
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING THE EXPRESSIVENESS OF GNNS:
A COMPUTATIONAL MODEL PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are extensively employed in graph machine
learning, with considerable research focusing on their expressiveness. Current
studies often assess GNN expressiveness by comparing them to the Weisfeiler-
Lehman (WL) tests or classical graph algorithms. However, we identify three key
issues in existing analyses: (1) some studies use preprocessing to enhance expres-
siveness but overlook its computational costs; (2) some claim the limited power
of the identical-feature WL test while enhancing expressiveness using distinct fea-
tures, thus creating a mismatch; and (3) some characterize message-passing GNNs
(MPGNNs) with the CONGEST model but make unrealistic assumptions about
computational resources, allowing NP-Complete problems to be solved in O(m)
depth. We contend that a well-defined computational model is urgently needed to
serve as the foundation for discussions on GNN expressiveness. To address these
issues, we introduce the Resource-Limited CONGEST (RL-CONGEST) model,
incorporating optional preprocessing and postprocessing to form a framework
for analyzing GNN expressiveness from an algorithmic alignment perspective.
Our framework sheds light on computational aspects, including the computational
hardness of hash functions in the WL test and the role of virtual nodes in reducing
network capacity. Additionally, we suggest that high-order GNNs correspond to
first-order model-checking problems, offering new insights into their expressive-
ness.

1 INTRODUCTION

Graph Neural Networks (GNNs) have attracted widespread attention in the graph machine learning
community due to their impressive performance in areas such as recommendation systems, drug dis-
covery, and combinatorial optimization. One key area of research has focused on characterizing the
expressive power of existing GNNs and developing new models with enhanced expressive power.
Existing work in this area typically aligns GNNs with various algorithms. One line of research fo-
cuses on connecting GNNs to the Weisfeiler-Lehman (WL) graph isomorphism test and its variants.
For instance, Xu et al. (2019) pioneered the exploration of the relationship between message-passing
GNNs (MPGNNs) and the WL test. Several studies (Morris et al., 2019; Maron et al., 2019; Feng
et al., 2023) have proposed high-order GNNs inspired by the k-WL test and the k-Folklore WL
(FWL) test, showing that these models exhibit stronger power compared to standard MPGNNs. Ad-
ditionally, works such as (Alsentzer et al., 2020; Cotta et al., 2021; Papp et al., 2021; Feng et al.,
2022; Frasca et al., 2022; Zhou et al., 2023a) introduced subgraph GNNs, where subgraphs are
obtained through sampling or partitioning, followed by message-passing on these subgraphs. Fur-
thermore, Zhou et al. (2023b); Zhang et al. (2024) analyzed the counting capabilities of different
GNN types. Other studies focus on aligning GNNs with traditional graph algorithms. For instance,
Zhang et al. (2023) designed a GD-WL framework, which incorporates precomputed distance in-
formation as additional features in message-passing, enabling the detection of graph biconnectivity.
Additionally, Loukas (2020) attempted to align MPGNNs with the CONGEST model in distributed
computing. They used existing lower bounds on the communication complexity of graph algorithms
in the CONGEST model to derive lower bounds on the width and depth of MPGNNs when simulat-
ing these algorithms.

We carefully revisit these works and identify inconsistent or unreasonable results among them:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Underestimated Preprocessing Time Complexity. Some existing works employ preprocessing
techniques, such as substructure recognition or distance computation, to enhance their models
and show that the proposed models can perform algorithmic tasks beyond the capabilities of the
standard WL test. However, we observe that some of these works underestimate the computational
cost of preprocessing, sometimes resulting in a preprocessing time complexity that exceeds that of
the algorithmic task intended to show the model’s expressiveness, which may lead to undesirable
results, such as allowing directly precomputing answers to the algorithmic task as features.

• Mismatch Between Identical-Feature WL Test and Distinct Features. Existing works com-
paring GNNs with WL tests typically derive negative results regarding the WL test, such as its
inability to distinguish certain toy example graphs. Some of these works then propose models
that incorporate additional features to enhance expressiveness. We identify that their analysis of
the WL test is based on the anonymous (identical-feature) setting, whereas the solution employs
distinct features. Therefore, directly comparing the identical-feature WL test with models that
violate this setting by incorporating distinct features creates a mismatch.

• CONGEST Model Addresses Mismatch but Retains Unrealistic Assumptions. A proposal
suggests resolving the mismatch between the identical-feature WL test and distinct features by
using the CONGEST model as a computational framework to characterize MPGNNs. However,
we argue that directly adopting the CONGEST model as a computational model for GNNs can
lead to unrealistic outcomes, such as enabling GNNs to solve many NP-Complete problems in
O(m) rounds, due to its implicit assumption of unlimited computational resources.

We conclude that these inconsistent or unreasonable results stem from the ad-hoc settings in these
works, arising from the lack of a well-defined computational model to characterize GNNs and
analyze their expressive power. Motivated by this, we propose the Resource-Limited CONGEST
(RL-CONGEST) model, a simple and elegant computational framework for characterizing GNNs.
This model extends the standard CONGEST model by introducing constraints on computational
resources and incorporating optional preprocessing and postprocessing phases. It addresses key
issues by accounting for the complexity of preprocessing and postprocessing, explicitly allowing the
use of distinct features as node IDs, and imposing limitations on nodes’ computational resources.
Additionally, we present several novel theoretical results using this model:

• WL Test Requires Large Networks to Compute. We find that previous works have underesti-
mated the complexity of the HASH function in the WL problem. In the RL-CONGEST model,
if no preprocessing – such as graph modification or the use of additional features – is permitted,
we prove that the HASH function in the WL test typically requires the network capacity (depth
multiplied by width) to be linear in relation to the graph’s size for computation.

• Virtual Nodes Reduce Network Size for WL Test. We present evidence suggesting that virtual
nodes can enhance the performance of MPGNNs. Specifically, we prove that introducing a virtual
node can reduce the network capacity required to compute one iteration of the WL problem.

• Aligning High-Order GNNs with Model Checking is Natural. Additionally, we leverage in-
sights from descriptive and fine-grained complexity theories to argue that aligning high-order
GNNs with the model checking problem is more natural.

The content of this paper is organized as follows: Section 2 introduces the notations used throughout
the paper and provides a brief overview of the relevant background knowledge. In Section 3, we
identify three key issues in existing works. In Section 4, we propose the RL-CONGEST model as
a canonical computational framework for analyzing GNNs and present our theoretical findings. In
Section 5, we present several open problems that may serve as directions for future work.

2 PRELIMINARIES

In this section, we first define the notations used throughout the paper. We then provide an overview
of the relevant background knowledge, including GNNs, various variants of the WL tests, distributed
computing models, and basic concepts in logic.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 NOTATIONS

We use curly braces {·} to denote a set and double curly braces {{·}} for a multi-set where elements
can appear multiple times. [n] is shorthand for the set {0, 1, . . . , n− 1}. Boldface lowercase letters,
such as a and b, represent vectors, while boldface uppercase letters, such as A and B, represent
matrices. For two vectors of the same length k, we define the Hamming distance between them,
denoted as dH(x,y), as the number of differing coordinates. We denote a graph by G = (V,E),
where V is the vertex set and E ⊆ V × V is the edge set. Unless otherwise specified, any graph
G mentioned in this paper is undirected, meaning that for any two nodes i, j ∈ V , (i, j) ∈ E if
and only if (j, i) ∈ E. Given a node u in a graph G, the neighborhood of u, denoted by N(u),
is defined as N(u) = {v : (v, u) ∈ E}. We use n := |V (G)| to denote the number of nodes and
m := |E(G)| to denote the number of edges when G can be inferred from context. We use D to
denote the diameter of a graph, which is the length of the longest shortest path.

2.2 GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

Graph Neural Networks (GNNs) are neural network models defined on graphs. The most promi-
nent and widely used framework for implementing GNNs, as found in libraries like PyTorch-
Geometric (Fey & Lenssen, 2019) and DGL (Wang et al., 2019), is the message-passing GNN
(MPGNN) framework proposed by Gilmer et al. (2017). The MPGNNs can be formulated as:

h(ℓ+1)
u = UPD(ℓ)

(
h(ℓ)
u ,

{{
MSG(ℓ)

(
h(ℓ)
u ,h(ℓ)

v , e(v,u)

)
: v ∈ N(u)

}})
,∀u ∈ V, (1)

where h(ℓ)
u is the feature of node u in the ℓ-th layer, e(v,u) is the edge feature on (v, u), UPD(ℓ) is the

updating function in the ℓ-th layer, and MSG(ℓ) is the message function in the ℓ-th layer, which maps
the features of a pair of adjacent nodes and the edge feature to another vector called a message.

Xu et al. (2019) claim that the expressive power of MPGNNs is bounded by the Weisfeiler-Lehman
(WL) test, which was proposed by Weisfeiler and Lehman in (Weisfeiler & Leman, 1968) as a graph
isomorphism test. Initially, each node is assigned a natural number, called a color, from [n] (usually,
all nodes are assigned 0). The iteration formula of the WL test is as follows:

C(ℓ+1)(u) = HASH(ℓ)
(
C(ℓ)(u),

{{
C(ℓ)(v) : v ∈ N(u)

}})
,∀u ∈ V, (2)

where C(ℓ)(u) is the color of node u in the ℓ-th iteration, and HASH(ℓ) is a perfect hashing function
mapping a multi-set of colors to a new color. It can be observed that the iteration formula of the
WL test can be regarded as a special case of MPGNNs, where the message function outputs only
the features of the neighboring nodes, and the updating function is a hashing function.

There are several variants of the standard WL test, and we will introduce some of them that will
appear in our discussions later. A generalization is the higher-order WL tests, such as k-WL or
k-FWL, which are defined on k-tuples of nodes in G. The updating formula for k-WL is described
in (Huang & Villar, 2021) as:
C(ℓ+1)(u) = HASH(ℓ)

(
C(ℓ)(u),

{{
C(ℓ)(v) : v ∈ N1(u)

}}
, . . . ,

{{
C(ℓ)(v) : v ∈ Nk(u)

}})
,∀u ∈ V k, (3)

where u = (u1, . . . ,uk) ∈ V k is a k-tuple of nodes, and the i-th neighborhood of u is defined
as Ni(u) = {(u1, . . . ,ui−1, v,ui+1, . . . ,uk) : v ∈ V }, consisting of all k-tuples in which the
i-th coordinate is substituted with each node v. Meanwhile, the updating formula for k-FWL is
described in (Huang & Villar, 2021) as:
C(ℓ+1)(u) = HASH(ℓ)

(
C(ℓ)(u),

{{(
C(ℓ)(u[1]←w), . . . , C

(ℓ)(u[k]←w)
)
: w ∈ V

}})
,∀u ∈ V k, (4)

where u[i]←w = (u1, . . . ,ui−1, w,ui+1, . . . ,uk) is the k-tuple of nodes where the i-th coordinate
in u is substituted with node w.

Another variant is the GD-WL framework proposed by Zhang et al. (2023), which is defined as:

C(ℓ+1)(u) = HASH(ℓ)
({{(

dG(u, v), C
(ℓ)(v)

)
: v ∈ V

}})
,∀u ∈ V, (5)

where dG(u, v) is a distance, such as Shortest Path Distance (SPD) or Resistance Distance (RD).

