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LLaVA-Ultra: Large Chinese Language and Vision Assistant for
Ultrasound

Anonymous Authors

ABSTRACT
Multimodal Large Language Model (MLLM) has recently garnered
significant attention as a prominent research focus. By harnessing
the capability of powerful Large Language Model (LLM), it facili-
tates the transition of conversational generative AI from unimodal
text to performing multimodal tasks. This blooming development
has begun to significantly impact the medical field. However, visual
language models in the general domain lack sophisticated com-
prehension required for medical visual conversations. Even some
models specifically tailored for the medical domain often produce
answers that tend to be vague and weakly related to the visual con-
tents. In this paper, we propose a fine-grained and adaptive visual
language model architecture for Chinese medical visual conversa-
tions through parameter-efficient tuning. Specifically, we devise
a fusion module with fine-grained vision encoders to achieve en-
hancement for subtle medical visual semantics. Then we note data
redundancy that is common in medical scenes but ignored in most
prior works. In cases of a single text paired with multiple figures, we
utilize weighted scoring with knowledge distillation to adaptively
screen valid images mirroring text descriptions. For execution, we
leverage a large-scale Chinese ultrasound multimodal dataset ob-
tained first-hand from the hospital database. We create instruction-
following data based on text derived from doctors, which ensures
professionality and thus contributes to effective tuning. With en-
hanced architecture and quality data, our Large Chinese Language
and Vision Assistant for Ultrasound (LLaVA-Ultra) shows strong
capability and robustness to medical scenarios. On three medical
visual question answering datasets, LLaVA-Ultra surpasses previous
state-of-the-art models on various metrics.

CCS CONCEPTS
• Computing methodologies → Visual content-based indexing
and retrieval; Matching; Image representations.

KEYWORDS
Multimodal large language model, Medical instruction tuning

1 INTRODUCTION
Generative pretraining has demonstrated effective for visual lan-
guage modeling in the general domain, utilizing image-text multi-
modal data, as exemplified by GPT-4 [24] and LLaVA [21]. Through
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“multiple nodules in the right lobe of the thyroid, consider nodular goiter” 

MLLM 

redundancy 

adaptation 

LLM 

nodules 

valid  
images 

no lesion 

no lesion 
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no lesion 

text 

the same scanning examination of a person 

Figure 1: Data redundancy common in medical scenes puts a
need for fine-grained perception and adaption in MLLM.

self-supervised finetuning with instruction-following data, pre-
trained Large Language Models (LLMs) [3, 34, 52] can be adapted
to unseen tasks, resulting in improved zero-shot performance. This
simple yet powerful method has extended to the multimodal field. It
gives rise toMultimodal Large LanguageModels (MLLMs) [1, 11, 45]
that excel in visual language tasks such as image reasoning and
further forms user-oriented multimodal conversation assistants.

Based on the success of MLLMs in the general domain, simi-
lar initiatives have emerged for medical applications [2, 28, 50].
Current research is gradually transitioning from unimodal text
to incorporating multimodal medical data. However, despite their
effectiveness in general tasks, MLLMs often struggle in medical con-
texts. This results in inaccuracy or refusal to provide answers when
faced with medical questions. It is partially due to the scarcity and
difficulty in accessing parallel medical image-text data, unlike the
diverse internet data available for the general domain. LLaVA-Med
[17] alleviates this issue to some extent by creating multimodal
medical instruction-following data for finetuning. However, it still
struggles to provide more detailed correct responses. Sometimes
its answers tend to be vague, focusing more on medical concepts
in textual questions rather than in-depth image analysis. From the
data perspective, it utilizes image-text data extracted from PubMed
public papers, which may be coarser and less cross-modal matched
than those from primary sources. Notably, it ignores data redun-
dancy common in clinics shown in Fig. 1 as many other previous
works. This puts a need for model enhancement and adaption for
the fine-grained medical domain. Additionally, there is little explo-
ration of extensive Chinese data in the medical multimodal field.

In this paper, we propose a Large Chinese Language and Vision
Assistant forUltrasound (LLaVA-Ultra), an end-to-end trainedmed-
ical multimodal chatbot. To our knowledge, it is the first attempt to
extend multimodal finetuning to the Chinese medical domain based
on a large-scale dataset. Its domain-specific pretraining has shown
effectiveness for medical vision-language (VL) tasks. Specifically,
our paper makes the following contributions:
• Enhancement for medical adaptation. To meet the needs of
subtle medical images, we leverage an extra fine-grained Segment

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Anything Model (SAM) [16] encoder to jointly extract visual
semantics with the CLIP encoder. A followed fusion module can
effectively integrate these two typical features and thus achieve
visual enhancement for better multimodal alignment. Moreover,
for data redundancy common in medical scenarios, we design an
adaptive sampling module with weighted scoring and knowledge
distillation to automatically screen valid information. It improves
the model’s robustness and thus ensures correct responses in
complicated practical medical scenarios.

• High-quality medical parallel data.We present a novel data
sourcing pipeline to collect a large-scale Chinese ultrasound mul-
timodal dataset first-hand from the hospital database. It covers
professional content provided by doctors for ultrasound exami-
nations of many body parts. We sample pairs of around 170k ul-
trasound images and 20k clinical texts and generate multi-modal
instructions with GPT-3.5 [23] for medical instruction-tuning.

• LLaVA-Ultra. Contributed by the robust architecture as well as
fine-grained professional data, LLaVA-Ultra shows the best prac-
tice in the Chinese medical domain. Trained in only 60 hours with
4 48GB A40s, it provides detailed answers relevant to visual con-
tent in medical conversations. On our ultrasound hospital dataset
and public medical visual question answering (VQA) datasets,
LLaVA-Ultra outperforms prior state-of-the-art (SOTA).

