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ABSTRACT

Flow matching, one of the attractive deep generative models, has recently been
used in wide modality. Despite the remarkable success, the flow matching objec-
tive of the vector field is insufficient for maximum likelihood estimation. Previous
works show that adding the vector field’s high-order gradient objectives further
improves likelihood. However, their method only minimizes the upper bound
of the high-order objectives, hence it is not guaranteed that the objectives them-
selves are indeed minimized, resulting in likelihood maximization becoming less
effective. In this paper, we propose a method to directly minimize the high-order
objective. Since our method guarantees that the objective is indeed minimized,
our method is expected to improve likelihood compared to previous works. We
verify that our proposed method achieves better likelihood in practice through ex-
periments on 2D synthetic datasets and high-dimensional image datasets.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021b) have shown a high ability to sample from the
data distribution in broad modalities, such as image generation (Ho et al., 2020; Song et al., 2021b;
Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Rombach et al., 2022), audio generation (Kong
et al., 2021; Popov et al., 2021; Chen et al., 2020), and video generation (Ho et al., 2022; Singer
et al., 2022). Moreover, to improve the quality of data generation, many previous works have pro-
posed various formulations (Rombach et al., 2022; Karras et al., 2022; Nichol & Dhariwal, 2021;
Salimans & Ho, 2022). However, an issue requiring a large number of sampling steps to reduce the
discretization error has remained.

Flow matching (Lipman et al., 2023; Liu et al., 2023) is one of the variants of diffusion models,
which has achieved the state-of-the-art generated data quality. The main modifications from general
diffusion models are parameterization and noise scheduling; the model predicts the vector field,
which is the sample’s time derivative (velocity), and noises are added to training samples to make its
path straight. Although we need the marginal vector field to generate new unseen samples, we can
use the vector field conditioned by a data sample in the training objective calculation, which enables
us to train flow matching simulation-free as diffusion models. Since the discretization error becomes
smaller thanks to the straight-like path, flow matching has been used in broad modalities (Esser et al.,
2024; Shi et al., 2023; Le et al., 2023; Vyas et al., 2023).

However, the general flow matching objective is insufficient for maximum likelihood estimation
(MLE), or equivalent, minimizing KL divergence between the data distribution and the generated
distribution (Zheng et al., 2023). Lu et al. (2022a) prove that the KL divergence is bounded by the
integration of the Fisher divergence in ordinary differential equation (ODE) form diffusion models.
Moreover, they prove that the Fisher divergence is bounded by an increasing function of errors of
high-order gradients of the score function and the model. In flow matching, Zheng et al. (2023)
verify the identical theory. However, since the actual values of high-order gradients of the score
function or the vector field are intractable, their proposed method only minimizes the upper bound
of their objectives, not the objectives themselves. Hence, their methods do not strictly guarantee
that the actual objectives necessarily decrease and that the upper bound of the KL divergence is also
minimized, resulting in likelihood maximization becoming less effective.
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Table 1: The summarization of the differences between our proposed method and previous works.
Our proposed method can minimize high-order objectives directly, unlike previous works.

Method Model parameterization Objective function
Diffusion models Score function First-order objective
Flow matching Vector field First-order objective
Lu et al. (2022a) Score function Upper bounds of high-order objectives
Zheng et al. (2023) Vector field Upper bounds of high-order objectives
Ours Vector field High-order objectives directly

In this paper, we propose a method to minimize the second-order objective directly in flow match-
ing. The second-order objective derived in the previous works (Lu et al., 2022a; Zheng et al.,
2023) includes the gradient of the marginal score function or the vector field. On the contrary, our
method uses the gradient of the conditional one in the second-order objective. Modification from
the marginal to the conditional one enables us to calculate the second-order objective simulation-
free. Additionally, although the second-order objective is defined by its matrix norm, our proposed
method uses its trace instead for efficiency. In contrast to the previous works, our proposed method
guarantees that the second-order objective is indeed minimized as long as the training loss decreases
since we can calculate the second-order objective itself and minimize it directly. By minimizing the
second-order objective itself in all timesteps, we can expect that the value of the function bounding
the Fisher divergence is minimized and that the Fisher divergence is also minimized, furthermore,
the upper bound of the KL divergence is minimized. To verify the effectiveness of our method in
practical settings, we conduct experiments on 2D datasets and high-dimensional image datasets. We
show that our method actually improves the likelihood from the original flow matching in 2D syn-
thetic datasets. On image datasets, we show that our method achieves better likelihood than previous
works of 3.07 bits/dim of negative log-likelihood on MNIST and 2.62 bits/dim on CIFAR-10, and
competitive likelihood of 4.12 bits/dim on ImageNet32×32. Furthermore, we conduct an ablation
study to verify that our method minimizing the second-order objective directly indeed maximizes
likelihood compared to the methods minimizing its upper bound. Table 1 summarizes the differences
between our proposed method and previous works.

2 PRELIMINARIES

In this section, we provide preliminaries of diffusion models and flow matching in Sec. 2.1 and 2.2,
respectively. Lastly, we provide a unified perspective to connect flow matching to diffusion models
in Sec. 2.3.