High-order GNNs relate to high-order WL tests in the same way that MPGNNs relate to the standard
WL test. In other words, if we replace the HASH function in the updating formula of a variant of the
WL test with another updating function UPD, we obtain a corresponding GNN model. Therefore,
we sometimes use the terms WL tests and their corresponding GNN models interchangeably.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 DISTRIBUTED COMPUTING MODELS

Distributed computing involves multiple processors collaborating to compute a common result. A
distributed computing model is an abstract framework used to characterize this process. LOCAL and
CONGEST proposed by (Linial, 1987; 1992; Peleg, 2000) are two classic distributed computing
models based on synchronous message-passing between processors. In this paper, we follow the
model definitions from (Ghaffari, 2022). These models are based on an n-node graph G = (V =
[n], E), where G is assumed to be simple and undirected unless stated otherwise. Each node in the
network hosts a processor. Initially, each processor knows the total number of nodes n, its unique
identifier in [n], and its initial features. In each round, a node computes based on its knowledge and
sends messages to its neighbors, which may differ for each. By the end of the round, it receives all
messages from its neighbors. In this model, each node must determine its own portion of the output.
This process is described in (Loukas, 2020) as:

s(ℓ+1)
u = UPD(ℓ)

u

(
s(ℓ)u ,

{{
MSG(ℓ)

v→u

(
s(ℓ)v , v, u

)
: v ∈ N(u)

}})
,∀u ∈ V, (6)

where s
(ℓ)
u is the internal state (which may not be a vector) of the processor at node u. The primary

difference between the LOCAL and CONGEST models is that, in each communication round, the
LOCAL model permits nodes to exchange messages of unbounded length, while the CONGEST
model restricts messages to a bounded length, typically O(log n).

2.4 BASIC CONCEPTS IN FIRST-ORDER LOGIC

First-Order Logic (FOL) is a formal system widely used in mathematics and various fields of com-
puter science. An formula in FOL is composed of variable symbols such as x, y, z, and so on;
punctuation symbols like parentheses and commas; relation symbols or predicates such as P , Q, R,
and so forth; logical connectives including ∨, ∧, ¬, →, and ↔; and logical quantifiers, specifically
the universal quantifier ∀ and the existential quantifier ∃. A sentence is a special case of a formula
where all variables are quantified; in other words, there are no free variables. We also introduce
an extension to standard FOL called First-Order Logic with Counting (FOLC), which incorporates
additional counting quantifiers. Specifically, for any natural number i ∈ N, we define the counting
quantifiers ∃≥i, ∃≤i, and ∃=ix. The expression ∃≥ixφ(x) (∃≤ixφ(x), ∃=ixφ(x)) means that there
exist at least (or at most, exactly, respectively) i elements that satisfy the property φ. We use Lk and
Ck to denote the sets of FOL and FOLC sentences, respectively, that use no more than k variables.

3 ISSUES DUE TO ABSENCE OF WELL-DEFINED COMPUTATIONAL MODEL

Many studies have analyzed the expressiveness of GNNs, but they lack a well-defined computational
model as a foundation, often relying on ad-hoc methods that lead to unreasonable outcomes.

3.1 UNDERESTIMATED PREPROCESSING TIME COMPLEXITY

Many GNNs fit into a “preprocessing-then-message-passing” framework. Given an input graph G
with features X , they first perform preprocessing to build a new graph G′ with updated features
X ′, followed by message passing on G′. For example, high-order GNNs based on k-WL and k-
FWL tests construct graphs G′ = (V k, E′) on k-tuples of nodes, where E′ = {(u,v) ∈ (V k)2 :
dH(u,v) = 1}. Subgraph GNNs and GNNs with additional precomputed features naturally fit this
framework. These models typically target algorithmic tasks beyond the capabilities of the standard
WL test; however, in some cases, the time complexity of the preprocessing phase exceeds that of
the algorithmic task used to show the model’s superior expressiveness, which is unreasonable from
a complexity alignment perspective.

Finding Pattern Graphs is Computationally Expensive. One example comes from subgraph
GNNs, which identify pattern subgraphs H in the input graph G. We note that without restrictions
on H , it implies overly powerful preprocessing capabilities. For instance, Thiede et al. (2021);
Bouritsas et al. (2023); Wollschläger et al. (2024) proposed variants of GNNs and WL tests that
utilize hand-crafted features by recognizing subgraphs. They argued that certain subgraph schemes
could make models more powerful than k-WL for any k. However, these models achieve full expres-
siveness only when no constraints are imposed on H , implicitly assuming the existence of oracles

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

capable of counting isomorphic subgraphs. Such preprocessing requirements are overly strong from
a theoretical perspective. The counting version of subgraph isomorphism is a #P-Complete prob-
lem, as its decision version is NP-Complete (Karp, 1972) and by the definition of #P-completeness.
By Toda’s Theorem (Toda, 1991) PH ⊆ P#P, we conclude that a polynomial number of queries to
a subgraph isomorphism counting oracle can solve any problem in the polynomial hierarchy PH,
rendering such requirements implausible.

Computing Distances Exceeds Biconnectivity Detection Time. Another example can be found in
distance-based GNNs. Zhang et al. (2023) introduced the GD-WL framework and proved that the
WL test cannot recognize the biconnectivity of a graph, while the proposed framework can. How-
ever, this framework encounters the issue where the computation time for all-pair distances exceeds
that of biconnectivity detection. Specifically, the biconnectivity of a graph can be determined in
linear time, O(m), using Tarjan’s algorithm (Tarjan, 1972); whereas the worst-case time complex-
ities for exactly computing all-pairs shortest path distances (SPDs) and resistance distances (RDs)
are both Õ (min {nm, nω})1. Additionally, we point out through the following theorem that the
“existence of more efficient approximate algorithms” claim remains debatable due to the lack of
sensitivity analysis on the expressiveness with respect to error in the precomputed RDs.

Theorem 1. For any integer n ≥ 3, there exist two graphs with n nodes, Pn and Cn, such that for
any two adjacent nodes in Pn, the resistance distance is 1, while in Cn, it is 1−1/n. Furthermore,
Pn is neither vertex- nor edge-biconnected, whereas Cn is both vertex- and edge-biconnected.

We defer the proofs of all theorems to the appendices to save space. Therefore, if the RD-WL
framework requires the error to be less than Θ(1/n) to fully show the expressiveness, to the best
of our knowledge, no existing approximation algorithms can compute all-pairs RDs within this
error threshold in o (min {nm, nω}) time. Allowing higher preprocessing costs to solve a lower-
complexity problem can lead to undesirable outcomes, such as using direct answers as features.
The following theorem show this by demonstrating that precomputed RDs can be used to directly
identify whether an edge is a cut edge, rendering subsequent message-passing phase unnecessary.

Theorem 2. Given any edge (u, v) ∈ E in an undirected, unweighted graph G, (u, v) is a cut
edge if and only if the resistance distance R(u, v) = 1.

3.2 MISMATCH BETWEEN IDENTICAL-FEATURE WL TEST AND DISTINCT FEATURES

We observe that many existing works (Bouritsas et al., 2023; Zhang et al., 2023; Wollschläger et al.,
2024) which compare GNNs’ expressiveness to the WL test handling the anonymous (identical-
feature) setting either in an ad-hoc manner. These works equate the expressiveness of MPGNNs
with the WL test, which fails to distinguish toy examples. To address this, they propose adding
features to enhance expressiveness. However, this approach may conflict with the identical-feature
setting, and their models’ expressiveness are not compared to distinct-feature MPGNNs (equivalent
to CONGEST, as discussed in Section 3.3). Moreover, equating MPGNNs with the WL test over-
looks the fact that real-world graphs often have features, making the claim that MPGNNs are weak
based solely on the WL test questionable.

WL Test is Weak in the Identical-Feature Setting. As described by Huang & Villar (2021), the
WL test operates under an identical-feature setting, where all nodes are initially assigned the same
color and the process relies solely on node colors, making it unable to distinguish between nodes
with identical colors during its iterations. This limited expressive power is often exemplified by
its inability to distinguish certain graph pairs, such as two disjoint triangle graphs (C3 ∪ C3) and a
six-node cycle (C6). As shown in Figure 1, the “type” of each node, which consists of its color and
the multiset of its neighbors’ colors, is the same (, {{ , }}) for all nodes in both graphs. After
applying the HASH function, all node colors remain identical, so the WL test cannot distinguish
between the graphs due to the identical multisets.

1The notation Õ(·) hides polylogarithmic factors. We note that authors were not aware of more efficient
algorithms; however, this does not affect our conclusion. For details on the complexity of computing all-pairs
distances, please refer to Appendix D and E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(, {{ , }}) 7→

B

CA
(, {{ , }}) 7→

Figure 1: A running example of the anonymous WL test on C3 ∪ C3 and C6.

Additional Features Empower Models by Breaking Anonymity? Motivated by this limitation,
many works such as (Zhang et al., 2023; Wollschläger et al., 2024) have proposed introducing fea-
tures to enhance the expressiveness of GNNs. We speculate that these features may enhance the
expressiveness by breaking the identical-feature setting. For example, in the C6 graph in Figure 1, if
nodes are assigned the same initial color, nodes B and C are indistinguishable from A’s perspective.
However, if distances are included as features, B and C will not be equivalent. The distinct-feature
setting is commonly used in existing models. For example, GCN (Kipf & Welling, 2017) and other
models applied to real-world datasets use node features that are distinct with high probability. The
LINKX model proposed by Lim et al. (2021) employs MLP(A), which can be reformulated as
MLP′(σ(AIW)) and uses the identity matrix as features. In the GD-WL framework, the distance
matrix serves as distinct features, as only the diagonal elements are zero and each row is unique. Ad-
ditionally, works on GNN expressiveness (Loukas, 2020; Sato et al., 2021) adopt random features,
which are also unique w.h.p.. As a result, previous works that equate GNNs with identical-feature
WL tests to claim GNNs’ weak expressiveness, while claiming to enhance expressiveness by dis-
tinct features, actually create an mismatch. We also include a discussion on the relationship between
distinct features and permutation invariance or equivariance in Appendix A.

3.3 CONGEST ADDRESSES MISMATCH BUT RETAINS UNREALISTIC ASSUMPTIONS

We observe that one existing work (Loukas, 2020) attempts to align MPGNNs with the CONGEST
model, which unintentionally resolves the inconsistency in the identical-feature setting. However,
directly using the CONGEST model as a computational model introduces a problem: nodes are
assumed to have unlimited computational resources, which leads to impractical outcomes.

Breaking Anonymity Empowers Models! In the previous section, we noted that many variants
enhance the expressive power by adding precomputed features, which may implicitly rely on node
IDs to distinguish nodes. This raises a natural question: can we directly improve the expressive
power by explicitly incorporating node IDs into the framework of the WL test?

When comparing the equation of MPGNNs with the WL test, it becomes clear that MPGNNs can
be viewed as the WL test without the constraints of identical node features and the HASH function.
Meanwhile, MPGNNs are similar to the CONGEST model if we compare Equation 1 and 6. Thus,
MPGNNs and CONGEST models are expected to have stronger expressive power than the WL tests
once these limitations are removed. Loukas (2020) provides evidence for this through the following
theorem by aligning MPGNNs with LOCAL and CONGEST models:
Theorem 3 ((Loukas, 2020)). MPGNN can compute any computable function over connected
graphs if the conditions are jointly met: (1) each node is uniquely identified; (2) the message and
update functions are Turing-complete for every ℓ; and (3) the depth and width are sufficiently large.

Moreover, Pritchard & Thurimella (2011) proposed a CONGEST algorithm that solves the edge-
biconnectivity problem in O(D) rounds, challenging the claim that MPGNNs are weak.