2 RELATEDWORK
Research ofMultimodal Large LanguageModels (MLLMs) [4, 41, 45]
is an emerging hotspot currently. The key concept is to leverage pre-
trained Large Language Models (LLMs) to incorporate information
from other modalities, such as vision, for performing multimodal
tasks like video understanding [31, 51] and embodied agent [37, 53–
55]. Remarkable works such as BLIP-2 [18], LLaVA [21] and LLAMA-
Adpater [48] demonstrate prominent generative capabilities includ-
ing visual question answering and image captioning [8, 9]. These
advancements have expanded the research of AI into new fields
and hold promising prospects for further development [22].

Medicalmultimodal chatbots. Inspired by the aforementioned
successes in the general domain, explorations into MLLMs have
progressively transitioned into the medical domain, exemplified
by models like LLaVA-Med [17] and Med-PaLM M [35]. They uti-
lize medical datasets to perform instruction tuning for MLLMs
initialized from the general domain and thus create potential appli-
cations in medical scenarios, such as medical VQA. For instance,
LLAVA-Med utilizes instruction-tuning data [27] generated from
the PMC-15M [49] dataset to train a multimodal medical chatbot.
Consequently, it extends LLaVA to the medical domain.

Although LLaVA-Med and our proposed LLaVA-Ultra share a
similar base model LLaVA, they differ significantly: (𝑖) Model ar-
chitecture. LLaVA-Med is based on the base model LLaVA without
significant modifications. However, we propose effective enhance-
ments to the model structure to adapt the characteristics of medical
data. It primarily focuses on improving comprehension of sub-
tle visual semantics and adapting to data redundancy in medical
scenarios. Thus, our LLaVA-Ultra improves effectiveness and ro-
bustness in medical applications. (𝑖𝑖) Data source and characteristic.
LLaVA-Med relies on rougher internet-based data PMC-15M [49],
whereas our model utilizes professional detailed data first-hand
sourced from the hospital. It incorporates data redundancy and

data similarity and is more relevant to real-world healthcare scenar-
ios, placing higher requirements on modeling capabilities than the
former. LLaVA-Med’s data is in English, while ours is in Chinese.
Other commonly used datasets such as MedICaT [32], ROCO [26]
and MIMIC-CXR [14] exhibit similar limitations as above.

Chinese medical chatbots. Medical assistants are emerging
in the Chinese language field as well. Notably, BenTsao [38] in-
tegrates Chinese medical knowledge bases into both the training
and inference phases of LLMs, culminating in the development of a
medical chatbot in the Chinese language. This approach mirrors
the construction method adopted by most existing Chinese medical
chatbots, such as MedicalGPT [44], HuatuoGPT [47], DoctorGLM
[43] and XrayGLM [40]. However, to the best of our knowledge,
XrayGLM stands as the only existing multimodal Chinese medical
chatbot capable of processing image inputs. Nevertheless, it relies
on relatively coarse data and primarily focuses on chest X-rays, thus
lacking the breadth and diversity of data. Meanwhile, the presented
model response examples are diagnostics mainly for images with-
out lesions, lacking results for diverse medical images. And it fails
to produce more detailed answers. In contrast, our proposed model,
LLaVA-Ultra, offers substantial enhancements in these respects.

3 MULTIMODAL CONVERSATIONAL MODEL
IN CHINESE MEDICAL DOMAIN

3.1 Ultrasound Concept Feature Alignment
We employ a network architecture that is based on the multimodal
conversation model LLaVA, incorporating a projection module to
link the visual encoder with the language model. The model param-
eters are initialized with weights from LLaVA-Med in the English
medical domain, followed by finetuning [39] using medical domain
instructions derived from our Chinese ultrasound dataset. For each
paired sample, given textual instructions 𝑋𝑞 and image inputs 𝑋𝑣 ,
we ask the model to produce answers 𝑋𝑎 related to the original
caption 𝑋𝑐 , such as giving a diagnosis or describing visual contents.
The instruction tuning process can be formulated as follows,

𝑝 (𝑋𝑎 |𝑋𝑐 , 𝑋𝑣, 𝑋𝑞) =
𝐿∏
𝑙=1

𝑝𝜃 (𝑥𝑙 |𝑋𝑐 , 𝑋𝑣, 𝑋𝑞, 𝑥1:𝑙−1), (1)

where 𝜃 is the network parameters to be optimized. Following the
approach of LLaVA-Med, we conduct training in two stages. The
first stage involves aligning ultrasound images with corresponding
medical concepts using simple instructions. In the second stage,
we utilize diverse instructions generated by GPT-3.5 [23] to enable
our model to address free-form conversations. During training,
we freeze the visual encoder and most of the LLM weights and
update the parameters of the projection layers, LoRA [10], and our
designedmodules for enhancement. Through iterative optimization,
the model assimilates a substantial volume of new ultrasound visual
information and aligns it with medical textual concepts. As a result,
it can serve as an ultrasound visual chatbot.