2.1 DIFFUSION MODELS

In diffusion models, the forward diffusion process is defined as the process by which noises are
gradually added to a data sample x0. That process is expressed by the SDE,

dxt = f(t)xt dt+ g(t) dw, (1)

where f : [0, T ] → R, g : [0, T ] → R, and w is the standard Wiener process. Equation (1) has a
joint distribution qt(xt) as a solution with an initial value x0 ∼ q(x0). When given an initial value
x0, the conditional distribution qt(xt|x0) has a closed form,

qt(xt|x0) = N (xt;αtx0, σ
2
t I), (2)

where αt and σt satisfy

f(t) =
d logαt

dt
, g(t)2 =

dσ2
t

dt
− 2f(t)σ2

t , (3)

respectively. The forward process has the following backward process that has the same joint distri-
bution to qt(xt) as a solution,

dxt =
(
(f(t)xt − g(t)2∇ log qt(xt)

)
dt+ g(t) dw̄, (4)
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where w̄ is the standard Wiener process in reverse time. Although the score function ∇ log qt(xt)
is generally intractable, a model s(xt, t) with parameter θ can approximate ∇ log qt(xt) via

minimize
θ

Ex0∼q(x0),ϵ∼N (0,I)

[
∥sθ(αtx0 + σtϵ, t)−∇ log qt(xt|x0)∥22

]
(5)

= minimize
θ

Ex0∼q(x0),ϵ∼N (0,I)

[∥∥∥∥sθ(αtx0 + σtϵ, t) +
1

σt
ϵ

∥∥∥∥2
2

]
. (6)

Moreover, there exists an ODE (7) that has the same joint distribution qt(xt) to the SDE (4) with
initial values xT ∼ N (xT ;0, I),

dxt =

[
f(t)xt −

1

2
g(t)2∇ log qt(xt)

]
dt. (7)

In the inference phase, we can obtain generated samples by solving SDE (4) or ODE (7) with any
solvers (Karras et al., 2022; Song et al., 2021a; Lu et al., 2022b;c). Denoting pt(xt) as the distribu-
tion of xt obtained by solving SDE (4) or ODE (7), it is expected pt(xt) ≈ qt(xt) holds, and further
p0(x0) ≈ q0(x0) = q(x0) does.

2.2 FLOW MATCHING

Flow matching (Lipman et al., 2023; Liu et al., 2023) was proposed as a variant of continuous
normalizing flows(CNFs) or neural ODE (Chen et al., 2018; Liu et al., 2023). We derive the flow
matching method following the derivation in Lipman et al. (2023).

We denote x0 ∈ Rn and q(x0) as a data sample 1 and the true data distribution, respectively. We
first formulate a time-dependant distribution qt(xt) for t ∈ [0, T ] using the conditional distribution
qt(xt|x0) as

qt(xt) =

∫
qt(xt|x0)q(x0)dx0, (8)

qt(xt|x0) = N
(
xt;αtx0, σ

2
t I
)
, (9)

αt = 1− t

T
, σt =

t+ (T − t)σmin

T
. (10)

where σmin > 0 is a small value to avoid numerical issues. At t ∈ (0, T ), we can sample xt|x0 ∼
qt(xt|x0) via reparameterization trick as,

xt = αtx0 + σtϵ, (11)

where ϵ ∼ N (x;0, I). In flow matching, we generate samples from qt(xt) by following a vector
field starting from noises. We first define the vector field ut(xt) as the time derivative of the sample
xt

ut(xt) :=
dxt

dt
. (12)

However, we cannot calculate ut(xt) since we cannot sample xt from the marginal distribution
qt(xt).

Therefore, we consider to use a neural network vθ(xt, t) with parameter θ instead of ut(xt). As a
preparation to approximate ut(xt) by vθ(xt, t), we define the conditional vector field ut(xt|x0) as

ut(xt|x0) :=
dxt|x0

dt

∣∣∣∣
x0

= α̇tx0 + σ̇t
xt − αtx0

σt
= (1− σmin)ϵ− x0, (13)

where α̇t and σ̇t mean the time derivative of αt and σt, respectively. Then, we can learn u(xt) by
vθ(xt, t) through

minimize
θ

Ex0∼q(x0),ϵ∼N (x;0,I),xt∼qt(xt|x0)

[
∥vθ(xt, t)− ut(xt|x0)∥22

]
. (14)

1Note that in Lipman et al. (2023) set the range of t to [0, 1] and let x1 be a clean sample, but we changed
the range to [0, T ] and x0 be a clean sample to align to the notation of diffusion models.
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since the following holds

∇θExt∼qt(xt)

[
∥vθ(xt, t)− ut(xt)∥22

]
= ∇θEx0∼q(x0),ϵ∼N (x;0,I),xt∼qt(xt|x0)

[
∥vθ(xt, t)− ut(xt|x0)∥22

]
. (15)

In the inference phase, we can obtain the generated sample by solving the differential equation

dxt

dt
= vθ(xt, t) (16)

by an arbitrary solver such as the Euler method with an initial value x0 ∼ N (0, I). Similarly
to diffusion models, denoting pt(xt) as the distribution of xt by solving ODE (16), it is expected
p1(x0) ≈ q1(x0) ≈ q(x0) holds.

