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Abstract

Connected and automated vehicles (CAVs) play a key role in
the intelligent transportation system of the near future. They
offer a promising solution for different challenges, including
increased highway accidents, high energy consumption, and
growing traffic congestion. The advancements in control the-
ory and reinforcement learning (RL) have given rise to consen-
sus control techniques for effective coordination of multiple
CAVs. Multiagent RL (MARL) algorithms are widely used in
literature for the consensus problem of CAVs under different
driving conditions; however, they encounter several issues,
including non-stationarity and computational complexity, that
hinder their applicability for real-time applications. To resolve
these issues, an approach similar to centralized training and
centralized execution (CTCE) utilizing single-agent deep de-
terministic policy gradient (DDPG) is proposed for consensus
control of multiple CAVs following a leader-follower pattern.
The central agent is used to generate control policies for all
CAVs, mitigating the non-stationarity issues while ensuring
consensus. The computational complexity is reduced by using
the shared critic network for all CAVs, which helps in effi-
cient and coordinated policy optimization. Reward shaping for
the consensus problem is performed using the combination
of continuous and discrete reward while ensuring collision
avoidance among the CAVs. The effectiveness of the proposed
DDPG-based consensus control is demonstrated by simulating
various traffic scenarios, including staright line path following
and merging, where the effective consensus of multiple CAVs
is observed. The proposed approach offers a scalable and prac-
tical solution for coordinated control of modern autonomous
vehicles.

Introduction
The modern transportation system has revolutionized daily
life, facilitating the efficient transportation of passengers and
goods within and beyond the national boundaries. However,
some challenges are observed in the 21st century, including
the increasing number of vehicles resulting in more high-
way accidents, increased energy consumption exacerbated
by traffic congestion, and more commute hours. The issues
faced by the modern transportation system can be mitigated
by connected and automated vehicles (CAVs). With their

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intelligent technologies and advanced sensors, CAVs can in-
troduce highly efficient vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication. The advancement in
control theory and autonomous systems has brought attention
to consensus control over the past decade. This approach
tries to achieve consensus among states of multiple CAVs in
a fully distributed manner. Consensus control can be applied
in numerous applications, including formation control (Oh,
Park, and Ahn 2015) (Li et al. 2015), distributed freeway
traffic control (Kim and Ahn 2014), coordination among mul-
tiple robots (Alonso-Mora et al. 2019), decision-making pro-
cesses in social networks (Amelin et al. 2018), etc. In (Koung
et al. 2020), a consensus control law for formation con-
trol, navigation, and obstacle avoidance of multiple-wheeled
mobile robots is presented. Ren provides an overview of
consensus problems in multi-agent cooperative control in
(Ren, Beard, and Atkins 2005). The research summarizes
theoretical consensus-seeking results under time-invariant
and dynamically changing information exchange topologies.
In recent years, autonomous driving strategies leveraging
learning-based approaches, including reinforcement learning
(RL) have gained much attention. These methods are appeal-
ing as they can adapt to dynamic, complex environments, and
decision-making can be improved through the experience.
The application of RL in different driving scenarios, includ-
ing car-following, has shown a substantial increase in the
performance (Zhou, Fu, and Wang 2020; Song et al. 2023).
Recently, considering the situation of high-dimensional state
space in RL, the integration of deep learning (DL) and RL
has been proposed as deep reinforcement learning (DRL),
whereby a deep neural network (DNN) represents the agent’s
decision-making policy. In (Ghraizi, Talj, and Francis 2023),
a DRL-based adaptive cruise control (ACC) system is pro-
posed that creates safe, flexible, and responsive car-following
policies. The approach uses a discrete high-level action space
and a comprehensive multi-objective reward function. In (Lin,
McPhee, and Azad 2020b), the research compares DRL and
model predictive control (MPC) for ACC in car-following
scenarios. In urban environments, another challenge faced
by CAVs is the seamless merging of on-ramp CAVs with the
main-lane CAVs while ensuring efficiency and safety. The
CAVs on the main lane should adjust their speed to accom-
modate the merging CAVs, while on-ramp CAVs should try
to merge promptly while ensuring safety (Bevly et al. 2016;



Lin, McPhee, and Azad 2020a; el abidine Kherroubi, Aknine,
and Bacha 2021).