3.2 Visual Enhancement
Most existing MLLMs utilize the CLIP series [7, 29, 33] as visual
modules, incorporating features from deep layers that represent
the global context as inputs to the LLM. However, it may result
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Figure 2: Overview of our proposed LLaVA-Ultra. Beyond employing the conventional MLLM’s architecture, it achieves visual
enhancement via a fusion module to incorporate fine-grained SAM features. Additionally, our model can adapt to the data
redundancy commonly occurring in medical scenarios by two designed automatic sampling strategies.

in less fine-grained visual perception in MLLMs. Additionally, the
improvement of MLLMs is hindered by the limitations of the visual
branch [19, 30, 42], primarily due to the unbalanced scales of visual
and language models (e.g. ViT-Large-300M vs. LAMA-7B/13B) [13].
Therefore, there is a need for visual enhancement in MLLMs, espe-
cially in the medical domain where image information is subtle. To
address this issue, we integrate the Segment Anything Model (SAM)
[16], effective in capturing finer-grained features, as an extra visual
encoder and further incorporate it through a fusion strategy, as
shown in Fig. 2. Specifically, the input images undergo processing
by both the CLIP and SAM (ViT-Large-based) encoders 𝐹1, 𝐹2 to de-
rive visual features and then align them with the linguistic feature
space of the LLM through corresponding projection modules 𝑃𝜃1 ,
𝑃𝜃2 . We combine the resultant features 𝐻1, 𝐻2 using a learnable
weight parameter 𝛼 for feature fusion as follows,

𝐻1 = 𝑃𝜃1 (𝐹1 (𝑋𝑣)), 𝐻2 = 𝑃𝜃2 (𝐹2 (𝑋𝑣)),
𝐻𝑣 = 𝛼 · 𝐻1 + (1 − 𝛼) · 𝐻2 .

(2)

It enables an appropriate balance between the two typical visual fea-
tures. The fused feature𝐻𝑣 enriches with detailed local information,
such as the texture of lesion areas. It is subsequently concatenated
with the instruction tokens to serve as input for the LLM, thereby
enhancing the fine-grained visual perception of the MLLM.

Discussion. (𝑖) Medical domain adaptation. This is particularly
crucial for medical images, where features like lesion areas are
often more subtle compared to natural images. (𝑖𝑖) Parameter-
efficient scheme. It validates the feasibility of visual enhancement

in a parameter-efficient way for multiple frozen visual encoders.
(𝑖𝑖𝑖) Model extension. In addition to SAM, it can be generalized to
explore the application value of other vision models for MLLMs.

3.3 Adaptive Sampling for Data Redundancy
Data redundancy is commonly encountered in clinical scenes, where
there is a group of images corresponding to the same text but only
some images are valid. To effectively deal with this scenario while
balancing computational cost, we devise an adaption module. For
such a paired instance, we calculate theweight scores of the grouped
𝑘 images based on the features obtained from the visual-language
projection. Then we sample the image with the highest score as the
valid one that best matches the specifics of the text. Specifically, we
design two adaptive sampling strategies, as shown in Fig. 2:

(𝑎) Feature scoring strategy.We use the projected image fea-
ture 𝐻𝑣 as the weight score, as the optimization of the projection
modules is related to the image-text alignment during training.
Since𝐻𝑣 contains multiple tokens ℎ, each focusing on different con-
tent, we avoid treating them equally, such as by simply summing
or averaging. Instead, we employ a set of learnable parameters𝑤 to
calculate a weighted average as a score. And we sample the image
with the highest score as the valid one to utilize in this group, i.e.,

𝑠𝑖
𝑓 𝑒𝑎

=

𝑑∑︁
𝑗=1

𝑤 𝑗 · ℎ 𝑗 ,

𝑠𝑢
𝑓 𝑒𝑎

= 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔({𝑠𝑖
𝑓 𝑒𝑎

}), 𝑖 = 1, 2, . . . , 𝑘,

(3)



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

where𝑑 is the number of channels in feature𝐻𝑣 . Thus, theseweights
can be progressively optimized during training to focus on tokens
that are more expressive of the relevance of the image to the text.

(𝑏) Attention scoring strategy. The strategy above indirectly
learns to align during training. However, in our dataset, each text
instance contains sufficient information to directly match the text
with the most suitable image by comparing the text with each im-
age’s features. For instance, if the instruction’s question pertains
to the diagnosis, we can utilize the descriptive textual ultrasound
findings. We leverage the first 𝑁 LLM layers to perform cross at-
tention in Visual Transformer (ViT) [6, 36] of each image feature
in the paired instance and the same text of ultrasound findings 𝐻𝑡 ,
i.e.,

𝑠𝑖𝑎𝑡𝑡𝑛 = 𝐴𝑡𝑡𝑛(𝐻 𝑖
𝑣, 𝐻𝑡 ), 𝑖 = 1, 2, . . . , 𝑘 . (4)

The obtained scores directly reflect the relevance of each image
to this same text. Considering the absence of additional textual
knowledge during inference, we treat these attention scores as
pseudo labels and calculate the cross-entropy loss with feature
scores 𝑠𝑓 𝑒𝑎 above after normalization, i.e.,

𝐿𝑎𝑑𝑟 = −
𝑘∑︁
𝑖=1

𝑁𝑜𝑟𝑚(𝑠𝑖𝑎𝑡𝑡𝑛) log(𝑁𝑜𝑟𝑚(𝑠𝑖
𝑓 𝑒𝑎

)). (5)

By optimizing the weight parameter 𝑤 with this knowledge, we
can better prioritize tokens and thus screen the image that strongly
correlates with the text.