Direct Use of CONGEST Is Inappropriate. In the aforementioned paper (Loukas, 2020), the au-
thor proposes using the CONGEST model from distributed computing to characterize MPGNNs, as
it permits distinct features and supports more complex update functions compared to hash functions,
making it a closer representation of the real-world implementation of MPGNNs than the WL test.
However, we argue that directly using the CONGEST model as a computational model for MPGNN
is not entirely appropriate, as unlimited computational resources assumption can lead to unrealistic
and surprising results, as stated in the following theorem:

Theorem 4. If we allow a single node to have unbounded computational power to solve any
computable problem, then every NP-Complete decision problems on undirected unweighted con-
nected graphs can be solved by the CONGEST model in O(m) rounds.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This unreasonable outcome shows that directly using the CONGEST model as the computational
model for MPGNNs is inappropriate due to the unlimited computational resources for nodes.

4 PROPOSED COMPUTATIONAL MODEL AND OUR RESULTS

In the previous section, we discussed the inconsistent or unreasonable results in existing studies on
the expressiveness of GNNs. We argue that these problems primarily arise from the lack of a well-
defined computational model for GNNs, leading researchers to propose various ad-hoc solutions,
some of which are inconsistent or unreasonable. In this section, we introduce a computational model
to characterize GNNs, introduce how it addresses the aforementioned issues, and prove several
interesting conclusions using this model.

We propose the Resource-Limited CONGEST (RL-CONGEST) model, an extension of the CON-
GEST model with constrained computational resources at each node, to serve as a computational
framework for characterizing GNNs.
Definition 1 (RL-CONGEST Model and Computation Process). Given a model width w ∈ N and
a complexity class C (e.g., TC02, P), the RL-CONGEST model with width w and computational
resource C is defined as a CONGEST model where message sizes are limited to w ⌈log |V (G)|⌉ bits,
and nodes can solve any problems in C.

For an attributed graph G = (V,E,X,E), where X and E represent node and edge features, the
computation of a GNN using the RL-CONGEST model involves the following phases:

1. (Optional) Preprocessing: Operations such as building a hypergraph (for higher-order GNNs),
extracting subgraphs (for subgraph GNNs), or computing additional features (for distance-based
GNNs) occur in this phase, resulting in a new attributed graph G′ = (V ′, E′,X ′,E′). The time
complexity of this step must be explicitly provided.

2. Message-Passing with Limited Computational Resources: Each node u ∈ V ′ starts with its
node features X ′u and the edge features of its incident edges

{(
v,E′(u,v)

)
: v ∈ NG′(u)

}
. The

message-passing proceeds as in the standard CONGEST model, but with each node allowed to
update its internal state using computations in C. The total number of communication rounds
corresponds to the GNN model’s depth d.

3. (Optional) Postprocessing: Additional computations, such as a READOUT operation, can be
performed after message-passing. The time complexity must be explicitly stated.

In Figure 2, we present a diagram illustrating the three phases of the computation process for a GNN
using the RL-CONGEST model.

G, X

⇒

⇒ G′, X ′

(1) Preprocessing

1

3

2 C

(2) Message-Passing with Limited
Computational Resources (class C)

READOUT

G′, Z

(3) Postprocessing

Figure 2: The three phases of computation in GNNs using the RL-CONGEST model.

We have essentially proposed a framework based on the RL-CONGEST model to characterize
GNNs, which effectively addresses the three key issues identified earlier. Specifically:

• The RL-CONGEST model does not directly circumvent the “Underestimated Preprocessing Time
Complexity” issue. Our framework requires that future works report the preprocessing complex-

2This is a complexity class of circuits. For further details on circuits, please refer to Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ity. If it exceeds that of the algorithmic task, researchers should reassess whether preprocessing
implicitly solves the task, as such results would not reflect the true expressiveness of the model.

• We address the “Mismatch Between WL Test and Features” issue by permitting nodes to know
their own unique IDs. It is recommended that future works analyze the tasks GNNs can solve
under this setting, rather than confining themselves to alignment with WL tests.

• We mitigate the “CONGEST Retains Unrealistic Assumptions” issue by allowing flexible con-
figurations for the computational resources available to nodes. For instance, assuming each node
operates as a Turing machine yields the standard CONGEST model. Alternatively, each node can
be restricted to solving problems within P, the same class of problems that LLM-based agents
enhanced by Chain-of-Thought (CoT) reasoning can address Li et al. (2024); Merrill & Sabhar-
wal (2024); or be modeled as a TC0 circuit, similar to MLPs (Shawe-Taylor et al., 1992; Beiu
& Taylor, 1996), as observed in real-world GNN models. These different settings may lead to
various interesting and independent results, and could even be extended to graph agents.

By using the RL-CONGEST model with preprocessing and postprocessing as our analysis frame-
work, we can establish several interesting results and offer guidelines for future exploration of the
expressiveness of high-order GNNs. These will be elaborated in the following subsections.

4.1 WL TEST REQUIRES LARGE NETWORKS TO COMPUTE

In previous work aligning MPGNNs with the WL test to study their expressive power, researchers
aligned the update function of MPGNNs directly with the HASH function in the WL test. Aa-
mand et al. (2022) noted the challenges in constructing the HASH function for the WL test but did
not establish a lower bound on the trade-off between network depth and width. Within the RL-
CONGEST framework, we rigorously prove the relationship between the depth and width required
for an MPGNN to simulate one iteration of color-refinement in the WL test. This enables us to prove
that the HASH function in the WL test is computationally hard, as shown by the following theorem.

Theorem 5. If an MPGNN can simulate one iteration of the WL test without preprocessing, either
deterministically or randomly with zero error, regardless of the computational power available

to each node, the model’s width w and depth d must satisfy d = Ω

(
D +

m

w log n

)
, given that

w = o

(
n

log n

)
.

We defer the formal definition of the problem concerning one iteration of the WL test, along with
the proof of the above theorem, to Appendix I. Notably, in our proof, we employed techniques from
communication complexity without making any assumptions about the complexity class required
for computational resources in the RL-CONGEST model. Therefore, the result also holds for the
general CONGEST model, indicating that our findings – showing that WL-like HASH functions are
hard to compute – are of independent interest to the field of distributed computing.

Furthermore, we design a deterministic RL-CONGEST algorithm with a round complexity that
nearly matches the lower bound, indicating that the algorithm is near-optimal.

Theorem 6. There exists a deterministic RL-CONGEST algorithm that can simulate one iteration
of the WL test without preprocessing, with width w and depth d satisfying d = O

(
D +

m

w

)
. Ad-

ditionally, it is sufficient to set the nodes’ computational resource class to C = DTIME(n2 log n).

4.2 VIRTUAL NODES REDUCE NETWORK SIZE FOR WL TEST

Several works have attempted to enhance the performance of GNNs by introducing a virtual node
that connects to all or some nodes in the original graph (Gilmer et al., 2017; Hwang et al., 2022).
Subsequent studies have analyzed the impact of this node. For instance, Barceló et al. (2020) show
that virtual nodes can bring GNNs closer to a C2 classifier, while Rosenbluth et al. (2024) compare
MPGNNs with virtual nodes and graph transformers. To the best of our knowledge, no prior work

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

has explored how a virtual node helps reduce the network’s capacity when simulating one iteration
of the WL test. We address this in the following theorem:

Theorem 7. There exists a deterministic RL-CONGEST algorithm that can simulate one iteration
of the WL test by adding a virtual node, which connects to other nodes, as preprocessing. The
algorithm operates with width w and depth d satisfying dw = O(∆), where ∆ is the maximum
degree of the graph before the addition of the virtual node. Additionally, it is sufficient to set the
nodes’ computational resource class to C = DTIME(n2 log n).

Some studies suggest that virtual nodes do not enhance expressive power (Zhu et al., 2023), which
contrasts with empirical evidence showing improvements in model performance. We find this is
because they often equate “expressive power” with the ability to compute specific functions, akin
to computability. Through our analysis, we introduce a computational model that provides a more
refined view of expressive power by examining problem complexity and focusing on resource usage.
This approach shows that virtual nodes can reduce the network size required to simulate the WL test,
deepening our understanding of their impact.

4.3 ALIGNING HIGH-ORDER GNNS WITH MODEL CHECKING IS NATURAL

In this section, we show from both fine-grained and descriptive complexity perspectives that it is
more natural to align higher-order GNNs with the Ck model checking problem. We will begin by
introducing the model checking problem and the related model equivalence problem.

The Model Checking (MC) problem asks whether, given a model A and a logic sentence φ, the
sentence φ holds in A (i.e., A |= φ). In this paper, we focus on cases where the model is a graph G,
and φ uses only the edge predicate E(x, y) and the equality predicate =(x, y)3. The Lk MC problem
is highly expressive, capturing many key problems. For instance, deciding whether G |= φ△, where
φ△ := ∃x∃y∃z(E(x, y) ∧ E(y, z) ∧ E(z, x)), determines whether G contains a triangle subgraph.
Due to its expressiveness, the Lk MC problem has been widely studied. It applies to database queries
like SQL (Gao et al., 2017), formal verification (Godefroid, 1997), and is central to fine-grained
complexity in P (Puatracscu & Williams, 2010; Williams, 2014; Gao et al., 2017). In Appendix L,
we provide evidence from theoretical computer science to support the classification of the PNF Lk

model checking problem 4 in the Θ̃
(
min{nk,mk−1}

)
complexity class.

Another related problem is the Model Equivalence (ME) problem. Given two models A and B, and
a class of logic sentences, the task is to determine whether for any sentence φ in that class, A |= φ
if and only if B |= φ. In other words, the goal is to check whether that logic cannot distinguish
between the two models. Two important results that connect descriptive complexity and WL tests
were proven by Cai et al. (1989) and Grohe (2017), showing that, for any k ≥ 3, the expressiveness
of (k− 1)-FWL and k-WL is equivalent to Ck ME problem. Another result by Grohe (1998) shows
that the expressiveness of both the standard WL test and the 2-WL test is equivalent to C2 ME
problem. This means that the output colors from WL tests provide only a “type” of the graph,
and we cannot directly interpret it for specific tasks such as determining whether a graph contains
a triangle or is biconnected. The most we can infer is that if two graphs produce the same color
multisets, then either both contain a triangle (or are biconnected, respectively), or neither does.

Therefore, we argue that from a computational model perspective, it is more meaningful to discuss
the expressiveness of GNNs in terms of solving problems, such as model checking, rather than
limiting the discussion to model equivalence, which only determines whether graph pairs are indis-
tinguishable. A natural approach is to align higher-order GNNs, inspired by k-WL or (k − 1)-WL
tests, with the Ck MC problem. We support this claim by proving the following weaker theorem:

Theorem 8 (Informal). If constructing the k-WL graph and additional features as preprocessing
is allowed, the RL-CONGEST model can solve the PNF Ck model checking problem in O(k2)
rounds. Additionally, the computational resources required by each node are C = DTIME(k2n).

3We use x = y and x ̸= y as abbreviations for =(x, y) and ¬ =(x, y).
4A PNF sentence is of the form (Q1x1)(Q2x2) · · · (Qkxk)ϕ(x1, · · · , xk), where Qi are quantifiers and

ϕ(x1, · · · , xk) is a quantifier-free formula. Since variables can be reused, as in programming languages, a
non-PNF sentence in Lk may not always be convertible to an equivalent PNF sentence that remains in Lk.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Therefore, using the RL-CONGEST model as the computational framework, GNNs can go beyond
WL tests, which only yield hard-to-interpret graph classification types rather than addressing specific
problems like model checking.