2.3 CONNECTION TO DIFFUSION MODELS

Now, we can interpret flow matching as a variant of diffusion models with two modifications. The
first modification is the model parameterization. In diffusion models, the model predicts the score
function ∇ log qt(xt). On the other hand, in flow matching, the model predicts the vector field
ut(xt), and ut(xt) is formulated by Equations (7) and (12) as

ut(xt) = f(t)xt −
1

2
g(t)2∇ log qt(xt), vθ(xt, t) = f(t)xt −

1

2
g(t)2sθ(xt, t). (17)

The second modification is the scheduling of the ratio of noises in Equation (2). While αt and σt

are defined as non-linear functions in diffusion models (Ho et al., 2020; Karras et al., 2022), they
are defined as linear functions of t by Equation (10) in flow matching. Therefore, we can perceive
flow matching as the ODE form diffusion models.

3 METHOD

We first show how to maximize likelihood in diffusion models with ODE form in Sec. 3.1, and that
MLE with ODE form has an additional term to the SDE form, following Lu et al. (2022a). Subse-
quently, we explain Lu et al. (2022a) method, which minimizes the additional term by minimizing
upper bounds of high-order objectives in Sec. 3.2. Lastly, we present our method to minimize the
second-order objective directly.

3.1 MLE FOR DIFFUSION MODELS

MLE is identical to minimizing KL divergence between the data distribution and the generated
distribution. Song et al. (2021b) show that denoising score matching minimizes the KL divergence
by maximizing the evidence lower bound (ELBO) of likelihood, which is identical to Equation (6).
However, Lu et al. (2022a) show that ODE form diffusion models have a different ELBO.

Specifically, they show that KL divergence between the data distribution q0 and the generated distri-
bution p0 can be bounded as

DKL(q0∥p0) = DKL(qT ∥pT ) + JODE (18)

≤ DKL(qT ∥pT ) +
√
JSM ·

√
JFisher, (19)

where

JODE =
1

2

∫ T

0

g(t)2Ext

[
(sθ(xt, t)−∇ log qt(xt))

T
(∇ log pt(xt)−∇ log qt(xt))

]
dt, (20)

JSM =
1

2

∫ T

0

g(t)2Ext

[
∥sθ(xt, t)−∇ log qt(xt)∥22

]
dt, (21)

JFisher =
1

2

∫ T

0

g(t)2Ext

[
∥∇ log pt(xt)−∇ log qt(xt)∥22

]
dt. (22)

Hence, the general objective function (6) only minimizes JSM, however, we can further minimize
the KL divergence by additionally minimizing JFisher.
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3.2 HIGH-ORDER DIFFUSION MODELS

Lu et al. (2022a) propose to minimize high-order objectives to minimize JFisher. Strictly, they show
that the Fisher divergence Ext

[∥∇ log pt(xt)−∇ log qt(xt)∥22], which is the integrand of JFisher, is
bounded by a function U(t; δ1, δ2, δ3, q) with some assumptions, where

∥sθ(xt, t)−∇ log qt(xt)∥2 ≤ δ1, (23)

∥∇sθ(xt, t)−∇2 log qt(xt)∥F ≤ δ2, (24)
∥∇div sθ(xt, t)−∇div log qt(xt)∥2 ≤ δ3. (25)

Since U(t; δ1, δ2, δ3, q) is a strictly increasing function of δ1, δ2, and δ3, we can minimize JFisher

by minimizing the left-hand sides of Equations (23), (24), and (25). However, since ∇ log qt(xt)
and its high-order gradients are intractable, they propose to minimize their upper bounds in practice
by minimizing the following objectives;

Ex0,xt

[
∥sθ(xt, t)−∇ log qt(xt|x0)∥22

]
, (26)

Ex0,xt

[∥∥∇sθ(xt, t)−∇2 log qt(xt|x0)− ℓ1ℓ
T
1

∥∥2
F

]
, (27)

Ex0,xt

[∣∣div sθ(xt, t)− div∇ log qt(xt|x0)− ∥ℓ1∥22
∣∣2] , (28)

Ex0,xt

[
∥∇div sθ(xt, t)− ℓ3∥2

]
, (29)

where

ℓ1 = ssgθ (xt, t)−∇ log qt(xt|x0), (30)

ℓ2 = ∇ssgθ (xt, t)−∇2 log qt(xt|x0), (31)

ℓ3 =
(
∥ℓ1∥22I − tr(ℓ2)I − 2ℓ2

)
ℓ1 (32)

and sg is the stop gradient operator.

3.3 DIRECT HIGH-ORDER FLOW MATCHING

The general flow matching objective (14) is not derived for the purpose of MLE. As flow matching is
a variant of the ODE form diffusion models as described in Sec. 2.3, we can apply the previous work
described in Sec. 3.2 to flow matching. By considering the description in Sec. 3.1 in flow matching
formulation, although the general flow matching objective (14) can minimize the KL divergence,
we can further minimize it by minimizing JFisher. As described in 3.2, we need to minimize high-
order objectives to minimize JFisher. Zheng et al. (2023) already propose to minimize high-order
objectives in flow matching with several techniques.