Related Works
DRL algorithms have shown state-of-the-art performance
in the field of CAVs, including significant improvements
in efficiency and safety (Liu et al. 2021; Kiran et al. 2021;
Chen, Yuan, and Tomizuka 2019; Talpaert et al. 2019). Re-
cently, different DRL algorithms have shown remarkable
performance, including deep Q-network (DQN) (Okuyama,
Gonsalves, and Upadhay 2018; Shi et al. 2020), deep deter-
ministic policy gradient (DDPG) (Ma et al. 2024), proximal
policy optimization (PPO) (Wei et al. 2019), etc. DQN is a
model-free, off-policy DRL algorithm that uses Q-learning
along with DNNs to handle the high-dimensional state space.
In (Zhang et al. 2018), naturalistic driving data integrated
with perception mechanisms is used to observe the perfor-
mance of double Q-learning that outperforms traditional deep
Q-learning in terms of policy quality and value accuracy. The
research in (Min, Kim, and Huh 2018), uses deep Q-learning
to train a supervisor for coordination of driver assistance
system (DAS) functions for autonomous highway driving
scenarios. In environments with continuous action spaces,
DQN does not perform well without discretization and low
training efficiency is also observed (Gu et al. 2016). PPO is a
model-free, on-policy DRL algorithm that uses clipped sur-
rogate objective functions for stable training. In (Zhao et al.
2024), PPO is used for autonomous driving and sensor inputs
are directly mapped to control commands for vehicle. The
CARLA simulator is used for validation of experimental re-
sults, demonstrating the practical application of the proposed
research. The lane-changing strategy using PPO is proposed
in (Ye et al. 2020) to address the challenge of safe maneuvers
in dense traffic. PPO is not sample efficient and requires more
data for effective training as compared to DDPG. In (Zou,
Xiong, and Hou 2020), DRL framework is proposed that inte-
grates imitation learning (IL) with DDPG to pre-train DDPG
with appropriate initialization of parameters. The experimen-
tal results show better performance as compared to traditional
DDPG. In (Wang, Li, and Chan 2019), lane-changing con-
trol problem is addressed using the DDPG algorithm while
ensuring stability and safety and different driving scenarios
are considered. In (Xu et al. 2018), the non-stationarity issue
in flocking control problem for multi-vehicle systems is ad-
dressed using a DDPG framework with centralized training
and distributed execution.

Problem Statement and Contributions
Multi-agent RL (MARL) approaches encounter challenges
such as non-stationarity and computational complexity. The
non-stationarity issue can disrupt coordination among CAVs,
delay consensus, and compromise safety in consensus control
problems (Xu et al. 2018; Wong et al. 2023; Gronauer and
Diepold 2022). The dynamically changing policies for each
CAV during training create a non-stationary environment
for neighboring CAVs. To address this challenge and reduce
computational complexity, a centralized training and central-
ized execution (CTCE) approach using single-agent DDPG
is proposed. This method ensures effective policy learning in

non-stationary environments for multiple CAVs operating in a
leader-follower pattern. A central agent is used that generates
the unified control policies for all CAVs ensuring consensus
among vehicles. A shared critic network reduces complexity
by eliminating the need for separate critic networks for each
CAV while ensuring coordinated and efficient policy genera-
tion. This centralization minimizes redundant computations,
reduces the number of parameters, and streamlines gradient
updates, leading to faster convergence and lower memory
usage. The main contributions of the proposed research work
are:

• The CTCE approach employs single-agent DDPG to
tackle the non-stationarity challenge in consensus control
of multiple CAVs, ensuring their efficient coordination
across various traffic scenarios.

