and total ring count are fixed, with a complexity of O(n2k). Thus, the
WRT determines the maximum radius for all ring partitions only once. The pseudo-code is available
in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

PPO

C
u
rren

t P
artitio

n

Ring Transformation Wedge Transformation

Pre-Calculation

WRT for

Ring Partition

Actor

Projection

Header

Critic

Projection

Header

Angle Selection

Probability

Predicted

Value

Scaled Positional

Embedding

Volume Matrix

Element-wise

Transformation

Cut

Weight

Volume

Matrix

Embeddings for Nodes

Pre-Calculation

WRT for

Wedge Partition

Actor

Projection

Header

Critic

Projection

Header

Radii Selection

Probability

Predicted

Value

Cut

Weight

Volume

Matrix

Embeddings for Nodes

PPO

Wedge Ring Transformer

Cut Weight

Partition Selection

Linear Transformation

Cut Weight

Partition Selection

Linear Transformation

Embeddings for Nodes

Add & Norm

Feed Forward Network

Add & Norm

Partition Aware MHA

n

① Wedge Training

② Ring Training

③ Partition Generation

④ Post Refinement

Random Ring Selection
Train Wedge Policies

& Value Predictions

Fixed Policy for

Wedge Partition

Train Ring Policies

& Value Predictions

Wedge Partition

with WRT

Ring Partition

with WRT

Ring-Wedge Partition Separate Node Groups Reconstruct

PAMHA Mask

Current Partition

(a) Partition Decision Pipeline (b) Wedge Ring Transformer (c) Training and Testing Strategy

Figure 4: Framework and stages of the Wedge-Ring Transformer (WRT). (a) WRT first applies
Ring and Wedge Transformations, followed by pre-calculation to obtain cut weights and the volume
matrix. The processed data generates node embeddings for action probabilities and predicted values
via actor and critic projection headers. Modules for ring and wedge partition share structures but
differ in weights. (b) Detailed structure of WRT, using cut weights with positional embeddings as
input, followed by transformer layers. Volume matrix and position information serve as attention
masks in the MHA layer, ensuring focus on nodes within the current partition. (c) WRT pipeline
from training to testing. Initially, the wedge partition strategy is trained with a random approach for
the ring partition. The wedge part is fixed while training the ring part, excluding its critic projection
header. During testing, the WRT sequentially determines ring radius and wedge angle, refining the
final partition using a post-refinement algorithm.

5.4 WEDGE RING TRANSFORMER (WRT)

WRT utilizes a Transformer backbone to leverage information from transformed graphs, enabling it
to handle varying node counts and enhancing its scalability for diverse applications without the need
for fine-tuning after training. The Transformer architecture is illustrated in Figure 4 (b).

WRT processes inputs from the Pre-Calculation module, specifically Cut Weight and Volume Ma-
trix, along with the Current Partition from the input graph. These are fed into n Transformer blocks,
yielding node embeddings from the final hidden state. To effectively manage Current Partition, we
represent each node’s selection status Partition Selection with a 0-1 array, then it is combined with
Cut Weight and transformed through a linear layer to generate hidden states, which are subsequently
augmented with positional embeddings.

We introduce Partition Aware Multi-Head Attention (PAMHA) to replace the original Multi-Head
Attention (MHA) layer. PAMHA incorporates the Volume Matrix and Current Partition into its
attention mask. An element-wise transformation on V produces an attention mask of shape N ×N
for PAMHA, allowing the model to learn the significance of different nodes. For Current Partition,
we observe that partitions splitting between nodes i and i + 1 do not affect the normalized cut
calculations on the right of i+1. For instance, in the circular graph with six nodes depicted in Figure
4, partitioning between certain nodes does not alter the normalized cut of other nodes. Consequently,
we create an attention mask focusing solely on the effective range of nodes. Finally, WRT outputs
node embeddings, which are then input to the PPO module.

5.5 TRAINING AND TESTING STRATEGIES

We use a special training and testing strategies for the problem to learn better policies and give
better partition results. Both training and testing contains two stages. Visualization of four stages
are shown in Figure 4 (c).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.5.1 TRAINING STRATEGY

With previous model design, WRT are able to dig out information effectively from a graph. However,
in RL, the initial strategies are randomized, which makes it challenging to learn a good strategy,
specifically ring partition and wedge partition will obstruct each other. For example, if the ring
partition always selects the smallest radius as the action, the wedge partition cannot learn any valid
policy because the total Normalized Cut is determined by ring partition. Training ring partition with
a low quality wedge partition strategy will also face such difficulty.

To mitigate the above problem, we split the policy training into two stages, as shown in Figure 4 (c)
① and ②. In the first Wedge Training stage, we use a randomized ring selection method to replace
the ring selection strategies, and only let WRT decide and train on wedge partitioning. To make the
model focus on learning good wedge partition strategy, we also ignore the Normalized Cut of rings
when calculating the reward. This makes the model focus on learning wedge partition strategy.

In the second Ring Training stage, we let WRT decide both ring and wedge partition. However,
we find that if we allow the model to tune all its parameters, the model is likely to forget how to
perform a good wedge partitioning before learning a good ring partition strategy. To avoid this,
we fix the parameters of wedge partitioning modules in WRT, as WRT has learned a good wedge
partition strategy with various radius. The only exception is Critic Projection Header, because in the
previous stage we change it to only use the Normalized Cut of wedge partitions as the reward, which
is inconsistent with current reward definition. During the Ring Training stage, two Critic Projection
Headers are both re-initialized and trained. In PPO, as the strategy are only determined by actor
model, allowing critic to be trainable will not affect the learned policy.

5.5.2 TESTING STRATEGY

After WRT is fully trained, we can directly generate partitions by WRT in Partition Generation stage,
it will firstly do ring partition, then do wedge partition in sequential, as shown in Figure 4 (c) ③.

While we have proved ring and wedge partitions have the similar upper-bounds with with con-
straints, sometimes in real graph, ring and wedge partition may not be the optimal one as the graph
has outliers when performing ring and wedge partition. We give an example in Figure 4 (c) ④, the
group of two nodes are reversed when performing a pure ring and wedge partition. To mitigate
such problem, we perform a Post Refinement Stage, where nodes in the same partition but not con-
nected will be split into multiple partitions. Then we greedily choose the partition which has biggest
Normalized Cut, and merge the partition into adjacent partitions. This post refinement method will
decrease the outlier node number, and gives better partitions.

Finally, as the action of PPO is a policy-gradient based method, which provides an action probability
distribution, and single segmentation may not yield the optimal solution directly, we can perform
multiple random sampling to obtain different partitions and choose best of them.

6 EXPERIMENTS AND RESULTS

To demonstrate the superior performance of WRT, we evaluate our model using both synthetic and
real-world graphs, compared with other graph-partitioning methods. We firstly introduce the dataset
details, then give the competitors in graph partitioning, and finally show the overall performance and
ablation studies results.