However, Lu et al. (2022a) and Zheng et al. (2023) proposed methods minimize the upper bounds
of the high-order objectives, not objectives themselves. Hence, their methods do not necessarily
minimize the upper bound of the KL divergence, as a result, their methods reduce the effect of
likelihood maximization. Then, we propose a method to minimize the high-order flow matching
objectives directly.

First, we show that the Fisher divergence is bounded by a function of high-order flow matching
objectives, similarly to Sec. 3.2.

Theorem 3.1 (Proof in Appendix A). Let qt(xt), pt(xt) be a joint distribution generated
by the true vector field ut(xt) and a model vθ(xt, t), respectively. Assume that there exists
C ∈ R such that ∥∇2 log pt(xt)∥2 < C. Then, there exists a function U(t, δ1, δ2, δ3, C, qt)
which is an strictly increasing function of δ1, δ2 and δ3 such that

∥∇ log pt(xt)−∇ log qt(xt)∥22 ≤ U(t, δ1, δ2, δ3, C, qt)

where δ1, δ2 and δ3 satisfy

∥vθ(xt, t)− u(xt)∥2 ≤ δ1,

∥∇vθ(xt, t)−∇u(xt|x0)∥F ≤ δ2,

∥∇div vθ(xt, t)−∇divu(xt)∥2 ≤ δ3.
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The notable point of Theorem 3.1 is using ∇ut(xt|x0) instead of ∇ut(xt) in the second-order
objective. As described in Sec. 3.2, the previous works minimize its upper bound since ∇ut(xt)
is intractable. On the contrary, Theorem 3.2 enables us to minimize the second-order objective
directly. By directly minimizing the second-order objective δ2 directly, we can guarantee that U
is indeed minimized while the previous works cannot. Furthermore, we can expect that the Fisher
divergence is minimized, and that the upper bound of the KL divergence is also minimized more
tightly than the previous works.

Then, we add the second-order objective to the original flow matching objective (14). For the effi-
ciency, we minimize the trace of the second-order objective instead of the matrix norm. We do not
minimize the third-order objective since the we want computational time not to be longer and the
contribution of directly minimizing the second-order objective is more significant. In summary, the
whole objective of our proposed method is

Ex0,ϵ,xt

[
∥vθ(xt, t)− ut(xt|x0)∥22 + λdiv|div vθ(xt, t)− divut(xt|x0)|2

]
(33)

where λdiv ∈ R is a hyper-parameter which stands for a weight of second-order objective.

To compute div vθ(xt, t), we use Hutchinson’s trace estimation method (Hutchinson, 1989).
Hutchinson’s trace estimation method approximates the trace of a matrix A by the Monte Carlo
method,

trA = Ew∼p(w)[w
TAw] ≈ 1

n

n∑
i=1

wT
i Awi, (34)

where n is a number of sampling w, and p(w) is a multivariate standard normal distribution or multi-
variate Rademacher distribution, whose element takes −1 or 1 uniformly. By using the Hutchinson’s
method, we can approximate div vθ(xt, t) as

div vθ(xt, t) ≈
1

n

n∑
i=1

wT
i ∇(vθ(xt, t))wi =

1

n

n∑
i=1

∇(wT
i vθ(xt, t))wi. (35)

Since wT
i vθ(xt, t) is a scalar, we can calculate ∇(wT

i vθ(xt, t)) precisely as a vector-Jacobian prod-
uct in the automatic differentiation framework. We adopted n = 1 to avoid the high computational
costs.

4 RELATED WORK

Flow matching. One of the advantages of flow matching is the straight-like path, which mitigates
the discretization error in the inference phase. Thanks to that feature, flow matching achieved state-
of-the-art quality in image generation (Lipman et al., 2023; Liu et al., 2023). Sequentially, flow
matching has been used in broad modalities, such as image generation (Esser et al., 2024; Dao et al.,
2023; Yan et al., 2024), audio generation (Mehta et al., 2024; Liu et al., 2024; Prajwal et al., 2024),
and discrete data generation (Gat et al., 2024; Nisonoff et al., 2024). Regarding the training theory
of flow matching, there are some works regarding theoretical error bounds in terms of Wasserstein
distance (Benton et al., 2023; Fukumizu et al., 2024). To minimize the KL divergence in flow
matching, although Zheng et al. (2023) proposed some techniques, including minimizing second-
order objective, they only minimize an upper bound of the objective instead of the objective itself,
as described in Sec. 3.3.

MLE for diffusion models. Song et al. (2021b) showed that minimizing the denoising score match-
ing loss (6) corresponded to maximizing the ELBO of likelihood. Unlike the theory, it was known
that DDPM (Ho et al., 2020), which minimized the ELBO weighted by σ2

t , achieved better results
than denoising score matching experimentally. Kingma & Gao (2024) showed that the DDPM ob-
jective can be perceived as the ELBO with data augmentation of noise adding, and unified previous
works proposing other objectives (Nichol & Dhariwal, 2021; Karras et al., 2022; Salimans & Ho,
2022). However, Lu et al. (2022a) verified that ODE form diffusion models have different ELBO,
and that we can further minimize the KL divergence by minimizing high-order objectives. However,
as described in Sec. 3.3, their method also minimizes the upper bounds of the objectives, not the
objectives themselves.
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Table 2: The comparison of negative log-likelihood (NLL) with three datasets by the original flow
matching and our proposed method. The lower is better. Our proposed method improves the likeli-
hood compared to the original flow matching.