As a supplement, we list several variants of the WL test, their corresponding ME problems, and
the relationships between their expressive power on the left side of Figure 3. On the right side, we
present the corresponding Ck MC problems, PNF Ck MC problems, and PNF Lk MC problems. On
the far-right, the time complexity of the PNF Lk MC problems is displayed. It can be observed that
the expressiveness and time complexity of the WL test variants, ME problems, and MC problems
form a hierarchical structure. Our Theorem 8 positions k-WL graph-based higher-order GNNs
within the category of PNF Ck MC problems. This is a weak result because the time complexity of
constructing a k-WL graph, O(knk+1)5, already exceeds the time complexity of solving PNF Ck

MC problems using non-distributed algorithms. We conjecture that higher-order GNNs, with k-WL
graph construction as preprocessing, may have the potential to solve PNF Ck+1 or general Ck MC
problems. We present this as an open problem in Section 5.

Model Equivalence:
f(G) = f(H) for many f? "

f(G) = 1 for one f? %

Model Checking:
f(G) = 1 for one f? "

WL ≡ 2-WL

GD-WL

3-WL

k-WL

C2 ME

C3 ME

Ck ME

C2 MC

C3 MC

Ck MC

PNF C2 MC

PNF C3 MC

PNF Ck MC

PNF L2 MC

All-Pairs Dist.?

PNF L3 MC

PNF Lk MC

n2

nm [Appendix D, E]

min{n3,m2} [Appendix L]

min{nk,mk−1} [Appendix L]

At least here. [Theorem 8]

⋎

⋎

⋎

⋎

⋎

⋎

⋎

⋎

⋎

⋎

⋎

≡

≡

≡

≻

≻

≻

≻

≻

≻

Figure 3: WL tests, model equivalence problems, model checking problems, their relationships, and
the time complexity of PNF Lk model checking problems. The notation A ≺ B means A is less
powerful than B, while A ≻ B indicates that A is more powerful than B. A ≡ B signifies that A
and B have the same expressive power.

5 SOME OPEN PROBLEMS

Although we present some interesting results with our RL-CONGEST model and analysis frame-
work, many open problems still remain, which are valuable for further research. We outline a few
of them: (1) Can we establish a non-trivial trade-off between computational resources and round
complexity in the RL-CONGEST model? (2) Is there a corresponding model equivalence problem,
or other logic-related problems, for the GD-WL framework? (3) Do higher-order GNNs have the
capability to solve the PNF Ck+1 model checking problem or general Ck model checking problems?

6 CONCLUSIONS

In this paper, we identify three common issues in existing analyses of GNNs’ expressive power,
stemming from the absence of a well-defined computational model. To address this, we introduce
the RL-CONGEST model, which includes optional preprocessing and postprocessing phases, as
a standard framework for analyzing GNNs. Our framework addresses these issues and produces
several noteworthy results, including the hardness of the WL problem, which may be of independent
interest to the field of distributed computing. Additionally, we outline some open problems for
potential future research.

5The time complexity of treating k-tuples as new nodes is O(nk), with each node connected to k(n − 1)
neighbors, resulting in a total time complexity of O(knk+1).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anders Aamand, Justin Y. Chen, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Nicholas
Schiefer, Sandeep Silwal, and Tal Wagner. Exponentially improving the complexity of sim-
ulating the weisfeiler-lehman test with graph neural networks. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
af0ad514b9cda46bd49e14ee11e2672f-Abstract-Conference.html.

Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained complexity
of analyzing compressed data: Quantifying improvements over decompress-and-solve. In Chris
Umans (ed.), 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pp. 192–203. IEEE Computer Society, 2017. doi:
10.1109/FOCS.2017.26. URL https://doi.org/10.1109/FOCS.2017.26.

Amir Abboud, Nick Fischer, and Yarin Shechter. Faster combinatorial k-clique algorithms. In
José A. Soto and Andreas Wiese (eds.), LATIN 2024: Theoretical Informatics - 16th Latin
American Symposium, Puerto Varas, Chile, March 18-22, 2024, Proceedings, Part I, volume
14578 of Lecture Notes in Computer Science, pp. 193–206. Springer, 2024. doi: 10.1007/
978-3-031-55598-5\ 13. URL https://doi.org/10.1007/978-3-031-55598-5_
13.

Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, and Marinka Zitnik. Subgraph neural
networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
5bca8566db79f3788be9efd96c9ed70d-Abstract.html.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1lZ7AEKvB.

Valeriu Beiu and John G. Taylor. On the circuit complexity of sigmoid feedforward neural networks.
Neural Networks, 9(7):1155–1171, 1996. doi: 10.1016/0893-6080(96)00130-X. URL https:
//doi.org/10.1016/0893-6080(96)00130-X.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pat-
tern Anal. Mach. Intell., 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319. URL
https://doi.org/10.1109/TPAMI.2022.3154319.

Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expression
membership testing. In Chris Umans (ed.), 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pp. 307–318. IEEE
Computer Society, 2017. doi: 10.1109/FOCS.2017.36. URL https://doi.org/10.1109/
FOCS.2017.36.

Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. In 30th Annual Symposium on Foundations of Computer Science, Re-
search Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pp. 612–617. IEEE
Computer Society, 1989. doi: 10.1109/SFCS.1989.63543. URL https://doi.org/10.
1109/SFCS.1989.63543.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B.
Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time. In David B.
Shmoys (ed.), Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31
- June 03, 2014, pp. 343–352. ACM, 2014. doi: 10.1145/2591796.2591833. URL https:
//doi.org/10.1145/2591796.2591833.

11

http://papers.nips.cc/paper_files/paper/2022/hash/af0ad514b9cda46bd49e14ee11e2672f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/af0ad514b9cda46bd49e14ee11e2672f-Abstract-Conference.html
https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1007/978-3-031-55598-5_13
https://doi.org/10.1007/978-3-031-55598-5_13
https://proceedings.neurips.cc/paper/2020/hash/5bca8566db79f3788be9efd96c9ed70d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5bca8566db79f3788be9efd96c9ed70d-Abstract.html
https://openreview.net/forum?id=r1lZ7AEKvB
https://doi.org/10.1016/0893-6080(96)00130-X
https://doi.org/10.1016/0893-6080(96)00130-X
https://doi.org/10.1109/TPAMI.2022.3154319
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1109/SFCS.1989.63543
https://doi.org/10.1109/SFCS.1989.63543
https://doi.org/10.1145/2591796.2591833
https://doi.org/10.1145/2591796.2591833

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph rep-
resentations. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 1713–1726, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/0d8080853a54f8985276b0130266a657-Abstract.html.

Rajat Vadiraj Dwaraknath, Ishani Karmarkar, and Aaron Sidford. Towards optimal
effective resistance estimation. In Alice Oh, Tristan Naumann, Amir Globerson,
Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
b8e2046160a568145af6d42eeef199f4-Abstract-Conference.html.

Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004. doi: 10.1016/J.TCS.2004.05.009.
URL https://doi.org/10.1016/j.tcs.2004.05.009.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How pow-
erful are k-hop message passing graph neural networks. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
1ece70d2259b8e9510e2d4ca8754cecf-Abstract-Conference.html.

Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen.
Extending the design space of graph neural networks by rethinking folklore weisfeiler-lehman.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1cac8326ce3fbe79171db9754211530c-Abstract-Conference.html.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Under-
standing and extending subgraph gnns by rethinking their symmetries. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
cb2a4cc70db72ea779abd01107782c7b-Abstract-Conference.html.

Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. In Philip N. Klein (ed.),
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pp. 2162–2181. SIAM, 2017. doi: 10.
1137/1.9781611974782.141. URL https://doi.org/10.1137/1.9781611974782.
141.

Mohsen Ghaffari. Distributed graph algorithms. Course Notes for Distributed Algorithms, 2022.
URL https://people.csail.mit.edu/ghaffari/DA22/Notes/DGA.pdf. Ac-
cessed: September, 2024.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272.
PMLR, 2017. URL http://proceedings.mlr.press/v70/gilmer17a.html.

12

https://proceedings.neurips.cc/paper/2021/hash/0d8080853a54f8985276b0130266a657-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0d8080853a54f8985276b0130266a657-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/b8e2046160a568145af6d42eeef199f4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b8e2046160a568145af6d42eeef199f4-Abstract-Conference.html
https://doi.org/10.1016/j.tcs.2004.05.009
http://papers.nips.cc/paper_files/paper/2022/hash/1ece70d2259b8e9510e2d4ca8754cecf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1ece70d2259b8e9510e2d4ca8754cecf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1cac8326ce3fbe79171db9754211530c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1cac8326ce3fbe79171db9754211530c-Abstract-Conference.html
http://arxiv.org/abs/1903.02428
http://papers.nips.cc/paper_files/paper/2022/hash/cb2a4cc70db72ea779abd01107782c7b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/cb2a4cc70db72ea779abd01107782c7b-Abstract-Conference.html
https://doi.org/10.1137/1.9781611974782.141
https://doi.org/10.1137/1.9781611974782.141
https://people.csail.mit.edu/ghaffari/DA22/Notes/DGA.pdf
http://proceedings.mlr.press/v70/gilmer17a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Patrice Godefroid. Model checking for programming languages using verisoft. In Peter Lee,
Fritz Henglein, and Neil D. Jones (eds.), Conference Record of POPL’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at
the Symposium, Paris, France, 15-17 January 1997, pp. 174–186. ACM Press, 1997. doi:
10.1145/263699.263717. URL https://doi.org/10.1145/263699.263717.

Martin Grohe. Finite variable logics in descriptive complexity theory. Bull. Symb. Log., 4(4):345–
398, 1998. doi: 10.2307/420954. URL https://doi.org/10.2307/420954.

Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, vol-
ume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. ISBN 9781139028868.
doi: 10.1017/9781139028868. URL https://doi.org/10.1017/9781139028868.

Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. Efficient algorithms for spanning tree central-
ity. In Subbarao Kambhampati (ed.), Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 3733–3739.
IJCAI/AAAI Press, 2016. URL http://www.ijcai.org/Abstract/16/525.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and
its variants. In IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021, pp. 8533–8537. IEEE, 2021. doi: 10.
1109/ICASSP39728.2021.9413523. URL https://doi.org/10.1109/ICASSP39728.
2021.9413523.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction (extended abstract). In The First Learning on
Graphs Conference, 2022. URL https://openreview.net/forum?id=dI6KBKNRp7.

Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system solvers.
In Dániel Marx (ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pp. 540–559. SIAM, 2021. doi: 10.1137/
1.9781611976465.33. URL https://doi.org/10.1137/1.9781611976465.33.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher (eds.), Proceedings of a symposium on the Complexity of Computer Com-
putations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pp. 85–103. Plenum Press, New
York, 1972. doi: 10.1007/978-1-4684-2001-2\ 9. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

D. J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12(1):81–
95, Dec 1993. ISSN 1572-8897. doi: 10.1007/BF01164627. URL https://doi.org/10.
1007/BF01164627.

Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD linear
systems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pp. 235–244. IEEE Computer Society, 2010. doi:
10.1109/FOCS.2010.29. URL https://doi.org/10.1109/FOCS.2010.29.

Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD linear
systems. In Rafail Ostrovsky (ed.), IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pp. 590–598. IEEE Com-
puter Society, 2011. doi: 10.1109/FOCS.2011.85. URL https://doi.org/10.1109/
FOCS.2011.85.

