Under review as a conference paper at ICLR 2025

SOLVING NORMALIZED CUT PROBLEM WITH CON-
STRAINED ACTION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of Normalized Cut (NC) in weighted graphs where the
shape of the partitions follow an apriori pattern, namely they must approximately
be shaped like rings and wedges on a planar graph. Classical methods like spectral
clustering and METIS do not have a provision to specify such constraints and nei-
ther do newer methods that combine GNNs and Reinforcement Learning as they
are based on initialization from classical methods. The key insight that underpins
our approach, Wedge and Ring Transformers (WRT), is based on representing a
graph using polar coordinates and then using a multi-head transformer with a PPO
objective to optimize the non-differential NC objective. To the best of our knowl-
edge, WRT is the first method to explicitly constrain the shape of NC and opens
up possibility of providing a principled approach for fine-grained shape-controlled
generation of graph partitions. On the theoretical front we provide new Cheeger
inequalities that connect the spectral properties of a graph with algebraic prop-
erties that capture the shape of the partitions. Comparisons with adaptations of
strong baselines attest to the strength of WRT.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful heuristic for tackling complex combinato-
rial optimization (CO) problems |Grinsztajn|(2023));|Wang & Tang|(2021)); Mazyavkina et al.[(2021).
Two key insights underpin the use of RL in CO: first, the search space of CO can be encoded into a
vector embedding; second, gradients can be computed even when the objective is a black-box func-
tion or non-differentiable. A significant advantage of RL frameworks is that once trained, they can
solve new instances of CO problems without starting from scratch |Dong et al.| (2020)).

In this work we present another dimension of the use of transformed-based RL for graph partitioning,
namely the ability to encode and optimize complex partition shapes that are part of the problem
specification. We focus on the Normalized Cut (NC) of a graph, which is suitable to balance the
simulating traffic on road networks. While our use case is inspired by a specific problem in road
vehicle traffic simulation, our approach is general and can be applied in many other scenarios where
shapes of graph partitions are application dependent.

Motivational Use Case: Road networks in modern cities are often organized as concentric rings
of roads centered at a city downtown followed by wedge structures connecting the outer ring. For
microscopic traffic simulation, where the movement of every vehicle is modeled in a simulator, it
often becomes necessary to partition the road network and assign each partition to a separate simu-
lator in order to reduce the overall simulation time. We thus want to ensure that the partitions apriori
respect the natural physical topology of the road network. Directly using classical approaches like
METIS, spectral clustering or modern GNN based RL solutions provide no provision to constrain
the generation of partition shapes justifying the need for a new approach.

Ring and Wedge Representation: The key insight of our is to convert complex graph structures
into simpler representations (either as a line or a circle), reducing the complexity of the partitioning
problem. This transformation makes the graph more amenable to being processed by Transformer-
based models, which excel at sequential data processing. In the ring transformation, nodes are
projected onto the x-axis according to their radial distance from the center, preserving the node order
and partitioning properties. Similarly, in the wedge transformation, nodes are projected onto a unit

Under review as a conference paper at ICLR 2025

e

-
I

Spectral

CluterNet

NeuroCUT

(a) Partition Visualization
° B WRT Normalized Cut Ringness Wedgeness
8 W METIS WRT 0.082 0.935 1.000
METIS 0.107 0.918 0.576
)| . [Spectral
\ d Spectral 0.129 0.469 0.710
2
B ClusterNet CJysterNet 0.470 0.850 0.713
0 10 20 30 40 s 10020 30 4050 NeuroCUT NeuroCUT] 0.107 0.918 0.576

Ringness Wedgeness

(b) Ringness and Wedgeness Curve (c) Quantification of Ringness and Wedgeness

Figure 1: Compared with other methods, WRT has the minimal Normalized Cut, and also achieves
the highest Ringness and Wedgeness (which is formally defined in Section[3)). NeuroCUT is initial-
ized by METIS partition, and fails to find a better one, which causes the same result.

circle, focusing on their angular positions. These transformations allow us to apply Transformers,
which can scale more effectively to large graphs compared to traditional GNNs.

After transforming the graph, we apply Proximal Policy Optimization (PPO)Schulman et al.|(2017)
to solve the partitioning problem. Our approach leverages the ability of Transformers to capture
both local interactions and global patterns across the entire graph. We demonstrate that our method
outperforms existing RL-based and traditional methods, particularly in handling weighted planar
graphs. In additional to optimizing Normalized Cut, we explicitly measure the ringness and wedge-
ness of the generated partitions. We give performance visualization in Figure[I] In Figure[I[a), a
snapshot of the partitions generated by different methods shows that other methods except our pro-
posed method WRT tend to mix nodes from different partitions, resulting in high Normalized Cut.
Figures|[Ib) and[T[c) introduce Ringness and Wedgeness metrics to evaluate how closely a partition
aligns with ring and wedge structures. Our proposed method, WRT, achieves the lowest Normalized
Cut while maintaining the highest Ringness and Wedgeness scores.

Our main contributions are as follows:

* A novel RL-based approach to minimize Normalized Cut on planar weighted graphs.

* The introduction of the ring-wedge partitioning scheme (WRT), which simplifies graph
structures for more efficient processing by Transformer models, and use two-stage training
process which improves partitioning performance and stability.

* QOur extensive experiments on synthetic and real-world graphs show that our algorithm have
the best performance and scales to graphs with different sizes effectively.

2 RELATED WORK AND PRELIMINARIES

2.1 GRAPH PARTITIONING

Graph partitioning Bulug et al.[(2016) is widely used in graph-related applications, especially for
enabling parallel or distributed graph processing. Partitioning a graph into k blocks of equal size
while minimizing cuts is NP-complete [Hyafil & Rivest| (1973)). Exact methods focus on bipartition-
ing[Hager et al.|(2009)) or few partitions (k < 4)|Ferreira et al.|(1998)), while approximate algorithms
include spectral partitioning [Donath & Hoffman| (1973) and graph-growing techniques |George &
Liu| (1981). More powerful methods involve iterative refinement, such as node-swapping for bi-
partitioning [Kernighan & Lin| (1970), extendable to k-way local search Karypis & Kumar| (1996).

Under review as a conference paper at ICLR 2025

Other approaches include the bubble framework Diekmann et al.| (2000) and diffusion-based meth-
ods Meyerhenke et al.| (2009)); |Pellegrini| (2007). State-of-the-art techniques rely on multilevel par-
titioning [Karypis & Kumar|(1999), which coarsen the graph and refine the partition iteratively.

The most well-known tool is METIS Met| (2023)); Karypis & Kumar| (1999), which uses multilevel
recursive bisection and k-way algorithms, with parallel support via ParMetis [Par| (2023)). Other
tools include Scotch jsco|(2023); |Pellegrini| (2007)) and KaHIP Sanders & Schulz| (201 1)) use various
advanced techniques. However, these methods are suboptimal for minimizing normalized cuts in
spider-web-shaped structures common in urban traffic planning.

2.2 ML-BASED GRAPH PARTITIONING ALGORITHMS

Recent research has explored machine learning methods for graph partitioning, particularly using
GNNs. GNNs aggregate node and edge features via message passing. In|Gatti et al.|(2022al), a spec-
tral method is proposed where one GNN approximates eigenvectors of the graph Laplacian, which
are then used by another GNN for partitioning. The RL-based method in|Gatti et al.| (2022b) refines
partitions in a multilevel scheme. NeuroCUT [Shah et al.| (2024)) introduces a reinforcement learn-
ing framework that generalizes across various partitioning objectives using GNNs. It demonstrates
flexibility for different objectives and unseen partition numbers. ClusterNet Wilder et al.[(2019)
integrates graph learning and optimization with a differentiable k-means clustering layer, simpli-
fying optimization tasks like community detection and facility location. However, neither of these
methods handles weighted graphs, making them unsuitable in our scenarios.

Although GNNs excel at aggregating multi-hop neighbor features, they struggle to globally ag-
gregate features without information loss, which is critical for combinatorial problems like graph
partitioning. Our work addresses these limitations by introducing graph transformation methods
and applying Transformer to learn global features.

2.3 REINFORCEMENT LEARNING

In our work, we use Reinforcement Learning, specifically PPO to train the model with non-
differential optimizing targets. Proximal Policy Optimization (PPO) [Schulman et al.| (2017) is
a widely-used RL algorithm that optimizes the policy by minimizing a clipped surrogate ob-
jective, ensuring limited deviation from the old policy 7o4. The PPO objective maximizes

E, [min(r(0) Ay, clip(r(6),1 — €, 1 + €) Ay)], where ry(6) = 2421510 ang 4, is the advantage.

T Togg(atlse)

3 PROBLEM DESCRIPTION

Let G = (V, E, W, 0) be a weighted planar graph, with vertex set V, edge set E, edge weights W,
and a predefined center 0. A k-way partition P of G is defined as a partition {p, ..., pi } of V, where

Ule =VandVi# j,p; Np; = 2.