6.1 GRAPH DATASETS

To make precise evaluation of different methods, we construct three types of graph datasets. The
detailed definitions are in the following:

Predefined-weight Graph: In our synthetic graph data generation process, we design the structure
to resemble a spider web, which consists of N concentric circles, each having M equally spaced
nodes. The radii of circles are from 1 to N . Given an unweighted spider web graph, built by
randomly choosing the number of circles and nodes, we randomly select a valid ring-wedge partition
configuration, specifying both the number of rings and wedges. We then assign lower weights to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

edges that cross different partitions and higher weights to edges within the same partition (intra-
partition edges). An example of synthetic spider web graph is given in Figure 5. More details about
the ranges of nodes, circles, weights etc, for generating the graphs are included in Appendix.

(a) Synthetic Graph (b) City Traffic Map

Figure 5: (a) Synthetic graph: It is composed of
6 circles and 6 wedges. The edge with yellow
color has lower weight, the rest edge have higher
weight. The ground truth partition is composed of
2 rings and 2 wedges which nodes are in differ-
ent colors. (b) Overview of Real Traffic Map, we
randomly sample connected sub-graph in training
and testing.

Random-weight Graph: The graph structure
is the same as above, but edge weights are
assigned randomly in a given range. In the
random-weight graphs, models should find best
partition without prior knowledge. The statis-
tics of our training and test synthetic graphs are
shown in Table 4.

Real City Traffic Graph: For real-world data,
we utilize sub-graphs randomly extracted from
a comprehensive city traffic map (Figure 5 (b)).
The extracted sub-graph is always connected.
For edge weights, we collect traffic data of the
city during a specific time range to assess our
method’s ability to handle real traffic volumes
effectively. The statistical information of Real
City Traffic Graph can be found in Table 4.

6.2 MODELS AND COMPARED METHODS

We compare our proposed method with the following baselines and methods.

For traditional approaches, we select: METIS solver that is used to partitioning graphs with bal-
anced size. Spectral Clustering uses eigenvectors and k-means to perform graph partitioning.

We also propose two baselines for ring and wedge partitions: Bruteforce method to enumerate
possible ring and wedge partitions. Random to randomly generate 10,000 partitions and choose the
best performance one as the result.

For Reinforcement Learning based graph partitioning methods, we select two state-of-the-art meth-
ods, ClusterNet and NeuroCUT, which are introduced in Subsection 2.2.

Finally, we compare above methods with our proposed WRT and its variants. They are: WRT
the standard Wedge-Ring Partition with two-stage training. WRTe2e directly learns Wedge-Ring
Partition without two-stage training. WRTsr uses the same reward function during two training
stages. WRTnfw does not freezing the wedge action network during the second training stage.
WRTnfw does not performing post refinement after ring-wedge partition is generated. Results of
variants are in Appendix.

6.3 PERFORMANCE EVALUATION

6.3.1 EVALUATION OF MODEL OVERALL PERFORMANCE

We show the overall performance in Table 1. We tested our model in three different types of datasets
described in Section 6.1 and summerized in Table 4, with 4 or 6 partition numbers. The number of
graphs used for training is 400, 000. We test the performance of different methods on 100 randomly
generated graphs and report the average performance. We can find that our method always performs
best compared with other methods on all datasets, showing its superior performance compared with
existing methods, with the reduced ring-wedge shaped action space. Although Metis and Spectral
Clustering can give graph partitions with any shape, they still cannot reach better performance com-
pared with our proposed methods, because it is hard to find best results in such huge action space.
Two basic methods, Bruteforce and Random, performs always worse compared with other methods,
because they do not consider the differences of edge weights, and only do random partitioning.

6.3.2 EVALUATION OF MODEL TRANSFER PERFORMANCE

We train model on those three types of graphs with number of nodes (N=100) on each circle and
conduct graph partition transfer learning experiments on the graphs with number of nodes N = 50

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Performance on Predefined-weight, Random-weight, and City Traffic Graphs by Normal-
ized cut. Lower values indicate better performance. Best value (bold), 2nd best (underline).

Method
Predefined-weight Random-weight City Traffic

4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.

50 100 50 100 50 100 50 100 50 100 50 100

Metis .069 .036 .097 .053 .065 .033 .094 .049 .245 .162 .383 .304
Spec. Clust. .065 .036 .099 .053 .079 .041 .101 .053 .384 .218 .652 .843
Bruteforce .070 .036 .106 .054 .070 .036 .107 .054 .361 .237 .615 .457
Random .076 .040 .144 .074 .080 .041 .142 .072 .209 .095 .512 .341
NeuroCut .059 .032 .086 .046 .064 .033 .093 .049 .192 .078 .348 .226
ClusterNet .078 .043 .106 .070 .093 .043 .120 .083 .507 .261 .837 .747
WRT .042 .021 .062 .032 .057 .029 .081 .041 .174 .060 .317 .182

Table 2: Transfer performance measured by Normalized Cut. Methods that do not support transfer
or unable to perform results are excluded. Models are trained on 100 nodes and tested on 50 or 200
nodes. Best value (bold) and 2nd best value (underline).

Predefined-weight Random-weight City Traffic

Partition 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.

Nodes 50 200 50 200 50 200 50 200 50 200 50 200

METIS .069 .019 .097 .027 .065 .016 .094 .024 .245 .048 .383 .086
Bruteforce .070 .018 .106 .028 .070 .018 .107 .028 .361 .175 .615 .311
Random .076 .021 .144 .037 .080 .021 .142 .037 .209 .512 .512 .212
WRT .052 .013 .066 .017 .061 .016 .087 .022 .158 .023 .323 .085

and N = 200 without fine-tuning. The result in table 2 shows that our model has great generaliz-
ability, when trained on certain size of graphs, it is able to apply on different size, regardless of node
number becomes bigger or smaller.

6.3.3 RINGNESS AND WEDGENESS EVALUATION

Table 3 shows the quantification results of Ringness and Wedgeness on City Traffic Graphs. We can
find that WRT also reaches the best Ringness and Wedgeness compared with other methods.

Table 3: Ringness and Wedgeness Evaluation of different methods, higher is better.

METIS Spec.Clust. NeuroCUT ClusterNet WRT
Ringness 0.871 0.776 0.840 0.854 0.929

Wedgeness 0.587 0.810 0.621 0.820 0.876

7 CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the efficacy of using Reinforcement Learning for solving a
special form of the normalized cut problem on weighted graphs, an area where traditional methods
like METIS fall short, and eixsting RL based graph partitioning methods also cannot perform well
when the initial partition generated by METIS is not good enough. Inspired by urban road network
construction, we propose to make ring and wedge partition directly on graphs. By introducing the
simplified partitioning strategy involving ring-shaped and wedge-shaped cuts, our approach lever-
ages RL and Transformers to effectively learn and optimize the partitioning process. The two-stage
training methodology ensures stability and scalability, enabling our algorithm to handle both small
and large graphs efficiently. Our experimental results highlight the superiority of our method over
baseline algorithms, showcasing its potential for real-world applications. Our proposed method
focus on minimizing normalized cut of planar graphs, future work will focus on extend existing
methods to non-planar graphs, and find better post-process methods to further improve the final
performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Family of graph and hypergraph partitioning software, 2023. URL http://glaros.dtc.umn.
edu/gkhome/views/metis.

