

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONVERGENT DIFFERENTIAL PRIVACY ANALYSIS FOR GENERAL FEDERATED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

The powerful cooperation of federated learning (FL) and differential privacy (DP) provides a promising paradigm for the large-scale private clients. However, existing analyses in FL-DP mostly rely on the composition theorem and cannot tightly quantify the privacy leakage challenges, which is tight for a few communication rounds but yields an arbitrarily loose and divergent bound eventually. This also implies a counterintuitive judgment, suggesting that FL-DP may not provide adequate privacy support during long-term training under constant-level noisy perturbations, yielding discrepancy between the theoretical and experimental results. To further investigate the convergent privacy and reliability of the FL-DP framework, in this paper, we comprehensively evaluate the worst privacy of two classical methods under the non-convex and smooth objectives based on the f -DP analysis. With the aid of the shifted interpolation technique, we successfully prove that privacy in Noisy-FedAvg has a tight convergent bound. Moreover, with the regularization of the proxy term, privacy in Noisy-FedProx has a stable constant lower bound. Our analysis further demonstrates a solid theoretical foundation for the reliability of privacy in FL-DP. Meanwhile, our conclusions can also be losslessly converted to other classical DP analytical frameworks, e.g. (ϵ, δ) -DP and Rényi-DP (RDP), to provide more fine-grained understandings for the FL-DP frameworks.

1 INTRODUCTION

Since McMahan et al. (2017) proposes the FedAvg method as a general FL framework, it has been widely developed into a collaborative training standard with privacy protection attributes, which successfully avoids *direct leakage* of sensitive data. As research on privacy progresses, researchers have found that standard FL frameworks still face a threat from *indirect leakage*. Attackers can potentially recover local private data through reverse inference by persistently stealing model states via model (gradient) inversion attacks (Geiping et al., 2020) or distinguish whether individuals are involved in the training via membership inference attacks (Nasr et al., 2019). To further strengthen the reliability of FL, DP (Dwork, 2006; Dwork et al., 2014; Abadi et al., 2016) has naturally been incorporated into the FL framework, yielding FL-DP (Wei et al., 2020). As a primary technique, the noisy perturbation is widely applied in various advanced FL methods to further enhance its security.

However, the theoretical analysis of the FL-DP framework, especially in evaluating the privacy levels, is currently unable to provide a comprehensive understanding of its proper application. Most of the previous works are built upon the foundational lemma of privacy amplification by iteration, directly resulting in divergent privacy bound as the training communication round T becomes large. This implies an inference that contradicts intuition and empirical studies, which is, that the FL-DP framework may completely lose its privacy protection attributes as $T \rightarrow \infty$. Such a conclusion is almost unacceptable for FL-DP. Therefore, establishing a precise and tight analysis is a crucial target.

Notably, significant progress has been made in characterizing convergent privacy in the noisy gradient descent method in RDP analysis (Chourasia et al., 2021; Ye & Shokri, 2022; Altschuler & Talwar, 2022; Altschuler et al., 2024). However, due to the challenges and intricacies of the analytical techniques adopted, similar results have not yet successfully been extended to the FL-DP. The multi-step local updates on heterogeneous datasets lead to biased local models, posing significant obstacles to the analysis. Recently, analyses based on f -DP (Dong et al., 2022) have brought a promising resolution to this challenge. This information-theoretically lossless definition naturally evaluates

054
055 Table 1: The worst privacy of the `Noisy-FedAvg` and `Noisy-FedProx` in our analysis. V is the
056 norm of clip gradient. K, T are local training interval and communication round. σ is the variance of
057 the noise. The trade-off function $T_G(\cdot)$ ^[a] is defined in Definition 4. μ, c and z are constants.

Lr ^[b]	Worst Privacy	Convergent? on $T \rightarrow \infty$	Convergent? on $K \rightarrow \infty$
Noisy FedAvg	$C \quad T_G \left(\frac{2\mu V K}{\sqrt{m\sigma}} \sqrt{\frac{(1+\mu L)^K + 1}{(1+\mu L)^K - 1} \frac{(1+\mu L)^{KT} - 1}{(1+\mu L)^{KT} + 1}} \right)$		
	$CD \quad T_G \left(\frac{2cV \ln(K+1)}{\sqrt{m\sigma}} \sqrt{\frac{(1+K)^{c\mu L} + 1}{(1+K)^{c\mu L} - 1} \frac{(1+K)^{c\mu LT} - 1}{(1+K)^{c\mu LT} + 1}} \right)$	✓	✗
	$SD \quad T_G \left(\frac{2\mu V K}{\sqrt{m\sigma}} \sqrt{2 - \frac{1}{T}} \right)$		
ID	$T_G \left(\frac{2zV}{\sqrt{m\sigma}} \sqrt{2 - \frac{1}{T}} \right)$	✓	✓
Noisy FedProx $\alpha > L$	$T_G \left(\frac{2V}{\sqrt{m\alpha\sigma}} \sqrt{\frac{2\alpha - L}{L}} \sqrt{\frac{\alpha^T - (\alpha - L)^T}{\alpha^T + (\alpha - L)^T}} \right)$		

061 [a] For the trade-off function $T_G(s)$, smaller s means stronger privacy.
062 [b] Learning rate decaying policy. C: constant learning rate; CD: cyclically decaying; SD: stage-
063 wise decaying; ID: iteratively decaying. More details are stated in Theorem 3 4.

