
Under review as a conference paper at ICLR 2023

SHARED KNOWLEDGE LIFELONG LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In Lifelong Learning (LL), agents continually learn as they encounter new con-
ditions and tasks. Most current LL is limited to a single agent that learns tasks
sequentially. Dedicated LL machinery is then deployed to mitigate the forgetting
of old tasks as new tasks are learned. This is inherently slow. We propose a new
Shared Knowledge Lifelong Learning (SKILL) learning paradigm, which deploys
a population of LL agents that each learn different tasks independently and in
parallel. After learning their respective tasks, agents share and consolidate their
knowledge over a communication network, so that, in the end, all agents can mas-
ter all tasks. Our approach relies on a frozen backbone embedded in all agents at
manufacturing time, so that only the last layer (head) plus some small adjustments
to the backbone (beneficial biases) are learned for each task. To eliminate the need
for a task oracle, agents also learn and share summary statistics about their train-
ing datasets (Gaussian Mixture Clusters), or share a few training images, to help
other agents assign test samples to the correct head using a Mahalanobis task map-
per. On a new, very challenging dataset with 102 image classification tasks, we
achieve significant speedup over 18 LL baselines (e.g., > 9, 000× speedup over
single-agent EWC) while also achieving higher (and SOTA) accuracy.

1 INTRODUCTION

Lifelong Learning (LL) is a relatively new area of machine learning (ML) research, in which agents
continually learn as they encounter new tasks, acquiring novel task knowledge while avoiding for-
getting of previous tasks (Parisi et al., 2019). This differs from standard train-then-deploy ML,
which cannot incrementally learn without catastrophic interference across tasks French (1999).

Current LL research assumes a single agent that sequentially learns from its own actions and sur-
roundings, which, by design, is not parallelizable over time and/or physical locations. In the real
world, tasks may happen in different places; for instance, we may need agents that can run in deserts,
forests and snow, as well as recognize birds in the sky and fish in the deep ocean. To solve the above
challenges, we propose a new learning paradigm: Shared Knowledge Lifelong Learning (SKILL),
which extends current LL to large numbers of originally identical agents. When agents are deployed,
they may encounter different inputs and environmental conditions, execute different tasks, and there-
fore learn different knowledge. Other agents in the population could benefit if what is learned by
one agent can be shared with other agents. Such sharing of knowledge could significantly reduce
the amount of training required by any individual agent.

Our main contributions are: (1) A new learning paradigm (SKILL), which we contrast with multi-
task learning, sequential LL, and federated learning (Sec. 2). (2) A new LL benchmark dataset:
SKILL-102, with 102 complex image classification tasks. To the best of our knowledge, it is the
most challenging benchmark to evaluate LL and SKILL algorithms in the classification domain,
with the largest number of tasks, classes, and inter-task variance (Sec. 3). (3) A solution to the
SKILL problem. For efficient knowledge sharing among agents, we use a fixed backbone plus task-
specific head and beneficial biases, where knowledge is represented by small amounts of parameters
and can be easily shared among agents, with negligible knowledge consolidation cost. The need
for a task oracle is eliminated by using a task mapper, which can automatically determine the task
(and corresponding head to use) at inference time, using Gaussian Mixture Clusters (GMMC) and
Mahalanobis distance (Sec. 4). (4) Our SKILL algorithm achieves SOTA performance on three
main metrics: High LL task accuracy (less catastrophic forgetting), low shared (communication)
resources, and high speedup ratio, compared with 18 baselines (Sec. 5).

1



Under review as a conference paper at ICLR 2023

	𝑇!"

	𝑇#"

	𝑇$"
	𝑇%"

	𝑇&"

…
𝐴"

𝑅"

a)  Multi-task Learning c) Federated Learning

	𝑇!"
𝑅" 𝐴"

	𝑇!#
𝑅# 𝐴#

	𝑇!$
𝑅$ 𝐴$

	𝑇!%
𝑅%

𝐴%

	𝑇!&
𝑅&

𝐴&

𝐴'()*(+

	𝑇!" 	𝑇#" 	𝑇$"	𝑇%" 	𝑇&" …

𝐴"

𝑅"

b) Sequential Lifelong Learning

time
t-2 t-1 t+1

	𝑇!" 	𝑇#" 	𝑇$"	𝑇%" 	𝑇&" …

𝐴"

𝑅"

time
t-2 t-1 t+1

d) Shared Knowledge Lifelong Learning (SKILL)

	𝑇!' 	𝑇#' 	𝑇$'	𝑇%' 	𝑇&' …

𝐴'

𝑅'

time
t-2 t-1 t+1

	𝑇!( 	𝑇#( 	𝑇$(	𝑇%( 	𝑇&( …
𝑅(

𝐴(time
t-2 t-1 t+1

	𝑇!) 	𝑇#) 	𝑇$)	𝑇%) 	𝑇&) …
𝑅)

𝐴) time
t-2 t-1 t+1 	𝑇!* 	𝑇#* 	𝑇$*	𝑇%* 	𝑇&* …

𝑅*𝐴* time
t-2 t-1 t+1

	 Task (T) Physical Region (R) Agent (A) Agent (A) with 
all task abilities

Share knowledge
(communication) Learning time (t)legend

Comparison Parallel 
Learning

Solve 
multi tasks

Obtain 
agent(s) solve 

all tasks

Allow tasks in 
different physical 

locations

Communicate 
between 
agents

a) Multi-task 
Learning ✓ ✓ ✓ ✕ ✕

b) Sequential 
Lifelong 
Learning

✕ ✓ ✓ ✕ ✕
c) Federated 

Learning ✕ ✕ ✕ ✓ ✓
d) Shared 
Knowledge 

Lifelong 
Learning 
(SKILL)

✓ ✓ ✓ ✓ ✓

Figure 1: SKILL vs. related learning paradigms. a) Multi-task learning (Caruana, 1997): one agent
learns all tasks at the same time in the same physical location. b) Sequential Lifelong Learning
(S-LL) (Li & Hoiem, 2017): one agent learns all tasks sequentially in one location, deploying
LL-specific machinery to avoid task interference. c) Federated learning (McMahan et al., 2017):
multiple agents learn the same task in different physical locations, then sharing learned knowledge
(parameters) with a center agent. d) Our SKILL: different S-LL agents in different physical regions
each learn tasks, and learned knowledge is shared among all agents, such that finally all agents can
solve all tasks. Bottom-right table: Strengths & weaknesses of each approach.

2 SHARED KNOWLEDGE LIFELONG LEARNING (SKILL)

Assumptions: (1) A population of N agents wants to learn a total of T different tasks separated into
N physical regions. (2) Each agent i asynchronously learns 1 ≤ Ti ≤ T tasks from the distinct
inputs and operating conditions it encounters. (3) Each agent performs as a ”teacher” for its Ti

tasks, by sharing what it has learned with the other N − 1 agents; at the same time, each agent also
performs as a ”student” by receiving knowledge from the other N − 1 agents. In the end, every
agent has the knowledge to solve all T tasks. Fig. 1 contrasts SKILL with other learning paradigms.