• The reward shaping is done using the combination of
continuous and discrete rewards to promote consensus
among multiple CAVs while ensuring collision avoidance.

This article is organized as follows: The problem formu-
lation followed by the architecture of the decision network
is detailed in Section . Section includes the details about
the reward shaping for the consensus control problem. The
simulation results are demonstrated in Section . Finally, the
conclusion is drawn in Section .

Problem Formulation and Decision Network
The proposed research uses consensus control based on
single-agent DDPG for multiple CAVs that follow a leader-
follower pattern. The RL environment contains multiple
CAVs, each modeled using the bicycle kinematics model.
During training, efficient control commands are generated
by the DDPG-based decision network. A set of actor-critic
networks makes up the decision network, which generates
control policies for all CAVs at the same time. In consensus
control, information sharing is essential among the multi-
ple CAVs. Each CAV modifies its current states throughout
the process using information collected from neighboring
CAVs. The performance of the DDPG-based decision net-
work for consensus control is evaluated in a straight-line path
following and merging scenarios discussed in Section . Be-
fore diving into the consensus control framework based on
DDPG, it is crucial to consider the dynamic models of CAVs
that are involved in consensus problem. DDPG-based con-
sensus control is intended for straight line path following and
highway merging, which entails coordinating several CAVs
to effectively enter the main traffic flow to reach the same
consensus. These CAVs can share their states and interact via
consensus control.

Environment: Dynamic Model of CAVs
The bicycle kinematics model is considered for all CAVs in
this research, including the leader and follower CAVs. There
are three CAVs: CAV1 acts as the leader, while CAV2 and
CAV3 behave as followers. CAV2 aims to minimize its state
errors relative to the leader (CAV1), and CAV3 strives to
minimize its state errors relative to CAV2, thereby achieving
consensus. Let O be an inertial frame of reference with the



origin represented by a point m0. The dynamics of the ith
CAV can be described as:

ẋi = vr,i(cosψi − sinψi tanβi), (1a)
ẏi = vr,i(sinψi + cosψi tanβi), (1b)

ψ̇i =
vr,i
lr

tanβi, (1c)

v̇r,i = ar,i, (1d)

β̇i = ωi, (1e)

where the position of the center of gravity of the vehicle is
denoted as xi, yi with respect to origin m0. The orientation
of the body-fixed frame (Bi) is denoted as ψi with respect
to inertial frame of reference O. vr,i is the velocity of the
rear wheel of vehicle with respect to O. The slip angle of
vehicle center of gravity relative to (Bi) is denoted as βi.
It is assumed that |Bi| < π

2 . The states of the ith vehicle
are denoted as zi = [xi yi ψi vi;βi]

⊤. The control input is
denoted as ui = [ωi ar,i], where ωi represents the angular
velocity of the angle of slip and ar,i is the linear acceleration
of the rear wheel of the vehicle. lr represents the distance
from the center of gravity to the center of the rear wheel
of the vehicle. In the proposed research, the control inputs
(ωi, ar,i) are obtained from DDPG-based decision network.

Agent: Architecture of Decision Network
The decision network is composed of a DDPG agent that
is a model-free, off-policy DRL method comprising of two
actor-critic networks and chooses actions based on the states
of CAVs. The DDPG based consensus control framework for
multiple CAVs following a leader-follower pattern is shown
in Fig. 1. Actions are generated by the actor network, while
the critic network assists the actor in refining its actions. Dur-
ing training, both of these networks learn together. DDPG is
used to solve continuous control problems with a determin-
istic policy that maps the states to the actions. It integrates
concepts from deep Q-network (DQN) and deterministic
policy gradient (DPG). The success of DQN served as inspi-
ration for the creation of deep deterministic policy gradient
(DDPG), which aims to enhance performance for applications
requiring a continuous action space. DDPG simultaneously
learns a policy and a Q-function. The Q-function is learned
using the Bellman equation and the policy is learned using
the Q-function. Unlike DQN, which uses a probability distri-
bution across actions, the actor is a policy network that uses
the state as input and outputs the precise action (continuous).
The goal of the critic’s evaluation of the control actions is
to determine the total future return for the control actions.
The actor network consists of an input layer that receives the
observations from the environment, followed by three fully
connected hidden layers each having N neurons, activated
by ReLU activation function. The output layer contains six
neurons to match the dimensions of control actions applied
to the environment (two control actions for each CAV).