Method 8gaussians moons 2circles
Flow matching (Lipman et al., 2023) 3.80 2.64 3.12
Ours 3.77 2.61 2.67

Table 3: The comparison of 2-Wasserstein distance with three datasets by the original flow matching
and our proposed method. The lower is better. Our proposed method outperforms the original flow
matching on two datasets and is comparable on another dataset.

Method 8gaussians moons 2circles
Flow matching (Lipman et al., 2023) 0.27 0.10 0.097
Ours 0.20 0.12 0.063

5 EXPERIMENTS

In this section, we provide experimental verification of our proposed method through experiments.
In Sec. 5.1, we conduct experiments on 2D synthetic datasets as simple toy datasets. In Sec. 5.2, we
conduct experiments on image datasets, MNIST, CIFAR-10, and ImageNet32, as high-dimensional
datasets.

5.1 EXPERIMENTS ON 2D SYNTHETIC DATASET

Experimental Setup. We prepare three 2D synthetic datasets, 8gaussians, moons, and 2circles from
two libraries, torchcfm (Tong et al., 2024) and scikit-learn (Pedregosa et al., 2011). They
have 2-dimensional data following each defined probabilistic distribution. In the inference phase,
we use the Euler method with 100 steps to generate samples. We use two evaluation measures,
negative log-likelihood (NLL) and 2-Wasserstein distance with 1000 samples. We calculate NLL
following the technique in Lipman et al. (2023) (please visit Appendix C in Lipman et al. (2023) for
more detail). All experiments were conducted on a single V100 GPU. More details of the training
setting are provided in Appendix B.1.

Results. Table 2 shows the comparison of NLL by original flow matching and our proposed method
in three datasets. Our proposed method has better NLL than the original flow matching in all three
datasets. Table 3 shows the comparison of 2-Wasserstein distances between the training data and
generated data by each method. Our proposed method has smaller distances than the original flow
matching in 8gaussians and 2circles datasets. While our proposed method has the larger distance in
moons dataset, the distance is competitive to the original flow matching.

Figure 1 shows 1,000 generated samples by original flow matching (second row) and our proposed
method (third row) for each dataset. The first row shows samples from each training dataset. The
more yellow color indicates that samples are denser. Our proposed method generates fewer samples
in the areas where training samples do not exist (red box) than the original flow matching. That is,
our proposed method is more likely not to generate samples far away from the training samples, and
vice versa, to generate samples closer to the training samples. This observation means that likelihood
of our proposed method is higher than the original flow matching. We can justify qualitatively that
our proposed method maximizes likelihood from these results.

5.2 EXPERIMENTS ON IMAGE DATASETS

Experimental Setup. We prepare three image dataset, MNIST (Deng, 2012), CIFAR-
10 (Krizhevsky et al., 2009), and ImageNet32×32 (Chrabaszcz et al., 2017). Each dataset has
60,000, 50,000, and 14,197,122 training images, respectively. We prepared ImageNet32×32 by re-
sizing the images in ImageNet (Deng et al., 2009) to the size of 32×32 following Chrabaszcz et al.

7
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Training samples

8gaussians moons 2circles

Flow matching

Ours

Figure 1: Generated samples by the original flow matching and our proposed method. Our proposed
method generates fewer samples in the areas where training samples do not exist (red box) compared
to the original flow matching, which implies that our proposed method has a better likelihood than
the original flow matching.

Table 4: The comparison of NLL with three datasets by previous works and our proposed method.
The lower is better. Our proposed method is comparable to previous works on all datasets.

Method MNIST CIFAR-10 ImageNet
DDPM (Ho et al., 2020) - ≤ 3.75 -
Score matching (Song et al., 2021b) - 3.45 4.21
High-order score matching (deep, second) (Lu et al., 2022a) - 3.35 4.05
High-order score matching (deep, third) - 3.27 4.03
i-DODE (SP) (Zheng et al., 2023) - 2.56 3.44
i-DODE (VP) - 2.57 3.43
i-DODE (VP, with data augmentation) - 2.42 -
Flow matching (Lipman et al., 2023) - 2.99 3.53
Flow matching (reproduced) 3.10 2.68 4.07
Ours 3.07 2.62 4.12

(2017). We evaluate our proposed method by NLL. All experiments were conducted on eight A100
GPUs. More details of the training setting are provided in Appendix B.2.

Results. Table 4 shows the comparison of NLL with three datasets by previous works and our
proposed method. Although our proposed method does not improve NLL from the original flow
matching on ImageNet32×32, it improves NLL on MNIST and CIFAR-10. On CIFAR-10, although
the best NLL is reported by i-DODE (Zheng et al., 2023), NLL by our proposed method is better
than that by the original flow matching. This gap comes from other improvement techniques of
i-DODE, as we discuss in Sec. 5.2.1. Through these quantitative results, we show that our proposed
method improves likelihood from the original flow matching. We provide qualitative results with
the original flow matching and our proposed method in Appendix C.
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Table 5: The comparison of NLL by four methods. The lower is better. Our proposed method
outperforms the original flow matching and the methods minimizing the upper bound of the second-
order objectives.