Discussion. (𝑖) Fitting medical scenarios. Our method leverages
redundant medical data, which is highly relevant and practical for
physicians’ diagnostic processes in real-world scenarios. (𝑖𝑖) Com-
putational efficiency. Instead of captioning all images corresponding
to the same text and selecting the most accurate results, we offer
a computationally low-cost approach. We directly select feature
scores or use a small-scale attention module to screen effective im-
ages before feeding them into the LLM. Even with the employment
of the redundancy adaptation module and the additional visual
encoder mentioned above, it only takes 60 hours on 4 48G A40s
for training. (𝑖𝑖𝑖) Data utilization. In the second screening method
above, we leverage the textual information of ultrasound obser-
vations, a previously untapped resource. It often directly reflects
the image’s information more intuitively than diagnostic results,
thus better identifying valid images. Additionally, the ultrasound
observations text and the subsequent diagnostic results input into
the LLM are strongly interconnected. The former serves as the
surface-level description, while the latter offers a summary and
in-depth characterization of the former. This intrinsic relationship
facilitates the extraction of more detailed and profound medical
semantics during learning. (𝑖𝑣) Domain adaptation. Although the
focus of this paper is on the ultrasound domain, it can be general-
ized to other medical imaging modalities, such as CT, CXR, and MRI.
There are also requirements for fine-grained analysis and cases of
data redundancy in these domains. It is possible to utilize features
and knowledge of these domains to construct the corresponding
assistants similar to our proposed method.

4 PROFESSIONAL ULTRASOUND
MULTI-MODAL DATA

4.1 Ultrasound Multi-modal Data
There is a lack of Chinese medical datasets to perform finetuning
for MLLMs. To fill this gap, we present a first attempt to utilize a
large-scale Chinese multimodal ultrasound hospital dataset and it
has the noteworthy following characteristics: (𝑖) First-hand source
and diversity. Our dataset is directly sourced from the hospital
database. It consists of over 20k medical text descriptions paired
with 170k ultrasound images with more than 20 examination sites,
such as heart, thyroid, breast, uterus, prostate, etc. Such large-scale
first-hand Chinese medical data has rarely been achieved in pre-
vious works. (𝑖𝑖) Professionality. It contains comprehensive and
detailed clinical text such as examination sites, medical histories,
ultrasound observations, diagnosis, etc. Professional doctors offer
all the content, ensuring data reliability, which is rarely realized in
prior datasets. It makes our work a valuable contribution to apply-
ing clinical information to scientific research. (𝑖𝑖𝑖) Challenges within
ultrasound modality. Medical imaging modalities used in existing
models typically include chest X-ray (CXR), computed tomography
(CT), and magnetic resonance imaging (MRI). It’s relatively possible
for even a layman to identify the body parts in these images, such
as the head and chest. However, when confronted with ultrasound,
its imaging characteristics make it difficult for non-physicians to
achieve this task. This inherent professional barrier poses a greater
challenge for MLLMs to learn medical semantics like a layman.
(𝑖𝑣) Fine granularity. Our data contains many samples with high
similarity due to the hospital source, a feature frequently absent in
existing medical datasets. Thus, it places a higher requirement on
fine-grained medical understanding. (𝑣) Respect for medical reality.
Datasets like PMC-15M used by LLaVA-Med typically feature paired
instances where a single image corresponds to a text. However, it
is often inconsistent with clinical practice where data redundancy
exists. Our first-hand dataset addresses this by capturing many
instances where one text is paired with multiple images stemming
from frames in the same ultrasound video. For example, when the
text describes a lesion, only images of frames scanned to the lesion
are considered valid for mirroring the text, while those without
lesion display are invalid. Yet it lacks intuitive labels for validity
determination. Hence, it challenges the model to distinguish valid
images for reasoning and holds practical relevance.

4.2 Ultrasound Instruction-following Data
Inspired by LLaVA-Med, we generate Chinese ultrasound instruction-
following data as Fig. 3. For one caption 𝑋c paired with 𝑘 images
𝑋v, we create an instruction-following example with question 𝑋q:

Human : 𝑋q 𝑋
1
v ... 𝑋

𝑘
v <STOP>\n Assistant : 𝑋c<STOP>\n

Due to the diverse types of captions and sampled questions, the in-
structions require answers related to examination sites, ultrasound
observations, or medical diagnoses. To validate data rationality,
we produce two versions of instruction data: (𝑖) Our ultrasound
dataset that considers examination sites as cues in questions. (𝑖𝑖) A
dataset of similar size without sites mentioned in questions, while
expecting the model to state it in answers. They are utilized in
experiments to evaluate their impact on trained LLaVA-Ultra.
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Ultrasound Multimodal Data Example 

Examination Site: 

Cardiac color Doppler ultrasound, left heart function measurement, ventricular wall 
motion analysis, tissue Doppler imaging  

Ultrasound Observation : 

EF: 67.3% AAO: 36.9 mm AO: 33.8 mm LA: 31.1 mm PA: 23.8 mm No significant 
abnormalities in aortic and pulmonary valve morphology, echogenicity, or activity 
were noted. The internal diameter of each atrium was normal. The morphology, echo, 
and activity of the mitral and tricuspid valves were not significantly abnormal. The 
interventricular septum and the posterior wall of the left ventricle showed retrograde 
motion. The left ventricular wall activity was not abnormal. There was no continuous 
interruption of the cardiac structures, and no obvious liquid dark areas were seen in the 
pericardial cavity.CDFI: A small amount of regurgitant signal was seen in the tricuspid, 
mitral, and aortic orifices.TDI: Diastolic E/A at the level of the mitral annulus was >1.0.  

Diagnosis : 

Mild tricuspid, mitral, and aortic regurgitation  

     Data redundancy:  
a single text instance (left) paired  
with k images, only some are valid  

(e.g. display lesions mentioned in text ) 

··· 

Visual Instruction-Following Conversations: 

User:  What body part is this ultrasound image from and what test is it?  

Assistant: It is a cardiac color Doppler ultrasound, left heart function measurement, wall motion analysis, and tissue Doppler imaging.  

User:  Describe the condition of the heart in this ultrasound image.  