Challenges: What knowledge should be shared? SKILL agents must share knowledge that is useful
to other agents and avoid sharing local or specialized knowledge that may be misleading, in con-
flict with, or inappropriate to other agents. The shared knowledge may include model parameters,
model structure, generalizations/specializations, input data, results of actions, specific contextual
information, etc. There are also size/memory/communication constraints for the shared knowledge.

Evaluation metrics: (1) Number N of agents and T of tasks. For simplicity and without the loss
of generality, in our experiments we focus on maximum parallelization, which is when T = N and
∀i, Ti = 1. We consider N = T = 102 challenging image classification tasks, each consisting of
learning to discriminate 2 ∼ 300 object classes. (2) CPU/computation expenditure. Wall-clock
time is the main metric of interest, so that speedup can be achieved through parallelism. Thus,
if N agents learn for 1 unit of time, wall-clock time would be 1, which is an N -fold speedup
over a single sequential agent. In practice, speedup < N is expected because of the overhead for
sharing, communications, and knowledge consolidation. Because wall clock time assumes a given
CPU or GPU speed, we instead report the number of multiply-accumulate (MAC) operations. (3)
Network/communication expenditure. Sharing knowledge over a network is costly. To relate
communications to computation, we assume a factor α = 1, 000 MACs / byte transmitted. (4)
Performance, we use aggregated (averaged) performance over all T tasks (correct classification
rate over all tasks). Note that there is no task oracle at test time. After training, agents should be
able to handle any input from any task without being told which task that input corresponds to.
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Comparison SKILL-102 Visual domain 
decathlon Cifar100 F-CelebA Fine grained 

6 tasks

# Tasks 102 10 20 10 6

# Classes 10,418 3,128 100 20 1,943

# Images 3,325,244 1,659,142 60,000 1,180 1,440,086

Max( 𝝙
accuracy/difficulty) 99.60% 97.56% 27.45% 36.36% 49.50%

# Different 
classification target 5 2 1 1 2

Mix image style 
(nature/artifact) ✓ ✓ ✓ ✕ ✓

Mix super/fine-class
classification ✓ ✓ ✕ ✕ ✓

(a) (b)

Figure 2: (a) SKILL-102 dataset visualization. Task difficulty (y-axis) was estimated as the accuracy
of a ResNet-18 trained from scratch on each task for a fixed number of epochs. Circle size reflects
dataset size (number of images) (more dataset vis in Appen). (b) Comparison with other benchmark
datasets including Visual Domain Decathlon (Ke et al., 2020), Cifar-100 (Krizhevsky et al., 2009),
F-CelebA (Rebuffi et al., 2017a), Fine-grained 6 tasks (Russakovsky et al., 2014) (Wah et al., 2011),
(Nilsback & Zisserman, 2008), (Krause et al., 2013), (Saleh & Elgammal, 2015), (Eitz et al., 2012)

3 SKILL-102 DATASET

We use image classification as the basic task framework and propose a novel LL benchmark dataset:
SKILL-102 (Fig. 2). SKILL-102 consists of 102 image classification datasets. Each one supports
one complex classification task, and the corresponding dataset was obtained from previously pub-
lished sources (e.g., task 1: classify flowers into 102 classes, such as lily, rose, petunia, etc using
8,185 train/val/test images; task 2: classify 67 types of scenes, such as kitchen, bedroom, gas station,
library, etc using 15,523 images; details in Appendix). Note that we have also successfully applied
SKILL to visually-guided reinforcement learning (RL), using 54 Atari games (not shown here for
brevity).

In total, SKILL-102 comprises > 3.3M images in > 10k classes over 102 tasks. For the experiments
below, we subsampled the dataset slightly to allow some of the sequential baselines to converge: we
capped the number of classes/task to 300 (only affected 4 tasks), and used either up to 5, 120 training
images for tasks with c ≥ 60 classes, or up to 2, 560 for tasks with c < 60. Thus, we used 102 tasks,
total 4,785 classes, total 262,901 training images. After training, the algorithm is presented 27,757
test images and decides, for each image, which of the 4,785 classes it belongs to (no task oracle).
To the best of our knowledge, SKILL-102 is the most challenging image classification benchmark
for LL and SKILL algorithms, with the largest number of tasks, number of classes, and inter-task
variance.

4 SKILL ALGORITHM DESIGN

Fig. 3 shows the overall pipeline and 4 roles for each agent. Agents share a common frozen backbone
and only a ”head” (last layer + beneficial biases) is trained per agent and then shared among agents.
This makes the cost of both training and sharing very low. Receiving agents simply accumulate
received heads and GMMC clusters in banks, and the GMMC clusters form a task mapper. At
test time, we first run input data through the task mapper to recover the task, and then invoke the
corresponding head to obtain the final system output. In addition to GMMC, we also implemented
a Mahalanobis task mapper, which performs slightly better, at a higher sharing cost.

Pretrained backbone: We use the xception (Chollet, 2017) pretrained on ImageNet . The backbone
is embedded in every agent at manufacturing time and is frozen. It processes 299× 299 RGB input
images, and outputs a 2048D feature vector.

Beneficial Biases: To address potentially large domain shifts between ImageNet and future tasks
(e.g., line-drawing datasets, medical imaging datasets, space imaging datasets), we designed bene-
ficial biases (BB). Inspired by BPN (Wen et al., 2021), BB provides a set of task-dependent, out-of-
network bias units which are activated per task. These units take no input. Their constant outputs
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Figure 3: SKILL algorithm design. Left: overall pipeline, where agents are deployed in different
regions to learn their own tasks. Subsequently, learned knowledge is shared among all agents. Right:
Zoom into the details of each agent, with 4 main roles: 1) Training: agents use a common pre-
trained and frozen backbone, stored in ROM memory at manufacturing time (gray trapezoid with
lock symbol). The backbone allows the agent to extract compact representations from inputs (e.g.,
with an xception backbone, the representation is a latent vector of 2048 dimensions, and inputs are
299× 299 RGB images). Each agent learns a task-specific head (red triangle) for each new task. A
head consists of the last fully-connected layer of the network plus our proposed LL beneficial biasing
units that provide task-dependent tuning biases to all neurons in the network (one float number per
neuron). During training, each agent also learns a GMMC or Mahalanobis task anchor which will
form a task mapper. 2) Share knowledge with other agents: except for the fixed backbone, each
agent shares the learned task-specific head and GMMC module (or training images for Mahalanobis)
with all other agents. 3) Receive knowledge from other agents: each agent receives different heads
and GMMC/Mahalanobis task mapper anchors from other agents. All heads are stored in a head
bank and all task anchors are consolidated to form a task mapper. 4) Testing: At test time, an input
is first processed through the task mapper. This outputs a task ID, used to load up the corresponding
head (last layer + beneficial biases) from the bank. The network is then equipped with the correct
head and is run on the input to produce an output.