We introduce the definition of the Normalized Cut as follows: For each partition p;, we define

Cut(G,p;) = Z Wi(ew) Volume(G,p;) = Z W(eyw) + Cut(G,p;), (1)

uEP; QUEP; U, VEP;

where ® represents the XOR operator. The normalized cut of a partition P on graph G is then
defined as

N P) = _
c(G, p) ier?ﬁ.};} Volume(G, p;)

2

We aim to find partitions that minimize the normalized cut, a known NP-complete problem, and
thus we focus on approximate solutions. The goal is to learn a mapping function fy(G) = P that
minimizes NC(G, P).

Instead of considering the entire space of possible partitions, we restrict our attention to partitions
with specific structures, namely those where each partition is either ring-shaped or wedge-shaped.
We also allow for "fuzzy” rings and wedges, where a small number of nodes are swapped to adjacent

Under review as a conference paper at ICLR 2025

O

o o o o
(a) Input Graph (b) Ring Partition (c) Wedge Partition (d) Post Refinement

Figure 2: Graph partitioning with Ring and Wedge to minimize the Normalized Cut. We firstly do
ring partitions as (b), to choose different radii to partition the graph into rings. Then for the out-most
ring, we do partitions based on different angles as (c). Finally, we do post refinement to improve the
final partition performance as (d).

partitions. This relaxation helps achieve partitions with a smaller normalized cut, particularly for
graphs derived from real-world applications.

Our partitioning strategy follows a three-step process: first, we perform a ring partition on the entire
graph, then we apply a wedge partition to the outermost rings, and finally, we refine the resulting
partitions to further reduce the normalized cut. Figure [2|illustrates these three steps.

Ring Partition: A Ring Partition of the graph G with respect to the center o, denoted by P, divides
G into k, distinct concentric rings. Define theradiias 0 = rg < r; < 7rg < - < rp 1 < 7g,.
These radii partition G into k, rings, where the ¢-th ring, denoted as p], contains all nodes with a
distance to the center o between r;_1 and ;.

Wedge Partition: A Wedge Partition, denoted as P*, divides the outermost ring pj, into multiple
wedge-shaped sections. The partitioning angles are given by 0 < a1 < az < --- < ag, < 27.
These angles split p;, into k,, wedge parts, where the i-th wedge, p;”, contains the nodes whose
polar angles are between [a;, a;11), except for the wedge Py, » Which contains nodes whose angles
fall within either [0, a1) or [ay,, , 27).

This type of partition divdes the graph into &k, — 1 inner rings and k,, wedges on the outermost
ring (see Figure [2). Specifically, if k, = 1, the entire graph is partitioned solely by wedges and,
conversely, if k,, = 1 the graph is partitioned solely by rings. For simplicity, when a graph G is
partitioned by a Ring-Wedge Partition with k, and k,,, we define k = k, + k,, — 1, with p, = p},
when k < k;, and pr, = py’ ;. ., when k >= k,. And we define the total partition strategy as
P = {pla 7pk}

We also propose the Ringness and Wedgeness to evaluate whether a partition is close to the ring
shape or wedge shape. The definition of Ringness and Wedgeness can be found in the Appendix.

Besides the practical aspects, partitions structured as a combination of ring and wedge subsets seem
also theoretically well behaved. For example, on a simple class of graphs, they satisfy bounds similar
to the ones that are satisfied by partitions achieving minimum normalized cut. In the next section,
we provide these bounds for the class of spider web graphs.

4 CHEEGER BOUND FOR RING AND WEDGE PARTITION

In the graph partitioning context there exists bounds on the Cheeger constant in terms of the nor-
malized Laplacian eigenvalues, see for example |(Chung| (1997) for bisection and |[Lee et al.| (2014)
for more general k-partitions. Intuitively, the Cheeger constant measures the size of the minimal
“bottleneck™ of a graph and it is related to the optimal partition. Since we consider a subset of all
the possible partition classes, namely ring and wedge, we show that the normalized cut defined in
equation [2]satisfies bounds similar to the classical case in the case of unweighted spider web graphs.
Despite being a simpler class of graphs, these bounds give a theoretical justification of the normal-
ized cut definition equation 2]and the ring-wedge shaped partition. (see the proof in Appendix).

Definition: Let G, . be an unweighted spider web graph with r rings and n points in each ring,

Under review as a conference paper at ICLR 2025

(a) Input Graph ’ (b) Ring Transformation i ’ (c) Wedge Transformation

Figure 3: Example of Wedge Transform and Ring Transform. In Wedge Transform, nodes are
projected to a circle, then the difference of angles of adjacent nodes are adjusted to the same. In
Ring Transform, nodes are projected to a line. The edge connections and their weights are not
changed in both transformation.

and k be an integer. Define the wedge and ring Cheeger constants as:

(bn,r(k) = P:V%P-uvk NC(Gn,'r'» P) wn,r (k) - P:VIRJIPUV;C NC(Gn,ry P) (3)
wedge partition ring partition

Proposition 1 Let G, ;- be a spider web graph with r rings and N nodes in each ring. Let)\kc and
)\}: be the eignevalues of the circle and path graphs with n and r vertices respectively. Then

2
bur(k) < 52\ 20, 2<k<n Uni(k) <\22F, 2<k<r. @

5 METHODOLOGY

To elaborate on our approach, we begin by introducing the reinforcement learning environment
settings, then we provide a general overview of the agent’s role and its interaction with the environ-
ment to achieve the final partition. We then dive into the detailed structure of the method. Finally,
we discuss training methodologies and post refinement methods aimed at enhancing performance.
For simplicity, we will pre-define the ring partition number k, and wedge partition number k.
When k-partitioning a graph, we will enumerate all possible ring partition numbers, then select the
one with minimum normalized cut as the result.

5.1 REINFORCEMENT LEARNING ENVIRONMENT

We primarily employ reinforcement learning methods to address the ring-wedge partitioning prob-
lem. The observation space, action space and reward function are defined in the following. The
agent’s final goal is to maximize the reward through interactions with the environment described
above.

Observation Space The observation space .S contains the full graph G, the expected ring number
k., wedge number k., and the current partition P, denoted by S = {G, k.., ky,, P}.

Action Space The agent needs to decide the next partition as action. If it is a Ring Partition, the
action is the radius of next ring, if it is a Wedge Partition the action is the partition angle of the
wedge.

R if currently expects a ring partition
"1 a if currently expects a wedge partition

Reward Function When the partition is not over, we use 0 as reward. When the partition is over, i.e.
current partition number achieves pre-defined total partition number, we calculate the Normalized
Cut, and use the negative of it as the reward, as we need to minimize the Normalized Cut, i.e.,
r=—-NC(G,P).

5.2 GRAPH TRANSFORMATION

In previous deep learning based graph partitioning methods, most of them chose the combination
of GNN and Reinforcement Learning. However, GNN suffers from only being able to aggregate
global structure of the graph, hence they need an initial partition and do fine-tuning on it, which is
not capable in our situation, as we want the model give ring and wedge partition results directly.

Under review as a conference paper at ICLR 2025

Recently, Transformer achieves great success in various areas, it uses Multi-Head Attention to ex-
change information globally, and shows superior performance in various tasks. In our problem,
we need the model to learn the global view of the graph, and we naturally choose Transformer as
the base structure. However, Transformer typically takes sequential input, which is not capable for
graphs. Instead of directly encode graph nodes to Transformer, we apply two transformations, Ring
Transformation and Wedge Transformation, to the graph. The new graphs are equivalent with orig-
inal graph when performing Ring Partition or Wedge Partition, but is re-organized into a sequential
representation, and is able to input to Transformer.

5.2.1 RING TRANSFORMATION

Since the ring partition should not change when rotating the graph around the center o, we can project
each node onto the x-axis. More precisely, if a node has polar coordinates (r, X), the projection will
map it onto the node with coordinate (r,0). Note that this transformation does not change the order
of the nodes or the partitions. Figure [3|(b) illustrates the projection onto the line. Then we can find
that when the order of nodes on the line are not changed, we can adjust the radius of any point, and
the partition results on new graph are the same as old ones. When we apply the conclusion above,
we can transform a normal graph into a simplified one, that every nodes are with coordinate (X, 0),
where X is the radius order of the node along all nodes. The transformation results is shown in the
right of Figure 2] (b).

5.2.2 WEDGE TRANSFORMATION

Similar to Ring Transformation, we find that when doing wedge partition, the node radius has no
effect, and only the node angle is considered. We project all nodes into a unit circle which has o as
its center. Hence, if (r, X) are the polar coordinates of a node, its projection will have coordinates
(1, X). After projection, we can also change the angles of nodes. If the angle order of a node is X
from N nodes, its new position is on (1, %) with polar coordination. The Transformation process
is illustrated in Figure[3] (c).

After transformation, nodes of the graph lie on a line or on a circle, hence we can treat the graph as
a sequential input. We can also find that for actions that split nodes ¢ and ¢ + 1 into two partitions
will perform exactly the same final partition results. As the result, we can convert the continuous
action space into discrete ones to decrease the learning difficulties. New action A; means split node
1 and 7 4 1 into two partitions.