Parmetis - parallel graph partitioning and fill-reducing matrix ordering, 2023. URL http:
//glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

Scotch: Software package and libraries for sequential and parallel graph partitioning, 2023. URL
https://www.labri.fr/perso/pelegrin/scotch/.

Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning, volume 9220. 11 2016. ISBN 978-3-319-49486-9. doi:
10.1007/978-3-319-49487-6 4.

Fan R. K. Chung. Spectral Graph Theory, volume 92. CBMS Regional Conference Series in
Mathematics, 1997.

Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. Parallel Computing, 26(12):
1555–1581, 2000.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM Journal of
Research and Development, 17(5):420–425, 1973. doi: 10.1147/rd.175.0420.

Hao Dong, Hao Dong, Zihan Ding, Shanghang Zhang, and T Chang. Deep Reinforcement Learning.
Springer, 2020.

C. Ferreira, Alexander Martin, Cid Souza, R. Weismantel, and Laurence Wolsey. The node ca-
pacitated graph partitioning problem: A computational study. Mathematical Programming, 81:
229–256, 01 1998. doi: 10.1007/BF01581107.

Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and Pieter Ghysels. Deep Learning and
Spectral Embedding for Graph Partitioning, pp. 25–36. 2022a.

Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and Pieter Ghysels. Graph partitioning
and sparse matrix ordering using reinforcement learning and graph neural networks. Journal of
Machine Learning Research, 23(303):1–28, 2022b.

Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive Definite. Prentice Hall
Professional Technical Reference, 1981. ISBN 0131652745.

Nathan Grinsztajn. Reinforcement learning for combinatorial optimization: leveraging uncertainty,
structure and priors. PhD thesis, Université de Lille, 2023.

William Hager, Dzung Phan, and Hongchao Zhang. An exact algorithm for graph partitioning.
Mathematical Programming, 137, 12 2009. doi: 10.1007/s10107-011-0503-x.

Laurent Hyafil and Ronald L. Rivest. Graph partitioning and constructing optimal decision trees are
polynomial complete problems. Technical Report Rapport de Recherche no. 33, IRIA – Labora-
toire de Recherche en Informatique et Automatique, October 1973.

G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. In
Supercomputing ’96:Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, 1996.
doi: 10.1109/SUPERC.1996.183537.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. Siam Journal on Scientific Computing, 20, 01 1999. doi: 10.1137/
S1064827595287997.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, 1970. doi: 10.1002/j.1538-7305.1970.tb01770.x.

James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. J. ACM, 61(6), dec 2014.

11

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.labri.fr/perso/pelegrin/scotch/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. A new diffusion-based multilevel
algorithm for computing graph partitions. Journal of Parallel and Distributed Computing, 69(9):
750–761, 2009.

François Pellegrini. A parallelisable multi-level banded diffusion scheme for computing bal-
anced partitions with smooth boundaries. 08 2007. ISBN 978-3-540-74465-8. doi: 10.1007/
978-3-540-74466-5 22.

Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algorithms. In
Algorithms–ESA 2011: 19th Annual European Symposium, Saarbrücken, Germany, September
5-9, 2011. Proceedings 19, pp. 469–480. Springer, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rishi Shah, Krishnanshu Jain, Sahil Manchanda, Sourav Medya, and Sayan Ranu. Neurocut: A neu-
ral approach for robust graph partitioning. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 2584–2595, 2024.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial
optimization: A survey. Knowledge-Based Systems, 233:107526, 2021.

Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and optimization
on graphs. Advances in Neural Information Processing Systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A STATISTICS AND HYPER PARAMETERS

Table 4: Statistics of datasets and hyper parameters of model.

Type Parameter Values Description

Sy
nt

he
tic

Nodes {50, 100} Nodes on each circle
Circles same as Nodes Number of concentric rings
Low Weight {2, 4, 6} Intra-partition edge weights
High Weight {10, 15, 20} Inter-partition edge weights
Random Weight Uniform(1, 10) Edge weights for random

R
ea

l Nodes {50, 100} Nodes on each graph
Edge Weight [1, 372732] Edge weights

H
yp

er
Pa

ra
m

et
er

s

Partitions {4,6} Number of partitions
Hidden Size 64 Hidden size of Transformer
Layer Number 3 Transformer layer number
Learning Rate 1e-3 Learning rate
Batch Size 256 Batch size
Discount Factor 0.9 Discount factor in RL
Training Step 400,000 Steps for training
Test Number 100 Test graph number
Sample Number 10 Sampled partition number

B ABLATION STUDIES

We give ablation studies in the following to show the effectiveness of proposed methods. The
performance of ablation models are shown in Table 5 and 6.

B.1 TWO-STAGE TRAINING AND TESTING

In Section 5.5, we propose multi-stage traininig and testing strategies. In training, we propose to
train the wedge partition model firstly, and randomly select ring partitions. The radius are uniformly
selected from 0 to 80% of maximum radius. After wedge partition model is trained, we re-initialize
the critic projection header of wedge model, and fix the other parts of wedge model to train the ring
model part. We show the performance without two stage training as WRTe2e. From Table 5 and
Table 6, we can find that without two stage training, the model is not able to converge, because a
bad policy of either ring or wedge will affect the learning process of each other, and make the model
hard to converge.

B.2 DIFFERENT BASELINE FUNCTION IN TWO-STAGE

As mentioned in Section 5.5, in training wedge partition, we change the reward function from global
Normalized Cut to the Normalized Cut that only considering wedge partitions. This avoids the
impact of poor ring partition selection, as ring partition is performed by a random policy, and may
give poor partitions. For example, if the random policy selects a very small radius, the normalized
cut of circle partitions will be very big, which makes the reward received from different wedge
partition identical. We show the performance when the reward function keeps same, i.e. always
considering the normalized cut of ring partition in two stage training, as WRTsr. In Table 5 and 6,
we can find that their performance is worse than WRT, because their wedge partitioning policies are
not strong enough. As reward function will change in two-stage training, we will re-initialize the
critic net of wedge model in the second stage, as mentioned before.

B.3 FIX WEDGE PARTITION POLICY

In the second training stage, we fix the wedge model to avoid changing the policy. WRTnfw shows
the performance when wedge partition policy is not fixed. We can find that the performance de-
creases if wedge partition policy is not fixed, and leads to bad policy in several test cases. This is
because if we allow the action net change, it may forget learned policy before a valid policy has

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison on Predefined-weight, Random-weight, and City Traffic Graphs
(Normalized cut). Lower values indicate better performance.