Method MNIST CIFAR-10
Flow matching (reproduced) 3.10 2.68
Upper bound by the matrix norm 3.12 3.08
Upper bound by the trace 3.09 2.77
Ours 3.07 2.62

5.2.1 ABLATION STUDY

In this section, we investigate how directly minimizing the objectives is effective compared to min-
imizing the upper bound. As described in Sec. 3, we need to minimize the high-order objectives
to minimize the upper bound of the KL divergence. Furthermore, our proposed method minimizes
the second-order objective directly, while the previous works (Lu et al., 2022a; Zheng et al., 2023)
minimize its upper bound. We verify that directly minimizing the objective improves likelihood than
minimizing its upper bound through an experiment on image datasets, MNIST and CIFAR-10.

We compare four methods: original flow matching, MLE by minimizing the upper bound of the
second-order matrix norm objective, MLE by minimizing the upper bound of the second-order trace
objective, and MLE by minimizing the second-order trace objective directly (ours). To calculate
the matrix norm, we used an equality of ∥A∥2F = tr(ATA) and Hutchinson’s method, following
Lu et al. (2022a). We investigated various values of weight parameter λdiv for each method and
recorded the best NLL.

Table 5 shows the comparison of NLL by four methods. The methods minimizing the upper bound
have worse likelihoods on either dataset than the original flow matching. On the contrary, our pro-
posed method achieves the best NLL thanks to minimizing the second-order trace objective directly.
Therefore, we can justify that directly minimizing the second-order objective maximizes likelihood
more than minimizing the upper bound. We additionally emphasize that i-DODE(SP), which has
better NLL than our proposed method on CIFAR-10 as shown in Table 4, includes minimizing the
upper bound of the second-order trace objective. From this result, our method may further improve
NLL by combining techniques proposed in previous works with our proposed method. Verification
of this hypothesis is the subject of future work.

6 DISCUSSIONS AND CONCLUSIONS

Our proposed method has several weak points. First, our proposed method makes training time
longer since additional backpropagation process is required in our proposed method. For instance,
while the training time of original flow matching is about 16 A100 hours, our proposed method is
about 20 A100 hours, which is 1.25 times longer on CIFAR-10 and 2 times longer on ImageNet32.
Additionally, usage memory size also increases. However, since the training time increases linearly
with the dimension of the model’s hidden layers, it is realistically possible to scale our method for
larger models. Second, the improvement of NLL by our proposed method is not large. Since the
improvement in likelihood does not mean an improvement in image quality, it is unclear whether
our proposed method is useful in practical applications. Lastly, our proposed method has general
weak points of flow matching, e.g., requiring iterative calculations in the inference phase.

We proposed a method to directly minimize the second-order flow matching objective in addition to
the original flow matching objective. Our proposed method guarantees that it minimizes the upper
bound of KL divergence between the data distribution and the generated distribution by directly min-
imizing the second-order flow matching objective, while previous works do not since they minimize
only the upper bound of the second-order objective. We verified that our proposed method achieves
competitive likelihood with previous works through experiments with 2D synthetic datasets and
image datasets. Moreover, we showed that directly minimizing the second-order objective indeed
improves the likelihood more than minimizing its upper bound through the ablation study. Further-
more, we showed that our proposed method can be potentially improved by combining techniques

9
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proposed in previous works. We expect our work will further enrich the learning theory of flow
matching.

REPRODUCIBILITY STATEMENT

We provide supplemental information for reproducibility in appendices. In Appendix A, we provide
complete proof of theorems in the derivation of our method. In Appendix B, we provide more
detailed settings for our implementation in the experiments on image datasets. In Appendix C, we
provide qualitative comparisons of our proposed method with the original flow matching.
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A PROOF OF THEOREM 3.1

In this section, we provide proof of Theorem 3.1. Since our theorems are based on Theorem 3.1 and
Theorem 3.2 in Lu et al. (2022a), we basically rewrite their proof as flow matching.

First, we derive the upper bound of the KL divergence between the data distribution q1 and the
generated distribution p1.
Lemma A.1.

DKL(q0∥p0) = DKL(qT ∥pT ) + JODE

≤ DKL(qT ∥pT ) +
√

JFM ·
√

JFisher,

where

JODE =

∫ T

0

Ext

[
(vθ(xt, t)− ut(xt))

T (∇ log pt(xt)−∇ log qt(xt))
]
dt,

JFM =

∫ T

0

Ext

[
∥vθ(xt, t)− ut(xt)∥22

]
dt,

JFisher =

∫ T

0

Ext

[
∥∇ log pt(xt)−∇ log qt(xt)∥22

]
dt.