add to the biases of the neurons already present in the core network; thus, they provide one bias
value per neuron in the core network. This is quite lightweight, as there are far fewer neurons than
weights in the core network (22.9M parameters but only 22k neurons in xception). Different from
BPN, which works best in conjunction with a constraint-type LL method like EWC Kirkpatrick
et al. (2017) or PSP Cheung et al. (2019), and only works on fully-connected layers, BB does not
require EWC or PSP, and can perform as an add-on module on both convolutional layers (Conv) and
fully-connected layers (FC). Specifically, for each Conv layer, we have

y = Conv(x) + b+B (1)

with input feature x ∈ Rw∗h∗c, output feature y ∈ Rw′∗h′∗c′ . b ∈ Rc′ is the original frozen bias of
the backbone, and B ∈ Rc′ is our learnable beneficial bias. The size of B is equal to the number
of kernels (c′) in this Conv layer. (w, h, c and w′, h′, c′ denote the width, height and channels of the
input and output feature maps respectively.) For FC layers,

y = FC(x) + b+B (2)

with x ∈ Rl, y ∈ Rl′ , b ∈ Rl′ and B ∈ Rl′ . The size of B (beneficial bias) is equal to the number
of hidden units (l′) in this FC layer.

GMMC task mapper: To recover task at test time, each agent also learns Gaussian Mixture clusters
(GMMC) that best encompass each of its task’s data, and shares the clusters’ parameters (means +
diagonal covariances). This is also very fast to learn and very compact to share. As shown in
Fig. 3(right), during training, each agent clusters its entire training set into k Gaussian clusters:

f(x) =

k∑
i=1

ϕiN (x|µi,Σi),

k∑
i=1

ϕi = 1 (3)

We use k = 25 clusters for every task (ablation studies in Appendix). In sharing knowledge, each
agent performs a ”teacher” role on its learned task and shares the mean and diagonal covariance of
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its clusters with all other agents (students). In receiving knowledge, each agent performs a ”student”
role and just aggregates all received clusters in a bank to form a task mapper with kT clusters, keep-
ing track of which task any given cluster comes from: Dmap() = {(N1, ϕ1) : 1, ..., (NkT , ϕkT ) :
T}. At test time, a image xi is evaluated against all clusters received so far, and the task asso-
ciated with the cluster closest to the test image is chosen: Task = Dmap((Nm, ϕm)), where
m = argmaxm(P (m,xi)). The probability of image xi belonging to the mth gaussian cluster
is given by:

P (m,xi) =
ϕmN (x|µm,Σm)∑kT
n=1 ϕnN (x|µn,Σn)

(4)

Mahalanobis task mapper: To perform as a task mapper, the Mahalanobis distance (MD) method
(Lee et al., 2018) learns C class-conditional Gaussian distribution N (x|µc, Σ̂), c = 1,2, ... C, where
C is the total number of classes of all T tasks and Σ̂ is a tied covariance computed from samples
from all classes. The class mean vectors and covariance matrix of MD are estimated as: µc =
1
Nc

∑
i:yi=c xi (Nc: number of images in each class) and Σ̂ = 1

N

∑C
c=1

∑
i:yi=c(xi−µc)(xi−µc)

T ,
(N : total number of images shared to the student agent). In training, each teacher agent computes
the mean of each class within its task and randomly samples a variable number m of images per
class. In our experiments, we use m = 5 for every task. During sharing knowledge, each agent
shares the sample class means along with the saved images with all other agents. The shared images
received by the student agents are used to compute the tied covariance. Similar to GMMC, the
student agents also maintain a task mapper to keep track of which task any given class comes from.
For a test image x, MD computes the Mahalanobis distance for all classes received so far and assigns
the test image to the task associated with the smallest Mahalanobis distance, defined as:

argmin
c

(x− µc)
T Σ̂−1(x− µc) (5)

Implementation details: (1) Frozen xception backbone Chollet (2017), with 2048D latent repre-
sentation. (2) Each agent learns one ”head” per task, which consists of one fully-connected layer
with 2048 inputs from the backbone and c outputs for a classification task with c classes (e.g., task
1 is to classify c = 102 types of flowers), and BB biases that allow us to fine-tune the backbone
without changing its weights, to mitigate large domain shifts. (3) Each agent also fits k = 25 Gaus-
sian clusters in the 2048D latent space to its training data. (4) At test time, a test image is presented
and processed forward through the xception backbone. The GMMC classifier then determines the
task from the nearest Gaussian cluster. The corresponding head is loaded and it produces the final
classification result: which image class (among 4,785 total) the image belongs to. (5) The workflow
is slightly different with the Mahalanobis task mapper: while GMMC clusters are learned separately
at each teacher for each task as the task is learned, the Mahalanobis classifier is trained by students
after sharing, using 5 images/class shared among agents. (6) Agents are implemented in pyTorch
and run on desktop-grade GPUs (e.g., nVidia 3090, nVidia 1080). (More details in Appendix.)

5 EXPERIMENTS AND RESULTS
Baselines: Most baselines cannot be parallelized by design, so we use one agent to learn all SKILL-
102 tasks in sequence. For those methods that require a task oracle, we (unfairly to us) grant them a
perfect task oracle (while our approach uses imperfect GMMC or Mahalanobis). We implemented
18 baselines, which can be roughly categorized in the following 3 categories De Lange et al. (2021):
(1) Regularization methods add an auxiliary loss term to the primary task objective to constraint
weight updates. The extra loss can be a penalty on the parameters (EWC (Kirkpatrick et al., 2017),
MAS (Aljundi et al., 2018) and SI (Zenke et al., 2017)) or on the feature-space (FDR (Benjamin
et al., 2018)), such as using Knowledge Distillation (DMC (Zhang et al., 2020)). We use EWC as
the representative of this category: one agent learns all 102 tasks in sequence, using EWC machin-
ery to constrain the weights when a new task is learned, to attempt to not destroy performance on
previously learned tasks. To give the best chances of success to this baseline, the whole xception
is trained (not just the last layer). This takes a lot more training time, yet we will see below that
performance is still below ours. (2) Parameter-Isolation methods assign a fixed set of model param-
eters to a task and avoid over-writing them when new tasks are learned (SUPSUP (Wortsman et al.,
2020)), PSP (Cheung et al., 2019). We use PSP as the representative of this category: one agent
learns all 102 tasks in sequence, generating a new PSP key for each task. The keys help segregate
the tasks within the network in an attempt to minimize interference. Here again, the whole network
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(backbone + head) is trained. We used the original PSP implementation, which uses a different
backbone than ours. PSP accuracy overall hence is a bit lower because of this, and thus we focus
on trends (decline in accuracy as more tasks are added) as opposed to only the absolute accuracy
figures. (3) Rehearsal methods use a buffer containing sampled training data from previous tasks, as
an auxiliary to a new task’s training set. The buffer can be used either at the end of the task training
(iCaRL, ER (Rebuffi et al., 2017b; Robins, 1995)) or during training (GSS, AGEM, AGEM-R, GSS,
DER, DERPP (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Aljundi et al., 2019; Buzzega
et al., 2020)). We use DERPP and as the representative of this category: One agent learns all 102
tasks in sequence using a full (unfrozen) xception. After learning each task, it keeps a memory
buffer with 10,000 images in total (GEM, A-GEM, A-GEM-R, DER, DERPP, ER, FDR, GEM,
GSS, HAL) or 10 images/class of that task (Episodic Memory) that will later be used to rehearse old
tasks. When learning a new task, the agent learns from all the data for that task, plus rehearses old
tasks using the memory buffer.