Method
Predefined-weight Random-weight City Traffic

4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.

50 100 50 100 50 100 50 100 50 100 50 100

Metis .069 .036 .097 .053 .065 .049 .094 .049 .245 .162 .383 .304
Spec. Clust. .065 .036 .099 .053 .079 .053 .101 .053 .384 .218 .652 .843
Bruteforce .070 .036 .106 .054 .070 .054 .107 .054 .361 .237 .615 .457
Random .076 .040 .144 .074 .080 .072 .142 .072 .209 .095 .512 .341
NeuroCut .059 .032 .086 .046 .064 .033 .093 .049 .192 .078 .348 .226
ClusterNet .078 .043 .106 .070 .093 .043 .120 .083 .507 .261 .837 .747
WRTsr .063 .276 .065 .032 .159 .044 .091 .046 .646 .473 .792 .612
WRTe2e .105 .053 .123 .063 .112 .055 .131 .069 .683 .478 .783 .678
WRTo .042 .021 .062 .032 .057 .029 .081 .041 .209 .071 .419 .271
WRTnfw .046 .023 .065 .033 .057 .029 .082 .041 .175 .060 .328 .187
WRT .042 .021 .062 .032 .057 .029 .081 .041 .174 .060 .317 .182

Table 6: Transfer performance measured by Normalized Cut. Methods that do not support transfer
or unable to perform results are excluded. Models are trained on 100 nodes and tested on 50 or 200
nodes.

Predefined-weight Random-weight City Traffic

Partition 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.

Nodes 50 200 50 200 50 200 50 200 50 200 50 200

METIS .069 .019 .097 .027 .065 .016 .094 .024 .245 .048 .383 .086
Bruteforce .070 .018 .106 .028 .070 .018 .107 .028 .361 .175 .615 .311
Random .076 .021 .144 .037 .080 .021 .142 .037 .209 .512 .512 .212
WRTsr .219 .201 .068 .018 .085 .023 .092 .024 .664 .305 .831 .224
WRTe2e .103 .027 .107 .027 .107 .028 .123 .033 .645 .327 .863 .442
WRTo .052 .013 .066 .016 .061 .016 .087 .022 .182 .031 .472 .014
WRTnfw .053 .013 .066 .017 .061 .016 .087 .104 .150 .023 .327 .090
WRT .052 .013 .066 .017 .061 .016 .087 .022 .158 .023 .323 .085

learned by ring partition, and leads to worse performance and instability during the training. The
reward curve during training and testing, which is shown in Figure 6, also supports the conclusion.
It has been observed that not fixing the action net results in lower and more unstable rewards for
the model during training. Moreover, the performance during testing tends to become more variable
and does not show further improvements as training progresses.

B.4 POST REFINEMENT

We perform post refinement after performing the ring and wedge partition, which splits existing
partition result by the connectivity of nodes, then reconstruct new partitions by combining the par-
tition which has biggest Normalized Cut with its adjacent partitions. As ring and wedge partitions
on synthetic graphs are always connected, this post refinement will not change the performance of
WRT on synthetic dataset. However, in real dataset, sometimes the graph shape is not compatible to
ring and wedge partition, and the results may not good enough. With post refinement, we can further
decrease the Normalized Cut on such situation. In Table 5, we show the performance improvements
with post refinement on real dataset, the normalized cut is decreased 22.4% on average.

B.5 GRAPH CENTER SELECTION

We conducted experiments on the test set of City Traffic graphs with 50 nodes, which contains 100
graphs. Based on the maximum aspect ratio of the graphs, we offset the centroid by a distance of
up to 5% and recalculated the results of Normalized Cut. For better comparison, we normalized
the results using the Normalized Cut from the unoffset scenario. A normalized value closer to zero

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Performance comparison on City Traffic Graphs (Normalized cut). Lower values indicate
better performance.

Method
City Traffic

4 Part. 6 Part.

50 100 50 100

GPSGNN 0.696 0.521 0.821 0.711
Transformer 0.186 0.122 0.360 0.225
WRT w/o PAMHA 0.169 0.075 0.374 0.193
WRT 0.174 0.060 0.317 0.182

(a) Training reward curve of WRT (b) Training reward curve of WRTnfw

(c) Testing reward curve of WRT (d) Testing reward curve of WRTnfw

Figure 6: Reward curves during training and testing of Predefined-weight Graph. Red is with 50
node number and blue is with 100 node number. We individually perform 4 tests for each checkpoint,
using the curve to represent the average test results, while the shaded area indicates the maximum
and minimum values observed during the tests.

indicates better performance, with a value of 1 signifying that the results are the same as in the
unoffset case.

Figure 7 (left) illustrates the results for various offsets from the centroid. We observe that any offset
from the centroid results in a worse performance, and with greater offsets correlating to a more
significant decline.

In Figure 7 (right), we present the histogram of results across all the aforementioned offsets and
graphs. We find that in nearly half of the cases where offsets were applied, the resulting errors
remained within 5%. Furthermore, applying offsets tends to lead to worse outcomes more frequently.
Thus, in this paper, we opted to use the centroid as the center of the graph. Figure 7 (right) also shows
that in approximately 15% of cases, offsetting the centroid yielded improvements of over 10%. In
the future, we can propose a more effective strategy for centroid selection to enhance the algorithm’s
performance.

B.6 EFFECTIVENESS OF GRAPH TRANSFORMATION, WRT AND PAMHA

We show the effectiveness of our proposed Graph Transformation, WRT and PAMHA in Table 7.
The methods are:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

-5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5%
-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%
Average Ratio of Normalized Cut

1.00

1.02

1.04

1.06

1.08

1.10

1.12

<0.8 0.9 1.0 1.1 >1.2
Ratio

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

Normalized Cut Ratios

Figure 7: Heatmap and histogram of Normalized Cut when applying offsets to the center. Values
are normalized by Normalized Cut of unoffset center. Lower value is better.

• GPSGNN [1]. It is an advanced Graph Neural Network, which combines GNN and Trans-
formers to both collect local and global information. This represents the initial performance
of GNNs and Transformers in solving Normalized Cut problem with Ring and Wedge Par-
tition.

• Transformer. We perform Ring Transformation and Wedge Transformation of the graph.
Then use node coordinates as positional embeddings, and edge weights as attention masks.
Then we use the vanilla Transformer.

• WRT w/o PAMHA. The same structure as WRT, except PAMHA is replaced with normal
Multi-Head Attention.

We demonstrate the effectiveness of our proposed Graph Transformation methods, WRT and
PAMHA, as presented in Table 7. The methods evaluated are as follows:

• GPSGNN [1]: It integrates GNNs and Transformers to effectively capture both local and
global information. It serves as the benchmark for evaluating the performance of GNNs and
Transformers in addressing the Normalized Cut problem using Ring and Wedge Partition
techniques.