Tanh activation is applied on the output layer followed
by the scaling layer used to scale the control actions within
the desired bounds. An action path and an observation path
are the two branches of the critic network. The action path,

which has a single fully connected layer, merges with the
observation path at an addition layer. The observation path
has three fully connected layers with L neurons and ReLU
activations. The final layer, which is designed for continuous
action-value estimate, receives the combined path as input
and produces the Q-value. The weights of the neurons in
the decision network determine the control policy. θµ and
θQ represent the network weighting parameters for the ac-
tor and critic networks, respectively. The gradient descent
optimization process is used to minimize the mean-squared
loss between the Q values computed by critic network and
Q

′
values obtained from the target actor-critic network. This

is the definition of Bellman’s principle of optimality given
as:

MSE =
1

N

∑
i

(
yi −Q(si, ai|θQ)

)2
(2a)

MSE =
1

N

∑
i

(
r(si, ai) + γQ′(si+1, µ

′(si+1)|θQ
′
)

−Q(si, ai|θQ)
)2

(2b)

where r(si, ai) is reward function obtained by taking the
action at the states at ith timestep and γ is the discount factor.
The output actions obtained from actor network are based
on the network weight parameters (θµ). During training, the
weights of actor network (θµ) are updated to maximize the
Q value. The policy loss is computed by taking derivative of
objective function with respect to θµ. The mean of the sum of
gradients is computed by considering the mini-batches from
experience:

∇θµJ(θ) =
1

N

∑
i

[
∇aQ(s, a|θQ)

∣∣∣
s=si,a=µ(si)

· ∇θµµ(s|θµ)
∣∣∣
s=si

]
(3)

The DDPG network uses another set of actor-critic network
as target network in order to stabilize the training process;
the target network’s weight parameters are modified as:

θµ
′

= τθµ
′

+ (1− τ)θµ (4a)

θQ
′

= τθQ
′

+ (1− τ)θQ (4b)

where θµ
′

and θQ
′

are the weight parameters of target-actor
and target-critic networks, respectively. τ defines the weight
update rate for target networks. A soft update occurs in
DDPG, in which only a portion of the main network weights
are transferred to the target networks. The target networks
follow the main networks gradually as they are time-delayed
replicas of their main networks. In DDPG, the experience
replay buffer is a memory structure that holds the agent’s
previous experiences (state, action, reward, and next state).
The actor and critic networks are updated during training by
randomly sampling mini-batches of events from this buffer.
In order to promote environmental exploration, DDPG adds
noise to the deterministic actions. This guarantees that the
agent learns more effective policies during training.



Figure 1: DDPG-based consensus control of multiple CAVs

Reward Design for Consensus Control
In order to achieve consensus among multiple CAVs, a well-
designed reward function is required that synchronizes the
actions of individual CAVs toward a shared goal. CAVs are
motivated to cooperate rather than pursue opposing objec-
tives when rewards are thoughtfully designed to promote
cooperative behavior. However, poor reward design can lead
to misaligned goals, which would impede the consensus pro-
cess and decrease the performance of the system as a whole.
The reward function R to achieve consensus is designed to
incentivize the cooperative movement of CAVs while penal-
izing deviations from their desired goal.R is the combination
of continuous and discrete rewards and is expressed as:

R = RE +RD +ROT (5)

The components of reward function are explained as:
1. Continuous Reward (RE): This reward will penalize the

deviations in velocities of consecutive CAVs. It will also
try to minimize the control efforts for all CAVs.