Accuracy on first task: To gauge how well our approach is achieving LL (in a shared, parallelized
manner), we plot the accuracy on the first task as we learn from 1 to 102 tasks, in Fig. 4. There is
nothing special in our dataset about the first task, except that it is the first one. A good LL system is
expected to maintain its accuracy on task 1 even as more subsequent tasks are learned; conversely,
catastrophic interference across tasks would rapidly decrease task 1 accuracy with more learned
tasks. Overall, our approach maintains the highest accuracy on task 1 over time, and virtually all of
the accuracy degradation over time is due to increasing confusion in the task mapper (e.g., curves
for Mahalanobis task mapper alone and SKILL w/BB w/MD are nearly shifted versions of each
other). Indeed, once the task is guessed correctly, the corresponding head always performs exactly
the same, no matter how many tasks have been learned.

Figure 4: Accuracy on task 1 as a function of the number of tasks learned. Our approach is able
to maintain accuracy on task 1 much better than the baselines as more and more tasks are learned:
while our approach does suffer some interference, task 1 accuracy remains to within 90% of its
initial best even after learning 101 new tasks (for the 4 SKILL variants, BB=beneficial biases,
MD=Mahalanobis Distance task mapper, GMMC=GMMC task mapper). In contrast, the accuracy
of EWC, PSP, and several other baselines on task 1 catastrophically degrades to nearly zero after
learning just 20 new tasks. Best performing baselines are of the episodic buffer type (a fraction of
the training set of each task is retained for later rehearsing while learning new tasks), with a large
buffer of 10,000 images. These methods do incur higher (and increasing) training costs because of
the rehearsing, as studied in the next section.

Normalized accuracy on first 10 tasks: We compare our method to the baselines on the first 10
tasks, when up to 20 subsequent tasks are learned. A good LL system should be able to maintain
accuracy on the first 10 tasks, while at the same time learning new tasks. Because in SKILL-102
different tasks have different levels of difficulty, we normalize accuracy here to focus on degradation
with an increasing number of new tasks. For example, the accuracy of our method (SKILL w/o BB)
when learning a single task is 89.80% for task 1, but only 40.82% for task 4, which is much harder.
Here, we define a normalized accuracy as the accuracy divided by the initial accuracy just after
a given task was learned (which is also the best ever accuracy obtained for that task). This way,
normalized accuracy starts at 100% for all tasks. If it remains near 100% as subsequent tasks are
learned, then the approach is doing a good job at minimizing interference across tasks. Conversely,
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a rapidly dropping normalized accuracy with an increasing number of subsequent tasks learned
indicates that catastrophic interference is happening.

Our results in Fig. 5 show that, although not perfect, our approach largely surpasses the EWC, PSP,
and Episodic Buffer baselines in its ability to maintain the accuracy of previously learned tasks.

Figure 5: Normalized accuracy on the first 10 tasks (one per curve color) as up to 20 additional tasks
are learned. Our SKILL approach (left two charts) is able to maintain high normalized accuracy on
the first 10 tasks, while the EWC, PSP and Episodic Buffer baselines (right 3 panels) suffer much
stronger catastrophic interference.

Average normalized accuracy on all tasks after learning 1 to 102 tasks: We computed the aver-
age normalized accuracy on all tasks learned so far, after learning 1, 2, 3, ... 102 tasks, in Fig. 6: It
starts at 100% after learning 1 task (all test samples are correctly assigned to that task by GMMC
or Mahalanobis, and normalized accuracy of xception+head is 100% when there is only one task),
then decreases as more tasks are learned, eventually still achieving 81.42% correct after 102 tasks.

Figure 6: Average normalized whole-system accuracy on all tasks learned so far, as a function of
the number of tasks learned, when using GMMC (left) or Mahalanobis (right) task mappers. Our
approach is able to maintain average accuracy as the number of tasks increases.

When using GMMC task mapping, the regression line is y = −0.0005x + 0.978, which intercepts
zero for N = 1956. Thus, with the difficulty level of our dataset, we extrapolate that N = 1500 is
realistic as is. Since task interference in our system comes from GMMC, pushing beyond N = 1500
might require more than k = 25 GMMC clusters per task, which would increase CPU expenditure
a bit. When using Mahalanobis task mapping, the results are similar with an intercept at N = 2445,
though this approach incurs a higher communications cost.

Absolute accuracy: The normalized accuracy figures reported so far were designed to factor out
variations in individual task difficulty, so as to focus on degradation due to interference among
tasks. However, they also factor out the potential benefits of BB in raising absolute task accuracy.
Hence, we here also study absolute task accuracy.

We first plot the absolute accuracy for the GMMC component and for the xception+head component
(without or with BB) in Fig. 7. This shows that our SKILL-102 dataset provides a range of difficulty
levels for the various tasks, and is quite hard overall.

We then plot the absolute accuracy averaged over all tasks learned so far in Fig. 8. The absolute
accuracy for GMMC and Mahalanobis is the same as before. However, now the absolute accuracies
for the full SKILL models and for the baselines conflate two components: 1) how much interference
exists among tasks and 2) the absolute difficulty of the tasks learned so far.

Computation and communication costs, SKILL metrics: The baselines are sequential in nature,
so trying to implement them using multiple agents does not make sense as it would only add com-
munication costs but not alleviate the sequential nature of these LL approaches. For example, for
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Figure 7: Absolute accuracy per task after learning 102 tasks. (left) Absolute accuracy of the GMMC
and Mahalanobis task mappers alone shows quite a bit of variability, indicating various degrees of
overlap among tasks. (right) Absolute accuracy of the main xception+head network alone (with or
without BB, assuming perfect GMMC) also shows significant variability, indicating various degrees
of difficulty per task. Although not obvious here, the accuracy with BB is overall slightly higher
than without BB, as further explored in the next figure.

Figure 8: Average absolute accuracy on all tasks learned so far, as a function of the number of
tasks learned. Our SKILL approach is able to maintain higher average accuracy than all baselines.
BB provides a small but reliable performance boost (SKILL w/BB vs. SKILL w/o BB). The sharp
decrease in early tasks carries no special meaning except for the fact that tasks 3-5 are significantly
harder than tasks 1-2, given the particular numbering of tasks in SKILL-102.

the EWC baseline, one could learn task 1 on agent A then communicate the whole xception weights
to agent B (22.9 M parameters = 91.6 MBytes) plus the diagonal of the Fisher Information matrix
(another 22.9 M parameters), then agent B would learn task 2 and communicate its resulting weights
and Fisher matrix to agent C, etc. Agent B cannot start learning task 2 before it has received the
trained weights and Fisher matrix from agent A because EWC does not provide a mechanism to con-
solidate across agents. Thus, we set the communications cost to zero for the baselines and consider
that each baseline runs on a single agent, learning all 102 tasks sequentially.