• Transformer: We implement Ring and Wedge Transformations on the graph, utilizing node
coordinates as positional embeddings and edge weights as attention masks, followed by the
application of a standard Transformer model.

• WRT w/o PAMHA: This configuration maintains the same architecture as WRT but substi-
tutes PAMHA with conventional Multi-Head Attention.

From the results, we observe that GPSGNN struggles to produce meaningful results in City Traffic.
In contrast, the Transformer model demonstrates significantly improved outcomes when compared
to GPSGNN. This finding reinforces the notion that constraining the action space of RL agents based
on domain knowledge is essential for enhancing performance. Next, we integrated the WRT struc-
ture, which facilitates data pre-calculation, and observed an increase in performance. This indicates
that the pre-calculation module is beneficial in addressing the problem. Finally, by incorporating
PAMHA into the Transformer framework, we achieved the full WRT architecture, which exhibited
superior performance relative to other variants.

[1] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in
Neural Information Processing Systems, 35, 2022.

B.7 PERFORMANCE OF OTHER METHODS

We incorporate additional comparative methods Analyzed on City Traffic Graph, which include:

• DMon [2]: A neural attributed graph clustering method designed to effectively handle com-
plex graph structures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Performance comparison on City Traffic Graphs (Normalized cut). Lower values indicate
better performance.

Method
City Traffic

4 Part. 6 Part.

50 100 50 100

DMon 0.998 1.000 1.000 1.000
MinCutPool 0.549 0.365 0.864 0.634
Ortho 0.924 0.892 0.997 0.982
WRT 0.174 0.060 0.317 0.182

Table 9: Comparison of Hidden State and Learning Rate for Different Methods.

Hidden State Learning Rate

Search Range 16, 32, 64, 128, 256 1e-4, 3e-4, 1e-3, 3e-3, 1e-2
Dmon 128 1e-4
MinCutPool 32 1e-3
Ortho 256 1e-2

• MinCutPool [3]: This method focuses on optimizing the normalized cut criterion while
incorporating an orthogonality regularizer to mitigate unbalanced clustering outcomes.

• Ortho [2]: This refers to the orthogonality regularizer that is utilized in both DMon and
MinCutPool, ensuring greater balance in the clustering process.

All models were trained using the same settings as WRT. We conducted a grid search on the hyper-
parameters of the three aforementioned methods and selected the optimal combination of hyperpa-
rameters to train on other datasets. The search range and the selected hyperparameters are detailed
in Table 9. The results are summarized in Table 8. From the findings, it is evident that Dmon fails
to effectively learn the partition strategy, resulting in most outcomes being invalid (with Normalized
Cut values of 1). Ortho performs slightly better but still tends to yield unbalanced results. In con-
trast, MinCutPool demonstrates a significant improvement over the previous methods; however, it
still exhibits a considerable range compared to our proposed WRT.

[2] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. 2023. Graph clus-
tering with graph neural networks. Journal of Machine Learning Research 24, 127 (2023), 1–21.
[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral clustering with
graph neural networks for graph pooling. In International conference on machine learning. PMLR,
874–883.

C DETAIL OF THE MODEL PIPELINE

We detail the model transformation formulas below. Since the processes for ring and wedge parti-
tioning are similar, we focus on the wedge partitioning pipeline and note the differences later.

Let G be the input graph and P the current partition. We apply Wedge Transformation to G to
obtain a linear graph G′. Define ni as the i-th node on this line, with n candidate actions. Action ai
corresponds to selecting the radius of the ring partition between ni and ni+1. The input embedding
is constructed as follows:

Xi = LinearCW (Cuti ⊕ PSi) + Posi/|N | → Rd,

where LinearCW is a linear transformation, Cuti is the Cut Weight between ni and ni+1, PSi is the
Partition Selection for ni, and Posi/|N | is the positional embedding scaled based on the total number
of nodes.

In WRT, we derive the attention masks MP and MV as follows:

MP
i,j =

{
0 if i and j are in the same partition
−∞ otherwise

,

MV
i,j = LinearV (Vi,j).

(5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When nodes i and j are in different partitions, the attention weight is set to −∞ to prevent their
influence on each other. Denote H0

i = Xi; the t-th hidden states Ht
i are computed as follows:

Qt,Kt,V t = LinearAtt(H
t), (6)

Ot = Softmax(QKt +MV +MP). (7)

The output for each node at the t-th layer is:

Y t
i = LayerNorm

(
N∑

k=1

Ot
i,kVk/

√
d+Ht

i

)
, (8)

Ht+1
i = LayerNorm(Y t

i + FFN(Y t
i)). (9)

The Transformer has T layers, with E = HT as the output embeddings.

In the PPO module, we calculate action probabilities and predicted values using E:

Logiti = LinearA(Ei)→ R, (10)
Prob = Softmax(Logit), (11)

PredictedValue = LinearPV (Attention(E))→ R. (12)

We sample actions from the probability distribution and train the model using rewards and predicted
values.

For ring partitioning, two key differences arise. First, we employ Ring Transformation on the graph.
Second, the positional embedding is 2-dimensional, reflecting the adjacency of the first and last
nodes. Specifically, for a circular node with coordinates (x, y), we use:

PE = Linear2D(x⊕ y)→ Rd

to generate the positional embedding.

D DEFINITION OF RINGNESS AND WEDGENESS

We propose the Ringness and Wedgeness to evaluate whether a partition is close to the ring shape
or wedge shape. We expect a typical Ring and Wedge partition will have the highest Ringness and
Wedgeness.

For partition pi ∈ P , we define the partition range pri = {min(ri),max(ri)}, partition angle
pai = {min(ai),max(ai)}, where ri and ai are polar coordinates of nodes that belongs to pi.

Then we define Ringness for a partition RP (r) = |{r ∈ pri}|, which means that how many parti-
tions cover the radius r. For a pure ring partition, as different partitions will never overlap within
their radius, RP (r) will be always 1; and for a Ring and Wedge partition, RP (r) is always 1, except
the out-most wedge part, is the wedge partition number kw.

For Wedgeness, we define WP (r) =
∑

r∈pri
|pai|, where |pai| is the angle range of pai. For radius

r, we only consider the partition that covers the selected range, and we sum up the angles covered
by these partitions. The angle should equal or greater than 2π, as the graph is fully partitioned by
P . If a partition is a pure wedge partition, for any r, the Wedgeness should be exactly 2π, because
partition will never cover each other in any place. For Ring and Wedge Partition, if r is in Wedge
Partition part, the conclusion remains same as above; for Ring Partition part, only one partition is
selected, and the Wedgeness is also 2π.