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.
ISBN 978-0-521-56067-2. URL https://doi.org/10.1017/CBO9780511574948.

13

https://doi.org/10.1145/263699.263717
https://doi.org/10.2307/420954
https://doi.org/10.1017/9781139028868
http://www.ijcai.org/Abstract/16/525
https://doi.org/10.1109/ICASSP39728.2021.9413523
https://doi.org/10.1109/ICASSP39728.2021.9413523
https://openreview.net/forum?id=dI6KBKNRp7
https://doi.org/10.1137/1.9781611976465.33
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/BF01164627
https://doi.org/10.1007/BF01164627
https://doi.org/10.1109/FOCS.2010.29
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1017/CBO9780511574948

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=3EWTEy9MTM.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 20887–20902, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html.

Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pp. 331–335. IEEE Computer Society, 1987. doi: 10.1109/SFCS.1987.20. URL https:
//doi.org/10.1109/SFCS.1987.20.

Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201, 1992.
doi: 10.1137/0221015. URL https://doi.org/10.1137/0221015.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=B1l2bp4YwS.

László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4, 1993.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably power-
ful graph networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
2153–2164, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bb04af0f7ecaee4aae62035497da1387-Abstract.html.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=NjNGlPh8Wh.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, pp. 4602–4609. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.
33014602. URL https://doi.org/10.1609/aaai.v33i01.33014602.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Ran-
dom dropouts increase the expressiveness of graph neural networks. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 21997–22009, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html.

David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, USA, 2000. ISBN 978-0-89871-464-7. URL https://doi.org/10.
1137/1.9780898719772.

David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space sam-
pling. ACM Trans. Algorithms, 7(4):46:1–46:30, 2011. doi: 10.1145/2000807.2000814. URL
https://doi.org/10.1145/2000807.2000814.

14

https://openreview.net/forum?id=3EWTEy9MTM
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://openreview.net/forum?id=B1l2bp4YwS
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bb04af0f7ecaee4aae62035497da1387-Abstract.html
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://doi.org/10.1609/aaai.v33i01.33014602
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b8b2926bd27d4307569ad119b6025f94-Abstract.html
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/2000807.2000814

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mihai Puatracscu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses
Charikar (ed.), Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pp. 1065–1075. SIAM, 2010. doi:
10.1137/1.9781611973075.86. URL https://doi.org/10.1137/1.9781611973075.
86.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=AcSChDWL6V.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Carlotta Demeniconi and Ian Davidson (eds.), Proceedings of the 2021 SIAM In-
ternational Conference on Data Mining, SDM 2021, Virtual Event, April 29 - May 1, 2021, pp.
333–341. SIAM, 2021. doi: 10.1137/1.9781611976700.38. URL https://doi.org/10.
1137/1.9781611976700.38.

Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Com-
put. Syst. Sci., 51(3):400–403, 1995. doi: 10.1006/JCSS.1995.1078. URL https://doi.
org/10.1006/jcss.1995.1078.

John S. Shawe-Taylor, Martin H.G. Anthony, and Walter Kern. Classes of feedforward neural net-
works and their circuit complexity. Neural Networks, 5(6):971–977, 1992. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(05)80093-0. URL https://www.sciencedirect.
com/science/article/pii/S0893608005800930.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In László Babai (ed.), Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pp.
81–90. ACM, 2004. doi: 10.1145/1007352.1007372. URL https://doi.org/10.1145/
1007352.1007372.

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–
160, 1972. doi: 10.1137/0201010. URL https://doi.org/10.1137/0201010.

Erik H. Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 29922–29934, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/faf02b2358de8933f480a146f4d2d98e-Abstract.html.

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991. doi: 10.1137/0220053. URL https://doi.org/10.1137/0220053.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li,
Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep
learning on graphs. CoRR, abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.
01315.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Ryan Williams. Faster decision of first-order graph properties. In Thomas A. Henzinger and Dale
Miller (eds.), Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pp. 80:1–80:6. ACM, 2014. doi:
10.1145/2603088.2603121. URL https://doi.org/10.1145/2603088.2603121.

Tom Wollschläger, Niklas Kemper, Leon Hetzel, Johanna Sommer, and Stephan Günnemann. Ex-
pressivity and generalization: Fragment-biases for molecular gnns. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=rPm5cKb1VB.

15

https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1137/1.9781611973075.86
https://openreview.net/forum?id=AcSChDWL6V
https://doi.org/10.1137/1.9781611976700.38
https://doi.org/10.1137/1.9781611976700.38
https://doi.org/10.1006/jcss.1995.1078
https://doi.org/10.1006/jcss.1995.1078
https://www.sciencedirect.com/science/article/pii/S0893608005800930
https://www.sciencedirect.com/science/article/pii/S0893608005800930
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1137/0201010
https://proceedings.neurips.cc/paper/2021/hash/faf02b2358de8933f480a146f4d2d98e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/faf02b2358de8933f480a146f4d2d98e-Abstract.html
https://doi.org/10.1137/0220053
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315
https://doi.org/10.1145/2603088.2603121
https://openreview.net/forum?id=rPm5cKb1VB

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

Andrew Chi-Chih Yao. Some complexity questions related to distributive computing(preliminary
report). In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing,
STOC ’79, pp. 209–213, New York, NY, USA, 1979. Association for Computing Machinery.
ISBN 9781450374385. doi: 10.1145/800135.804414. URL https://doi.org/10.1145/
800135.804414.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/forum?id=r9hNv76KoT3.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for GNN expressiveness. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=HSKaGOi7Ar.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. From relational pooling to subgraph gnns: A univer-
sal framework for more expressive graph neural networks. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 42742–42768. PMLR, 2023a. URL
https://proceedings.mlr.press/v202/zhou23n.html.

Junru Zhou, Jiarui Feng, Xiyuan Wang, and Muhan Zhang. Distance-restricted folklore
weisfeiler-leman gnns with provable cycle counting power. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
2e2e7c2e3c2e70fa2e9756dce728fcca-Abstract-Conference.html.

Wenhao Zhu, Tianyu Wen, Guojie Song, Liang Wang, and Bo Zheng. On structural expressive power
of graph transformers. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos,
Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023, pp. 3628–3637. ACM, 2023. doi: 10.1145/3580305.3599451. URL
https://doi.org/10.1145/3580305.3599451.

16

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/800135.804414
https://doi.org/10.1145/800135.804414
https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=HSKaGOi7Ar
https://proceedings.mlr.press/v202/zhou23n.html
http://papers.nips.cc/paper_files/paper/2023/hash/2e2e7c2e3c2e70fa2e9756dce728fcca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2e2e7c2e3c2e70fa2e9756dce728fcca-Abstract-Conference.html
https://doi.org/10.1145/3580305.3599451

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendices

A A Brief Discussion on the Relationship Between Distinct Features and Permutation
Invariance or Equivariance 18

B A Brief Introduction to Communication Complexity 18

C A Brief Introduction to Boolean Circuits 18

D Time Complexity of All-Pairs Shortest Paths in Unweighted Undirected Graphs 19

E A Brief Introduction to Resistance Distance 19

F Proof of Theorem 1 20

G Proof of Theorem 2 21

H Proof of Theorem 4 21

I The Weisfeiler-Lehman Problem and Its Hardness (Theorem 5) 22

J Proof of Theorem 6 24

K Proof of Theorem 7 25

L Complexity of the PNF Model Checking Problem 26

M Proof of Theorem 8 27

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A A BRIEF DISCUSSION ON THE RELATIONSHIP BETWEEN DISTINCT
FEATURES AND PERMUTATION INVARIANCE OR EQUIVARIANCE

Permutation invariance and equivariance are two vital properties to discuss whether a GNN model
possesses them. They are defined as follows:
Definition 2 (Permutation Invariant). Let f be a graph neural network model on some graph G
with n nodes, and let P ∈ {0, 1}n×n be a permutation matrix. If for any input feature matrix
X ∈ Rn×F ,

f(PX) = f(X),

then f is said to be permutation invariant.
Definition 3 (Permutation Equivariant). Let f be a graph neural network model on some graph
G with n nodes, and let P ∈ {0, 1}n×n be a permutation matrix. If for any input feature matrix
X ∈ Rn×F ,

f(PX) = P f(X),

then f is said to be permutation equivariant.

In other words, a model is permutation invariant (equivariant) if permuting the input features yields
identical (or correspondingly permuted) outputs, respectively.

It should be noted that permutation invariance or equivariance are properties determined by the GNN
architecture f , or more specifically, by the update functions in each layer, rather than by the features
X used as input.

B A BRIEF INTRODUCTION TO COMMUNICATION COMPLEXITY

To prove lower bounds on the rounds of CONGEST algorithms, a key tool is the communication
complexity which was first introduced by Yao (1979).

Two-party communication complexity involves two participants, Alice and Bob, who collaborate to
compute a function f : X × Y → Z, where X and Y are their input domains, respectively. They
agree on a strategy beforehand but are separated before receiving their inputs (x, y) ∈ X×Y . They
then exchange messages to compute f(x, y), with the goal of minimizing the total number of bits
exchanged.

In deterministic communication, the strategy is fixed, and the minimum number of bits required
to compute f in this setting is known as the deterministic communication complexity, denoted by
D(f). Similarly, in randomized communication, where Alice and Bob can use random bits and a
two-sided error of ϵ is allowed, the minimum number of bits required is the randomized commu-
nication complexity. If the randomness is private, it is denoted by Rprv

ϵ (f), and if it is public, it is
denoted by Rpub

ϵ (f).

The Equality (EQ) problem between two n-bit strings, denoted by EQn : {0, 1}n × {0, 1}n →
{0, 1}, is defined as

EQn(x,y) =

{
1, x = y,

0, otherwise.

It is arguably the most well-known problem in two-party communication complexity which has been
extensively studied. We summarize its communication complexity under different settings in Table
1 below.

C A BRIEF INTRODUCTION TO BOOLEAN CIRCUITS

Boolean circuits are computational models used to represent Boolean function computations. A
Boolean circuit with input size n can be described as a Directed Acyclic Graph (DAG), with n
source nodes as inputs and one sink node as the output. The nodes represent gates, including NOT
(¬, with one input), AND (∧, with two or more inputs), OR (∨, with two or more inputs), and
threshold gates (Tha,θ), which output 1 if and only if a⊤x ≥ θ, where a and θ are independent of
the input x.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 1: The communication complexity of the EQn function under different settings.

Function Deterministic Randomized
Private Coin Public Coin

D(·) Rprv
0 (·) Rprv

1/3(·) Rpub
0 (·) Rpub

1/3(·)

EQn Θ(n)† Θ(n)† Θ(log n)† Θ(n)* Θ(1)†

† The proofs can be found in (Kushilevitz & Nisan, 1997).
* Since Rprv

0 (f) = O(Rpub
0 (f) + log n), as per Exercise 3.15

in (Kushilevitz & Nisan, 1997).

A circuit family (Cn)n≥1 is a sequence of circuits with input size growing from 1 to infinity. A
family is L-uniform if a Turing machine can construct Cn in O(log n) space, given n in unary. Cir-
cuit families are assumed uniform unless otherwise stated. There are three major circuit complexity
classes:

• ACk consists of problems solvable by circuits with ¬, ∧, and ∨ gates, polynomial size,
depth O(logk n), and unbounded fan-in.

• NCk includes problems solvable by circuits with ¬, ∧, and ∨ gates, polynomial size, depth
O(logk n), and fan-in 2.