064 privacy by the Type I / II error trade-off curve of the hypothesis testing problem about whether a
065 given individual is in the training dataset. Combined with shifted interpolation techniques (Bok et al.,
066 2024), it successfully recovers tighter convergent privacy for strongly convex and convex objectives
067 in noisy gradient descent methods. This may make it possible to quantify convergent privacy in
068 FL-DP and may offer novel understandings about impacts of some key hyperparameters.

069 In this paper, we investigate the privacy of two classic DP-FL methods, i.e. `Noisy-FedAvg` and
070 `Noisy-FedProx` and successfully evaluate their *worst privacy* in the f -DP analysis, as shown in
071 Table 1. For the `Noisy-FedAvg` method, we investigate four typical learning rate decay strategies
072 and provide the coefficients corresponding to each case to ensure a tighter privacy lower bound. We
073 also prove that its iterative privacy on non-convex and smooth objectives could not diverge w.r.t.
074 the number of communication rounds T , i.e., a convergent privacy. To the best of our knowledge,
075 this contributes the first convergent privacy analysis in FL-DP methods for non-convex functions.
076 Furthermore, by exploring the decay properties of the proximal term in `Noisy-FedProx`, we prove
077 that its worst privacy can converge to a general constant lower bound. Our analysis successfully
078 challenges the long-standing belief that privacy budgets of FL-DP have to increase as training
079 processes and provides reliable guarantees for its privacy protection ability. At the same time, the
080 exploration from the proximal term provides a promising solution, suggesting that a well-designed
081 local regularization term can achieve a win-win solution for both optimization and privacy in FL-DP.

082 2 RELATED WORK

083 **Federated Learning.** FL is a classic learning paradigm that protects local privacy. Since McMahan
084 et al. (2017) proposes the basic framework, it has been widely studied in several communities. As its
085 foundational study, the `local-SGD` (Stich, 2019; Lin et al., 2019; Woodworth et al., 2020; Gorbunov
086 et al., 2021) method fully demonstrates the efficiency of local training. Based on this, FL further
087 considers the impacts of heterogeneous private datasets and communication bottlenecks (Wang et al.,
088 2020; Chen et al., 2021; Kairouz et al., 2021). To address these two basic issues, a series of studies
089 have explored these processes from different perspectives. One approach involves proposing better
090 optimization algorithms by defining concepts such as client drift (Karimireddy et al., 2020) and
091 heterogeneity similarity (Mendieta et al., 2022), specifically targeting and resolving the additional
092 error terms they cause. This mainly includes the natural application and expansion of variance-
093 reduction optimizers (Jhunjhunwala et al., 2022; Malinovsky et al., 2022; Li et al., 2023), the flexible
094 implementation of the advanced primal-dual methods (Zhang et al., 2021c; Wang et al., 2022; Sun
095 et al., 2023b; Mishchenko et al., 2022; Grudzień et al., 2023; Acar et al.; Sun et al., 2023a), and the

108 additional deployment of the momentum-based correction (Liu et al., 2020; Khanduri et al., 2021;
 109 Das et al., 2022; Sun et al., 2023c; 2024). Upgraded optimizers allow the aggregation frequency
 110 to largely decrease while maintaining convergence. Another approach primarily focuses on sparse
 111 training and quantization to reduce communication bits (Reisizadeh et al., 2020; Shlezinger et al.,
 112 2020; Dai et al., 2022). Additionally, research based on data domain and feature domain has also
 113 made significant contributions to the FL community (Yao et al., 2019; Zhang et al., 2021a; Xu et al.).

114 **FL-DP.** DP is a natural privacy-preserving framework with theoretical foundations (Dwork et al.,
 115 2006b;a; Dwork, 2006). As one of the main algorithms for differential privacy, noise perturbation
 116 has achieved great success in deep learning (Abadi et al., 2016; Zhao et al., 2019; Arachchige et al.,
 117 2019; Wu et al., 2020). Combining this, FL-DP adds noise before transmitting their variables, i.e.
 118 client-level noises (Geyer et al., 2017) and server-level noises (Wei et al., 2020). Since there is no
 119 fundamental difference between the analysis of them, in this paper, we mainly consider client-level
 120 noises. One major research direction involves conducting noise testing on widely developed federated
 121 optimization algorithms (Zhu et al., 2021; Noble et al., 2022; Lowy et al., 2023; Zhang & Tang,
 122 2022; Yang & Wu, 2023), and evaluating the performance of different methods under DP noises
 123 through convergence analysis and privacy analysis. Another research direction involves injecting
 124 noise into real-world systems to address practical challenges, which primarily focuses on personalized
 125 scenarios (Hu et al., 2020; Yang et al., 2021; 2023; Wei et al., 2023), decentralized scenarios (Wittkopp
 126 & Acker, 2020; Chen et al., 2022; Gao et al., 2023; Shi et al., 2023), and adaptive or asymmetric
 127 update scenarios (Girgis et al., 2021; Wu et al., 2022; He et al., 2023). FL-DP has been extensively
 128 tested across various scales of tasks and has successfully validated its robust local privacy protection
 129 capabilities. At the same time, the theoretical analysis of FL-DP has been progressing systematically
 130 and in tandem. Based on various DP relaxations, they provide a comparison of privacy performance
 131 by analyzing concepts such as privacy budgets, and further understand the specific attributes of
 132 privacy algorithms (Rodríguez-Barroso et al., 2020; Wei et al., 2021; Kim et al., 2021; Zheng et al.,
 133 2021; Ling et al., 2024; Jiao et al., 2024). Theoretical advancements in DP have revolutionized how
 134 we could quantify and safeguard privacy, offering unprecedented precision and robustness.