Proof. First, we express DKL(q1∥p1) by integral form as

DKL(q0∥p0) = DKL(qT ∥pT ) +DKL(q0∥p0)−DKL(qT ∥pT ) (36)

= DKL(qT ∥pT ) +
∫ T

0

∂DKL(qt∥pt)
∂t

dt. (37)

The continuity equation, which is identical to the Fokker–Planck equation with zero diffusion coef-
ficient, holds between likelihood and the vector field.

∂qt(x)

∂t
= −div (u(x)qt(x)),

∂pt(x)

∂t
= −div (vθ(x, t)pt(x)). (38)

Then, we can rewrite the integral part of Equation (37) as

∂DKL(qt∥pt)
∂t

(39)

=
∂

∂t

∫
qt(x)[log qt(x)− log pt(x)]dx (40)

=

∫
∂qt(x)

∂t
log

qt(x)

pt(x)
dx+

∫
∂qt(x)

∂t
dx−

∫
qt(x)

pt(x)

∂pt(x)

∂t
dx (41)

= −
∫

div (u(x)qt(x)) log
qt(x)

pt(x)
dx+

∂

∂t

∫
qt(x)dx−

∫
qt(x)

pt(x)
div (vθ(x, t)pt(x))dx

(42)

=

∫
(u(x)qt(x))

T∇ log
qt(x)

pt(x)
dx−

∫
(vθ(x, t)pt(x))

T∇ qt(x)

pt(x)
dx (43)

=

∫
qt(x)[u(x)− vθ(x, t)]

T [∇ log qt(x)−∇ log pt(x)]dx, (44)

where we use
∫
qt(x)dx = 1, and integral by parts with assumptions of

lim∥x∥2→∞ u(x)qt(x) log
qt(x)
pt(x)

= 0 and lim∥x∥2→∞ vθ(x, t)pt(x) log
qt(x)
pt(x)

= 0 in Equation (42).
Then, by defining JODE as

JODE =

∫ T

0

Ex

[
[u(x)− vθ(x, t)]

T [∇ log qt(x)−∇ log pt(x)]
]
dt, (45)

we have

DKL(q0∥p0) = DKL(qT ∥pT ) + JODE. (46)
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Furthermore, we have the upper bound by Cauchy–Schwarz inequality as(∫
qt(x)[u(x)− vθ(x, t)]

T [∇ log qt(x)−∇ log pt(x)]dx

)2

(47)

≤
∫

qt(x)∥u(x)− vθ(x, t)∥22dx+

∫
qt(x)∥∇ log qt(x)−∇ log pt(x)∥22dx. (48)

By defining JFM and JFisher as

JFM =

∫ T

0

Ex

[
∥u(x)− vθ(x, t)∥22

]
dt, (49)

JFisher =

∫ T

0

Ex

[
∥∇ log qt(x)−∇ log pt(x)∥22

]
dt, (50)

we have
DKL(q0∥p0) = DKL(qT ∥pT ) + JODE ≤ DKL(qT ∥pT ) +

√
JFM ·

√
JFisher. (51)

Next, we derive the time derivative of the score function. From Equation (38), we have
∂∇ log qt(x)

∂t
= ∇

(
1

qt(x)

∂qt(x)

∂t

)
(52)

= ∇
[

1

qt(x)

(
−qt(x)divut(x)− ut(x)

T∇qt(x)
)]

(53)

= −∇divut(x)−∇ut(x)
T∇ log qt(x)−∇2 log qt(x)ut(x), (54)

∂∇ log pt(x)

∂t
= −∇div vθ(x, t)−∇vθ(x, t)

T∇ log pt(x)−∇2 log pt(x)vθ(x, t). (55)

Then, we can calculate the time derivative of the score function by chain rule.
d∇ log qt(x)

dt
(56)

=
∂∇ log qt(x)

∂x

∂x

∂t
+

∂∇ log qt(x)

∂t
(57)

= ∇2 log qt(x)ut(x)−∇divut(x)−∇ut(x)
T∇ log qt(x)−∇2 log qt(x)ut(x) (58)

= −∇divut(x)−∇ut(x)
T∇ log qt(x), (59)

d∇ log pt(x)

dt
(60)

=
∂∇ log pt(x)

∂x

∂x

∂t
+

∂∇ log pt(x)

∂t
(61)

= ∇2 log pt(x)ut(x)−∇div vθ(x, t)−∇vθ(x, t)
T∇ log pt(x)−∇2 log pt(x)vθ(x, t).

(62)
Therefore, we have
d(∇ log pt(x)−∇ log qt(x))

dt
(63)

= − (∇div vθ(x, t)−∇divut(x))−
(
∇vθ(x, t)

T∇ log pt(x)−∇ut(x)
T∇ log qt(x)

)
(64)

−∇2 log pt(x) (vθ(x, t)− ut(x)) (65)

Then, we prove Theorem 3.1. By integrating Equation (63), we have

∇ log pt(x)−∇ log qt(x) = ∇ log pT (x)−∇ log qT (x)−
∫ T

t

(∇div vθ(x, s)−∇divus(x)) ds

(66)

−
∫ T

t

(
∇vθ(x, s)

T∇ log ps(x)−∇us(x)
T∇ log qs(x)

)
ds (67)