5.3 RING WEDGE PARTITION PIPELINE

The graph partition pipeline of the Wedge Ring Transformer (WRT) is illustrated in Figure [] (a).
It sequentially determines partitions through Ring and Wedge Transformations, predicting the next
ring radius or wedge angle until the target partition count is achieved. The model consists of two
components for ring and wedge partitions with similar structures but distinct weights.

Transformation: The appropriate transformation (ring or wedge) is applied based on current re-
quirements.

Pre-Calculation: Essential computations on the transformed graph include: (1) Cut Weight C;:
Sum of edge weights crossing between nodes i and 7 + 1. (2) Volume Matrix V; ;: Total weight of
edges covered between nodes ¢ and j (where ¢ < j).

Wedge Ring Transformer: The Transformer processes node embeddings from the pre-calculation
phase and the current partition status, as depicted in Figure 4] (b).

PPO Header: After receiving node embeddings, the PPO header extracts action probabilities and
critic values. The actor projection header maps hidden size h to dimension 1, followed by a Softmax
layer for action probabilities. Value prediction uses Self-Attention average pooling on node embed-
dings and projects from h to 1. The PPO is employed to execute actions recursively until the graph
is fully partitioned.

During the Ring Partition phase, a dynamic programming algorithm calculates the optimal partition
when the maximum radius and total ring count are fixed, with a complexity of O(n?k). Thus, the
WRT determines the maximum radius for all ring partitions only once. The pseudo-code is available
in the Appendix.

Under review as a conference paper at ICLR 2025

{(Angle Selection)(” Predicted)} {(Radii Selection)(Predicted 1
(L Probability Value Ji 1 Probability Value

Actor Critic i i Actor Critic
|| Projection || Projection || {| Projection || Projection
€

Embeddings for Nodes .. @Ppost Refinement

Header Header Header

T PpO_T T_pPrO T Ring-Wedge Partition Separate Node Groups Reconstruct ;|
for Nodes) Add & Norm : -
it ® Partition Generation
WRT for ‘ WRT for Partition Aware MHA W o . e o .
o " X

Ring Partition Wedge Partition

Cut Volume)|
Weight Matrix !

Pre-Calculation

(- ® S =l *

o ! o s o o h
@ g Ring Partition Wedge Parﬁlmn
‘ / e o X \ with WRT with WRT)
o

Current Partition @ Ring :rammg

for Nodes)

[

}' Cut Volume)i | |
il Weight Matrix

Pre-Calculation

5
El -
g ol { [o %
S y] o S [CRN—
) .) :H E ; Train Ring Poficies Fixed Policy for
Ring Transformation | Wedge Transformation m L & Value Predictions Wedge Partition
Volume Matrix

REMIZIMasK b (D Wedge Training
5 o o o % o
* (Linear Transformation) i 7
L LIt Scaled Positional & > >
Cut Weight A
Partition Selection SR ° o ° o e ici
Random Ring Selection Traln Wedge Pollcles

& AN & Value Predictions
(a) Partition Decision Pipeline (b) Wedge Ring Transformer (c) Training and Testing Strategy

Figure 4: Framework and stages of the Wedge-Ring Transformer (WRT). (a) WRT first applies
Ring and Wedge Transformations, followed by pre-calculation to obtain cut weights and the volume
matrix. The processed data generates node embeddings for action probabilities and predicted values
via actor and critic projection headers. Modules for ring and wedge partition share structures but
differ in weights. (b) Detailed structure of WRT, using cut weights with positional embeddings as
input, followed by transformer layers. Volume matrix and position information serve as attention
masks in the MHA layer, ensuring focus on nodes within the current partition. (c) WRT pipeline
from training to testing. Initially, the wedge partition strategy is trained with a random approach for
the ring partition. The wedge part is fixed while training the ring part, excluding its critic projection
header. During testing, the WRT sequentially determines ring radius and wedge angle, refining the
final partition using a post-refinement algorithm.

5.4 WEDGE RING TRANSFORMER (WRT)

WRT utilizes a Transformer backbone to leverage information from transformed graphs, enabling it
to handle varying node counts and enhancing its scalability for diverse applications without the need
for fine-tuning after training. The Transformer architecture is illustrated in Figure 4] (b).

WRT processes inputs from the Pre-Calculation module, specifically Cut Weight and Volume Ma-
trix, along with the Current Partition from the input graph. These are fed into n Transformer blocks,
yielding node embeddings from the final hidden state. To effectively manage Current Partition, we
represent each node’s selection status Partition Selection with a 0-1 array, then it is combined with
Cut Weight and transformed through a linear layer to generate hidden states, which are subsequently
augmented with positional embeddings.

We introduce Partition Aware Multi-Head Attention (PAMHA) to replace the original Multi-Head
Attention (MHA) layer. PAMHA incorporates the Volume Matrix and Current Partition into its
attention mask. An element-wise transformation on V' produces an attention mask of shape N x N
for PAMHA, allowing the model to learn the significance of different nodes. For Current Partition,
we observe that partitions splitting between nodes ¢ and ¢ + 1 do not affect the normalized cut
calculations on the right of ¢+ 1. For instance, in the circular graph with six nodes depicted in Figure
[] partitioning between certain nodes does not alter the normalized cut of other nodes. Consequently,
we create an attention mask focusing solely on the effective range of nodes. Finally, WRT outputs
node embeddings, which are then input to the PPO module.

5.5 TRAINING AND TESTING STRATEGIES

We use a special training and testing strategies for the problem to learn better policies and give
better partition results. Both training and testing contains two stages. Visualization of four stages
are shown in Figure ff] (c).

Under review as a conference paper at ICLR 2025

5.5.1 TRAINING STRATEGY

With previous model design, WRT are able to dig out information effectively from a graph. However,
in RL, the initial strategies are randomized, which makes it challenging to learn a good strategy,
specifically ring partition and wedge partition will obstruct each other. For example, if the ring
partition always selects the smallest radius as the action, the wedge partition cannot learn any valid
policy because the total Normalized Cut is determined by ring partition. Training ring partition with
a low quality wedge partition strategy will also face such difficulty.

To mitigate the above problem, we split the policy training into two stages, as shown in Figure 4] (c)
@ and @. In the first Wedge Training stage, we use a randomized ring selection method to replace
the ring selection strategies, and only let WRT decide and train on wedge partitioning. To make the
model focus on learning good wedge partition strategy, we also ignore the Normalized Cut of rings
when calculating the reward. This makes the model focus on learning wedge partition strategy.

In the second Ring Training stage, we let WRT decide both ring and wedge partition. However,
we find that if we allow the model to tune all its parameters, the model is likely to forget how to
perform a good wedge partitioning before learning a good ring partition strategy. To avoid this,
we fix the parameters of wedge partitioning modules in WRT, as WRT has learned a good wedge
partition strategy with various radius. The only exception is Critic Projection Header, because in the
previous stage we change it to only use the Normalized Cut of wedge partitions as the reward, which
is inconsistent with current reward definition. During the Ring Training stage, two Critic Projection
Headers are both re-initialized and trained. In PPO, as the strategy are only determined by actor
model, allowing critic to be trainable will not affect the learned policy.

5.5.2 TESTING STRATEGY

After WRT is fully trained, we can directly generate partitions by WRT in Partition Generation stage,
it will firstly do ring partition, then do wedge partition in sequential, as shown in Figure |4|(c) ®.

While we have proved ring and wedge partitions have the similar upper-bounds with with con-
straints, sometimes in real graph, ring and wedge partition may not be the optimal one as the graph
has outliers when performing ring and wedge partition. We give an example in Figure | (c) @, the
group of two nodes are reversed when performing a pure ring and wedge partition. To mitigate
such problem, we perform a Post Refinement Stage, where nodes in the same partition but not con-
nected will be split into multiple partitions. Then we greedily choose the partition which has biggest
Normalized Cut, and merge the partition into adjacent partitions. This post refinement method will
decrease the outlier node number, and gives better partitions.

Finally, as the action of PPO is a policy-gradient based method, which provides an action probability
distribution, and single segmentation may not yield the optimal solution directly, we can perform
multiple random sampling to obtain different partitions and choose best of them.

6 EXPERIMENTS AND RESULTS

To demonstrate the superior performance of WRT, we evaluate our model using both synthetic and
real-world graphs, compared with other graph-partitioning methods. We firstly introduce the dataset
details, then give the competitors in graph partitioning, and finally show the overall performance and
ablation studies results.

6.1 GRAPH DATASETS

To make precise evaluation of different methods, we construct three types of graph datasets. The
detailed definitions are in the following:

Predefined-weight Graph: In our synthetic graph data generation process, we design the structure
to resemble a spider web, which consists of /N concentric circles, each having M equally spaced
nodes. The radii of circles are from 1 to N. Given an unweighted spider web graph, built by
randomly choosing the number of circles and nodes, we randomly select a valid ring-wedge partition
configuration, specifying both the number of rings and wedges. We then assign lower weights to

Under review as a conference paper at ICLR 2025

edges that cross different partitions and higher weights to edges within the same partition (intra-
partition edges). An example of synthetic spider web graph is given in Figure[5] More details about
the ranges of nodes, circles, weights etc, for generating the graphs are included in Appendix.