Assistant:  In this ultrasound image, all structures of the heart are normal, including the aortic valve, pulmonary valve, and mitral and 

tricuspid valves. The septum and posterior wall of the left ventricle are in retrograde motion, and there is no abnormal left ventricular 

wall motion. There were no discontinuous structures, and there were no obvious dark areas of fluid in the pericardial cavity.  

User:  What about the morphology and activity of the aortic and pulmonary valves?  

Assistant:  The morphology and activity of the aortic and pulmonary valves are within normal limits.  

User: Can you describe the regurgitant signal? 

Assistant:  On CDFI, a small amount of regurgitant signal can be observed in the tricuspid, mitral and aortic orifices.  

User: Please give a diagnosis based on this information. 

Assistant:  Based on the ultrasound findings, the diagnosis is mild tricuspid, mitral and aortic regurgitation. 

Source: hospital 
Language: Chinese 

Figure 3: An example of our GPT-3.5 [23] generated instruction-following data. Top: A professional multimodal instance from
our Chinese ultrasound hospital dataset. There exists data redundancy where a text corresponds to multiple images, but only
those mirroring textual descriptions are valid (e.g., display lesions mentioned in the text). Bottom: The instruction-following
data generated by GPT-3.5 using the textual descriptions.

5 EXPERIMENTS
5.1 Implementation Details
Datasets. Besides our large-scale hospital ultrasound dataset, we
evaluate models on two open-source medical visual question and
answer (Med-VQA) datasets, as illustrated in Tab. 1: (𝑖) SLAKE [20]
is an English-Chinese bilingual dataset and contains 642 images
and over 7000 Q&A pairs covering 12 diseases and 39 organs, with
CT, MRI, and X-Ray imaging modalities. The Q&As span various
topics such as diagnosis, anatomical structure, and lesion location.
Presently, SLAKE serves as a crucial benchmark for VQA tasks in the
medical domain for its diversity. It has been utilized for evaluation
purposes in significant medical multimodal large language model
works, such as LLaVA-Med, Med PaLM M, and PMC-VQA. (𝑖𝑖)
OpenI [5, 12] is a chest radiograph dataset from Indiana University
Hospital. XrayGLM [40] has preprocessed these unstructured data
and translated the English reports into Chinese using ChatGPT. This
can provide support in the case of insufficient open-source Chinese
multimodal medical data. Our experiments adopt this obtained set
comprising 6,436 images and 3,218 reports.

Evaluation Metrics. Based on LLaVA-Med’s evaluation metrics,
we’ve made further improvements. We tokenize model-generated

answers and ground-truth separately, then calculate metrics. For
open-set questions, we report the Exact Match (EM) score, F1 score,
Precision, Recall and Bilingual Evaluation Understudy (BLEU) score
[25]. Notably, BLEU score utilizes precise matching of 4-grams of
sequences to evaluate text generation results. We adjust the weights
of n-grams and obtain the scores with 1-gram, 2-gram, 3-gram
and the uniform set for comprehensive evaluation in accuracy and
fluency. In SLAKE, we extra report LLaVA-Ultra’s results in CT, MRI,
and X-Ray subsets and utilize accuracy scores for the closed-set.

Experiment Details. LLaVA-Ultra is initialized with weights
from LLaVA-Med in modules included in the latter. It utilizes CLIP-
ViT-L/14 and extra SAM-ViT-L as visual encoders and LLaMA-13B
as LLM. We use the linear projection for multimodal connection.
To ensure a fair comparison, we maintain parameters of compared
baseline models in accordance with the respective papers or codes
and train until loss functions converge. Data preprocessing ways
are also the same. Experiments employ 4 48GB NVIDIA A40s with
PyTorch. Models are optimized by Adam [15] with learning rate
1𝑒−3 and batch size 16.
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Table 1: Datasets for evaluation. For the bilingual dataset, the content of both language versions is essentially identical.
Therefore, we present only the data attributes of the Chinese version here.

US-Hospital SLAKE OpenI
Image Modality Ultrasound CT, MRI, X-Ray Chest X-Ray
Subset Train Val Test Train Val Test Train Val Test

Q&A Pairs 353690 11516 11346 5967 607 491 5836 200 400
Images 1604673 49994 49996 542 50 50 5836 200 400
Text 176845 5758 5673 5967 607 491 2918 100 200
Average Word Length 133 3 90
Open / Closed ✓ / ✓ / ✓ ✓ /
CHN / EN ✓ / ✓ / ✓ ✓ / ✓

Table 2: Quantitative comparisons with prior SOTA methods fine-tuned on relevant datasets. Our model performs best or equal
in the Chinese cases, demonstrating its effectiveness and robustness. Its results are acceptable in the English cases that are not
included in our Chinese-only pre-training. It indicates the knowledge of our LLM at initialization is not significantly corrupted.

Open-Set Closed-Set
Method EM F1 Precision Recall BLEU BLEU-1 BLEU- 2 BLEU-3 Accuracy

on US-Hospital Chinese dataset
LLaVA 59.50 66.97 76.65 64.78 39.50 48.29 42.30 38.83 -
LLaVA-Med 50.55 70.77 73.91 73.42 40.42 50.32 43.23 39.36 -
LLaVA-Ultra 62.00 72.17 78.84 72.67 48.62 57.71 51.51 47.95 -

on SLAKE-zh dataset
LLaVA 72.56 75.36 76.76 76.00 44.85 70.43 62.43 53.28 65.29
LLaVA-Med 75.02 77.08 78.98 77.07 49.31 72.61 65.09 56.96 73.58
LLaVA-Ultra (CT) 83.34 68.96 77.13 65.39 40.91 68.49 61.58 50.54 74.50
LLaVA-Ultra (MRI) 93.39 81.18 84.64 77.36 55.07 86.99 82.09 72.23 75.16
LLaVA-Ultra (X-Ray) 90.53 80.54 83.97 76.83 65.19 86.97 79.82 72.09 83.84
LLaVA-Ultra (All modalities) 88.99 76.85 81.88 73.15 53.95 80.76 74.39 64.90 76.77