To represent Ringness and Wedgeness more clearly, we calculate the quantification metrics for them
based on the following formula:

WP =

(
Z(P)− min

0≤k≤max(r)

(∫ k

i=0

WP (i) +

∫ max(r)

i=k

(max(W)−WP (i))

))
/Z(P) (13)

RP =
2π

maxr RP (r)
(14)

f(x) =

{
1 if 0 ≤ x ≤ k
max(W) if k < x ≤ max(r) (15)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Here Z(P) = 0.5max(r) ·max(W) is the normalization factor. We use a piecewise function f to
approximate WP , and provide WP based on the difference between WP and f . For RP , we select
the maximum of Rp. Both WP and RP is scaled to [0, 1], and the higher means the better.

E PROOFS OF CHEEGER BOUNDS

E.1 PROOF OF PROPOSITION1

In this section we will provide all the details of the proof of Proposition1. First we recall some
background definitions and results.

Let G = (V,E) be an undirected graph with |V | = n. Let D be the diagonal matrix with the node
degrees on the diagonal and let L = D− 1

2 (D − A)D− 1
2 be the normalized Laplacian of G1, where

A is the adjacency matrix of G. The matrix L is positive semi-definite with eigenvalues

0 = λ1 ≤ λ2 ≤ . . . ≤ λn. (16)

For a subset S ⊆ V define

ϕG(S) =
Cut(S, Sc)

V olume(S)
(17)

and, for 1 ≤ k ≤ n, we define the Cheeger constants

ρG(k) = min
S1,...,Sk

partition of V

max
1≤i≤k

ϕG(Si). (18)

It is known that, for k = 2, the following inequalities hold Chung (1997)

λ2
2
≤ ρG(2) ≤

√
2λ2. (19)

Analogous inequalities were proved in Lee et al. (2014) for every 1 ≤ k ≤ n
λk
2
≤ ρG(k) ≤ O(k2)

√
λk. (20)

If G is planar, then the right-side inequality can be improved and reads

ρG(k) ≤ O(
√
λ2k). (21)

Now let GN,r = (V,E) be an undirected spider web graph with r rings and N points for each
ring. This is exactly the cartesian product of a circle graph and a path graph with N and r vertices
respectively. Note that the “center“ is not included in this type of graphs. Define the following
custom Cheeger constants:

φN,r(k) = min
S1,...,Sk

wedge partition of V

max
1≤i≤k

ϕGN,r
(Si) (22)

ψN,r(k) = min
S1,...,Sk

ring partition of V

max
1≤i≤k

ϕGN,r
(Si). (23)

For an illustration of wedge and ring partitions see Figure 8. From now on we will assumeG = GN,r

to be a spider web graph with r rings andN points for each ring. We can compute bounds onφN,r(k)
and ψN,r(k).

Lemma 1 Given a spider-web graph GN,r the wedge and ring Cheeger constants can be bounded
as follows

φN,r(k) ≤
r

⌊Nk ⌋(2r − 1)
, ψN,r(k) ≤

1

2⌊ rk ⌋
. (24)

Proof 1 The strategy will be to choose suited partitions for which it is possible to compute explicitly
the cuts and the volumes. We start from the wedge Cheeger constant φN,r(k). Given a wedge
partition S1, . . . , Sk each subset Si has cut exactly 2r. Moreover, we assume that the Si’s are

1For the sake of simplicity, often it will be called just Laplacian.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Examples of k = 4 wedge (left) and k = 3 ring (right) partitions.

maximally symmetric, meaning that the Si’s all have ⌊Nk ⌋ or ⌊Nk ⌋ + 1 nodes in each ring. These
observation read

φN,r(k) ≤ max
1≤i≤k

2r

V olume(Si)

=
2r

min1≤i≤k V olume(Si)
.

(25)

The wedge subset with minimum volume is given by one that has ⌊Nk ⌋ nodes in each ring, hence

φN,r(k) ≤
2r

4︸︷︷︸
degree of
inner ring

nodes

(r − 2)︸ ︷︷ ︸
number of
inner rings

⌊N
k
⌋︸︷︷︸

number of
points in
each ring

+ 3︸︷︷︸
degree of
outer ring

nodes

2︸︷︷︸
number of
outer rings

⌊N
k
⌋︸︷︷︸

number of
points in
each ring

=
r

⌊Nk ⌋(2r − 1)
.

(26)

For the ring Cheeger constant the setting is more complicated since different subsets might have
different cut, in contrast with the case of wedge partitions. Given a ring partition S1, . . . , Sk which
is maximally symmetric, i.e., all the Si’s have ⌊ rk ⌋ or ⌊ rk ⌋+ 1 nodes in each ring, we order the Si’s
from the center to the outermost ring. Note that S1 has some nodes with degree 3 while S2 has all
nodes with degree 4 for k > 2. For k¿ 2, we consider two cases:

• k divides r. In this case we only need to compare S1 and S2. It holds that

ϕG(S1) =
N

4N(rk − 1) + 3N
=

1

4 r
k − 1

(27)

ϕG(S2) =
2N

4N r
k

=
1

2 r
k

, (28)

since S1 and S2 have cut N and 2N respectively. Thus, ϕG(S2) ≥ ϕG(S2) which implies
ψN,r(k) ≤ 1

2 r
k

.

• k does not divide r. In this case, we assume S1 has ⌊ rk ⌋+ 1 nodes and S2 has ⌊ rk ⌋ nodes.
Then

ϕG(S1) =
N

4N⌊ rk ⌋+ 3N
=

1

4⌊ rk ⌋+ 3
(29)

ϕG(S2) =
2N

4N⌊ rk ⌋
=

1

2⌊ rk ⌋
. (30)

Thus, ϕG(S2) ≥ ϕG(S2) which implies ψN,r(k) ≤ 1
2⌊ r

k ⌋ .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For k = 2, if k divides r, then ϕG(S1) = ϕG(S2) =
1

4 r
k ⌋−1 ≤

1
2 r

k
. If k does not divide r, then if

S1 has ⌊ rk ⌋+ 1 nodes and S2 has ⌊ rk ⌋ nodes, we have ϕG(S1) =
1

4⌊ r
k ⌋+3 and ϕG(S2) =

1
4⌊ r

k ⌋−1 ≤
1

2⌊ r
k ⌋ . Putting together the above inequalities, we get that ψN,r(k) ≤ 1

2⌊ r
k ⌋ .

In the next sections we will provide the proof details for the two bounds in Proposition 1. We start
from the case of wedge partitions.

E.1.1 WEDGE PARTITIONS

We will prove the bound on wedge Cheeger constants in terms of the eigenvalues of the circle graph
with N vertices CN . We will consider only the case of k > 1 since the first eigenvalues is always 0
and spider web graphs are connected. First we recall that the eigenvalues of CN are

1− cos

(
2πk

N

)
, 0 ≤ k ≤ N − 1, (31)

see Chung (1997). In particular, we have the following result.