Random-weight Graph: The graph structure
is the same as above, but edge weights are
assigned randomly in a given range. In the
random-weight graphs, models should find best
partition without prior knowledge. The statis-
tics of our training and test synthetic graphs are
shown in Table [

Real City Traffic Graph: For real-world data,
we utilize sub-graphs randomly extracted from
a comprehensive city traffic map (Figure[5](b)).
The extracted sub-graph is always connected.
For edge weights, we collect traffic data of the
city during a specific time range to assess our
method’s ability to handle real traffic volumes
effectively. The statistical information of Real
City Traffic Graph can be found in Table[4]

(a) Synthetic Graph (b) City Traffic Map

Figure 5: (a) Synthetic graph: It is composed of
6 circles and 6 wedges. The edge with yellow
color has lower weight, the rest edge have higher
weight. The ground truth partition is composed of
2 rings and 2 wedges which nodes are in differ-
ent colors. (b) Overview of Real Traffic Map, we
randomly sample connected sub-graph in training
and testing.

6.2 MODELS AND COMPARED METHODS

We compare our proposed method with the following baselines and methods.

For traditional approaches, we select: METIS solver that is used to partitioning graphs with bal-
anced size. Spectral Clustering uses eigenvectors and k-means to perform graph partitioning.

We also propose two baselines for ring and wedge partitions: Bruteforce method to enumerate
possible ring and wedge partitions. Random to randomly generate 10,000 partitions and choose the
best performance one as the result.

For Reinforcement Learning based graph partitioning methods, we select two state-of-the-art meth-
ods, ClusterNet and NeuroCUT, which are introduced in Subsection

Finally, we compare above methods with our proposed WRT and its variants. They are: WRT
the standard Wedge-Ring Partition with two-stage training. WRT,o. directly learns Wedge-Ring
Partition without two-stage training. WRTj, uses the same reward function during two training
stages. WRT,,;,, does not freezing the wedge action network during the second training stage.
WRT,, ., does not performing post refinement after ring-wedge partition is generated. Results of
variants are in Appendix.

6.3 PERFORMANCE EVALUATION
6.3.1 EVALUATION OF MODEL OVERALL PERFORMANCE

We show the overall performance in Table[I] We tested our model in three different types of datasets
described in Section [6.1] and summerized in Table[d] with 4 or 6 partition numbers. The number of
graphs used for training is 400, 000. We test the performance of different methods on 100 randomly
generated graphs and report the average performance. We can find that our method always performs
best compared with other methods on all datasets, showing its superior performance compared with
existing methods, with the reduced ring-wedge shaped action space. Although Metis and Spectral
Clustering can give graph partitions with any shape, they still cannot reach better performance com-
pared with our proposed methods, because it is hard to find best results in such huge action space.
Two basic methods, Bruteforce and Random, performs always worse compared with other methods,
because they do not consider the differences of edge weights, and only do random partitioning.

6.3.2 EVALUATION OF MODEL TRANSFER PERFORMANCE

We train model on those three types of graphs with number of nodes (N=100) on each circle and
conduct graph partition transfer learning experiments on the graphs with number of nodes N = 50

Under review as a conference paper at ICLR 2025

Table 1: Performance on Predefined-weight, Random-weight, and City Traffic Graphs by Normal-
ized cut. Lower values indicate better performance. Best value (bold), 2nd best (underline).

Predefined-weight Random-weight City Traffic
Method 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.
50 100 50 100 50 100 50 100 50 100 50 100
Metis 069 .036 .097 .053 .065 .033 .094 .049 245 162 383 304

Spec. Clust. .065 .036 .099 .053 .079 .041 .101 .053 384 218 .652 .843
Bruteforce 070 .036 .106 .054 .070 .036 .107 .054 361 237 .615 457
Random 076 .040 .144 074 080 .041 .142 .072 209 .095 512 341
NeuroCut 059 .032 .086 .046 .064 .033 .093 .049 .192 .078 .348 .226
ClusterNet 078 .043 106 .070 .093 .043 .120 .083 507 261 .837 747
WRT 042 021 062 .032 .057 .029 .081 .041 .174 .060 317 .182

Table 2: Transfer performance measured by Normalized Cut. Methods that do not support transfer
or unable to perform results are excluded. Models are trained on 100 nodes and tested on 50 or 200
nodes. Best value (bold) and 2nd best value (underline).

Predefined-weight Random-weight City Traffic
Partition 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.
Nodes 50 200 50 200 50 200 50 200 50 200 50 200
METIS 069 019 .097 .027 .065 .016 .094 .024 245 .048 383 .086

Bruteforce .070 .018 .106 .028 .070 .018 .107 .028 .361 .175 .615 311
Random 076 .021 .144 .037 080 .021 .142 .037 209 512 512 212
WRT 052 013 .066 .017 .061 .016 .087 .022 .158 .023 .323 .085

and N = 200 without fine-tuning. The result in table [2| shows that our model has great generaliz-
ability, when trained on certain size of graphs, it is able to apply on different size, regardless of node
number becomes bigger or smaller.

6.3.3 RINGNESS AND WEDGENESS EVALUATION

Table [3|shows the quantification results of Ringness and Wedgeness on City Traffic Graphs. We can
find that WRT also reaches the best Ringness and Wedgeness compared with other methods.

Table 3: Ringness and Wedgeness Evaluation of different methods, higher is better.

METIS Spec.Clust. NeuroCUT ClusterNet WRT
Ringness 0.871 0.776 0.840 0.854 0.929
Wedgeness 0.587 0.810 0.621 0.820 0.876

7 CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the efficacy of using Reinforcement Learning for solving a
special form of the normalized cut problem on weighted graphs, an area where traditional methods
like METIS fall short, and eixsting RL based graph partitioning methods also cannot perform well
when the initial partition generated by METIS is not good enough. Inspired by urban road network
construction, we propose to make ring and wedge partition directly on graphs. By introducing the
simplified partitioning strategy involving ring-shaped and wedge-shaped cuts, our approach lever-
ages RL and Transformers to effectively learn and optimize the partitioning process. The two-stage
training methodology ensures stability and scalability, enabling our algorithm to handle both small
and large graphs efficiently. Our experimental results highlight the superiority of our method over
baseline algorithms, showcasing its potential for real-world applications. Our proposed method
focus on minimizing normalized cut of planar graphs, future work will focus on extend existing
methods to non-planar graphs, and find better post-process methods to further improve the final
performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Family of graph and hypergraph partitioning software, 2023. URL http://glaros.dtc.umn.
edu/gkhome/views/metish

Parmetis - parallel graph partitioning and fill-reducing matrix ordering, 2023. URL http:
//glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

Scotch: Software package and libraries for sequential and parallel graph partitioning, 2023. URL
https://www.labri.fr/perso/pelegrin/scotch/!.

Aydin Bulug, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning, volume 9220. 11 2016. ISBN 978-3-319-49486-9. doi:
10.1007/978-3-319-49487-6_4.

Fan R. K. Chung. Spectral Graph Theory, volume 92. CBMS Regional Conference Series in
Mathematics, 1997.

Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. Parallel Computing, 26(12):
1555-1581, 2000.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM Journal of
Research and Development, 17(5):420-425, 1973. doi: 10.1147/rd.175.0420.

Hao Dong, Hao Dong, Zihan Ding, Shanghang Zhang, and T Chang. Deep Reinforcement Learning.
Springer, 2020.

C. Ferreira, Alexander Martin, Cid Souza, R. Weismantel, and Laurence Wolsey. The node ca-
pacitated graph partitioning problem: A computational study. Mathematical Programming, 81:
229-256, 01 1998. doi: 10.1007/BF01581107.

Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and Pieter Ghysels. Deep Learning and
Spectral Embedding for Graph Partitioning, pp. 25-36. 2022a.

Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, and Pieter Ghysels. Graph partitioning
and sparse matrix ordering using reinforcement learning and graph neural networks. Journal of
Machine Learning Research, 23(303):1-28, 2022b.

Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive Definite. Prentice Hall
Professional Technical Reference, 1981. ISBN 0131652745.

Nathan Grinsztajn. Reinforcement learning for combinatorial optimization: leveraging uncertainty,
structure and priors. PhD thesis, Université de Lille, 2023.

William Hager, Dzung Phan, and Hongchao Zhang. An exact algorithm for graph partitioning.
Mathematical Programming, 137, 12 2009. doi: 10.1007/s10107-011-0503-x.

Laurent Hyafil and Ronald L. Rivest. Graph partitioning and constructing optimal decision trees are
polynomial complete problems. Technical Report Rapport de Recherche no. 33, IRIA — Labora-
toire de Recherche en Informatique et Automatique, October 1973.

G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. In
Supercomputing ’96:Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, 1996.
doi: 10.1109/SUPERC.1996.183537.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. Siam Journal on Scientific Computing, 20, 01 1999. doi: 10.1137/
51064827595287997.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291-307, 1970. doi: 10.1002/j.1538-7305.1970.tb01770.x.