on SLAKE-en dataset
LLaVA 76.75 75.83 77.20 75.99 15.47 72.95 61.18 37.54 65.50
LLaVA-Med 78.22 77.55 78.61 78.01 18.12 74.77 62.65 39.67 65.50
LLaVA-Ultra (CT) 77.57 69.09 71.87 68.61 19.26 71.21 53.07 30.02 51.43
LLaVA-Ultra (MRI) 73.60 60.80 67.44 58.15 8.18 58.93 37.35 15.93 64.34
LLaVA-Ultra (X-Ray) 94.67 80.07 87.21 77.10 19.66 80.57 70.06 43.99 86.27
LLaVA-Ultra (All modalities) 81.33 68.69 74.82 66.31 13.95 68.31 51.02 27.77 67.25

on OpenI-zh dataset
LLaVA 37.36 72.90 76.78 71.06 25.36 48.29 28.42 20.62 -
LLaVA-Med 35.13 74.73 79.26 71.96 27.10 50.60 30.44 22.10 -
LLaVA-Ultra 49.32 72.71 82.83 70.43 29.37 51.81 32.61 24.40 -

on OpenI-en dataset
LLaVA 41.63 56.36 61.58 54.24 17.50 39.45 21.77 13.67 -
LLaVA-Med 46.78 57.23 63.44 54.10 18.50 39.85 22.54 14.65 -
LLaVA-Ultra 41.90 56.75 61.10 55.16 18.49 40.31 22.67 14.56 -

5.2 Performance and Comparisons
We provide the comparisons between LLaVA, LLaVA-Med, and our
LLaVA-Ultra when employed as a medical visual chatbot.

For qualitative comparisons shown in Fig. 4, LLaVAmodel for the
general domain struggles with medical tasks, highlighting the gap
between domains. While tailored for the medical domain, LLaVA-
Med still inadequately addresses Chinese ultrasound scenes. It often

focuses solely on textual medical concepts in the questions and
offers vague and invalid answers that do not meet the questioner’s
needs. They tend to rely more on medical knowledge learned early
from the LLMs rather than effectively incorporating medical visual
features. This results in responses that display weak correlations
with the input images and even exhibit inaccuracy. It implies the
flaws in their model structures. In contrast, our LLaVA-Ultra model
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Examination Site:  

Cardiac color Doppler ultrasound, 
 left heart function measurement, 
ventricular wall motion analysis,  
tissue Doppler imaging 

Diagnosis:  

Mild tricuspid, mitral, and  

aortic regurgitation 

Observation: 

EF: 67.3% AAO: 36.9 mm AO: 33.8 mm LA: 31.1 mm PA: 23.8 mm No 
significant abnormalities in aortic and pulmonary valve morphology, 
echogenicity, or activity were noted. The internal diameter of each atrium 
was normal. The morphology, echo, and activity of the mitral and tricuspid 
valves were not significantly abnormal. The interventricular septum and the 
posterior wall of the left ventricle showed retrograde motion. The left 
ventricular wall activity was not abnormal. There was no continuous 
interruption of the cardiac structures, and no obvious liquid dark areas were 
seen in the pericardial cavity. CDFI: A small amount of regurgitant signal 
was seen in the tricuspid valve orifice, mitral valve orifice, and aortic valve 
orifice.TDI: Diastolic E/A >1.0 at the level of the mitral annulus. 

Examination Site:  

Ultrasound of Liver, Gallbladder,  

Pancreas and Spleen 

Diagnosis:  

Fatty liver; liver cysts 

Observation: 

The liver was full in shape, with a  
smooth envelope, and a cystic dark area was seen in the liver, about 0.70 
cm in size, with a thin and smooth wall, good internal translucency, and 
enhanced posterior echogenicity; the rest of the parenchymal echogenicity 
was enhanced, dense, and poorly distributed, and the vascular network 
was poorly defined. The left and right intrahepatic bile ducts were not 
significantly dilated. The shape and size of the gallbladder were normal, 
the wall of the gallbladder was smooth without thickening, the bile in the 
lumen was well transmissible, No abnormal echoes were seen inside the 
gallbladder. The internal diameter of the common bile duct was not 
significantly widened, and there was no obvious abnormality in the lumen. 
The spleen was normal in shape and size, and the echoes in the spleen 
were uniform and small. The pancreas was normal in shape and size, with 
homogeneous internal echogenicity, no obvious dilatation of the main 
pancreatic duct, and no obvious foci of occupancy. 

Where in the body does this ultrasound image come  from? 

This ultrasound is from  color  Doppler   ultrasound,  left heart  function
 measurement,  ventricular  wall  motion   analysis,  tissue Doppler   

 

imaging

 

This ultrasound is from an ultrasound scan of the heart.

This ultrasound image is from a heart exam.

Where in the body does this ultrasound image come  from? 

 

 
 

 

What information does this ultrasound of cardiac color Doppler 
ultrasound, left heart function measurements, ventricular wall motion 

It is from ultrasound of  liver, gallbladder, pancreas and spleen 

.
It is from a pregnancy test, specifically a fetal ultrasound.

This ultrasound is from the stomach.

analysis, and tissue Doppler imaging show? 