In our approach, we use N = 102 agents that each learn 1 task. All agents learn in parallel. Each
agent is the ”teacher” for its assigned task, and ”student” for the other N − 1 tasks. Then all agents
broadcast their shared knowledge to all other agents. As they receive shared knowledge, the students
just accumulate it in banks, and possibly update their task mapper. After sharing, all agents know
all tasks (and are all identical). As mentioned above, the main source of performance degradation in
our approach is in the task mapper, which gets increasingly confused at N increases.

Fig. 9 shows the computation and network expenditures for our approach and the baselines to learn
SKILL-102 dataset. Because some algorithms run on GPU (e.g., xception backbone) but others on
CPU (e.g., GMMC training), and because our tasks use datasets of different sizes, we measure ev-
erything in terms of MACs (multiply-accumulate operations, which are implemented as one atomic
instruction on most hardware). To translate communication costs to MACs, we assume a nominal
cost of α = 1, 000 MACs to transmit one byte of data.

Our results in Fig. 9 show: (1) Our approach has very low parallelization overhead, which leads
to almost perfect speedup > 0.99N for GMMC (with or without BB), and good speedup > 0.79N
for Mahalanobis (which has more communication and student costs, but also slightly better accu-
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Figure 9: Analysis of computation and network expenditures for our approach and 4 representative
baselines, to learn all 102 tasks. Teacher CPU: Our single agents learn 102 tasks in sequence,
while each of our 102 SKILL agents learns only 1 task; hence teacher CPU time for single agents is
102× that for SKILL agents. BB adds to training time, to compute the biases. Our teacher CPU is
much lower than most baselines because we only train the last layer, while most baselines train all
layers: this is ∼ 89.7× slower for EWC and Episodic Buffer, and 36.4× slower for PSP, which uses
a smaller network. The baselines then also incur extra LL costs (computing the Fisher matrix for
EWC, PSP keys for PSP, and rehearsing old tasks for Episodic Buffer). Communications: Single
agents do not have communication costs. SKILL agents communicate either GMMC clusters or Ma-
halanobis training images. Here we assume that there is a communication bottleneck at the receiver
(student): the shared data from 101 tasks needs to be received serially, over a single networking
interface for each student. Hence our communication figures are for all the shared data from all
other 101 tasks apart from the one a SKILL agent learned itself. We convert communication costs
to equivalent MACs by assuming 1,000 MACs per byte transmitted. BB adds a small extra com-
munication cost, to transmit the biases. Student CPU: For GMMC, students do not do any extra
work (hence, student CPU is 0); for Mahalanobis, students compute a covariance matrix for all 102
tasks. Speedup factor: is just total MACs for single agent divided by total MACs for SKILL agent
and by N . Accuracy: In addition to being faster, our SKILL approach also outperforms baselines,
as detailed in several figures above. Accuracy for baselines is from Fig. 8. Slowdown factor for
baselines: this is just total MACs for each baseline divided by total MACs for our SKILL method
with GMMC, no BB. Why are baselines so slow? First they train all layers, which is necessary for
these methods and/or is aimed to improve their accuracy, but which is also 89.7× slower for EWC
or Episodic Buffer, and 36.4× slower for PSP, than training the last layer (head) only in our agents.
Then they use 1 GPU while we parallelize over 102. So that is a factor ∼ 9, 000 already for EWC
and Episodic Buffer, or ∼ 3, 600 for PSP. The rest is higher LL overhead compared to our approach
(EWC Fisher matrix, PSP keys, Episodic rehearsing of old tasks). Additional details in Appendix.

racy). Indeed, teachers just learn their task normally, plus a small overhead to train GMMC on one
task per teacher, when GMMC is used. Communications are just a few hundred KBytes (GMMC)
or a few MBytes (Mahalanobis) per task (Appendix). Students either do nothing (just accumu-
late received knowledge in a bank) or update their Mahalanobis task mapper. (2) The baselines
have comparatively much higher training cost, yet their performance is poor. Performance of
episodic buffer / rehearsing methods can be improved further by increasing buffer size, but note that
in the limit (keeping all training data for future rehearsing), this gives rise to a 5, 000× increase in
training time (Appendix). (3) One may argue that parallelism should be taken out of the slow-
down factor for the baselines. Then, instead of reporting raw slowdown factors (how much slower
a baseline is compared to our SKILL approach), one could also factor out N . In this case, EWC is
92.4N slower than SKILL solution, PSP 36.2N slower, and Episodic Buffer 264.4N slower. But
the flipside of this argument is: if 102 GPUs were available, who would use them? All baselines
would only be able to use one, while SKILL takes advantage of all 102 with near-perfect speedup.

6 CONCLUSIONS

We have proposed a new framework for shared-knowledge, parallelized LL. The approach works
much better than previously SOTA baselines, and is much faster. Scaling to N > 1500 difficult tasks
like the ones in our new SKILL-102 dataset seems achievable with the current implementation.
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A APPENDIX

A.1 SKILL-102 DATASET VS. OTHER BENCHMARKS

Fig. 10 compared the range of tasks in SKILL-102 to that of other popular benchmark dataset col-
lections.

Figure 10: Visualization of SKILL-102 and other benchmark datasets.

A.2 ALTERNATIVES

Many other approaches may seem, at first, suitable to solve SKILL. Here we summarize a few. Note
that in this project we are only interested in the approaches that would yield significant paralleliza-
tion speedup. Hence we set the bar at:

Speedup with N agents must be ≥ 0.5N .

We present estimates of computation and communication for alternative SKILL approaches, under
the following core assumptions:

• Consider a dataset D to be learned by a collection of N SKILL agents. We first split this
dataset (for now, equally) into N subsets D1, ...DN , each of size |Di| = |D|/N = D bytes.

• Each agent i assumes the role of Teacher for Di (teacher learns from Di and then shares
with all other agents j ̸= i). It also assumes the role of Student for Dj,j ̸=i (students receive
shared knowledge).

• Agent i, as a teacher, (L)earns from Di in a CPU time Lt (assumed same for all agents,
since all Di have same size), then possibly does extra (P)rocessing to enable sharing, e.g.,
distills Di into a small set of super-exemplars to share with other agents, in CPU time
Pt (also assumed same for all agents). All agents learn and process their assigned Di in
parallel. Below we report (Lt + Pt)/Lt as total time for the Teacher role in a normalized
time unit that factors out dataset size, model architecture, and CPU speed. The resulting
amount of data to be shared has size Z bytes (again assumed to be same for all agents; e.g.,
10 distilled images). We report Z as a fraction of D; thus if agent i shares its whole Di,
then Z = D and Z/D = 1.

• Every agent i broadcasts its processed data of size Z to all other agents j ̸= i in parallel
(assuming homogenous network links for now). We do not yet fix a specific relative time
scale between computation and communications and instead use a factor α such that trans-
mitting data of size D (whole dataset Di) takes as much time as α times the time required
for learning from that dataset in the teacher, Lt.