3 PRELIMINARIES

3.1 GENERAL FL-DP FRAMEWORK

135 We consider the general finite-sum minimization problem in the classical federated learning:

$$136 \quad w^* \in \arg \min_w f(w) \triangleq \frac{1}{m} \sum_{i \in \mathcal{I}} f_i(w), \quad (1)$$

137 where $f_i(w) = \mathbb{E}_{\varepsilon \sim \mathcal{D}_i} [f_i(w, \varepsilon)]$ denotes the local population risk. $w \in \mathbb{R}^d$ denotes d -dim learnable
 138 parameters. $\varepsilon \sim \mathcal{D}_i$ denotes that the private dataset on client i is sampled from distribution \mathcal{D}_i . We
 139 consider the general heterogeneity, i.e. \mathcal{D}_i can differ from \mathcal{D}_j if $i \neq j$, leading to $f_i(w) \neq f_j(w)$.
 140 **More detailed notations are introduced in Appendix A.**

141 In our analysis, we consider the FL-DP framework with the classical client-level Gaussian noises.
 142 The FL training process remains consistent with standard training procedures. The local clients
 143 enhance local privacy by adding isotropic Gaussian noises to the uploaded model parameters, i.e.
 144 $n_i \sim \mathcal{N}(0, \sigma^2 I_d)$. Then the global server aggregates the noisy parameters as the global model w_{t+1} .
 145 Due to the page limitation, details of the algorithmic implementation are deferred to the Appendix B.

146 **Noisy-FedAvg:** we consider that each local client performs a fundamental gradient descent as follows:

$$147 \quad w_{i,k+1,t} = w_{i,k,t} - \eta_{k,t} g_{i,k,t}, \quad (2)$$

148 where $g_{i,k,t} = \nabla f_i(w_{i,k,t}, \varepsilon) / \max\{1, \frac{\|\nabla f_i(w_{i,k,t}, \varepsilon)\|}{V}\}$, and V is a constant coefficient.

149 **Noisy-FedProx:** The vanilla local training in FedProx is based on solving the following surrogate:

$$150 \quad \min_w f_i(w) + \frac{\alpha}{2} \|w - w_t\|^2. \quad (3)$$

151 To generally compare with Noisy-FedAvg, we consider an iterative form of gradient descent as:

$$152 \quad w_{i,k+1,t} = w_{i,k,t} - \eta_{k,t} [g_{i,k,t} + \alpha(w_{i,k,t} - w_t)]. \quad (4)$$

162 3.2 DP AND f -DP
163164 **Definition 1** We denote heterogeneous datasets on the client i by $\mathcal{S}_i = \{\varepsilon_{ij}\}$ and let the union of all
165 local datasets be $\mathcal{C} = \{\mathcal{S}_i\}$. We say two unions are adjacent datasets if they only differ by one data
166 sample. For instance, there exists the union $\mathcal{C}' = \{\mathcal{S}'_i\}$. $(\mathcal{C}, \mathcal{C}')$ are adjacent datasets if there exists
167 the index pair (i^*, j^*) such that all other data samples are the same except for $\varepsilon_{i^*j^*} \neq \varepsilon'_{i^*j^*}$.168 **Definition 2** A randomized mechanism \mathcal{M} is (ϵ, δ) -DP if for any event E the following satisfies:
169

170
$$P(\mathcal{M}(\mathcal{C}) \in E) \leq e^\epsilon P(\mathcal{M}(\mathcal{C}') \in E) + \delta. \quad (5)$$

171

172 Definition 2 is the widely used (ϵ, δ) -DP, which is a lossy relaxation in the DP analysis since its
173 probabilistic gaps. To bridge the discrepancy of precise DP definitions, statistic analysis demonstrates
174 that DP could be naturally deduced by hypothesis-testing problems (Wasserman & Zhou, 2010;
175 Kairouz et al., 2015). From the perspective of attackers, DP means the difficulty in distinguishing \mathcal{C}
176 and \mathcal{C}' under the mechanism \mathcal{M} . They can generally consider the following problem:
177178 *Given \mathcal{M} , is the underlying union \mathcal{C} (H_0) or \mathcal{C}' (H_1)?*179 To exactly quantify the difficulty of its answer, Dong et al. (2022) propose that distinguishing these
180 two hypotheses could be best delineated by the optimal trade-off between the possible type I and type
181 II errors. Specifically, by considering rejection rules $0 \leq \chi \leq 1$, type I and type II errors can be:

182
$$E_I = \mathbb{E}_{\mathcal{M}(\mathcal{C})} [\chi], \quad E_{II} = 1 - \mathbb{E}_{\mathcal{M}(\mathcal{C}')} [\chi], \quad (6)$$

183

184 Here, we abuse $\mathcal{M}(\mathcal{C})$ to represent its probability distribution. To measure the fine-grained relation-
185 ships between these two testing errors, f -DP is introduced.186 **Definition 3 (Trade-off function)** For any two probability distributions P and Q , the trade-off
187 function is defined as: $T(P; Q)(\gamma) = \inf \{1 - \mathbb{E}_Q [\chi] \mid \mathbb{E}_P [\chi] \leq \gamma\}$, where the infimum is taken
188 over all measurable rejection rules.189 $T(P; Q)(\gamma)$ is convex, continuous, and non-increasing. For any possible rejection rules, it satisfies
190 $T(P; Q)(\gamma) \leq 1 - \gamma$. It functions as the clear boundary between the achievable and unachievable
191 selections of type I and type II errors, essentially distinguishing the difficulties between these two
192 hypotheses. This relevant statistical property provides a stricter definition of privacy, which mitigates
193 the excessive relaxation of privacy based on composition analysis in existing approaches.194 **Definition 4 (f -DP and GDP)** A mechanism \mathcal{M} is f -DP if $T(\mathcal{M}(\mathcal{C}), \mathcal{M}(\mathcal{C}'))(\gamma) \geq f(\gamma)$ for all
195 possible adjacent datasets \mathcal{C} and \mathcal{C}' . When f measures two Gaussian distributions, namely Gaussian-
196 DP (GDP), denoted as $T_G(\mu)(\gamma) \triangleq T(\mathcal{N}(0, 1), \mathcal{N}(\mu, 1))(\gamma)$ for $\mu \geq 0$.
197198 According to the definition, the explicit representation of GDP is $T_G(\mu)(\gamma) = \Phi(\Phi^{-1}(1 - \gamma) - \mu)$
199 where Φ denotes the standard Gaussian CDF. Any single sampling mechanism that introduces Gaus-
200 sian noises can be considered as an exact GDP, which monotonically decreases when μ increases.
201202 4 CONVERGENT PRIVACY
203204 In this section, we primarily demonstrate how to provide the worst privacy in FL-DP and its convergent
205 bound. Generally, we assume that local objectives satisfy smoothness with a constant L ,206 **Assumption 1** Each local objective function $f_i(\cdot)$ satisfies L -smoothness, i.e.,
207

208
$$\|\nabla f_i(w_1) - \nabla f_i(w_2)\| \leq L\|w_1 - w_2\|. \quad (7)$$

209

210 4.1 SHIFTED INTERPOLATION
211212 To simplify presentations, we denote global updates at round t on the adjacent datasets \mathcal{C} and \mathcal{C}' as:

213
$$\mathcal{C} : w_{t+1} = \phi(w_t) + \bar{n}_t, \quad \mathcal{C}' : w'_{t+1} = \phi'(w'_t) + \bar{n}'_t. \quad (8)$$

214

215 $\phi(w_t)$ denotes the accumulation of total K steps from the initialization state $w_{i,0,t} = w_t$ at round t .
216 \bar{n}_t could be considered as the averaged noise, i.e. $\bar{n}_t \sim \mathcal{N}(0, \sigma^2 I_d / m)$. Traditional methods require

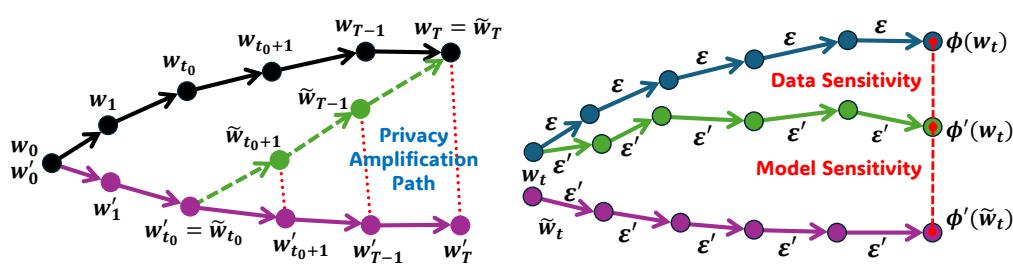


Figure 1: *Left*: The global privacy amplification path induced by the shifted interpolation sequence. *Right*: Estimation of the global sensitivity under local updates via an auxiliary sequence.