Lemma 2 Let CN be the circle graph with N vertices. Then the k-th eigenvalues of the normalized
Laplacian of CN is given by

λCk = 1− cos

(
2π⌊k2 ⌋
N

)
, 1 ≤ k ≤ N. (32)

Proof 2 If we order the values of
{
1− cos

(
2π(k−1)

N

)}N

k=1
we notice that

λCk =

{
f(k2) if k ∈ 2Z
f(k−1

2) if k /∈ 2Z (33)

where f(k) = 1− cos
(
2πk
N

)
. Writing together the two pieces in equation 33 we get

λCk = 1− cos

(
2π⌊k2 ⌋
N

)
, 1 ≤ k ≤ N. (34)

Now we will prove some inequalities that together will build the final wedge Cheeger inequality.

Lemma 3 π⌊k2 ⌋
1
N ≤

π
2 , for 2 ≤ k ≤ N .

Proof 3 Since k ≤ N we have the following inequality

π⌊k
2
⌋ 1
N
≤ π⌊N

2
⌋ 1
N

{
= π

2 if k ∈ 2Z
= πN−1

2
1
N ≤

π
2 if k /∈ 2Z (35)

Lemma 4 2⌊k2 ⌋ ≥
k
2 , for 2 ≤ k ≤ N .

Proof 4 If k is even then 2⌊k2 ⌋ = 2k
2 ≥

k
2 . If k is odd, then 2⌊k2 ⌋ = 2k−1

2 = k − 1 ≥ k
2 for

2 ≤ k ≤ N .

Lemma 5
√
λCk ≥

√
2
4

1
⌊N

k ⌋ , for 2 ≤ k ≤ N .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof 5 It holds that

√
λCk =

√√√√1− cos

(
2π⌊k2 ⌋
N

)
(36)

=
√
2 sin

(
π⌊k2 ⌋
N

)
(37)

≥
√
2
2

π

(
π⌊k2 ⌋
N

)
(38)

=2
√
2⌊k

2
⌋ 1
N

(39)

≥
√
2
k

2

1

N
(40)

≥
√
2

2

1

⌊Nk ⌋+ 1
(41)

≥
√
2

2

1

2⌊Nk ⌋
(42)

=

√
2

4

1

⌊Nk ⌋
(43)

where equation 36 follows from Lemma 2, equation 37 follows from the fact that cos(2x) = 1 −
2 sin2(x), equation 38 follows from the fact that sin(x)

x > 2
π for x ∈

[
−π

2 ,
π
2

]
and from Lemma 3,

equation 40 follows from Lemma 4.

Combining the results in Lemma 5 together with the ones in Lemma 1 we get the following result.

Proposition 2 For a spider web graph GN,r we have φN,r(k) ≤ 2r
2r−1

√
2λCk , for 2 ≤ k ≤ N .

E.1.2 RING PARTITIONS

Similarly as for wedge partitions, we will prove a bound on the ring Cheeger constants in terms of
the eigenvalues of the path graph with r vertices Pr. Some of the computations are analogous to the
ones in the previous section, so we will skip the details for these.

We recall that the eigenvalues of Pr are

λPk = 1− cos

(
π(k − 1)

r − 1

)
, 1 ≤ k ≤ r, (44)

see Chung (1997). We have the following inequality for the ring Cheeger constant.

Lemma 6
√
λPk ≥

√
2
2

1
2⌊ r

k ⌋ , for 2 ≤ k ≤ r.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof 6 It holds that √
λPk =

√
1− cos

(
π(k − 1)

2(r − 1)

)
(45)

=
√
2 sin

(
π(k − 1)

2(r − 1)

)
(46)

≥
√
2
2

π

(
π(k − 1)

2(r − 1)

)
(47)

≥
√
2

2

k

r − 1
(48)

=

√
2

2

1
r
k −

1
k

(49)

≥
√
2

2

1

⌊ rk ⌋+ 1− 1
k

(50)

≥
√
2

2

1

2⌊ rk ⌋
(51)

(52)

where the inequality equation 51 follows from the fact that

⌊ r
k
⌋+ 1− 1

k
≤ 2⌊ r

k
⌋. (53)

Combining the results in Lemma 5 together with the ones in Lemma 6 we get the following result.

Proposition 3 For a spider web graph GN,r we have ψN,r(k) ≤
√
2λPk , for 2 ≤ k ≤ N .

F PSEUDO CODES OF ALGORITHMS

In this section we give pseudo codes for algorithms, including Ring and Wedge Transformation,
Valume and Cut calculation, WRT, PPO and full training pipeline.

We also provide the anonymized source code in the following link:
https://anonymous.4open.science/r/K24-00F8/

Algorithm 1: Ring Transformation
Input: graph G = (V,E,W, o)
Output: Converted line graph Gl

r ← radius of V − o;
for each element i from 1 to |r| do

// rank of r[i] in the sorted list of r
Index[i]←

∑n
j=1 1(r[j] ≤ r[i]);

for each element i from 1 to |E| do
Enew[i]← {Index[E[i].x], Index[E[i].y]};

for each element i from 1 to |V | do
Vnew[i]← (Index[i], 0);

return Gc = (Vnew, Enew,W, (0, 0))

G DYNAMIC PROGRAMMING ALGORITHM FOR RING PARTITION PHASE

We show the pesudo-code of dynamic programming algorithm used in Ring Partition phase in Algo-
rithm 9. This allows us performing ring partition only once. The time complexity of this algorithm is

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2: Wedge Transformation
Input: graph G = (V,E,W, o)
Output: Converted circle graph Gc

a← angles of V − o;
for each element i from 1 to |a| do

// rank of a[i] in the sorted list of a
Index[i]←

∑n
j=1 1(a[j] ≤ a[i]);

for each element i from 1 to |a| do
anew[i]← 2π

|a| Index[i] ;
for each element i from 1 to |E| do

Enew[i]← {anew[E[i].x], anew[E[i].y]};
for each element i from 1 to |anew| do

Vnew[i]← (sin(anew[i]), cos(anew[i]));
return Gc = (Vnew, Enew,W, (0, 0))

Algorithm 3: Volume and Cut for Line
Input: Line graph Gl = (V,E,W, o)
Output: Cut Cut and Volume V olume
a← angles ofV − o;
for e, w in E,W do

if e.x < e.y then
x, y ← e.x, e.y

else
x, y ← e.y, e.x

for i from x to y do
Cut[i]← Cut[i] + w;

for i from 1 to x do
for j from y to |V | do

V olume[i, j]← V olume[i, j] + w;
return Cut, V olume

Algorithm 4: Volume and Cut for Circle
Input: Circle graph Gc = (V,E,W, o)
Output: Cut Cut and Volume V olume
a← angles ofV − o;
for e, w in E,W do

x, y ← e.x, e.y if e.x > e.y then
y ← y + |V |;

for i from x to y do
Cut[i%|V |]← Cut[i%|V |] + w;

for i from 1 to x do
for j from y to |V | do

V olume[i, j]← V olume[i, j] + w;
for i from 1 to |V | do

for j from 1 to i− 1 do
// when i > j, means the direction that cross n-to-1 part
V olume[i, j] = V olume[j, i];

return Cut, V olume

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 5: WRT Transformer with Ring Partition
Input: Line graph Gl = (V,E,W, o), current partition P
Output: Embeddings for each nodes emb
Cut, V olume← Alg4(Gc);
// shape [N, 1] to [N, H] ;
x← Linear(Cut);
// shape [N, N, 1] to [N, N, H] to [N, N, 1] ;
VMask ← Linear(V olume) ;
PMask[i, j]← 0if i and j are in same partition ;
PMask[i, j]← −∞if i and j are in different partition ;
// Pos is positional embedding, in circle partition, just same as normal NLP Transformer
H0 = x+ Pos ;