13



Under review as a conference paper at ICLR 2023

• Every agent i, now as a Student, receives data of size Z from each of the N−1 other agents
j ̸= i, and learns from it in a CPU time Ls per dataset, which we again express relative to
Lt. If Z/D is small, then we expect Ls/Lt ≪ 1, i.e., the student learns much faster than
the teacher. To learn from all other agents hence requires (N − 1)Ls/Lt normalized time
in each student. We assume that all students learn in parallel.

Thus, total SKILL time is (Lt+Pt)/Lt (normalized CPU time for teacher role, all agents in parallel)
+ αZ/D (communications) + (N − 1) × Ls/Lt (students learn from N − 1 teachers). Since each
teacher only learns 1/N of D, speedup hence is 1/[(Lt + Pt)/(N × Lt) + αZ/D + (N − 1) ×
Ls/(N × Lt)], which we want to be ≥ 0.5N .

Below we use N = 100 (number of agents, so, 0.5N is 50x), α = 0.01 (transmitting data is 100x
faster than learning from it), ϵ = 0.001 (negligible operations add 0.1% to learning time). An
interactive spreadsheet will be provided at press time to allow anyone to change these values.
A good rule of thumb is that if a method more than doubles total teacher + student CPU, then
no matter how small the transmitted data, that method alone will not achieve 0.5N speedup. Yet,
methods below which alone do not achieve 0.5N but achieve a speedup > 1 can be combined with
others as they overall contribute somewhat to speedup; e.g., dataset distillation is very slow in its
vanilla implementation, but if we first apply OOD then distill, both together may look promising.

In this project, we had set out to explore alternatives as sub-tasks, as follows:

Task 1b1 Core-set selection selects the most representative or useful exemplars to be stored in an
episodic buffer and shared with other agents (Rios & Itti, 2018). From previous work, we expect
that class-specific k-centers clustering will work well. This approach basically aims to maximally
diversify which exemplars are retained, by running a clustering algorithm and only retaining one
exemplar per cluster (its center), or a few.

Task 1b2 Out-of-distribution (OOD) detection. We assume that exemplars that trigger more learning
are more valuable to communicate to other agents. We will explore and then select one: Heuristic 1:
Train one epoch (one pass through the whole training set) of the new task first, then only compute
the amount of learning during a subsequent epoch and rank-order exemplars accordingly. Heuristic
2: Compute learning for every exemplar on every epoch, then compute the average (or median, or
max) learning triggered by each exemplar. Heuristic 3: Compute learning for every exemplar on
every epoch but normalize the learning values per average within a mini-batch (or small collection
of mini-batches). To summarize across epochs, we can again take the average (or median, or max)
of the normalized learning values of each sample across all epochs.

Task 1b3 Dataset distillation (Wang et al., 2018) combines all training exemplars into a small num-
ber of super-exemplars which, when learned from using gradient descent, would generate the same
gradients as the larger, original training set.

Task 1b4 Standard lossless data compression. For the purpose of transmitting curated exemplars
over the network, we will investigate whether standard compression techniques (e.g., zip, bzip2,
7z) may provide a benefit. On the one hand, they may reduce network burden, but, on the other
hand, they will increase computation cost (to compress and decompress the data).

Task 1b5 Lossy compression/quantization. Numerous techniques have been developed to accom-
plish this reduction, including pruning the network, quantizing the weights, and compressing the
weights. Network pruning can reduce the number of weights necessary (LeCun et al., 1990) while
maintaining performance (Malach et al., 2020) — from 9 to 13x. Weight quantization can be applied
to the weights themselves — giving a further reduction of 2.3 to 3x. This can be divided into two
methods. First, a straightforward reduction in the number of bits used to store the floating-point
values (e.g., reducing 32 bits to 16 or 8) can be done a priori, and on some devices can also lead
to a decrease in training time. Second, binning the weights into a fixed set of clusters can be done
as weight sharing a priori (Chen et al., 2015) or done after training by modifying the weights to
the cluster centers using uniform (Han et al., 2015) and non-uniform (Li et al., 2019) quantization.
Finally, the weights can be compressed to provide an additional 1.1 to 1.5x reduction. Simple com-
pression techniques, such as Huffman encoding, have been explored (Han et al., 2015; Lindstrom,
2014). Using all three methods together could decrease the data needed to be transmitted by 35 to
49x without performance loss (Han et al., 2015).
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Task 2b: Sharing biases + curated exemplars + their logits: From previous work in knowledge dis-
tillation (Furlanello et al., 2018), training a student network with the full continuous output of the
teacher (a vector of probabilities over all classes, before any final softmax), achieves better training
than using a 1-hot vector that only indicates the correct class. Thus, we will investigate whether
sharing a sender SKILL agent’s logits along with sharing its curated exemplars can help receiving
agents learn more efficiently. Network utilization will be a bit higher (to also transmit the logits; but,
for each exemplar, that is only one floating-point number per output class). However, we expect that
either performance will be increased, or the number of curated exemplars that need to be transmitted
may be reduced to achieve same performance.

We explored the following approaches for RL:

Task 2c1 Shared Q-values pretraining. Each agent, for a given task, will learn an optimal value func-
tion (or Q-function). Subsequently, to share with other agents, we will treat this as a supervised
regression problem by sharing tuples of (state, Q-values) across agents. The principles we develop
in ShELL for supervised learning can be applied here to generate optimal tuples to share. Sub-
sequently, a downstream agent will use this dataset to learn an optimal Q function for the task in
consideration. This learned Q function can then be utilized to select those actions that maximize
expected discounted rewards achieving the SKILL objective.

Task 2c2 Sharing of Task Specific Layers. Each agent begins with a pretrained backbone network
which will behave like a feature extractor. Subsequently, each agent will learn a simple task-specific
layer which uses this amortized representation to generate a Q-value, etc specific to that task. During
knowledge transfer, the task specific layers will be shared across agents, allowing them to achieve
high zero shot performance on target tasks.

Task 2c3 Motor Primitives/Skills as short sequences of actions that compose long-horizon com-
plex movements. Consider for instance the task of lifting an object. This consists of many sub-
movements like thrusting hand forward, curling fingers etc., which can be utilized for other tasks
like opening a door. Thus, a set of predefined (or learnt) primitives can be provided to each of the
agents and the agents can learn how to combine them for each of their respective tasks. Subsequently,
during knowledge transfer, we will investigate how the low-dimensional combination representation
can be shared inexpensively across agents, which informs the agent of how to best combine the
primitives to succeed in the target task. A crucial advantage of this method is that receiving agents
can now learn offline, without interacting with the environment, which is very fast.

Task 2c4 Hindsight Curriculum Learning whereby an agent is taught a complex long-horizon skill
by dividing the task into shorter, somewhat easier subtasks, which the agent first learns to do (Porte-
las et al., 2020). We will train each agent on its separate tasks. Subsequently, we will utilize insights
from the learning process of each agent to generate curricula for the tasks in hindsight. During the
knowledge transfer phase, curricula for the tasks will be exchanged and each of the agents will use
them to efficiently learn target tasks in a sample efficient manner.