James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. J. ACM, 61(6), dec 2014.

11

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.labri.fr/perso/pelegrin/scotch/

Under review as a conference paper at ICLR 2025

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. A new diffusion-based multilevel
algorithm for computing graph partitions. Journal of Parallel and Distributed Computing, 69(9):
750-761, 20009.

Francois Pellegrini. A parallelisable multi-level banded diffusion scheme for computing bal-
anced partitions with smooth boundaries. 08 2007. ISBN 978-3-540-74465-8. doi: 10.1007/
978-3-540-74466-522.

Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algorithms. In
Algorithms—ESA 2011: 19th Annual European Symposium, Saarbriicken, Germany, September
5-9, 2011. Proceedings 19, pp. 469—480. Springer, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Rishi Shah, Krishnanshu Jain, Sahil Manchanda, Sourav Medya, and Sayan Ranu. Neurocut: A neu-
ral approach for robust graph partitioning. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 25842595, 2024.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial
optimization: A survey. Knowledge-Based Systems, 233:107526, 2021.

Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and optimization
on graphs. Advances in Neural Information Processing Systems, 32, 2019.

12

Under review as a conference paper at ICLR 2025

A STATISTICS AND HYPER PARAMETERS

Table 4: Statistics of datasets and hyper parameters of model.

Type Parameter Values Description
o Nodes {50, 100} Nodes on each circle
b5 Circles same as Nodes ~ Number of concentric rings
g Low Weight {2, 4,6} Intra-partition edge weights
> High Weight {10, 15,20} Inter-partition edge weights
Random Weight Uniform(1, 10) Edge weights for random
5| Nodes {50, 100} Nodes on each graph
& Edge Weight [1,372732] Edge weights
Partitions {4,6} Number of partitions
£ Hidden Size 64 Hidden size of Transformer
5 Layer Number 3 Transformer layer number
§ Learning Rate le-3 Learning rate
£ Batch Size 256 Batch size
5 Discount Factor 0.9 Discount factor in RL
£ Training Step 400,000 Steps for training
T Test Number 100 Test graph number

Sample Number 10 Sampled partition number

B ABLATION STUDIES

We give ablation studies in the following to show the effectiveness of proposed methods. The
performance of ablation models are shown in Table[5]and [6]

B.1 TWO-STAGE TRAINING AND TESTING

In Section [5.5] we propose multi-stage traininig and testing strategies. In training, we propose to
train the wedge partition model firstly, and randomly select ring partitions. The radius are uniformly
selected from O to 80% of maximum radius. After wedge partition model is trained, we re-initialize
the critic projection header of wedge model, and fix the other parts of wedge model to train the ring
model part. We show the performance without two stage training as WRT,o.. From Table [5| and
Table [6] we can find that without two stage training, the model is not able to converge, because a
bad policy of either ring or wedge will affect the learning process of each other, and make the model
hard to converge.

B.2 DIFFERENT BASELINE FUNCTION IN TWO-STAGE

As mentioned in Section[5.5] in training wedge partition, we change the reward function from global
Normalized Cut to the Normalized Cut that only considering wedge partitions. This avoids the
impact of poor ring partition selection, as ring partition is performed by a random policy, and may
give poor partitions. For example, if the random policy selects a very small radius, the normalized
cut of circle partitions will be very big, which makes the reward received from different wedge
partition identical. We show the performance when the reward function keeps same, i.e. always
considering the normalized cut of ring partition in two stage training, as WRTj,.. In Table 5| and [6]
we can find that their performance is worse than WRT, because their wedge partitioning policies are
not strong enough. As reward function will change in two-stage training, we will re-initialize the
critic net of wedge model in the second stage, as mentioned before.

B.3 FIX WEDGE PARTITION POLICY

In the second training stage, we fix the wedge model to avoid changing the policy. WRT,, ¢,, shows
the performance when wedge partition policy is not fixed. We can find that the performance de-
creases if wedge partition policy is not fixed, and leads to bad policy in several test cases. This is
because if we allow the action net change, it may forget learned policy before a valid policy has

13

Under review as a conference paper at ICLR 2025

Table 5: Performance comparison on Predefined-weight, Random-weight, and City Traffic Graphs
(Normalized cut). Lower values indicate better performance.

Predefined-weight Random-weight City Traffic
Method 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.
50 100 50 100 50 100 50 100 50 100 50 100
Metis 069 .036 .097 .053 .065 .049 .094 .049 245 162 383 304

Spec. Clust. .065 .036 .099 .053 .079 .053 .101 .053 384 218 .652 .843
Bruteforce 070 .036 .106 .054 .070 .054 .107 .054 361 237 .615 457
Random 076 .040 .144 074 080 .072 .142 .072 209 .095 512 341
NeuroCut 059 .032 .086 .046 .064 .033 .093 .049 .192 .078 348 226
ClusterNet 078 .043 106 .070 .093 .043 .120 .083 507 261 .837 747

WRT;, 063 276 .065 .032 159 044 091 .046 .646 473 792 612
WRTc2e 105 053 123 063 .112 .055 .131 .069 .683 478 783 .678
WRT, 042 .021 .062 .032 .057 .029 081 .041 .209 .071 419 271
WRT,, £ 046 .023 .065 .033 .057 .029 .082 .041 .175 .060 .328 .187
WRT 042 .021 .062 .032 .057 .029 .081 .041 .174 .060 317 .182

Table 6: Transfer performance measured by Normalized Cut. Methods that do not support transfer
or unable to perform results are excluded. Models are trained on 100 nodes and tested on 50 or 200
nodes.

Predefined-weight Random-weight City Traffic
Partition 4 Part. 6 Part. 4 Part. 6 Part. 4 Part. 6 Part.
Nodes 50 200 50 200 50 200 50 200 50 200 50 200
METIS 069 .019 .097 .027 .065 .016 .094 .024 245 048 383 .086

Bruteforce .070 .018 .106 .028 .070 .018 .107 .028 361 .175 .615 311
Random 076 .021 .144 037 .080 .021 .142 .037 209 512 512 212

WRT;, 219 201 068 .018 .085 .023 .092 .024 664 305 .831 224
WRTe2e 103 .027 107 .027 .107 .028 .123 .033 645 327 863 .442
WRT, 052 .013 .066 .016 .061 .016 .087 .022 .182 .031 472 .014
WRT,, 053 .013 066 .017 .061 .016 .087 .104 .150 .023 .327 .090
WRT 052 .013 .066 .017 .061 .016 .087 .022 .158 .023 .323 .085

learned by ring partition, and leads to worse performance and instability during the training. The
reward curve during training and testing, which is shown in Figure [6] also supports the conclusion.
It has been observed that not fixing the action net results in lower and more unstable rewards for
the model during training. Moreover, the performance during testing tends to become more variable
and does not show further improvements as training progresses.

B.4 POST REFINEMENT

We perform post refinement after performing the ring and wedge partition, which splits existing
partition result by the connectivity of nodes, then reconstruct new partitions by combining the par-
tition which has biggest Normalized Cut with its adjacent partitions. As ring and wedge partitions
on synthetic graphs are always connected, this post refinement will not change the performance of
WRT on synthetic dataset. However, in real dataset, sometimes the graph shape is not compatible to
ring and wedge partition, and the results may not good enough. With post refinement, we can further
decrease the Normalized Cut on such situation. In Table[5] we show the performance improvements
with post refinement on real dataset, the normalized cut is decreased 22.4% on average.

B.5 GRAPH CENTER SELECTION

We conducted experiments on the test set of City Traffic graphs with 50 nodes, which contains 100
graphs. Based on the maximum aspect ratio of the graphs, we offset the centroid by a distance of
up to 5% and recalculated the results of Normalized Cut. For better comparison, we normalized
the results using the Normalized Cut from the unoffset scenario. A normalized value closer to zero

14

Under review as a conference paper at ICLR 2025

Table 7: Performance comparison on City Traffic Graphs (Normalized cut). Lower values indicate
better performance.

City Traffic
Method 4 Part. 6 Part.
50 100 50 100
GPSGNN 0.696 0.521 0.821 0.711
Transformer 0.186 0.122 0360 0.225
WRT w/o PAMHA 0.169 0.075 0.374 0.193
WRT 0.174 0.060 0317 0.182
oo o
" Trainin;lllmlcration . . " 'l'rainin:‘;kleration . .
(a) Training reward curve of WRT (b) Training reward curve of WRT,, ¢4,

/ —_— . ————— \ \/

Reward

100k . 200k) 300k 400k 100k 200k 300k 400k
Training Iteration Training Iteration

(c) Testing reward curve of WRT (d) Testing reward curve of WRT,, ¢4,

Figure 6: Reward curves during training and testing of Predefined-weight Graph. Red is with 50
node number and blue is with 100 node number. We individually perform 4 tests for each checkpoint,
using the curve to represent the average test results, while the shaded area indicates the maximum
and minimum values observed during the tests.

indicates better performance, with a value of 1 signifying that the results are the same as in the
unoffset case.