performing privacy amplification T times based on the relationship between w and w' , yielding non-convergent privacy as T . To avoid loose privacy amplification, we follow [Bok et al. \(2024\)](#) to adopt the *shifted interpolation* technique. Specifically, we define the following sequence:

$$\tilde{w}_{t+1} = \lambda_{t+1}\phi(w_t) + (1 - \lambda_{t+1})\phi'(\tilde{w}_t) + \bar{n}_t, \quad (9)$$

where $t = t_0, \dots, T - 1$. By setting $\lambda_T = 1$, then $\tilde{w}_T = w_T$, and we add the definition of $\tilde{w}_{t_0} = w'_{t_0}$ as the beginning of interpolations. $0 \leq \lambda_t \leq 1$ are interpolation coefficients to be optimized. As shown in Figure 1 (left), the interpolation sequence path enables a privacy amplification analysis over $T - t_0$ times where t_0 is an optimizable coefficient. Therefore, we can establish the following theorem along this new privacy amplification path.

Theorem 1 Under Assumption 1 and corresponding updates in Eq.(8), After T training rounds on the adjacent datasets \mathcal{C} and \mathcal{C}' , we can bound the trade-off function between w_T and w'_T as:

$$T(w_T; w'_T) = T(\tilde{w}_T; w'_T) \geq T_G \left(\frac{\sqrt{m}}{\sigma} \sqrt{\sum_{t=t_0}^{T-1} \lambda_{t+1}^2 \|\phi(w_t) - \phi'(\tilde{w}_t)\|^2} \right). \quad (10)$$

In addition to the influence of standard parameters, Theorem 1 highlights the critical relationship between the privacy lower bound and the weighted sum of global sensitivity terms from t_0 to T . Therefore, we then analyze the global sensitivity term $\|\phi(w_t) - \phi'(\tilde{w}_t)\|$.

4.2 GLOBAL SENSITIVITY

The sensitivity term $\|\phi(w_t) - \phi'(\tilde{w}_t)\|^2$ means the stability gaps between w_t and \tilde{w}_t after performing local training on datasets \mathcal{C} and \mathcal{C}' respectively. It is influenced by both the model parameters and the data samples, making the analysis extremely challenging. To achieve a fine-grained analysis, we propose an auxiliary sequence $\phi'(w_t)$. As shown in Figure 1 (right), the global sensitivity can be split into *data sensitivity* and *model sensitivity*. The *data sensitivity* measures the estimable errors obtained after training on different datasets for several steps from the same initialization. This discrepancy is solely caused by the data. The *model sensitivity* measures the estimable errors of the updates when two different initialized states are trained on the same dataset. Clearly, this discrepancy is directly related to the degree of similarity between the two initializations. Thus, we have:

Theorem 2 Under K local updates by Eq.(2) and Eq.(4), the global sensitivity in *Noisy-FedAvg* and *Noisy-FedProx* methods can be shown as:

$$\|\phi(w_t) - \phi'(\tilde{w}_t)\| \leq \underbrace{\rho_t \|w_t - \tilde{w}_t\|}_{\text{from model sensitivity}} + \underbrace{\gamma_t}_{\text{from data sensitivity}}, \quad (11)$$

where ρ_t and γ_t are shown in Table 2.

Remark 2.1 The result in Eq.(11) aligns with the intuition of designing the splitting operators. It can be observed that the coefficient ρ_t is consistently greater than 1, which is a typical characteristic of non-convexity. It also implies that the sensitivity upper bound tends to diverge as $t \rightarrow \infty$. However, in Eq.(10), the parameters $0 \leq \lambda_t \leq 1$ can efficiently scale the sensitivity terms. By carefully selecting the optimal λ_t values, it can ultimately achieve a convergent privacy lower bound.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Table 2: Specific formulation of ρ_t and γ_t in Theorem 2.

	Learning rate	ρ_t	γ_t
Noisy-FedAvg	μ	$(1 + \mu L)^K$	$\frac{2\mu V}{m} K$
	$\frac{\mu}{k+1}$	$(1 + K)^{c\mu L}$	$\frac{2cV}{m} \ln(K + 1)$
	$\frac{\mu}{t+1}$	$\left(1 + \frac{\mu L}{t+1}\right)^K$	$\frac{2\mu V}{m} \frac{K}{t+1}$
	$\frac{\mu}{tK+k+1}$	$\left(\frac{t+2}{t+1}\right)^{z\mu L}$	$\frac{2zV}{m} \ln\left(\frac{t+2}{t+1}\right)$
Noisy-FedProx	non-increase	$\frac{\alpha}{\alpha - L}$	$\frac{2V}{m\alpha}$

283
284
285
286
287
4.3 MINIMIZATION PROBLEM ON t_0 AND ITS RELAXATION

According to Eq.(10) and the sensitivity bound in Eq.(11), we denote the weighted accumulation of the sensitivity term as $\mathcal{H}(\lambda_t, t_0)$, where λ_t and t_0 are both to-be-optimized parameters. Therefore, we can provide the tight bound of the privacy by solving the minimization of the following problem:

$$\mathcal{H}_* = \min_{\lambda_t, t_0} \mathcal{H}(\lambda_t, t_0) \triangleq \sum_{t=t_0}^{T-1} \lambda_{t+1}^2 (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)^2. \quad (12)$$