// L is layer number ;
for i from 1 to L do

Q,K, V ← Linear(Hi−1) ;
A← QKT + VMask + PMask ;
H ′

i ← Norm(AV) +Hi−1 ;
Hi ← Norm(Linear((H ′

i)) +H ′
i ;

return HL

Algorithm 6: WRT Transformer with Wedge Partition
Input: Circle graph Gl = (V,E,W, o), current partition P
Output: Embeddings for each nodes emb
Cut, V olume← Alg3(Gc);
// shape [N, 1] to [N, H] ;
x← Linear(Cut);
// shape [N, N, 1] to [N, N, H] to [N, N, 1] ;
VMask ← Linear(V olume) ;
PMask[i, j]← 0if i to j are in same partition ;
PMask[i, j]← −∞if i and j are in different partition ;
// Pos is positional embedding, x-y coords on the circle H0 = x+ Pos ;
// L is layer number ;
for i from 1 to L do

Q,K, V ← Linear(Hi−1) ;
A← QKT + VMask + PMask ;
H ′

i ← Norm(AV) +Hi−1 ;
Hi ← Norm(Linear((H ′

i)) +H ′
i ;

return HL

Algorithm 7: PPO with Embeddings
Input: Embeddings for each nodes, i.e. actions, emb
Output: Action policy logits a, and critic for current state v
// [N, H] to [N, H] to [N, 1] ;
a← Linear(Activate(Linear(emb))) ;
// [N, H] to [1, H] to [1, 1] ;
c← Linear(Activate(Attention(emb))) ;
return a, c

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 8: Full Training Pipeline
Input: Graph G = (V,E,W, o), target partition number Pmax, target ring partition number Pc

Output: Next partition a
P ← {V }} ;
samples← {} ;
while not converge do

// perform Pmax steps to generate partition and save into samples for i from 1 to Pmax do
if |P | <= Pc then

// do ring partition Gl ← GraphToLine(G) ;
Emb←WRTWithRing(Gl, P) ;
p, critic← PPO(Emb) ;
a← sample action from p ;
r ← radius of Gl.V [action] ;
P ′ ← partition p by circle with radius r ;

else
// do wedge partition Gc ← GraphToCircle(G) ;
Emb←WRTWithWedge(Gl, P) ;
p, critic← PPO(Emb) ;
a← sample action from p ;
angle← angle of Gl.V [action] ;
P ′ ← partition p by wedge with angle angle ;

if |P | = Pmax then
r ← NormalizedCut(G,P)

else
r ← 0

samples.add((G,P, p, critic, a, r)) ;
P ← P ′

// calculate loss and train with samples ;
if |samples| = target size then

for sample in samples do
pold, cold, r ← sample // here use sample as PPO input, in fact sample will do same

as above to calculate p and critic. p, critic, critic′ ← PPO(sample) ;
adv ← r − γcritic′ + critic ;
lossp ← clip(p/pold ∗ adv) ;
lossv ← (r − γcritic′ + critic)2 ;
lossent ← Entropy(p) ;
L← wplossp + wvlossv + wentlossent ;
Backward loss L ;

samples← {}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

O(n2k). The DP matrix dp[i, j] stores the minimum normalized cut value when partitioning the first
i nodes into j segments, with transitions recorded in the predecessor matrix pre[i][j]. The final loop
traces back from the last segment’s optimal value to reconstruct the partition indices by following
pre entries iteratively.

Algorithm 9: Dynamic Programming for Ring Partition
Input: Precomputed cut weight matrix Cut, volume matrix V olume, number of partitions k
Output: Optimal Normalized Cut res, partition indices P
sector nc[i, j]← (Cut[i] + Cut[j])/V olume[i, j] for all i, j;
// dp[i, j] means the best result when we perform partition on node i and it is the j-th partition
dp[i, j]←∞ for all i, j;
dp[0, 0]← 0;
// pre[i, j] records where the value for dp[i, j] transits from
pre[i, j]← 0;
for i from 1 to |Cut| − 1 do

for j from 1 to k − 1 do
// enumerate all p < i and assume last partition is from p to i
for p from 1 to i− 1 do

agg res[p]← max(dp[p, j − 1], sector nc[p, i]);
pre[i, j]← argmin(agg res);
dp[i, j]← agg res[argmin];

// The last partition should be from p to |Cut|, update it to dp[p, k − 1]
for p from 1 to |Cut| − 1 do

dp[p, k − 1] = max(dp[p, k − 1], sector nc[p, |Cut| − 1]);
result← dp[res x, res y];
// get final partition indices
rx ← argmin(dp[:, k − 1]);
ry ← k − 1;
P ← {};
while ry > 0 do

P ← P ∪ {rx};
rx ← pre[rx, ry];
ry ← ry − 1;

return result, P

27

	Introduction
	Related Work and Preliminaries
	Graph Partitioning
	ML-based Graph Partitioning Algorithms
	Reinforcement Learning

	Problem Description
	Cheeger Bound for Ring and Wedge Partition
	Methodology
	Reinforcement Learning Environment
	Graph Transformation
	Ring Transformation
	Wedge Transformation

	Ring Wedge Partition Pipeline
	Wedge Ring Transformer (WRT)
	Training and Testing Strategies
	Training Strategy
	Testing Strategy

	Experiments and Results
	Graph Datasets
	Models and Compared Methods
	Performance Evaluation
	Evaluation of Model Overall Performance
	Evaluation of Model Transfer Performance
	Ringness and Wedgeness Evaluation

	Conclusion and Future Work
	Statistics and Hyper Parameters
	Ablation Studies
	Two-stage Training and Testing
	Different Baseline Function in Two-stage
	Fix Wedge Partition Policy
	Post Refinement
	Graph Center Selection
	Effectiveness of Graph Transformation, WRT and PAMHA
	Performance of Other Methods

	Detail of the Model Pipeline
	Definition of Ringness and Wedgeness
	Proofs of Cheeger Bounds
	Proof of Proposition1
	Wedge partitions
	Ring partitions

	Pseudo Codes of Algorithms
	Dynamic Programming Algorithm for Ring Partition Phase