The heart had normal internal diameters in all atria, normal internal 
diameter of the left atrium, and no significant abnormalities in the 

          
           
           

          
            

            
            

           
             
       

morphology, echogenicity, or activity of the aortic and pulmonary valves.
The internal diameter of each atrium was normal. The morphology, echo,
and activity of the mitral and tricuspid valves were not significantly 

abnormal. The thickness of the interventricular septum and the posterior 

wall of the left ventricle was normal with retrograde motion. No abnormal 

left ventricular wall activity was seen, EF: 65%. There was no continuous 

interruption of the cardiac structures, and no obvious liquid dark areas were 

seen in the pericardial cavity. CDFI:A small amount of regurgitant signal 

was seen in the tricuspid orifice and mitral orifice. TDI:Diastolic E/A at the 

level of the mitral annulus was <1.0.

The image display shows an ultrasound of the heart showing the left 
ventricle and aorta and is color-coded to indicate the electrical activity of 

         
          

          
          

              
           

  

          
         

             
             

     

What does this ultrasound of a liver, gallbladder, pancreas, and spleen 
ultrasound show? 

the heart. This visualization provides valuable information about heart 

function and helps physicians analyze and diagnose any potential problems 

or abnormalities. The image also includes graphs showing heart rate 

variability, which can be an important indicator of overall cardiovascular 

health. If a computer monitor screen is present in the scene, it indicates that 

this information is being displayed and analyzed by a medical professional 

or researcher.

This diagram of cardiac color Doppler ultrasound, left heart function 

measurement, ventricular wall motion analysis, and tissue Doppler imaging 

shows the activity and function of the heart. It can help your doctor 

understand the condition and function of the heart, as well as assess the 

health of the heart.

. 
The shape and size of the liver were within  normal range, the peritoneum 
was smooth   . A  cystic   dark  area was   seen  in the    liver, the vascular  

             
            

            
           

             
           

              
             

          
 

network
was not clear, and the left and right intrahepatic bile ducts were not 

obviously dilated. The shape and size of the gallbladder were normal, the 

wall of the gallbladder was smooth without thickening, the bile in the 

lumen was well transmissible, and no obvious abnormal echoes were seen 

in the gallbladder. The internal diameter of the common bile duct was not 

significantly widened, and there was no obvious abnormality in the lumen.
The spleen was normal in shape and size, and the echoes in the spleen 

were uniform and small. The pancreas was normal in shape and size, with 

homogeneous internal echoes, no obvious dilatation of the main pancreatic 

duct.

The image is an ultrasound image of the liver showing its different lobes 
in what appears to be a three-dimensional view      

           
             

             
            

            
           

 
          

           
          

             

of. This type ultrasound
scan provides detailed information about the structure and function of the 

liver and can be used for diagnostic purposes. The image does not show 

any abnormalities in the liver or its blood vessels, which indicates that the 

liver appears to be healthy. The presence of the gallbladder suggests that 

the bile ducts are functioning properly and the overall image provides a 

clear view of the normal anatomy and physiology of the liver.

.
This diagram of a liver, gallbladder, pancreas, and spleen ultrasound 

shows some medical information, including the shape and location of the 

liver, gallbladder, pancreas, and spleen. This information can help doctors 

diagnose and treat a patient's disease, as well as assess a patient's health.

Give the medical diagnosis of this ultrasound image. 

      

             
          

           
            

           
         

              
          

           
             

Mild tricuspid, mitral, and aortic regurgitation

A color image showing the left ventricle of the heart, part of the 

electrocardiogram, along with a fetal heartbeat monitor. This indicates that 

the image is relevant for medical diagnosis and heart health monitoring.
The electrical activity of the heart is displayed in a polar plot.

The medical diagnosis of this diagram of cardiac color Doppler ultrasound,
left heart function measurements, ventricular wall motion analysis, and 

tissue Doppler imaging may be to assess the function and health of the heart.
Doppler ultrasound is a noninvasive cardiac test that provides information 

about the structure of the heart. Left heart function measurement measures 

function of heart's circulation to assess normalcy and function of the heart.

Give the medical diagnosis of this ultrasound image. 

 

             
      

 
           

          
        

         
         

            
      

Fatty liver

The image is an ultrasound scan of a fetal examination, showing the fetal 

pole, placenta, and umbilical cord.

.
Based on this picture of liver, gallbladder, pancreas, and spleen ultrasound,
the medical diagnosis may include the following: 1. Liver: possible 

hepatitis, cirrhosis, and hepatic fibrosis. 2. gallbladder: possible 

cholecystitis, gallbladder stones, and other diseases. 3. pancreas: possible 

pancreatitis, pancreatic cancer, and other diseases. 4. spleen: possible 

splenitis, splenic carcinoma, and other diseases. It should be noted that this 

is only a preliminary medical diagnosis.

User 

LLaVA-Ultra 

LLaVA-Med 

LLaVA 

LLaVA-Ultra 

LLaVA-Med 

LLaVA 

LLaVA-Ultra 

LLaVA-Med 

LLaVA 

User 

User 

Figure 4: Comparisons in medical visual conversations. LLaVA and LLaVA-Med tend to give vague answers irrelevant to images

and wrong results. In contrast, LLaVA-Ultra offers more correct and specific responses associated with visual contents.

delivers more correct and specific answers closely aligned with the
visual content of the input medical image. This notable performance
demonstrates the capability of LLaVA-Ultra.

Table. 2 further presents the quantitative comparison results.
We finetune LLaVA and LLaVA-Med on the training set of our Chi-
nese ultrasound hospital dataset and report their metrics on the
test set. For SLAKE and OpenI, we finetune and evaluate all three
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Table 3: Ablation study: several variants of our model structure on US-Hospital Chinese dataset.