• TCk comprises problems solvable by circuits with polynomial size, depth O(logk n), un-
bounded fan-in gates.

D TIME COMPLEXITY OF ALL-PAIRS SHORTEST PATHS IN UNWEIGHTED
UNDIRECTED GRAPHS

The shortest path problem is one of the fundamental problems in graph theory. The All-Pairs Short-
est Path (APSP) problem seeks to determine the shortest path distance between all pairs of nodes in
a given graph G. To the best of our knowledge, the fastest algorithm for APSP on unweighted and
undirected graphs can be formally stated as follows:
Lemma 1 (Folklore; (Seidel, 1995)). The computation of APSP for an unweighted, undirected graph
with n nodes and m edges can be achieved with a time complexity of Õ (min (nm, nω)), where
ω < 2.372 is the matrix multiplication exponent.

E A BRIEF INTRODUCTION TO RESISTANCE DISTANCE

In this section, we introduce the concept of Resistance Distance (RD), covering its definition and
the time complexity of approximately computing All-Pairs Resistance Distances (APRD). We begin
with the definition of resistance distance:
Definition 4 (Resistance Distance). Given an undirected graph G and a pair of nodes s and t, the
resistance distance between s and t, denoted by R(s, t), is defined as:

R(s, t) = (es − et)
⊤L†(es − et) = L†ss −L†st −L†ts +L†tt, (7)

where es is a one-hot vector with a 1 in the s-th position, and L† is the Moore-Penrose pseudo-
inverse of the graph Laplacian matrix L := D − A, satisfying LL† = Π and span(L†) =
span(L) = {v ∈ Rn : v⊤1 = 0}. Here, Π = In − 1

n11
⊤ is the projection matrix onto span(L).

As shown by Klein & Randić (1993), R(s, t) is a valid distance metric on graphs. Additionally, we
present the following lemma, which connects resistance distance to spanning trees:
Lemma 2 ((Lovász, 1993; Hayashi et al., 2016)). Given an edge (s, t) in an unweighted undirected
graph G, we have

R(s, t) = Pr
T∼µG

(I[(s, t) ∈ E(T)]) ,

where T is a spanning tree sampled from the uniform distribution of spanning trees of G, denoted
by µG, and I[·] is the indicator function.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Next, we define the approximate computation of APRD:

Definition 5 (Approximate Computation of APRD). Given an undirected, unweighted graph G =
(V,E), an error threshold ϵ > 0, and a failure probability 0 ≤ pf ≤ 1, compute a matrix R ∈ Rn×n

such that for any node pair u, v,

Pr (|Ruv −R(u, v)| > ϵR(u, v)) ≤ pf .

To the best of our knowledge, the fastest algorithm for approximating APRD can be formally stated
as follows:

Lemma 3 ((Dwaraknath et al., 2023)). The approximate computation of APRD for a graph with n
nodes and m edges can be achieved with a time complexity of

Õ
(
min

(
nm, nω,

m

ϵ
κ(D−1/2LD−1/2) + n2

))
,

where ω < 2.372 is the matrix multiplication exponent, and κ denotes the condition number of the
matrix.

Note that the Õ(nm) time complexity is achieved using near-linear time Laplacian solvers, as pro-
posed in a series of works (Spielman & Teng, 2004; Koutis et al., 2010; 2011; Cohen et al., 2014;
Jambulapati & Sidford, 2021), while the Õ(nω) complexity comes from fast matrix multiplication

techniques. However, under the Θ

(
1

n

)
error requirement, as discussed in Section 3, the time

complexity degenerates to Õ (min (nm, nω)), which matches the time complexity of APSP.

F PROOF OF THEOREM 1

Theorem 1. For any integer n ≥ 3, there exist two graphs with n nodes, Pn and Cn, such that for
any two adjacent nodes in Pn, the resistance distance is 1, while in Cn, it is 1− 1/n. Furthermore,
Pn is neither vertex- nor edge-biconnected, whereas Cn is both vertex- and edge-biconnected.

Proof. Let Pn be the path graph with n nodes, and Cn be the cycle graph with n nodes.

u v

R(u, v) = 1

u v

R(u, v) = 5/6

Figure 4: P6 and C6.

We observe that Pn has exactly one spanning tree, which is the graph itself. In contrast, Cn has
n spanning trees, each formed by removing a single edge from E(Cn). Therefore, for each edge
(u, v) ∈ E(Pn), we have

Pr
T∼µPn

(I[(u, v) ∈ E(T)]) = 1,

and for each edge (u, v) ∈ E(Cn),

Pr
T∼µCn

(I[(u, v) ∈ E(T)]) =
n− 1

n
= 1− 1

n
.

Thus, by applying Lemma 2, we arrive at the desired conclusion: for (u, v) ∈ E(Pn), R(u, v) = 1,

while for (u, v) ∈ E(Cn), R(u, v) = 1 − 1

n
. The biconnectivity of these two graph types is

evident.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G PROOF OF THEOREM 2

Theorem 2. Given any edge (u, v) ∈ E in an undirected, unweighted graph G, (u, v) is a cut edge
if and only if the resistance distance R(u, v) = 1.

Proof. It is straightforward to show that an edge (u, v) is a cut edge if and only if it is included in
every spanning tree of G. Therefore, by Lemma 2, we have

R(u, v) = Pr
T∼µG

(I[(u, v) ∈ E(T)]) = 1.

H PROOF OF THEOREM 4

Before proving Theorem 4, we present some basic facts about the CONGEST model. First, we show
that a spanning tree rooted at a node u can be constructed using the FLOOD algorithm.
Lemma 4 ((Peleg, 2000), FLOOD Algorithm). There exists a CONGEST algorithm in which a
designated node u ∈ V can construct a spanning tree T rooted at u with depth depth(T) =
maxv dG(u, v) in maxv dG(u, v) = O(D) rounds, where D is the diameter of the graph.

The idea behind the FLOOD algorithm is straightforward: Initially, the source node u sends a special
token to all its neighbors. Each node, upon receiving the token for the first time, stores it and
forwards it to its neighbors. If a node receives the token again, it discards it and does nothing.

Additionally, we include the following lemmas, which describe the ability to broadcast and collect
messages to and from a designated node.
Lemma 5 ((Peleg, 2000), DOWNCAST Algorithm). There exists a CONGEST algorithm in which,
given M messages (of Θ(log n) bit) stored at a designated node u ∈ V , and a spanning tree T
rooted at u, the messages can be broadcast to other nodes in O(depth(T) +M) rounds.
Lemma 6 ((Peleg, 2000), UPCAST Algorithm). There exists a CONGEST algorithm in which, given
M messages stored at different nodes and a spanning tree T rooted at u, the messages can be
collected at node u in O(depth(T) +M) rounds.

It is important to note that the conclusions for the DOWNCAST and UPCAST algorithms above are
derived under the standard CONGEST model, where each edge can transmit only O(1) messages of
size Θ(log n) bits per communication round. If we relax this restriction to allow the transmission of
w messages of size Θ(log n) bits per round, the round complexities of the two algorithms reduce to

O

(
depth(T) +

M

w

)
by grouping messages together.

With these tools in hand, we are now ready to prove the theorem.
Theorem 4. If we allow a single node to have unbounded computational power to solve any com-
putable problem, then every NP-Complete decision problems on undirected unweighted graphs can
be solved by the CONGEST model in O(m) rounds.

Proof. Given an NP-Complete problem on an undirected, unweighted graph, such as deciding
whether there is a k-clique in a graph G, we proceed as follows. Since each node is assigned a
unique ID in [n], we designate node 0 as the leader without loss of generality.

First, in one round, each node u collects the IDs of its neighbors and forms d(u) messages of the
form (ID(u), ID(v)) for each v ∈ N(u). Next, we invoke the FLOOD algorithm to construct a
spanning tree rooted at node 0 in O(D) rounds. Afterward, we apply the UPCAST algorithm to
gather a total of

∑
u∈V d(u) = Θ(m) messages in O(D + m) rounds. At this point, node 0 has

complete knowledge of the graph’s topology. Since node 0 can solve any computable problem, it
can solve the NP-Complete problem locally in one round. Finally, node 0 uses the DOWNCAST
algorithm to broadcast the result to all other nodes in O(D) rounds.

Thus, the total number of communication rounds is
1 +O(D) +O(D +m) +O(D) = O(m).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I THE WEISFEILER-LEHMAN PROBLEM AND ITS HARDNESS (THEOREM 5)

In this section, we formally define the meaning of one iteration of the Weisfeiler-Lehman (WL) test
and prove its computational hardness. To facilitate our presentation, we first define the WL relation.

Definition 6 (Weisfeiler-Lehman Relation). Given an unweighted, undirected graph G, the
Weisfeiler-Lehman relation on G, denoted by WL(G), is the set of color vector pairs (x,y) ∈
[n]n × [n]n6 satisfying:

∀u ∈ V, v ∈ V,yu = yv ⇔ xu = xv ∧ {{xz : z ∈ N(u)}} = {{xz : z ∈ N(v)}} .

The formal definition of one iteration of the WL test is captured by the deterministic, zero-error
randomized, and bounded-error randomized WL problems, as described below.

Definition 7 (Weisfeiler-Lehman Problem). Given an unweighted, undirected graph G with n
nodes, where each node v is initially assigned a color xv ∈ [n], the goal is to assign a new color
yv ∈ [n] for each node such that:

• Deterministic: (x,y) ∈ WL(G), or

• Randomized, Zero-Error: Pr ((x,y) ∈ WL(G)) = 1, or

• Randomized, Bounded-Error: Pr ((x,y) ∈ WL(G)) ≥ 1− ϵ.

We now formally state and prove theorems regarding the hardness of one iteration of the WL test.

Theorem 5. If an RL-CONGEST model can simulate one iteration of the WL test without prepro-
cessing, either deterministically or randomly with zero error, regardless of the computational power

available to each node, the model’s width w and depth d must satisfy d = Ω

(
D +

m

w log n

)
, given

that w = o

(
n

log n

)
.

The proof of the theorem relies on tools from communication complexity, so we recommend that
readers refer to Appendix B for a basic understanding of these concepts.

Proof. We will prove that for any positive integer n and any positive integer m such that m ∈ [n, n2],
there exists a hard-case graph with Θ(n) nodes and Θ(m) edges. Given n and m, we first construct
an incomplete “basic” graph G(n,m) with Θ(n) nodes and Θ(n) edges, partitioned between Alice
(A) and Bob (B), as follows:

• Alice and Bob each have nodes x(A) and x(B), connected by an edge;

• They also hold nodes w
(A)
i and w

(B)
i (i = 1, 2, · · · ,

⌈m
n

⌉
), connected to x(A) and x(B)

respectively;

• Additionally, they possess nodes u(A)
i , u(B)

i , v(A)
i , and v

(B)
i (i = 1, 2, · · · , n);

• Add edges
{(

u
(A)
n , v

(A)
n

)}
∪

{(
u
(A)
i , u

(A)
i+1

)
: i ∈ {1, 2, · · · , n− 1}

}
∪{(

v
(A)
i , v

(A)
i+1

)
: i ∈ {1, 2, · · · , n− 1}

}
to form a path with nodes u

(A)
i , and v

(A)
i .

Repeat similarly for nodes u(B)
i , and v

(B)
i , to form another path.