If t_0 is very small, it means that the introduced stability gap will also be very small. However, consequently, the sensitivity terms will extremely increase due to the accumulation over $T - t_0$ rounds. Conversely, although the accumulated error is small, it remains divergent due to the unbounded global sensitivity term. To avoid this uncertain analysis, we have to make a compromise. Because t_0 is an integer belonging to $[0, T - 1]$, its optimal selection certainly exists when T is given. Therefore, we consider a relaxed and simple problem instead, i.e. under $t_0 = 0$,

$$\mathcal{H}_0 = \min_{\lambda_t} \mathcal{H}(\lambda_t, 0) = \sum_{t=0}^{T-1} \lambda_{t+1}^2 (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)^2. \quad (13)$$

Its advantage lies in the fact that when $t_0 = 0$, the sensitivity error is 0, avoiding its divergence. Compared to the optimal solution \mathcal{H}_* , it satisfies $\mathcal{H}_0 \geq \mathcal{H}_*$. More importantly, the solution of \mathcal{H}_0 eliminates the influence of t_0 , allowing us to obtain an effective solution to the minimization problem by directly minimizing the λ_t terms. The lower bound in Theorem 1 will be replaced by:

$$T(w_T; w'_T) \geq T_G \left(\frac{\sqrt{m\mathcal{H}_*}}{\sigma} \right) \geq T_G \left(\frac{\sqrt{m\mathcal{H}_0}}{\sigma} \right). \quad (14)$$

Although this is a relaxation of the privacy lower bound, our subsequent proof confirms that \mathcal{H}_0 can still achieve convergent into a constant form, which means local privacy can still achieve convergence. We additionally provide a discussion of its tightness in Appendix F.

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870<br

324 (c) under stage-wise decaying $\eta_{k,t} = \frac{\mu}{t+1}$:

$$326 \quad 327 \quad 328 \quad T(w_T; w'_T) > T_G \left(\frac{2\mu V K}{\sqrt{m\sigma}} \sqrt{2 - \frac{1}{T}} \right). \quad (17)$$

329 (d) under continuously decaying $\eta_{k,t} = \frac{\mu}{tK+k+1}$:

$$331 \quad 332 \quad 333 \quad T(w_T; w'_T) > T_G \left(\frac{2zV}{\sqrt{m\sigma}} \sqrt{2 - \frac{1}{T}} \right). \quad (18)$$

334 **Remark 3.1 (General Bound.)** Theorem 3 provides the worst-case privacy analysis for the
 335 Noisy-FedAvg method. Its privacy is primarily affected by the clipping norm V , the local
 336 interval K , the scale m , and the noise intensity σ . A larger gradient clipping norm V always results
 337 in larger gaps. The local interval K determines the sensitivity of the entire local process, which
 338 is primarily influenced by the learning rate strategy. m in our proof represents the client scale; in
 339 fact, the number of data samples is also proportional to m . An increased m will largely reduce the
 340 sensitivity, yielding improvements in privacy. Infinite noise can provide perfect privacy, while zero
 341 noise offers no privacy. Constant-level noise can still achieve convergent privacy.

342 **Remark 3.2 (Partial Participation.)** The above analysis also applies to the partial participation
 343 setting. For example, suppose there are m clients in total, and in each round n clients are selected to
 344 participate. This corresponds to a sampling process, where the expected privacy in each round is
 345 amplified by a factor of $\frac{m}{n}$. Since the analysis of local iterations is carried out on each individual
 346 node, it is not affected by this change. Therefore, under partial participation, the privacy upper
 347 bound depends linearly on the number of participating nodes, and one can simply replace m with n .
 348 In particular, when $m = n = 1$, the analysis reduces to the standard DP-SGD.

349 **Theorem 4** Let $f_i(w)$ be a L -smooth and non-convex local objective and local updates be performed
 350 as shown in Eq.(4). Let the proximal coefficient $\alpha > L$ and $\eta < \frac{1}{\alpha-L}$, under perturbations of
 351 isotropic noises $n_i \sim \mathcal{N}(0, \sigma^2 I_d)$, the worst privacy of the Noisy-FedProx method achieves:

$$353 \quad 354 \quad 355 \quad 356 \quad T(w_T; w'_T) \geq T_G \left(\frac{2V}{\sqrt{m\alpha\sigma}} \sqrt{\frac{2\alpha-L}{L} \left(1 - \frac{2}{\left(\frac{\alpha}{\alpha-L} \right)^T + 1} \right)} \right), \quad (19)$$

357 **Remark 4.1 (Impacts of the Regularization Coefficient α .)** Aside from the influence of standard
 358 coefficients, due to the correction of the regularization term, its privacy is no longer affected by the
 359 local interval K , even with a constant learning rate, which becomes a significant advantage of the
 360 Noisy-FedProx method. Specifically, when $\alpha > L$, increasing α significantly improves the worst
 361 privacy. Therefore, the selection of α is a delicate trade-off between optimization and privacy.