Variant EM F1 Precision Recall BLEU BLEU-1 BLEU-2 BLEU-3

w/o. Visual enhancement 57.01 71.37 75.23 72.11 45.81 55.96 49.15 45.12
w/o. Redundancy adaption 50.13 70.57 72.37 73.91 41.03 51.57 44.24 40.08
w/o. Func.b redundancy adaption 51.86 70.95 73.75 73.84 41.52 51.09 44.21 40.39
w/o. Stage 2 tuning 54.52 71.36 75.83 72.45 43.54 53.19 46.36 42.59
w/o. Site prompt in instruction 57.48 71.57 76.84 71.63 45.13 54.61 48.03 44.31
LLaVA-Ultra full model 62.00 72.17 78.84 72.67 48.62 57.71 51.51 47.95

 
  
  

       

        
         

        
       

        
       

      
       

        
      

      

 

 

 

 

 

 

 

 

         
      

(i) User: Where is the spinal cord in this image?
LLaVA-Ultra: Bottom
Ground-truth: Bottom

(ii) User: Introduce this chest x-ray image.

LLaVA-Ultra: The x-ray shows that the heart and 

mediastinum are normal in size and shape. The lungs 

are clear without any signs of infiltrate, pneumothorax,
or effusion. There is no acute cardiopulmonary 

disease. The bony structures are intact except for 

some degenerative changes in the thoracic spine.

Ground-truth: The chest X-ray examination shows 

no evidence of acute cardiopulmonary process. The 

cardiomediastinal contours are normal and there is no 

focal consolidation, pleural effusion or pneumothorax 

identified. However, degenerative changes of the 

thoracic spine are observed. The patient also has right 

greater than left biapical bullous emphysema.

 (i) CT in SLAKE

 (ii) X-Ray in OpenI

Figure 5: Case study: downstream English tasks reveals Chi-
nese pretrain does not visibly damage early LLM knowledge.

models. The results clearly show that LLaVA-Ultra outperforms
both LLaVA and LLaVA-Med on our Chinese ultrasound dataset. It
proves the superiority of our model architecture, particularly the
visual enhancement and redundancy adaptation modules. When
evaluated on the downstream tasks of Chinese language in SLAKE
and OpenI, LLaVA-Ultra consistently delivers the best performance
across open-set and close-set questions, which demonstrates its
robustness. This suggests that our model effectively learns to map
medical semantics to correct features during training. Even on
English data subsets, LLaVA-Ultra offers acceptable results shown
in Table. 2 and Fig. 5, which may benefit from its textual knowl-
edge acquired during LLM initialization. This indicates that its
training on the Chinese dataset does not significantly compromise
this part of English knowledge [46]. We also report results in CT,
MRI, and X-Ray subsets on SLAKE besides the overall average val-
ues. Our model pretrained on ultrasound modality shows effective
adaptability across diverse imaging modalities. It highlights LLaVA-
Ultra’s robustness and versatility in accomplishing downstream
multimodal tasks after simple finetuning.

5.3 Ablation Study
To assess the validity of the model’s components, we conducted
comparative experiments on several aspects shown in Tab. 3.

Visual enhancement. To prove the necessity of visual enhance-
ment, we replace our dual visual encoders and their fusion module
with the original single CLIP encoder and observe the decrease of
all metrics in Tab. 3. This verifies the necessity of strengthening
the visual branch of MLLMs and underlines the effectiveness of our

feature fusion strategy. The integration of SAM features enables
LLaVA-Ultra to extract finer-grained visual semantics, which is a
crucial aspect of handling subtle information in medical scenarios.

Data redundancy adaptation.We remove our data redundancy
adaptation module, the metrics in Table. 3 show a significant reduc-
tion. This highlights the importance of addressing data redundancy,
which is prevalent in real medical scenarios but less noticed. In
previous works, when multiple images correspond to the same text,
such text is often assigned to each image. It results in mapping the
images that don’t mirror the specific text, i.e. redundant data, and
the valid images to a similar feature representation. This hinders the
model from learning accurate medical semantics and cross-modal
alignment. As shown in the scores, LLaVA-Ultra full model can ad-
dress this issue effectively with our adaption strategy. Specifically,
our attention scoring strategy (Func.b) leverages rich textual data
for feature alignment and thus achieves better scores compared to
the simpler feature scoring (Func.a).

Data construction.We modified the instruction data by remov-
ing the cues of the examination site from the question. Instead, we
ask a generalized question like "give the diagnosis of this ultrasound
image". Results in Tab. 3 indicate a slight decrease in evaluation met-
rics within acceptable limits. This demonstrates the effectiveness
of limited cues for the model to learn specific medical knowledge,
as well as the robustness of our model structure.

5.4 Limitation
Although LLaVA-Ultra shows impressive capabilities in Chinese
medical multimodal understanding, it still has some limitations,
including: 1) Its performance is hindered by the scale of the pre-
trained vision models. 2) Our large-scale medical dataset has not
yet included more comprehensive labels e.g., segmentation to allow
our model to engage further enhancement in visual perception.

6 CONCLUSION
We propose LLaVA-Ultra, a large Chinese language and vision as-
sistant for the ultrasound domain. To achieve this, we create a
high-quality visual-language instruction-following dataset from
the large-scale professional ultrasound database of hospitals. More
importantly, we improve the conventional visual language model
structure by performing visual enhancement and data redundancy
adaptation. It enables LLaVA-Ultra to fit the needs of fine-grained
medical information and practical clinical scenarios, thus producing
high-quality responses in medical visual conversations. On three
medical VQA datasets, LLaVA-Ultra outperforms previous SOTA in
various metrics, demonstrating its effectiveness and robustness.
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