RE = −(kref .∆V1,ref+kv.(∆V1,2+∆V2,3)+kctrl.CA)
(6)

where,
• ∆V1,ref is the squared error between leader velocity

and it’s reference velocity.
• ∆V1,2 is the squared velocity error between CAV1 and

CAV2.
• ∆V2,3 is the squared velocity error between CAV2 and

CAV3.
• CA is the sum of squared control actions for all CAVs.
• kref , kv, and kctrl are the gains for velocity error of

leader, velocity error among consecutive CAVs, and
gain for penalizing the control efforts, respectively.

2. Discrete Reward (RD): This reward will encourage the
follower-CAVs to maintain safe distance from their leader-
CAVs to prevent the potential collisions.

RD =
∑
i,j

{
incentive, if actualDistanceij ≥ SD
penalty, if actualDistanceij < SD

(7)

where,

• SD is the safe distance between CAVi and CAVj .

3. Discrete Reward (ROT ): This reward will encourage the
follower-CAV to follow its preceding-CAV without over-
taking.

ROT =
∑
i,j

{
incentive, if xi > xj
penalty, if xi < xj

(8)

where,

• xi is the position of leader-CAV and xj is the position
of follower-CAV.

The combination of continuous and discrete rewards will
help to achieve consensus among multiple CAVs while ensur-
ing that CAVs should not collide and overtake. Continuous
rewards for control effort and velocity will guide gradual
adjustments toward consensus by minimizing the errors and
promoting smooth dynamics. While discrete rewards for safe
distance and overtaking will enforce safe distance require-
ments and penalize unsafe following distances or overtaking
events. When combined, these rewards make sure that CAVs
reach consensus quickly and behave in a safe and coordinated
manner.



Simulation Results
It is important to choose appropriate hyperparmeters for
DDPG agent to achieve a balanced trade-off between conver-
gence, learning stability, and exploration versus exploitation
for learning optimal policies. The DDPG agent is trained,
and the simulation results are analyzed under different sce-
narios to evaluate its performance in achieving consensus
among multiple CAVs. Two primary scenarios are consid-
ered: Straight-line path following and merging.

Parameters of DDPG Network
It is crucial to carefully choose the hyperparameters of DDPG
agent to achieve the consensus by maintaining a balance be-
tween learning stability and performance. Separate optimizer
settings are used for both networks: the critic uses a slightly
higher learning rate (1 × 10−3) as compared to the actor
(1× 10−4) to guarantee smoother policy updates. The size of
the experience buffer is set to store upto (1× 106) samples
and the mini-batch size is set to 128. The discount factor is
used to prioritize the long-term rewards and its value is set to
0.99. The actor-critic target networks are updated using soft
update so that target smoothing factor is set to (1 × 10−3)
that ensure stable updates for target networks. Gaussian noise
is added to the actions to allow the agent to explore new
policies. Together, these hyperparameters allow the agent to
effectively manage the trade-off between exploration, stabil-
ity, and convergence while learning an optimal policy for the
consensus control problem.

Simulation Scenarios
In order to evaluate the performance of the DDPG-based
decision network for consensus control of multiple CAVs,
different scenarios are considered. Two primary scenarios
considered are straight-line path following and merging sce-
narios.

Scenario-1: Straight Line Path Following for 3 CAVs
The highway considered in this scenario is a single-lane road
having a width of about 4 meters, with the center of the lane
located at y = 2 m. In this scenario, it is assumed that all three
CAVs are traveling along the centerline of single-lane high-
way. CAV1 serves as the leader vehicle, following a straight
path and heading from the negative to the positive x-axis
direction trying to track the reference velocity of 45 m/s. The
other two vehicles, CAV2 and CAV3, act as follower vehicles.
The control inputs for all three CAVs are obtained from the
trained DDPG-based decision network. The objective of this
scenario is to ensure that the follower CAVs achieve consen-
sus in velocity with the leader CAV while maintaining a safe
intervehicle distance of at least or greater than 4 meters. The
initial conditions (ICs) of the vehicles are given in Table 1.