Task 2c5 Offline RL Offline RL is an exciting yet fledgling field which attempts to utilize datasets of
demonstrations from experts to learn an optimal policy that maximizes expected discounted rewards.
Offline RL thus attempts to mitigate the problem of distribution shift, mentioned above, whereby a
difference between the expert policy and the untrained policy causes an action-distribution shift lead-
ing to divergence. Recent approaches in offline RL attempt to mitigate these issues by constraining
that the learnt offline policy and the expert policy are similar (measured using distance functions in
the space of policies) (Nair et al., 2020; Levine et al., 2020). In our context, we will apply offline
RL to allow agents to utilize expert demonstrations to learn an optimal policy without access to the
actual environment from which they were generated.

Task 2d1 Graph-based approaches. Objects will be recognized as collections of visual concepts
(parts) with some relative spatial configuration constraints (a graph that constrains the positions
of parts). If new objects can be learned as new configurations of known parts (e.g., a semi truck
has wheels like a car, but more numerous and arranged in a particular spatial configuration), then
sharing knowledge can be reduced to sharing the configuration graphs, which are extremely com-
pact. In a weaker version, SKILL agents would share both descriptions of new parts which they
have encountered, and the configuration graphs. This approach is of interest here because of its very
small network cost and its negligible consolidation cost at receiving agents (i.e., receiving agents
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only need to add the new received graphs (and possibly parts) to their repertoires, and do not need
to learn anything).

Figure 11: For 100 agents, a speedup of at least 50× is required in this project (green approaches).
We finally decided to share the last layer + BB as an approach that achieves near perfect paralleliza-
tion speedup (see main paper).

A.3 DATASET SUBSAMPLING DETAILS

For dataset sampling, the following rule is used:

• For Reptilia, Fungi, Insecta, and CelebA, since it contains a lot of classes, 300 sub-classes
are randomly sampled.

• For all other tasks, all classes are kept.

• For tasks with c ≥ 60 classes, round(5120/c) train images and round(512/c) test images
are used for each class. If a class does not contain enough images, then all images for that
class are used.

• For tasks with c < 60, round(2560/c) train images and round(256/c) test images are used
for each class. If a class does not contain enough images, then all images for that class are
used.

A.4 GMMC NUMBER OF CLUSTERS

Figure 12: On a small subset of tasks, we found that k = 25 GMMC clusters provided the best
compromise between generalization and overfitting.

A.5 MAHALANOBIS TRAINING MACS

The slope of MACs/image is higher until the number of training samples reaches 4,000. After that,
the slope does not change. If we use 5 images per class to train, then the number of training samples
would reach 4,000 after task 12. So for the majority of the tasks, the average MACs per image for
training the Mahalanobis distance is around 250k.

A.6 CPU ANALYSIS

We compute everything in terms of MACs/image processed. There are a few caveats:
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Figure 13: MACs for Mahalanobis training (vertical axis) as a function of number of training images
(horizontal axis).

• Data sharing does not occur per training image, but rather per task (e.g., share 25 GMMC
cluster means+diagonal covariances per task). Hence we first compute communication
bytes/task and then convert that to ”MACs equivalent” by assuming that sharing 1 byte
takes the equivalent of 1,000 MACs.

• Mahalanobis training time increases with the number of tasks received to date. Below we
assume that learning will proceed in one step using N = 101 agents each learning just
1 task (as opposed to each agent learning several tasks in sequence). Thus, Mahalanobis
training occurs once for all 101 tasks received from all teachers, on every student agent in
parallel.

• GEM training increases over time as more tasks are added:
– We first train task 1 using the whole task 1 training set (subsampled version described

above).
– Then train task 2 using the whole task 2 training set + 10 images/class of task 1 (cho-

sen randomly). In what follows we use γ to represent this fraction of data used for
rehearsing of old tasks, and we denote by S a nominal dataset size per task (2,500
images on average). Hence, for task 2, the episodic buffer method uses S × (1 + γ)
images. With a normalized training time of 1 to learn one task, learning task 2 for this
baseline takes normalized time 1 + γ.

– Then train task 3 using the whole task 3 training set + 10 images/class of task 1 + 10
images/class of task 2. Normalized training time 1 + 2γ.

– Then train task 4 using the whole task 4 training set + 10 images/class of task 1 + 10
images/class of task 2 + 10 images/class of task 3. Normalized training time 1 + 3γ.

– etc. So the total normalized training time for N tasks is (1)+(1+γ)+(1+2γ)+(1+
3γ)+...+(1+(N−1)γ) = N+γ(1+2+...+N−1) = N+γ(N−1)(N−2)/2. With
N = 101, the total training time for all tasks is N +4999.5γ. In our experiments, our
subsampled training sets averaged 254 images/class and hence γ = 10/254 = 0.04
on average, leading to a total normalized training time of 299 (broken down as a cost
of 101 to learn the from 101 datasets, plus 198 to rehearse old tasks as we learn new
tasks).

– This is for γ = 0.04 but performance is low, so using a higher γ is warranted for
the episodic buffer approach. This is very costly, though. In the limit of retaining
all images, which would give best performance, the training time of this approach is
101 + 4999.5 = 5100.5 times the time it takes to learn one task. So, while the single-
agent will require 5100.5× T to learn 101 tasks sequentially, our approach will learn
all 101 tasks in parallel during just T .

Additional details used for our computations are in Fig. 14.
• Some baselines including top-performer DERPP capped the episodic buffer to at most

10,000 images instead of growing it at a rate of 10 images/class. That is, after task 1, the
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Figure 14: Additional details for how we compute MACs and speedup.

buffer will contain the whole task 1 training set (4,552 images). Training task 2 will learn
from the task 2 training set + the buffer. Thus, after task 2, the buffer will contain 4,552
(from task 1) + 5,092 (from task 2) = 9,644 images. For subsequent tasks, some selection
method is then deployed, by which some images from older tasks will be removed from
the buffer as images from new tasks are inserted, such that total buffer size does not exceed
10,000 images. Since our training sets averaged 262, 901/102 = 2, 577.5 images/task,
learning task i > 2 takes on average (2, 577.5 + 10, 000)/2, 577.5 = 4.88× more time
than if the replay buffer was not used (naive SGD that would catastrophically fail). For 102
tasks, the total learning time is hence ∼ 498× the average time to learn a single task using
plain SGD.