363 **Theoretical comparisons.** Table 3 demonstrates the comparison between existing theoretical results
 364 and ours of the Noisy-FedAvg method. Existing analyses are mostly based on the DP relaxations
 365 of (ϵ, δ) -DP and RDP (Mironov, 2017). Apart from the lossiness in their DP definition, an important
 366 weakness is that privacy amplification on composition is entirely loose. For instance, the general
 367 amplification in (ϵ, δ) -DP indicates, the composition of an (ϵ_1, δ_1) -DP and an (ϵ_2, δ_2) -DP leads to
 368 an $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -DP. Similarly, the composition of a (ζ, ϵ_1) -RDP and a (ζ, ϵ_2) -RDP results in a
 369 $(\zeta, \epsilon_1 + \epsilon_2)$ -RDP. This simple parameter addition mechanism directly leads to a linear amplification
 370 of the privacy budget. Therefore, in previous works, when achieving specific DP guarantees, it is
 371 often required that the noise intensity σ^2 is proportional to the communication rounds T (or TK).
 372 Wei et al. (2020) prove a double-noisy single-step local training on both client and server sides is
 373 possible to achieve the privacy amplification of $\mathcal{O}(T^2)$ rate. Shi et al. (2021) further consider the
 374 local intervals K . Zhang et al. (2021b) and Noble et al. (2022) elevate the theoretical results to
 375 $\mathcal{O}(TK)$. Subsequent research further indicates that the impact of the interval K can be eliminated to
 376 achieve $\mathcal{O}(T)$ rate via sparsified perturbation (Hu et al., 2023; Cheng et al., 2022), and algorithmic
 377 improvements (Fukami et al., 2024). However, these conclusions all indicate that the condition for
 378 achieving constant privacy guarantees is to continually increase the noise intensity. Bastianello et al.
 379 (2024) provide constant privacy under β -strongly convex objectives.

378 Table 3: Comparisons with the existing theoretical results in FL-DP. We losslessly transfer our
 379 results into (ϵ, δ) -DP and RDP results. In (ϵ, δ) -DP, we compare the requirement of noise variance
 380 corresponding to achieving (ϵ, δ) -DP. In (ζ, ϵ) -RDP, we directly compare the privacy budget term
 381 $\delta(\zeta)$. We mainly focus on the privacy changes on T and K . $\Omega(\cdot)$, $\mathcal{O}(\cdot)$, and $o(\cdot)$ correspond to the
 382 lower, upper bound, and not tight upper bound of the complexity, respectively.

	(ϵ, δ) -DP	(ζ, ϵ) -RDP	when $T, K \rightarrow \infty$
Wei et al. (2020)	$\sigma = \mathcal{O}\left(\frac{V}{\epsilon m} \sqrt{T^2 - m\bar{L}^2}\right)$	-	
Shi et al. (2021)	$\sigma = \mathcal{O}\left(\frac{V\sqrt{\log(\frac{1}{\delta})}}{\epsilon} T \sqrt{K}\right)$	-	
Zhang et al. (2021b)	$\sigma = \mathcal{O}\left(\frac{V\sqrt{\log(\frac{1}{\delta})}}{\epsilon m} \sqrt{T + mK}\right)$	-	
Noble et al. (2022)	$\sigma = \Omega\left(\frac{V\sqrt{\log(\frac{2T}{\delta})}}{\epsilon \sqrt{m}} \sqrt{TK}\right)$	-	
Cheng et al. (2022)	$\sigma = \Omega\left(\frac{V\sqrt{\log(\frac{1}{\delta})}}{\epsilon} \sqrt{T}\right)$	-	
Zhang & Tang (2022)	-	$\epsilon = \Omega\left(\frac{\zeta V^2}{\sigma^2} TK\right)$	
Hu et al. (2023)	$\sigma = \Omega\left(\frac{V\sqrt{\epsilon+2\log(\frac{1}{\delta})}}{\epsilon} \sqrt{T}\right)$	-	
Fukami et al. (2024)	$\sigma = \Omega\left(\frac{V(1+\sqrt{1+\epsilon})\sqrt{\log(e+\frac{\epsilon}{\delta})}}{\epsilon} \sqrt{T}\right)$	-	
Bastianello et al. (2024)	-	$\epsilon = \mathcal{O}\left(\frac{\zeta LV^2}{\beta^2 \sigma^2} (1 - e^{-\beta T})\right)$	convergent on β -strongly convex
Ours (Noisy-FedAvg)	$\sigma = o\left(\frac{V\sqrt{(\Phi^{-1}(\delta))^2 + 4\epsilon}}{\epsilon \sqrt{m}} \sqrt{2 - \frac{1}{T}}\right)$	$\epsilon = \mathcal{O}\left(\frac{\zeta V^2}{m \sigma^2} (2 - \frac{1}{T})\right)$	convergent on non-convex

407 Table 4: Comparison of the accuracy under different experimental settings. We select the scale m
 408 from [50, 100]. Each client holds 600 heterogeneous data samples of MNIST or 500 heterogeneous
 409 data samples of CIFAR-10. For each scale, we test two settings of the local interval $K = 50, 100,$
 410 and 200 , respectively. Throughout the entire process, we fix $TK = 30000$. “-” means the training
 411 loss diverges. Each result is repeated 5 times to compute its mean and variance.