Table 1: Initial states of 3 CAVs for straight line path follow-
ing

CAVs Initial States [x0 y0 ψ0 v0;β0]
⊤

Leader CAV [-10, 2, 0, 15, -0.01]
Follower-CAV1 [-15, 2, 0, 10, -0.01]
Follower-CAV2 [-20, 2, 0, 5, 0.01]

The results illustrating the velocity consensus among all
CAVs and their respective trajectories in the (x,y) coordi-
nates are presented in Fig. 2(a) and Fig. 2(b), respectively.
In Fig. 2(a), it can be observed that the leader CAV suc-
cessfully tracks the reference velocity of 45 m/s, while both
follower CAVs also strive to achieve a velocity consensus
with the leader CAV. The (x,y) trajectories of all CAVs given
in Fig. 2(b), show that all CAVs travel along the centerline of
the highway while achieving a velocity consensus.

(a) Velocity Consensus

(b) Trajectories of CAVs

Figure 2: Scenario1: Straight line path following for 3 CAVs.

Scenario-2: Highway Merging The objective of this sce-
nario is that all CAVs should follow the leader CAV at the
same velocity while maintaining alignment with the y-axis.
Both the leader-CAV and CAV1 travel on the main lane,
whereas CAV3 is on the merging lane and attempts to merge
seamlessly with the main-lane CAVs while achieving the
consensus in velocity and maintaining alignment across the
y-axis. The initial conditions (ICs) of the vehicles are given
in Table 2.

Table 2: Initial states of 3 CAVs for merging

CAVs Initial States [x0 y0 ψ0 v0;β0]
⊤

Leader CAV [-10, 2, 0, 15, -0.01]
Follower-CAV1 [-15, 1.5, 0, 10, -0.01]
Follower-CAV2 [-20, -10, 0.54, 5, 0.01]

The results illustrating the velocity consensus among all



CAVs, along with their y-axis alignment and respective tra-
jectories in the (x,y) coordinates are presented in Fig. 3(a),
Fig. 3(b), and Fig. 3(c), respectively.

(a) Velocity Consensus

(b) Position Consensus

(c) Trajectories of CAVs

Figure 3: Scenario2: Merging scenario for 3 CAVs.

In Fig. 3(a), it can be observed that the leader CAV suc-
cessfully tracks the reference velocity of 45 m/s, while both
follower CAVs also strive to achieve a velocity consensus
with the leader CAV. CAV3 also strives to perform y-axis
alignment with main-lane CAVs, as shown in Fig. 3(b). The
(x,y) trajectories of all CAVs, as shown in Fig. 3(c) depict
that all CAVs travel along the centerline of the highway while
achieving consensus in velocity and y-axis alignment.

Scenario-3: Straight Line Path Following for 4 CAVs
This scenario is similar to the first scenario but here it is
assumed that four CAVs are traveling along the centerline
of a single-lane highway. CAV1 serves as the leader vehicle,
following a straight path and heading from the negative to the
positive x-axis direction, trying to track the reference velocity
of 45 m/s. The other three vehicles, CAV2, CAV3, and CAV4,
act as follower vehicles and try to achieve velocity consensus
with the leader vehicle. The initial conditions (ICs) of the
vehicles are given in Table 3.

Table 3: Initial states of 4 CAVs for straight line path follow-
ing

CAVs Initial States [x0 y0 ψ0 v0;β0]
⊤

Leader CAV [-10, 2, 0, 25, -0.01]
Follower-CAV1 [-15, 2, 0, 20, -0.01]
Follower-CAV2 [-20, 2, 0, 12, 0.01]
Follower-CAV3 [-25, 2, 0, 9, -0.01]

The results illustrating the velocity consensus among the
four CAVs and their respective trajectories in the coordinates
(x, y) are presented in Fig. 4(a) and Fig. 4(b), respectively. In
Fig. 4(a), it can be observed that the leader CAV successfully
tracks the reference velocity of 45 m/s, while all three fol-
lower CAVs also strive to achieve a velocity consensus with
the leader CAV. The (x,y) trajectories of four CAVs given in
Fig. 4(b), show that all CAVs travel along the centerline of
the highway while achieving a velocity consensus.