Then, we assign each node’s color xu as follows:

• xx(A) = xx(B) = 0;

6Our theorems also hold for any bounded color spaces, such as [p(n)] for any polynomial p. However, since
n colors are always sufficient, we can simply set the color space to [n].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• For each i ∈ {1, 2, · · · , n}, x
u
(A)
i

= x
u
(B)
i

= i;

• For each i ∈ {1, 2, · · · , n}, x
v
(A)
i

= x
v
(B)
i

= n+ i;

• For each i ∈
{
1, 2, · · · ,

⌈m
n

⌉}
, x

w
(A)
i

= x
w

(B)
i

= 2n+ i;

The constructed basic graph is illustrated in Figure 5.

x(A)

w
(A)
1

w
(A)
2

w
(A)
3

. . .

w
(A)
⌈mn ⌉

u
(A)
1

u
(A)
2

u
(A)
3

u
(A)
4

. . .

u
(A)
n−1

u
(A)
n

v
(A)
1

v
(A)
2

v
(A)
3

v
(A)
4

. . .

v
(A)
n−1

v
(A)
n

x(B)

w
(B)
1

w
(B)
2

w
(B)
3

. . .

w
(B)
⌈mn ⌉

u
(B)
1

u
(B)
2

u
(B)
3

u
(B)
4

. . .

u
(B)
n−1

u
(B)
n

v
(B)
1

v
(B)
2

v
(B)
3

v
(B)
4

. . .

v
(B)
n−1

v
(B)
n

Alice Bob

a1 = 0?

a4 = 1?

Figure 5: The constructed basic graph G(n,m). Nodes are colored according to x.

Alice and Bob also fix a bijection c in advance between the set of index pairs
{
1, 2, · · · ,

⌈m
n

⌉}
×

{1, 2, · · · , n} and the set
{
1, 2, · · · , n ·

⌈m
n

⌉}
7. For example, define c((i, j)) = (i − 1)n + j and

c−1(i) =

(⌈
i

n

⌉
, (i− 1) mod n+ 1

)
.

Given an instance (a, b) ∈ {0, 1}m × {0, 1}m of EQm, Alice receives a = (a1,a2, · · · ,am) and
Bob receives b = (b1, b2, · · · , bm), they complete G(n,m) to G(n,m);(a,b) with Θ(n) nodes and
Θ(m) edges as follows:

• For each k ∈ {1, 2, · · · ,m}, let (i, j) = c−1(k). If ak = 0, Alice adds edge (w
(A)
i , u

(A)
j);

otherwise, Alice adds edge (w
(A)
i , v

(A)
j);

• For each k ∈ {1, 2, · · · ,m}, let (i, j) = c−1(k). If bk = 0, Bob adds edge (w
(B)
i , u

(B)
j);

otherwise, Bob adds edge (w
(B)
i , v

(B)
j);

7Since
m

n
≤

⌈m
n

⌉
<

m

n
+ 1, we have m ≤ n

⌈m
n

⌉
< m+ n.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We claim that given G(n,m);(a,b), for any new color vector y such that (x,y) ∈ WL(G(n,m);(a,b)),
we have:

a = b ⇐⇒ ∀i ∈
{
1, 2, · · · ,

⌈m
n

⌉}
,y

w
(A)
i

= y
w

(B)
i

.

• “⇒” is straightforward. Since the construction is symmetric, for any i ∈
{
1, · · · ,

⌈
m
n

⌉}
we have

{{
xk : k ∈ N

(
w

(A)
i

)}}
=

{{
xk : k ∈ N

(
w

(B)
i

)}}
and thus(

x
w

(A)
i

,
{{
xk : k ∈ N

(
w

(A)
i

)}})
=

(
x
w

(B)
i

,
{{
xk : k ∈ N

(
w

(B)
i

)}})
.

Therefore, ∀i ∈
{
1, · · · ,

⌈m
n

⌉}
, y

w
(A)
i

= y
w

(B)
i

.

• To prove the other direction, we show its contrapositive: a ̸= b ⇒ ∃i,y
w

(A)
i

̸= y
w

(B)
i

.
Since a ̸= b, there exists 1 ≤ k ≤ m such that ak ̸= bk. Without loss of generality,
assume ak = 0 and bk = 1, and let (i, j) = c−1(k). According to our construction,
for Alice, j ∈

{{
xv : v ∈ N

(
w

(A)
i

)}}
and n + j ̸∈

{{
xv : v ∈ N

(
w

(A)
i

)}}
, while for

Bob, j ̸∈
{{
xv : v ∈ N

(
w

(B)
i

)}}
and n + j ∈

{{
xv : v ∈ N

(
w

(B)
i

)}}
. Therefore,

y
w

(A)
i

̸= y
w

(B)
i

.

Now, assume that WL(G(n,m);(a,b)) can be solved by an RL-CONGEST model on G(n,m);(a,b)

deterministically, or randomly with zero error, in d rounds. We can construct an algorithm that
solves EQm in no more than d + 1 +

⌈m
n

⌉
rounds. This can be done by first using d rounds to

compute y, then using 1 round for x(A) and x(B) to collect the colors of their neighbors, and finally
using

⌈m
n

⌉
rounds to compare the colors between w

(A)
i and w

(B)
i .

According to the results in communication complexity, we have D(EQm) = R0(EQm) = Θ(m),
which implies that the total number of communicated bits satisfies(

d+ 1 +
⌈m
n

⌉)
w log |V (G(n,m);(a,b))| = Ω(m).

This is equivalent to

d+Θ
(m
n

)
= Ω

(
m

w log n

)
.

Therefore, when w = o

(
n

log n

)
, we have d = Ω

(
m

w log n

)
.

The Ω(D) component is straightforward. By adding a path of length Θ(D) between x(A) and x(B),
any message exchange between the two parties will require Ω(D) rounds.

J PROOF OF THEOREM 6

Theorem 6. There exists a deterministic RL-CONGEST algorithm that can simulate one iteration
of the WL test without preprocessing, with width w and depth d satisfying d = O

(
D +

m

w

)
. Addi-

tionally, it is sufficient to set the nodes’ computational resource class to C = DTIME(n2 log n).

Proof. We present the framework of our algorithm and analyze the round complexity for each step:

1. Each node u sends a message (u,xu) to its neighbors and receives messages from them to
form the set Su = {(u, v,xv) : v ∈ N(u) ∪ u}. This process takes O(1) rounds.

2. Node 0 initiates the FLOOD algorithm to construct a BFS spanning tree rooted at node 0.
This process takes O(D) rounds.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

3. The UPCAST algorithm is used to collect all sets Su at the root node 0 along the spanning
tree. This process takes O

(
D +

m

w

)
rounds, as there are

∑
u∈V O(du) = O(m) messages

to gather, and each edge can transmit w messages per round.

4. Node 0 merges all Su to form the set K = {(u, (xu, {{xv : v ∈ N(u)}})) : u ∈ V }. This
step can be completed in one round and requires O(m) time8, since there are O(m) tuples
in

⋃
u Su.

5. Node 0 sorts K by (xu, {{xv : v ∈ N(u)}}) to create the ordered set K ′ =
{((xu, {{xv : v ∈ N(u)}}) , u) : u ∈ V }. It then determines new colors for each node
by the rank of (xu, {{xv : v ∈ N(u)}}). The computed color mapping is represented as
{(u,yu) : u ∈ V }. This process can be done in one round and requires O(n log n) com-
parisons, with each comparison taking O(∆) time, resulting in O(n∆ log n) time.

6. The DOWNCAST algorithm is used to send the results back to each node along the spanning
tree. This process takes O

(
D +

n

w

)
rounds, as there are O(n) messages to transmit.

Thus, the WL problem can be computed by the RL-CONGEST model in

d = O
(
1 +D +D +

m

w
+D +

n

w

)
= O

(
D +

m

w

)
rounds. The computational resource class of each node is determined by steps 4 and 5.

K PROOF OF THEOREM 7

Theorem 7. There exists a deterministic RL-CONGEST algorithm that can simulate one iteration
of the WL test by adding a virtual node, which connects to other nodes, as preprocessing. The
algorithm operates with width w and depth d satisfying dw = O(∆), where ∆ is the maximum
degree of the graph before the addition of the virtual node. Additionally, it is sufficient to set the
nodes’ computational resource class to C = DTIME(n2 log n).

Proof. Without loss of generality, we denote the added virtual node as node n, which is known to all
nodes in the original graph. We then outline the framework of our algorithm and analyze the round
complexity for each step:

1. Each node u, except the virtual node, sends a message (u,xu) to its neighbors and receives
messages from them, forming the set Su = {(u, v,xv) : v ∈ N(u) ∪ u}. This process
takes O(1) rounds.

2. The virtual node n sends a token to each node to notify them of the edge along which the
virtual node can be reached. This process takes 1 round.

3. Each node u, except the virtual node, sends its set Su to the virtual node n along the

edge connecting to it. This process takes O
(
∆

w

)
rounds, as each node has at most Θ(∆)

messages to send, excluding the virtual node.

4. The virtual node n merges all sets Su to form the set K =
{(u, (xu, {{xv : v ∈ N(u)}})) : u ∈ V }. This step can be completed in 1 round and
requires O(m) time9, as there are O(m) tuples in

⋃
u Su.

5. The virtual node n sorts K by (xu, {{xv : v ∈ N(u)}}) to create the ordered set K ′ =
{((xu, {{xv : v ∈ N(u)}}) , u) : u ∈ V }. It then assigns new colors to each node based on
the rank of (xu, {{xv : v ∈ N(u)}}). The color mapping is represented as {(u,yu) : u ∈
V }. This process can be completed in 1 round and requires O(n log n) comparisons, with
each comparison taking O(∆) time, resulting in O(n∆ log n) total time.

8Assuming a WordRAM machine where each word consists of Θ(logn) bits.
9Assuming a WordRAM model where each word consists of Θ(logn) bits.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

6. The virtual node n sends the new colors yu to their corresponding nodes u along the con-
necting edges. This process takes 1 round, as each edge transmits only one message.

Thus, the WL problem can be computed in the RL-CONGEST model with the addition of a virtual
node in

d = O

(
1 + 1 +

∆

w
+ 1

)
= O

(
∆

w

)
rounds, or equivalently, dw = O(∆). The computational resource class of each node is determined
by steps 4 and 5.

L COMPLEXITY OF THE PNF MODEL CHECKING PROBLEM

As mentioned in Section 4.3, the Lk model checking problem is crucial in various areas of computer
science. We will introduce some key results that characterize the complexity of its special case, the
PNF Lk model checking problem.

On one hand, the first two results establish the upper bound of the time complexity for the PNF Lk

model checking problem on graphs, where the predicates are limited to E(x, y) and =(x, y).

Theorem 9 ((Eisenbrand & Grandoni, 2004; Williams, 2014)). For k ≥ 3, every k-quantifier (PNF)
first-order sentence on n-node graphs can be decided in Õ(nk−3+ω) time.

Theorem 10 ((Eisenbrand & Grandoni, 2004; Williams, 2014)). For k ≥ 9, every k-quantifier
(PNF) first-order sentence on n-node graphs can be decided in nk−1+o(1) time.

On the other hand, the following result establishes a lower bound for the PNF Lk model checking
problem on graphs, conditioned on a well-known hypothesis in theoretical computer science:

Theorem 11 ((Puatracscu & Williams, 2010; Williams, 2014)). For k ≥ 4, if the model checking
problem for k-quantifier (PNF) first-order sentences over graphs can be solved in O(nk−1−ϵ) time
for some ϵ > 0, then the Strong Exponential Time Hypothesis (SETH) is false.