Figure[7] (left) illustrates the results for various offsets from the centroid. We observe that any offset
from the centroid results in a worse performance, and with greater offsets correlating to a more
significant decline.

In Figure [7| (right), we present the histogram of results across all the aforementioned offsets and
graphs. We find that in nearly half of the cases where offsets were applied, the resulting errors
remained within 5%. Furthermore, applying offsets tends to lead to worse outcomes more frequently.
Thus, in this paper, we opted to use the centroid as the center of the graph. Figure[7](right) also shows
that in approximately 15% of cases, offsetting the centroid yielded improvements of over 10%. In
the future, we can propose a more effective strategy for centroid selection to enhance the algorithm’s
performance.

B.6 EFFECTIVENESS OF GRAPH TRANSFORMATION, WRT AND PAMHA

We show the effectiveness of our proposed Graph Transformation, WRT and PAMHA in Table [7}
The methods are:

15

Under review as a conference paper at ICLR 2025

Average Ratio of Normalized Cut Normalized Cut Ratios

0.5

0.4

)
w

Percentage

o
N

0.1

-5% 8
-5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% <0.8 0.9 1.0 11 >1.2
Ratio

Figure 7: Heatmap and histogram of Normalized Cut when applying offsets to the center. Values
are normalized by Normalized Cut of unoffset center. Lower value is better.

* GPSGNN [1]. It is an advanced Graph Neural Network, which combines GNN and Trans-
formers to both collect local and global information. This represents the initial performance
of GNNs and Transformers in solving Normalized Cut problem with Ring and Wedge Par-
tition.

* Transformer. We perform Ring Transformation and Wedge Transformation of the graph.
Then use node coordinates as positional embeddings, and edge weights as attention masks.
Then we use the vanilla Transformer.

* WRT w/o PAMHA. The same structure as WRT, except PAMHA is replaced with normal
Multi-Head Attention.

We demonstrate the effectiveness of our proposed Graph Transformation methods, WRT and
PAMHA, as presented in Table m The methods evaluated are as follows:

* GPSGNN [1]: It integrates GNNs and Transformers to effectively capture both local and
global information. It serves as the benchmark for evaluating the performance of GNNs and
Transformers in addressing the Normalized Cut problem using Ring and Wedge Partition
techniques.

* Transformer: We implement Ring and Wedge Transformations on the graph, utilizing node
coordinates as positional embeddings and edge weights as attention masks, followed by the
application of a standard Transformer model.

* WRT w/o PAMHA: This configuration maintains the same architecture as WRT but substi-
tutes PAMHA with conventional Multi-Head Attention.

From the results, we observe that GPSGNN struggles to produce meaningful results in City Traffic.
In contrast, the Transformer model demonstrates significantly improved outcomes when compared
to GPSGNN. This finding reinforces the notion that constraining the action space of RL agents based
on domain knowledge is essential for enhancing performance. Next, we integrated the WRT struc-
ture, which facilitates data pre-calculation, and observed an increase in performance. This indicates
that the pre-calculation module is beneficial in addressing the problem. Finally, by incorporating
PAMHA into the Transformer framework, we achieved the full WRT architecture, which exhibited
superior performance relative to other variants.

[1] Ladislav Rampések, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in
Neural Information Processing Systems, 35, 2022.

B.7 PERFORMANCE OF OTHER METHODS
We incorporate additional comparative methods Analyzed on City Traffic Graph, which include:

* DMon [2]: A neural attributed graph clustering method designed to effectively handle com-
plex graph structures.

16

Under review as a conference paper at ICLR 2025

Table 8: Performance comparison on City Traffic Graphs (Normalized cut). Lower values indicate
better performance.

City Traffic
Method 4 Part. 6 Part.
50 100 50 100
DMon 0.998 1.000 1.000 1.000
MinCutPool 0.549 0.365 0.864 0.634
Ortho 0924 0.892 0.997 0.982
WRT 0.174 0.060 0.317 0.182

Table 9: Comparison of Hidden State and Learning Rate for Different Methods.

Hidden State Learning Rate
Search Range 16, 32, 64, 128,256 le-4, 3e-4, le-3, 3e-3, le-2
Dmon 128 le-4
MinCutPool 32 le-3
Ortho 256 le-2

* MinCutPool [3]: This method focuses on optimizing the normalized cut criterion while
incorporating an orthogonality regularizer to mitigate unbalanced clustering outcomes.

* Ortho [2]: This refers to the orthogonality regularizer that is utilized in both DMon and
MinCutPool, ensuring greater balance in the clustering process.

All models were trained using the same settings as WRT. We conducted a grid search on the hyper-
parameters of the three aforementioned methods and selected the optimal combination of hyperpa-
rameters to train on other datasets. The search range and the selected hyperparameters are detailed
in Table E} The results are summarized in Table |8} From the findings, it is evident that Dmon fails
to effectively learn the partition strategy, resulting in most outcomes being invalid (with Normalized
Cut values of 1). Ortho performs slightly better but still tends to yield unbalanced results. In con-
trast, MinCutPool demonstrates a significant improvement over the previous methods; however, it
still exhibits a considerable range compared to our proposed WRT.

[2] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Miiller. 2023. Graph clus-
tering with graph neural networks. Journal of Machine Learning Research 24, 127 (2023), 1-21.
[3] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral clustering with
graph neural networks for graph pooling. In International conference on machine learning. PMLR,
874-883.

C DETAIL OF THE MODEL PIPELINE

We detail the model transformation formulas below. Since the processes for ring and wedge parti-
tioning are similar, we focus on the wedge partitioning pipeline and note the differences later.

Let GG be the input graph and P the current partition. We apply Wedge Transformation to G to
obtain a linear graph G’. Define n; as the i-th node on this line, with n candidate actions. Action a;
corresponds to selecting the radius of the ring partition between n; and n;4 ;. The input embedding
is constructed as follows:

X = Linearcyy (Cut; & PS;) + Pos; /|y — R?,
where Linearcyy is a linear transformation, Cut; is the Cut Weight between n; and n;4 1, PS; is the

Partition Selection for n;, and Pos; | | is the positional embedding scaled based on the total number
of nodes.

In WRT, we derive the attention masks M and MV as follows:

)

uP 0 if 7 and j are in the same partition
b —oo otherwise (3)

M}; = Lineary (V; ;).

17

Under review as a conference paper at ICLR 2025

When nodes ¢ and j are in different partitions, the attention weight is set to —oo to prevent their
influence on each other. Denote HY = X;; the ¢-th hidden states H! are computed as follows:

Q', K", V' = Lineara(H"), (6)
O'! = Softmax(QK' + MV + M”F). (7)
The output for each node at the ¢-th layer is:
N
YV}’ = LayerNorm (Z O Vi/Vd + Hf) ; (8)
k=1
H!*' = LayerNorm(Y;' 4+ FEN(Y})).)

The Transformer has T layers, with E = H7 as the output embeddings.

In the PPO module, we calculate action probabilities and predicted values using E:

Logit, = Linear 4 (E;) — R, (10)
Prob = Softmax(Logit), (11)
PredictedValue = Linear py (Attention(E)) — R. (12)

We sample actions from the probability distribution and train the model using rewards and predicted
values.

For ring partitioning, two key differences arise. First, we employ Ring Transformation on the graph.
Second, the positional embedding is 2-dimensional, reflecting the adjacency of the first and last
nodes. Specifically, for a circular node with coordinates (x, y), we use:

PE = Linearyp (z @ y) — R?

to generate the positional embedding.

D DEFINITION OF RINGNESS AND WEDGENESS

We propose the Ringness and Wedgeness to evaluate whether a partition is close to the ring shape
or wedge shape. We expect a typical Ring and Wedge partition will have the highest Ringness and
Wedgeness.

For partition p; € P, we define the partition range pr; = {min(r;), max(r;)}, partition angle
pa; = {min(a;), max(a;)}, where r; and a; are polar coordinates of nodes that belongs to p;.

Then we define Ringness for a partition Rp(r) = |{r € pr;}|, which means that how many parti-
tions cover the radius r. For a pure ring partition, as different partitions will never overlap within
their radius, Rp(r) will be always 1; and for a Ring and Wedge partition, Rp(7) is always 1, except
the out-most wedge part, is the wedge partition number k.

For Wedgeness, we define Wp(r) = >, . [pa;|, where |pa;| is the angle range of pa;. For radius
r, we only consider the partition that covers the selected range, and we sum up the angles covered
by these partitions. The angle should equal or greater than 27, as the graph is fully partitioned by
P. If a partition is a pure wedge partition, for any r, the Wedgeness should be exactly 27, because
partition will never cover each other in any place. For Ring and Wedge Partition, if 7 is in Wedge
Partition part, the conclusion remains same as above; for Ring Partition part, only one partition is
selected, and the Wedgeness is also 27r.