The proposed algorithm can be extended for evaluation
in real-world driving situations; future work could incorpo-
rate simulations with real-world constraints such as sensor
noise, communication delays, and mixed traffic involving
both autonomous and human-driven vehicles. Furthermore,
deploying the algorithm on scaled autonomous vehicle plat-
forms or in controlled test environments can provide insight
into its practical feasibility, including handling environmental
uncertainties, robustness to unexpected events, and adaptabil-
ity to varying traffic densities.

Comparison With Other Consensus Control
Methods
The proposed CTCE framework and the COnsensus LeArn-
ing (COLA) algorithm in (Xu et al. 2023) represent dis-
tinct approaches to cooperative multi-agent reinforcement
learning. While CTCE centralizes both training and execu-
tion to ensure globally optimized policies and mitigate non-
stationarity, COLA achieves decentralized execution by infer-
ring a consensus signal using contrastive learning, enabling
agents to coordinate without communication. The decentral-
ized nature of COLA provides scalability and robustness
in partially observable environments, making it more adapt-
able to large-scale dynamic scenarios. In contrast, CTCE
excels in tasks that require precise coordination and real-time
alignment of connected and autonomous vehicles, where
centralized control ensures consensus among agents. The
role of immediate rewards in shaping decentralized consen-
sus within MARL systems is discussed in (Fard and Selmic
2022). This decentralized approach enables agents to adapt



to their local environments, providing scalability and robust-
ness in partially observable or dynamic settings. Although
the proposed CTCE excels in centralized control scenarios
with tightly coupled agents, the decentralized perspective in
(Fard and Selmic 2022) offers insight into improving local
decision-making and adaptability, highlighting a trade-off
between global optimization and localized flexibility. The
strengths of the proposed CTCE framework compared to the
iterative neighbor and target Q-learning method in (Zhu et al.
2019) lie in its scalability, precision, and ability to manage
highly coordinated multi-agent systems. In (Zhu et al. 2019),
the focus is on distributed learning for consensus in leader-
follower systems with fixed topology; it is highly dependent
on neighbor and target networks for communication and con-
trol. In contrast, the proposed CTCE framework eliminates
the dependency on explicit neighbor-based communication
by centralizing policy training and execution, which miti-
gates non-stationarity and ensures globally optimized control
policies. Additionally, CTCE’s shared critic network and
centralized approach make it better suited for dynamic and
highly interconnected systems like connected autonomous
vehicles, where precise coordination and real-time decision-
making are critical. This centralized design also simplifies the
implementation for large-scale systems, reducing potential
issues of overestimation and instability that arise in iterative
distributed algorithms.

(a) Velocity Consensus

(c) Trajectories of CAVs

Figure 4: Scenario3: Straight line path following for 4 CAVs.

Conclusion
This research presents a novel centralized training and cen-
tralized execution (CTCE) approach using DDPG with a
single agent for consensus control of multiple CAVs follow-
ing a leader-follower pattern. The proposed approach offers
scalable and efficient coordination among multiple CAVs
by addressing the key issues observed in MARL, includ-
ing non-stationarity and computational complexity. The use
of a shared actor and critic network for all CAVs reduces
the computational overhead observed in MARL and makes
the proposed approach suitable for real-time implementa-
tion. Reward shaping for the consensus problem ensures the
consensus among multiple CAVs and collisions is avoided.
Simulation results demonstrate the effectiveness of proposed
methods in achieving consensus under different traffic sce-
narios, offering a scalable and efficient solution for modern
autonomous vehicles. The limitation of the proposed research
lies in the scalability of a centralized approach in dynamic
driving scenarios. In future work, we will address societal
and ethical implications by implementing robust data privacy
and security measures, ensuring algorithm fairness through
diverse scenario testing, and enhancing accountability with
explainable AI methods.
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