Note that the algorithms in Theorem 9 and 10 leverage fast matrix multiplication techniques to im-
prove the brute-force algorithm by a factor of n, in contrast to the combinatorial operations typically
employed in GNNs. Motivated by this, many works have attempted to find a faster combinatorial al-
gorithm that does not rely on fast matrix multiplication and can outperform the brute-force approach
by a polynomial factor of nϵ for some ϵ > 0, but to date, all such attempts have failed. This has led
to the formulation of the combinatorial k-clique conjecture, which is stated as follows:

Conjecture 1 (Combinatorial k-Clique Conjecture, (Abboud et al., 2017; Bringmann et al., 2017;
Abboud et al., 2024)). For any k ≥ 3 and any ϵ > 0, no combinatorial algorithm can determine
whether a graph contains a k-clique in O(nk−ϵ) time.

Since the k-clique problem is a special case of the PNF Lk model checking problem, it follows
that no combinatorial algorithm can solve the PNF Lk model checking problem in O(nk−ϵ) time
for k ≥ 3. Therefore, when focusing exclusively on combinatorial algorithms, it is reasonable to
classify the PNF Lk model checking problem in the Θ̃(nk) complexity class.

For more general cases, such as PNF Lk model checking not limited to graphs, there are also results
concerning both upper and lower bounds. First, Gao et al. (2017) designed an algorithm to solve the
PNF Lk model checking problem in mk−1−o(1) time, where m is the size of the input structure, i.e.,
the number of all tuples in the relations, which is equivalent to the number of edges when the model
is a graph.

Theorem 12 ((Gao et al., 2017)). There exists an algorithm that solves the (PNF) Lk model checking
problem in time mk−1/2Θ(√logm).

They also prove the near-optimality of their algorithm under SETH:

Theorem 13 ((Gao et al., 2017)). Assuming SETH, no algorithm can solve the (PNF) Lk model
checking problem in O(mk−1−ϵ) time for any ϵ > 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Therefore, it is reasonable to classify the PNF Lk model checking problem in the Θ̃
(
mk−1) com-

plexity class. By combining the two results, it is reasonable to classify the PNF Lk model checking
problem in the Θ̃

(
min

{
nk,mk−1}) complexity class.

M PROOF OF THEOREM 8

Theorem 8. If constructing the k-WL graph and additional features in O
(
k · poly|ϕ| · nk+1

)
time

is allowed, where |ϕ| represents the length of the quantifier-free formula, the RL-CONGEST model
can solve the PNF Ck model checking problem in O(k2) rounds. Additionally, the computational
resources required by each node are C = DTIME(k2n).

Proof. We prove this theorem by directly constructing a solution under the RL-CONGEST frame-
work to solve the PNF Ck model checking problem. This involves constructing the k-WL graph and
computing features as part of the preprocessing, followed by a message-passing process.

Given an input graph G and a PNF Ck sentence φ := (Q1u1)(Q2u2) · · · (Qkuk)ϕ(u1, u2, · · · , uk),
where Qi are quantifiers from {∀,∃,∃≥i,∃≤i,∃=i}, and ϕ(u1, · · · , uk) is a quantifier-free formula10

with predicates limited to E(·, ·) and =(·, ·), the overall framework using the RL-CONGEST model
to decide whether G |= φ proceeds as follows:

1. Preprocessing:

• Construct the k-WL graph G′: Enumerate all k-tuples v = (v1, · · · , vk) ∈ V k to form
the new node set V ′ for the k-WL graph. Each node has a unique ID (ID(v1), · · · , ID(vk))
in [n]k. For simplicity, we use vi and ID(vi) interchangeably. Then, connect nodes with
Hamming distance one, that is, E′ = {(u,v) ∈ V ′ × V ′ : dH(u,v) = 1}.

• Construct a circuit for ϕ(u1, · · · , uk): We define a bijection f between {1, 2, · · · , k} ×
{1, 2, · · · , k} and {1, 2, · · · , k2} such that f(i, j) = (i− 1)k + j. Next, we introduce 2k2

auxiliary variables corresponding to E(ui, uj) and =(ui, uj):
– For each pair (i, j) ∈ {1, · · · , k} × {1, · · · , k}, let variable xf(i,j) represent E(ui, uj).
– For each pair (i, j) ∈ {1, · · · , k} × {1, · · · , k}, let variable xk2+f(i,j) represent =
(ui, uj).

A Boolean circuit Cϕ(x1, · · · , xk2 , · · · , x2k2) is built, taking 2k2 inputs. This is done by
replacing atomic formulas E(ui, uj) and =(ui, uj) in ϕ with xf(i,j) and xk2+f(i,j), respec-
tively, and adding logic gates to form Cϕ.

• Compute features ϕ(v): For each node v = (v1, · · · , vk), representing an assignment of
the variables (u1, · · · , uk), we compute a feature vector x(v) = (x1(v), · · · , x2k2(v)),
where:

– For each pair (i, j), xf(i,j)(v) = I[E(vi, vj)] ∈ {0, 1}, indicating whether vi and vj are
connected.

– Similarly, xk2+f(i,j)(v) = I[=(vi, vj)] ∈ {0, 1}, indicating whether vi and vj are the
same node in G.

By applying the Cϕ circuit with input x(v) to each vertex v, we obtain a one-bit feature for
each node. It can be easily verified that Cϕ(x(v)) = ϕ(v) for any node v ∈ V ′.

We illustrate this preprocessing process with an example. Let G be the graph in Figure 6,
k = 3, and ϕ(u1, u2, u3) := E(u1, u2) ∧ E(u2, u3) ∧ E(u3, u1). The auxiliary variables
xi and their corresponding atomic formulas are listed in Table 2. The circuit Cϕ is given by
Cϕ(x1, · · · , x18) = x2 ∧ x6 ∧ x7. For node v = (0, 1, 3) ∈ V ′, the values of each auxiliary
variable on v are shown in the third column of Table 2. Applying the circuit to x((0, 1, 3)), we
obtain an output of 1.

We then analyze the time complexity of the preprocessing phase. For the construction of the k-
WL graph, since there are Θ(nk) nodes and Θ

(
knk+1

)
edges, the construction takes Θ

(
knk+1

)
10We assume that the logical connectives are limited to ∧, ∨, and ¬. If other connectives are present, they

can be transformed into an equivalent formula using only these connectives in poly|ϕ| time, where |ϕ| is the
length of the formula.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1 2

3

Figure 6: An example graph illustrating the preprocessing process.

Table 2: Auxiliary variables, their corresponding atomic formulas, and their values on node (0, 1, 3).

Auxiliary Variables Corresponding Atomic Formulas Values on Node (0, 1, 3)

x1 E(u1, u1) = [E(0, 0)] = 0
x2 E(u1, u2) = [E(0, 1)] = 1
x3 E(u1, u3) = [E(0, 3)] = 1
x4 E(u2, u1) = [E(1, 0)] = 1
x5 E(u2, u2) = [E(1, 1)] = 0
x6 E(u2, u3) = [E(1, 3)] = 1
x7 E(u3, u1) = [E(3, 0)] = 1
x8 E(u3, u2) = [E(3, 1)] = 1
x9 E(u3, u3) = [E(3, 3)] = 0
x10 =(u1, u1) = [=(0, 0)] = 1
x11 =(u1, u2) = [=(0, 1)] = 0
x12 =(u1, u3) = [=(0, 3)] = 0
x13 =(u2, u1) = [=(1, 0)] = 0
x14 =(u2, u2) = [=(1, 1)] = 1
x15 =(u2, u3) = [=(1, 3)] = 0
x16 =(u3, u1) = [=(3, 0)] = 0
x17 =(u3, u2) = [=(3, 1)] = 0
x18 =(u3, u3) = [=(3, 3)] = 1

time. The circuit construction involves simple operations, such as substituting variables, which
takes O (poly|ϕ|) time. For the feature computation, we compute Θ(k2) features for each node
v ∈ V k and pass it through the circuit Cϕ to obtain ϕ(v). This process takes O

(
poly|ϕ| · nk

)
time. Thus, the total time complexity for the preprocessing phase is O

(
poly|ϕ| · nk + knk+1

)
=

O
(
k · poly|ϕ| · nk+1

)
.

2. Message-Passing with Limited Computational Resources: We present an O(k2)-round
message-passing algorithm on G′, where each node v ∈ V ′ has a feature ϕ(v) obtained dur-
ing the preprocessing phase. The key idea is to treat the k-WL graph as an implicit n-ary prefix
tree and perform dynamic programming to eliminate quantifiers over this tree. The algorithm is
described as follows:

(a) Initial Setup:
• Each node v ∈ V ′ has a one-bit feature ϕ(v) from the preprocessing phase.
• For each node v ∈ V ′:

– Sends its ID along with its feature to its neighbors11.
– Receives messages from neighbors.

(b) Main Iteration (ℓ = k to 1):
• We define the active nodes in the ℓ-th iteration as those whose IDs take the form
(v1, · · · , vℓ−1, 0, 0, · · ·), meaning the last k − ℓ+ 1 coordinates are zeros.

• For each active node (v1, · · · , vℓ−1, 0, · · ·):
– Collects all received features from nodes whose IDs match the pattern
(v1, · · · , vℓ, 0, · · ·), where vℓ ∈ V . This forms a multiset of n bits.

– Updates its feature based on the quantifier Qℓ:
* If Qℓ is ∀, set the node’s feature to 1 if all n bits in the multiset are 1; otherwise, set

it to 0.
11This message passing takes O(k) communication rounds.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

* If Qℓ is ∃, set the feature to 1 if at least one 1 exists in the multiset; otherwise, set it
to 0.

* Similarly, handle other quantifiers (∃≥i, ∃≤i, etc.).
– Sends its updated feature and ID to its neighbors.
– Receives messages from neighbors.

• Non-active nodes change their feature to ⊥ and remain silent for the rest of the process.
(c) Final Result: The final result bit is found at the node (0, 0, · · · , 0) ∈ V ′. To propagate the

result to all nodes in V ′, we use an additional k rounds.

Since there are k iterations, and each iteration requires O(k) communication rounds to send
messages, the total number of communication rounds is k ·O(k)+ k = O(k2). In each iteration,
each node examines O(kn) messages, each containing O(k) words, resulting in O(k2n) time
complexity. Therefore, the computational complexity class for this RL-CONGEST algorithm is
C = DTIME(k2n).

29

	Introduction
	Preliminaries
	Notations
	Graph Neural Networks and Weisfeiler-Lehman Tests
	Distributed Computing Models
	Basic Concepts in First-Order Logic

	Issues Due to Absence of Well-Defined Computational Model
	Underestimated Preprocessing Time Complexity
	Mismatch Between Identical-Feature WL Test and Distinct Features
	CONGEST Addresses Mismatch but Retains Unrealistic Assumptions

	Proposed Computational Model and Our Results
	WL Test Requires Large Networks to Compute
	Virtual Nodes Reduce Network Size for WL Test
	Aligning High-Order GNNs with Model Checking is Natural

	Some Open Problems
	Conclusions
	A Brief Discussion on the Relationship Between Distinct Features and Permutation Invariance or Equivariance
	A Brief Introduction to Communication Complexity
	A Brief Introduction to Boolean Circuits
	Time Complexity of All-Pairs Shortest Paths in Unweighted Undirected Graphs
	A Brief Introduction to Resistance Distance
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4
	The Weisfeiler-Lehman Problem and Its Hardness (Theorem 5)
	Proof of Theorem 6
	Proof of Theorem 7
	Complexity of the PNF Model Checking Problem
	Proof of Theorem 8