To represent Ringness and Wedgeness more clearly, we calculate the quantification metrics for them
based on the following formula:

k max(7)
Wp = (Z(P) - ngrgné};x(r) </i—0 Wp(i) + /i:k (max(W) — Wp(@)))) /Z(P) (13)
2m
Rp = max, Rp(r) (14
1 if 0<z<k
flz) = { max(W) if k< a < max(r) (as)

18

Under review as a conference paper at ICLR 2025

Here Z(P) = 0.5 max(r) - max (1) is the normalization factor. We use a piecewise function f to
approximate Wp, and provide Wp based on the difference between Wp and f. For Rp, we select
the maximum of R,,. Both Wp and Rp is scaled to [0, 1], and the higher means the better.

E PROOFS OF CHEEGER BOUNDS

E.1 PROOF OF PROPOSITION]]

In this section we will provide all the details of the proof of PropositionI} First we recall some
background definitions and results.

Let G = (V, E) be an undirected graph with |V| = n. Let D be the diagonal matrix with the node

degrees on the diagonal and let L = D~z (D - A)D*% be the normalized Laplacian of where
A is the adjacency matrix of G. The matrix L is positive semi-definite with eigenvalues

0= M < A <...<)\, (16)
For a subset S C V define
Cut(S, 5°)

S) = —~7 7/ 17
9a(5) Volume(S) 17

and, for 1 < k < n, we define the Cheeger constants
pa(k) = gmin - max éc(Si)- (18)

partition of V

It is known that, for £ = 2, the following inequalities hold |Chung| (1997)

A
5 <p6(2) < V2 (19)

Analogous inequalities were proved inLee et al.|(2014) forevery 1 < k < n

A
5 < palk) < OV A (20)
If G is planar, then the right-side inequality can be improved and reads
pc(k) < O(V Azk). 21

Now let Gy, = (V, E) be an undirected spider web graph with r rings and N points for each
ring. This is exactly the cartesian product of a circle graph and a path graph with N and r vertices
respectively. Note that the “center is not included in this type of graphs. Define the following
custom Cheeger constants:

on (k) = min max ¢gay.,. (Si) (22)

S1,..,5k 1<i<k
wedge partition of V

Yno(k) = omin - max gq, . (5). (23)

ring partition of V
For an illustration of wedge and ring partitions see Figure[8} From now on we will assume G = G v,
to be a spider web graph with r rings and N points for each ring. We can compute bounds on ¢ (k)

and ¢ (k).

Lemma 1 Given a spider-web graph Gy . the wedge and ring Cheeger constants can be bounded

as follows
T 1
'(/)N,r (k) S

QDN,T(]C) S N (24)
L%

](2r — 1)

Proof 1 The strategy will be to choose suited partitions for which it is possible to compute explicitly
the cuts and the volumes. We start from the wedge Cheeger constant oy (k). Given a wedge
partition Sy, ..., Sy each subset S; has cut exactly 2r. Moreover, we assume that the S;’s are

"For the sake of simplicity, often it will be called just Laplacian.

19

Under review as a conference paper at ICLR 2025

Figure 8: Examples of k = 4 wedge (left) and k£ = 3 ring (right) partitions.

maximally symmetric, meaning that the S;’s all have | 5| or | %] + 1 nodes in each ring. These
observation read

(k) < ma 2r

r > X 7o

¥, 1<i<k Volume(S;)
2r

:minlgigk Volume(Sl) '

(25)

The wedge subset with minimum volume is given by one that has L%J nodes in each ring, hence

2
@N,T(k)g N -
?J+ 3 2 |

4, (r=2) []
~N =~
¢ o number of S~~~ degree of number of ~~—~
nner ring jyper rings number of outer ring outer rings number of (26)
nodes points in nodes points in
each ring each ring

N
k

degree of

B r
=—.
[F)@r—1)
For the ring Cheeger constant the setting is more complicated since different subsets might have
different cut, in contrast with the case of wedge partitions. Given a ring partition Sy, . . ., Sk which
is maximally symmetric, i.e., all the S;’s have | i | or | 7| + 1 nodes in each ring, we order the S;’s

from the center to the outermost ring. Note that S1 has some nodes with degree 3 while Sy has all
nodes with degree 4 for k > 2. For k; 2, we consider two cases:

* k divides r. In this case we only need to compare S| and Ss. It holds that
N 1

¢6(51) AN(F —1)+3N ~ 4f -1 @D
2N 1
e S 2

dc(S2) INT 27 (28)
since Sy and Sy have cut N and 2N respectively. Thus, ¢ (S2) > ¢c(Sa) which implies

¢N,r(k) < i
* k does not divide r. In this case, we assume Sy has | 1. | + 1 nodes and S has | 1] nodes.

Then
N 1
S1) = : = 29
¢a(S1) AN[E|+3N — 4[5 +3 29
2N 1

bc(S2) =17 (30)

TAN[E] T 20

Thus, pc(S2) > ¢ (S2) which implies Yy (k) < 26

T

k]

20

Under review as a conference paper at ICLR 2025

<3

For k = 2, if k divides r, then ¢c(51) = ¢c(S2) = 1= j I . If k does not divide r, then if
5’1 has | 1] + 1 nodes and S has | i | nodes, we have ¢G(Sl) £1J+3 and ¢ (S2) = %ﬁ <
LL T Putting together the above inequalities, we get that Y (k) < 5 LL T

k k

%
4[

In the next sections we will provide the proof details for the two bounds in Proposition [I] We start
from the case of wedge partitions.

E.1.1 WEDGE PARTITIONS

We will prove the bound on wedge Cheeger constants in terms of the eigenvalues of the circle graph
with IV vertices Cy. We will consider only the case of k£ > 1 since the first eigenvalues is always 0
and spider web graphs are connected. First we recall that the eigenvalues of Cy are

1cos(2]7\rf>, 0<k<N-1, 31)

see (Chung|(1997). In particular, we have the following result.

Lemma 2 Let Cy be the circle graph with N vertices. Then the k-th eigenvalues of the normalized
Laplacian of C is given by

27| E
AC—1COS<WJLV2J>, 1<k<N. (32)

N
Proof 2 [fwe order the values of {1 — cos (W) }k) we notice that

[i ke2z
AC‘{ FEY i kg &9

where f(k) =1 — cos (2”]‘) Writing together the two pieces in equation|33|we get

2| E
AE:1—COS<WJE,2J>, 1<k<N. (34)

Now we will prove some inequalities that together will build the final wedge Cheeger inequality.

Lemma3 7% |1 <2 for2<k<N.

(35)

Lemmad 2[%| > % for2 <k <N.

Proof 4 If k is even then 2| 5| = 25 > % Ifkis odd, then 2|%] = 2552 =k —1 > £ for
2<Ek<N.

Lemma5 /A > Y2, for2 <k < N.

x‘\z

21

Under review as a conference paper at ICLR 2025

Proof 5 It holds that

k
A = 1—cos<2”152j) (36)
k
3 sin (”]LV?J> 37
2 (%]
zﬁw< ~) (38)
k. 1
:2\/§L§JN (39
k1
>V2g (40)
V21
Ye 41
> (41)
V2 o1
SEELS “
V2 1
=Y<_— 43)
4 |

where equation @ follows from Lemma E] equation @ follows from the fact that cos(2x) = 1 —
2sin? (z), equation |38 follows from the fact that % > % forz € [—g, g] and from Lemma
equationH0|follows from Lemma

Combining the results in Lemma [5|together with the ones in Lemma [T| we get the following result.

Proposition 2 For a spider web graph G » we have oy (k) < 23; 2\C, for2 < k < N.

E.1.2 RING PARTITIONS

Similarly as for wedge partitions, we will prove a bound on the ring Cheeger constants in terms of
the eigenvalues of the path graph with r vertices P,.. Some of the computations are analogous to the
ones in the previous section, so we will skip the details for these.

We recall that the eigenvalues of P, are

k—1
)\kpzl—cos(ﬂ-(l)>, 1<k<nr, (44)
r_

see|Chung|(1997). We have the following inequality for the ring Cheeger constant.

22

Under review as a conference paper at ICLR 2025

Proof 6 It holds that

\/E:\/1 e 45)

s (m(E-1)
—V3sin <2 —) (46)
2 (mw(k—1)
Zﬁ} (2(r —1)) “n
>v2_k 48)
2 r—-1
E Ok
V2 1
> 50
SEAEEE Y
V2 1
>— 51
=7 a1 (5D
(52)
where the inequality equation[51|follows from the fact that
T 1 r
g 1= <2zl (53)

Combining the results in Lemma [5|together with the ones in Lemma [6] we get the following result.

Proposition 3 For a spider web graph G » we have Y (k) < 2)\5, for2 <k <N.

F PSEUDO CODES OF ALGORITHMS
In this section we give pseudo codes for algorithms, including Ring and Wedge Transformation,
Valume and Cut calculation, WRT, PPO and full training pipeline.