−
∫ T

t

∇2 log ps(x) (vθ(x, s)− us(x)) ds. (68)
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Given a sample x0, we can rewrite the second integral term using
∇vθ(x, s)

T∇ log ps(x)−∇us(x)
T∇ log qs(x) (69)

= [∇vθ(x, s)−∇us(x|x0)]
T [∇ log ps(x)−∇ log qs(x)] (70)

+ us(x|x0)
T [∇ log ps(x)−∇ log qs(x)] (71)

+ [∇vθ(x, s)−∇us(x)]
T∇ log qs(x). (72)

Then, from triangle inequality, we have
∥∇ log pt(x)−∇ log qt(x)∥2 (73)

≤ ∥∇ log p0(x)−∇ log q0(x)∥2 +
∫ T

t

∥∇div vθ(x, s)−∇divus(x)∥2 ds (74)

+

∫ T

t

∥∇vθ(x, s)−∇us(x|x0)∥F · ∥∇ log ps(x)−∇ log qs(x)∥2ds (75)

+

∫ T

t

∥us(x|x0)∥2 · ∥∇ log ps(x)−∇ log qs(x)∥2ds (76)

+

∫ T

t

∥∇vθ(x, s)−∇us(x)∥F · ∥∇ log qs(x)∥2ds (77)

+

∫ T

t

∥∇2 log ps(x)∥F · ∥vθ(x, s)− us(x)∥2ds (78)

≤ ∥∇ log p0(x)−∇ log q0(x)∥2 +
∫ T

t

δ3ds (79)

+

∫ T

t

(δ2 + ∥us(x|x0)∥2) · ∥∇ log ps(x)−∇ log qs(x)∥2ds (80)

+

∫ T

t

δ2∥∇ log qs(x)∥2ds+
∫ T

t

δ1Cds. (81)

By replacing each term with the following functions

α(t) = ∥∇ log p0(x)−∇ log q0(x)∥2 +
∫ T

t

δ3 + δ2∥∇ log qs(x)∥2 + δ1Cds, (82)

β(t) = δ2 + ∥us(x|x0)∥2, (83)
γ(t) = ∥∇ log pt(x)−∇ log qt(x)∥2, (84)

we have

γ(t) ≤ α(t) +

∫ T

t

β(s)γ(s)ds. (85)

By Gronwall’s inequality as integral form, we have an upper bound of a solution of Equation (85) as

γ(t) ≤ α(t) +

∫ T

t

α(s)β(s) exp

(∫ s

t

β(r)dr

)
ds. (86)

Finally, by defining U(t, δ1, δ2, δ3, C, qt) as

U(t, δ1, δ2, δ3, C, qt) = Ex0

(α(t) + ∫ T

t

α(s)β(s) exp

(∫ s

t

β(r)dr

)
ds

)2
 , (87)

and we have the following inequality.
γ(t)2 = ∥∇ log pt(x)−∇ log qt(x)∥2 ≤ U(t, δ1, δ2, δ3, C, qt). (88)

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS OF THE EXPERIMENTS ON 2D DATASETS

We follow Tong et al. (2024) for the implementation. We use four layers MLP with 64 hidden units
and SELU activation. We use the AdamW (Loshchilov, 2017) optimizer with the learning rate of
0.001, batch-size of 256, training iterations of 2000, σmin = 0.01, and λdiv = 0.001.
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B.2 IMPLEMENTATION DETAILS OF THE EXPERIMENTS ON IMAGE DATASETS

We use UNet architecture (Ronneberger et al., 2015) as the neural network vθ. Due to the upsam-
pling and downsampling modules in UNet, we padded MNIST images by 2 zero pixels vertically
and horizontally such that the size of images is to the size of 32×32.

On MNIST and CIFAR-10, we followed the setting of Tong et al. (2024). As UNet setting, we use
2 blocks with 128 channels and a dropout of 0.1. We also use AdamW optimizer with the learning
rate of 2× 10−4, batch-size of 128, σmin = 0.0, and λdiv = 0.001. We set the training iterations to
100k and 400k on MNIST and CIFAR-10, respectively. Additionally, we calculate the exponential
moving average (EMA) with a decay of 0.9999 for the parameter of UNet, and we use the EMA
parameter for the inference phase.

On ImageNet32×32, we followed the original setting of Lipman et al. (2023). As UNet setting, we
use 3 blocks with 128 channels and no dropout. We also use AdamW optimizer with the learning
rate of 1 × 10−4, batch-size of 1024, and 250k iterations. Other setting is the same as MNIST and
CIFAR-10.

C QUALITATIVE RESULTS

Figures 2, 3 and (4) show the generated images by flow matching and our proposed method trained
on MNIST, CIFAR-10, and ImageNet32×32, respectively. Images of each row were generated with
the same random seed. Although each sample pair has a few qualitative differences, we observe no
qualitative differences on average.
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Flow matching

Ours

Figure 2: The generated images by flow matching and our proposed method trained on MNIST.
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Flow matching

Ours

Figure 3: The generated images by flow matching and our proposed method trained on CIFAR-10.
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Flow matching

Ours

Figure 4: The generated images by flow matching and our proposed method trained on
ImageNet32×32.
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