A.7 SUMMARY OF OUR NEW SKILL-102 FOR IMAGE CLASSIFICATION

NOTE FOR REVIEW: This summary is slightly outdated, 4 datasets have changed. We will update
by the time of the camera-ready version.
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A.8 SHARING TASK INFORMATION TO PROMOTE LIFELONG LEARNING

The analysis below includes 2 options not exercised in the main text of this paper:

• Head2Toe: If the input domain encountered by an agent is very different than what the
frozen backbone was trained on, sharing only the last layer(s) + BPN biases may not al-
ways work well, because the features in the backbone are not able to well represent the
new domain. Our backbone is pretrained on ImageNet, which is appropriate for many im-
age classification and visually-guided RL tasks in the natural world. However, the latent
features may not be well suited for highly artificial worlds. This was recently addressed
by (Evci et al., 2022), who showed that this problem can be alleviated using a last layer
that connects to several intermediary layers, or even to every layer in the network, as op-
posed to only the penultimate layer. Hence, instead of sharing the last layer, we may share
a so-called Head2toe layer when a large domain shift is encountered. Note that AR will
also be used in this case as it is another way to counter large domain shifts: the AR pattern
essentially recasts an input from a very different domain back into the ImageNet domain,
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then allowing the frozen backbone to extract rich and meaningful features in that domain.
Also see Parisi et al. (2022) for ideas similar to Head2toe, with applications in RL. Unfor-
tunately, the CPU cost of this approach is prohibitive with respect to 0.5N speedup.

• Adversarial reprogramming (AR) (Elsayed et al., 2018): Adversarial reprogramming is
quite similar in spirit to BB, with the main difference being that it operates in the input
(image) space as opposed to BB operating in the activation space. In adversarial repro-
gramming, one computes a single noise pattern for each task. This pattern is then added
to inputs for a new task and fed through the original network. The original network pro-
cesses the combined input + noise and generates an output, which is then remapped onto
the desired output domain. Unfortunately, the CPU cost of this approach is prohibitive with
respect to 0.5N speedup.

We denote the number of BB biases by N in what follows (for xception, N = 17, 472). If Head2toe
connects to the same feature maps as BB, then the number of weights is N × c for c output classes.
We assume that each task is modeled with k GMMC clusters (k = 25 currently), and each is
represented by a 2048D mean and 2048D diagonal covariance. We denote by 4 the number of bytes
per floating point number.

A.8.1 FOR A CLASSIFICATION TASK WITH c CLASSES:

An agent receives an image as input and produces a vector of c output values, where the highest
output value is the most likely image class for the input image.

Shared params and data Size (bytes) Implemented: N = 17, 472, c = 10, k = 25
Last layer weights 2048× c × 4 82 KBytes
BB biases N× 4 70 KBytes
GMMC clusters k × (2048 + 2048)× 4 409 KBytes
Optional: Head2toe adds N × c × 4 adds 699 KBytes
Optional: AR pattern adds 299× 299× 3 adds 268 KBytes

Total sharing per task in our current implementation: 82+70+409 = 561 KBytes/task.

When using Mahalanobis, 409 KBytes of GMMC clusters is replaced by 5 input images, which is
5× 299× 299× 3 = 1.34 MByte, for a total of 1.49 MByte/task shared.

A.8.2 FOR A VISUALLY-GUIDED RL TASK WITH m POSSIBLE ACTIONS:

An RL agent receives video frames as input, and then selects, for each frame, one of m possible
actions. This scenario fits the Atari games RL setup where inputs are screenshots from the game
and actions are joystick movements. Previously, we considered a 3-layer head, but for the current
experiments one layer was sufficient.

Shared params and data Size (bytes) Implemented: N = 17, 472,m = 5
Last layer weights 2048×m× 4 40 KBytes
BB biases N× 4 70 KBytes
GMMC clusters k × (2048 + 2048)× 4 409 KBytes
Optional: Head2toe adds N ×m × 4 adds 349 KBytes
Optional: AR pattern adds 299× 299× 3 adds 268 KBytes

Total sharing per task in our current implementation: 40+70+409 = 519 KBytes/task.
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A.9 GMMC VISUAL EXPLANATION

GMMC task mapper. (left) Each
teacher clusters its entire train-
ing set into a number of Gaussian
clusters. Here, a variable number
of clusters is shown for each task,
but in our results below we use
25 clusters for every task. Each
teacher then shares the mean and
diagonal covariance of its clus-
ters with all students. (right) Stu-
dents just aggregate all received
clusters in a bank, keeping track
of which task any given cluster
comes from. At test time, a sam-
ple is evaluated against all clusters
received so far, and the task asso-
ciated with the cluster closest to
the test sample is chosen.

A.10 DEALING WITH OVERLAPPING TASKS

When tasks overlap, the task mapper may become confused. Here we present some discussion on
this issue. Overlap per se is not necessarily a problem for SKILL, as long as the testing and scoring
metrics can correctly establish a set of equivalence classes among overlapping labels. Consider the
following example:

• Agent 1 learns a flower classification task A which, among others, contains a class for
”daisy”. Agent 2 learns task B which contains a class ”Bellis perennis”.

• Because Bellis perennis is the Latin name for common daisy, it is expected that there will
be overlap among the GMMC clusters for tasks A and B, as the training images for these
two classes will likely look very similar.

• We believe that this is acceptable in our framework, as long as the testing and scoring
mechanisms can correctly handle it. For example, consider a test image that comes from
test set A and has a ground truth label of ”daisy”. If the task mapper assigns that image to
task B, under naive scoring, we would immediately declare a failure of the task mapper and
abort the processing of this image. However, that is potentially a mistake, as head B might
still be able to correctly classify this image. Indeed, if one was to allow head B to run, and
the output was Bellis perennis, this should be counted as an overall success for the SKILL
system. This requires that it is somewhere known that daisy of task A is the same thing as
Bellis perennis of task B.

We have not yet made equivalence assignments in the SKILL-102 dataset. We are in the process of
starting to do this work. We are also starting to establish a protocol for assigning these equivalences
carefully. Indeed, generalizing over the above example, one may need to establish a full probabilistic
ontology as opposed to a simple list of hard equivalences. For example, an image of a tiger may trig-
ger the task mapper to invoke a head trained on various domestic cats, finally outputting a particular
domestic cat breed, e.g., ”American shorthair” (which has stripes, somewhat like tigers). Although
this would be a mistake, it is not as bad as if a head for vehicles was invoked by the task mapper,
resulting in a final vehicle type as output, e.g., jeep. Thus, in our probabilistic ontology, tiger might
be related to various domestic cats more closely than it is to vehicles. Thus, likely we will leverage
existing, large ontologies, like WordNet (Miller, 1995) or ConceptNet (Liu & Singh, 2004), to assist
with assigning graded degrees of equivalence among any pairs of classes from all datasets of all
tasks. Using these ontologies, we will be able to compute a conceptual distance between tiger and
American shorthair, with the expectation that it should be shorter than the distance between tiger
and jeep. Final scoring may then just be the sum of all distances (exact hits will get a distance of 0,
i.e., distance(tiger,tiger)=0, and distance(tiger,jeep) > distance(tiger,American shorthair)). One final
consideration for this work is whether we want to also account for secondary classification results
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(e.g., consider the top 5 outputs as opposed to just the top 1, or even consider the full set of logits).
We expect to have resolved these issues by the next milestone.

Other techniques are being investigated to deal with overlapping tasks, especially having an active
negotiation between student and teacher on what should be shared vs. what is already known.
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