We also provide the anonymized source code in the following link:
https://anonymous.4open.science/r/K24-00F8/

Algorithm 1: Ring Transformation
Input: graph G = (V, E, W, 0)
Output: Converted line graph G|
r < radius of V — o;
for each element i from 1 to |r| do
// rank of r[i] in the sorted list of r
Index[i] Y7, 1(r[j] < r[i));
for each element i from 1 to |E| do
| Erewli] < {Index[E[i].z], Index [E[i].y] };
for each element i from 1 to |V'| do
| Vaewl[i] = (Index[i], 0);
return Gc = (Vnewa Eneun VV7 (Oa 0))

G DyNAMIC PROGRAMMING ALGORITHM FOR RING PARTITION PHASE

We show the pesudo-code of dynamic programming algorithm used in Ring Partition phase in Algo-
rithm[9] This allows us performing ring partition only once. The time complexity of this algorithm is

23

Under review as a conference paper at ICLR 2025

Algorithm 2: Wedge Transformation

Input: graph G = (V, E, W, 0)
Output: Converted circle graph G,
a < angles of V' — o;
for each element i from 1 to |a| do
// rank of a[7] in the sorted list of a
tndex(i] 37, 1(alj] < afi)
for each element i from 1 to |a| do
‘ Anew|t] %Index[i] ;
for each element i from 1 to |E| do
‘ Enew [Z] — {anew [E[Z]:CL Anew [E[Z]y]}v
for each element i from 1 to |aye| do
| Vaewli] < (sin(anewli]), cos(@newli])):
return Gc = (Vnewa Enewa VV7 (Oa 0))

Algorithm 3: Volume and Cut for Line

Input: Line graph G; = (V, E, W, 0)
Output: Cut C'ut and Volume Volume
a < angles of V' — o;

for e, win E, W do

if e.x < e.y then
| T,y < e.x, ey

else
| X,y ey, ex

for i from x to y do
| Cut[i] < Cutli] + w;
for i from 1 to x do
for j from y to |V| do
| Volumeli, j| < Volumeli, j] + w;
return C'ut, Volume

Algorithm 4: Volume and Cut for Circle

Input: Circle graph G, = (V, E, W, 0)
Output: Cut C'ut and Volume Volume
a + angles of V' — o;
for e, win E,W do
z,y < e.x,eyif e.x > e.y then
|y y+|V;
for i from x to y do
| Cuti%|V|] « Cut[i%|V|] + w;
for i from 1 to x do
for j from y to |V| do
| Volumeli, j| < Volumeli, j] + w;
for i from 1 to |V| do
for j from1toi1 — 1 do
/' when ¢ > j, means the direction that cross n-to-1 part
Volumeli, j| = Volumelj,i];
return Cut, Volume

24

Under review as a conference paper at ICLR 2025

Algorithm 5: WRT Transformer with Ring Partition

Input: Line graph G; = (V, E, W, 0), current partition P
Output: Embeddings for each nodes emb
Cut, Volume + Alg4d(G.);
/l shape [N, 1] to [N, H] ;
x < Linear(Cut);
// shape [N, N, 1]to [N, N, H] to [N, N, 1] ;
V Mask < Linear(Volume) ;
PMaskl[i, j] < Oif i and j are in same partition ;
PMaskli, j] + —ocif i and j are in different partition ;
// Pos is positional embedding, in circle partition, just same as normal NLP Transformer
Hy =z + Pos;
/I L is layer number ;
for i from 1 to L do
Q, K,V < Linear(H;_,) ;
A<+ QKT + VMask + PMask ;
H! < Norm(AV)+ H;_1;
H; + Norm(Linear((H})) + H} ;
return Hy,

Algorithm 6: WRT Transformer with Wedge Partition

Input: Circle graph G; = (V, E, W, 0), current partition P
Output: Embeddings for each nodes emb
Cut, Volume + Alg3(G.);
// shape [N, 1] to [N, H] ;
x < Linear(Cut);
/l shape [N, N, 1]to [N, N, H] to [N, N, 1] ;
V Mask <+ Linear(Volume) ;
PMaskli, j] + 0if i to j are in same partition ;
PMask]i, j| + —ocif i and j are in different partition ;
// Pos is positional embedding, x-y coords on the circle Hy = x + Pos ;
/I L is layer number ;
for i from 1 to L do
Q,K,V + Linear(H;_1) ;
A+ QKT +VMask + PMask ;
H! < Norm(AV) + H;_1 ;
H; + Norm(Linear((H})) + H} ;
return Hy,

Algorithm 7: PPO with Embeddings

Input: Embeddings for each nodes, i.e. actions, emb
Output: Action policy logits a, and critic for current state v
/'[N, H] to [N, H] to [N, 1] ;

a < Linear(Activate(Linear(emb))) ;

/[IN,H] to [1,H] to [1, 1]

¢ < Linear(Activate(Attention(embd))) ;

return a, c

25

Under review as a conference paper at ICLR 2025

Algorithm 8: Full Training Pipeline

Input: Graph G = (V, E, W, 0), target partition number P, target ring partition number P,
Output: Next partition a
Pe{V}}:
samples + {};
while not converge do
/I perform P, .. steps to generate partition and save into samples for i from I to P,,,, do
if |P| <= P, then
// do ring partition G; <— GraphToLine(G) ;
Emb + WRTWithRing(Gy, P) ;
p, critic < PPO(Emb) ;
a < sample action from p ;
r + radius of G;.V]action] ;
P’ « partition p by circle with radius r ;
else
// do wedge partition G, « GraphToCircle(G) ;
Emb + WRTWithWedge(Gy, P) ;
p, critic < PPO(Emb) ;
a < sample action from p ;
angle « angle of G;.V[action] ;
P’ « partition p by wedge with angle angle ;
if |P| = Pya. then
| 7« NormalizedCut(G, P)
else
I r+0
samples.add((G, P, p, critic,a,r)) ;
P+ P
/I calculate loss and train with samples ;
if |samples| = target_size then
for sample in samples do
Dolds Cold, T < sample // here use sample as PPO input, in fact sample will do same
as above to calculate p and critic. p, eritic, critic’ + PPO(sample) ;
adv < r — vcritic' + critic;
lossy, < clip(p/poia * adv) ;
loss, « (r — ~yeritic' + critic)? ;
108Sent < Entropy(p) ;
L <+ wplossy + wylossy + Wentl0SSent ;
Backward loss L ;
samples + {}

26

Under review as a conference paper at ICLR 2025

O(n?k). The DP matrix dpli, j] stores the minimum normalized cut value when partitioning the first
i nodes into j segments, with transitions recorded in the predecessor matrix pre[é][j]. The final loop
traces back from the last segment’s optimal value to reconstruct the partition indices by following
pre entries iteratively.

Algorithm 9: Dynamic Programming for Ring Partition

Input: Precomputed cut weight matrix C'ut, volume matrix V olume, number of partitions &
Output: Optimal Normalized Cut res, partition indices P
sector_ncli, j] < (Cut[i] + Cutlj])/V olumeli, j] for all 4, j;
/I dpli, j] means the best result when we perform partition on node 7 and it is the j-th partition
dpli, j] + oo for all 4, j;
dpl0,0] + 0;
/ pre[i, j] records where the value for dp[z, j] transits from
preli, j] + 0;
for i from 1 to |Cut| — 1 do
for j from1to k — 1do
// enumerate all p < ¢ and assume last partition is from p to ¢
for p from1tov—1do
| agg-res[p] < max(dp[p,j — 1], sector_nc|p,i]);
preli, j] < argmin(agg_res);
dpli, j] < agg-res[argmin];
// The last partition should be from p to |Cut|, update it to dp[p, k — 1]
for p from 1 to |Cut| — 1 do
| dplp, k — 1] = max(dp|p, k — 1], sector_nc[p, |Cut| — 1]);
result < dplres_z,res_yl;
/I get final partition indices
Ty < argmin(dp[:, k — 1));
ry < k—1;
P« {}h
while r, > 0 do
P+ PU{r:}
Ty — pref[rg, ryl;
Ty Ty — 15
return result, P

27

	Introduction
	Related Work and Preliminaries
	Graph Partitioning
	ML-based Graph Partitioning Algorithms
	Reinforcement Learning

	Problem Description
	Cheeger Bound for Ring and Wedge Partition
	Methodology
	Reinforcement Learning Environment
	Graph Transformation
	Ring Transformation
	Wedge Transformation

	Ring Wedge Partition Pipeline
	Wedge Ring Transformer (WRT)
	Training and Testing Strategies
	Training Strategy
	Testing Strategy

	Experiments and Results
	Graph Datasets
	Models and Compared Methods
	Performance Evaluation
	Evaluation of Model Overall Performance
	Evaluation of Model Transfer Performance
	Ringness and Wedgeness Evaluation

	Conclusion and Future Work
	Statistics and Hyper Parameters
	Ablation Studies
	Two-stage Training and Testing
	Different Baseline Function in Two-stage
	Fix Wedge Partition Policy
	Post Refinement
	Graph Center Selection
	Effectiveness of Graph Transformation, WRT and PAMHA
	Performance of Other Methods

	Detail of the Model Pipeline
	Definition of Ringness and Wedgeness
	Proofs of Cheeger Bounds
	Proof of Proposition1
	Wedge partitions
	Ring partitions

	Pseudo Codes of Algorithms
	Dynamic Programming Algorithm for Ring Partition Phase