	Noisy Intensity	$m = 50$			$m = 100$		
		$K = 50$	$K = 100$	$K = 200$	$K = 50$	$K = 100$	$K = 200$
MNIST LeNet-5	$\sigma = 1.0$	-	-	-	-	-	-
	$\sigma = 10^{-1}$	95.40 ± 0.18	95.42 ± 0.15	95.21 ± 0.11	97.32 ± 0.14	97.50 ± 0.11	97.42 ± 0.18
	$\sigma = 10^{-2}$	98.33 ± 0.12	98.02 ± 0.15	97.88 ± 0.12	98.71 ± 0.10	97.97 ± 0.08	97.72 ± 0.12
	$\sigma = 10^{-3}$	98.41 ± 0.07	98.23 ± 0.03	98.00 ± 0.07	98.94 ± 0.04	98.50 ± 0.06	98.01 ± 0.10
CIFAR-10 ResNet-18	$\sigma = 1.0$	-	-	-	-	-	-
	$\sigma = 10^{-1}$	53.76 ± 0.25	53.38 ± 0.23	53.49 ± 0.21	62.02 ± 0.28	61.33 ± 0.25	61.11 ± 0.17
	$\sigma = 10^{-2}$	70.11 ± 0.22	69.08 ± 0.12	66.63 ± 0.16	74.34 ± 0.29	72.87 ± 0.19	70.74 ± 0.15
	$\sigma = 10^{-3}$	70.98 ± 0.11	69.81 ± 0.20	67.98 ± 0.03	75.38 ± 0.19	74.44 ± 0.12	72.11 ± 0.06

425 5 EMPIRICAL VALIDATION

426 **Setups.** We conduct experiments on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al.,
 427 2009) with the LeNet-5 (LeCun et al., 1998) and ResNet-18 (He et al., 2016) models. We follow
 428 the widely used standard federated learning experimental setups to introduce heterogeneity by the
 429 Dirichlet splitting. The heterogeneity level is set high (Dir-0.1 splitting). **In the following experiments,**
 430 **we follow the classical studies to adopt the stage-wise decaying learning rate for training.** We also
 431 provide a sensitivity studies of all learning rate schedules in Appendix C.

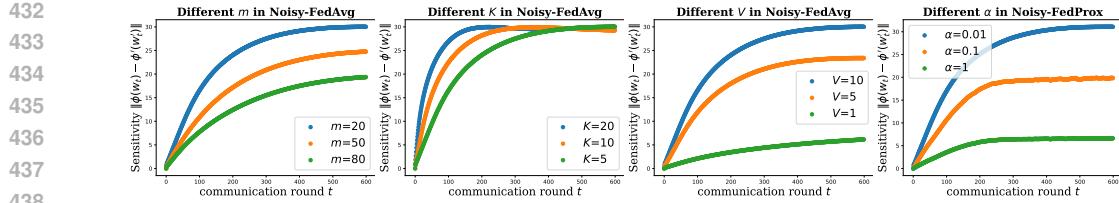


Figure 2: Sensitivity studies on Noisy-FedAvg and Noisy-FedProx. The general setups are $m = 20$, $K = 5$, and $V = 10$. In each group, we keep all other parameters fixed to ensure fairness.

Accuracy. Table 4 shows the comparison on Noisy-FedAvg. Our theory precisely addresses this misconception and rigorously provides its privacy protection performance. It can be observed that as the number of clients increases, the impact of noise gradually diminishes. We have previously explained this principle: for the globally averaged model, the more noise involved in the averaging process, the closer it gets to the noise mean, which is akin to the situation without noise interference. When we adjust the intensity from $\sigma = 10^{-3}$ to 10^{-1} , the accuracy decreases by 5.57% and 1.62% on $m = 20$ and 100 respectively on the MNIST and 14.19% and 11% on the CIFAR-10. The local interval K does not significantly affect noise, and the accuracy drops consistently. K primarily affects global sensitivity and higher aggregation frequency usually means better performance.

Sensitivity in Noisy-FedAvg. We mainly study the impact from the scale m , local interval K , and clipping norm V , as shown in Fig. 2. The first figure clearly demonstrates the impact of the scale m on sensitivity, which corresponds to the worst privacy bound $\mathcal{O}\left(\frac{1}{\sqrt{m}}\right)$. More clients generally imply stronger global privacy. The second figure shows evident that although increasing K can raise the sensitivity during the process, it does not alter the upper bound of sensitivity after optimization converges. This is entirely consistent with our analysis, indicating that the privacy lower bound exists and is unaffected by T and K . The third figure indicates that the sensitivity will be affected by the V , which corresponds to the worst privacy bound $\mathcal{O}(V)$.

Sensitivity in Noisy-FedProx.

As shown in Fig. 2 (the fourth figure), the larger α means smaller global sensitivity. This is consistent with our analysis, which states that the lower bound of privacy performance is given by $\mathcal{O}\left(\frac{1}{\sqrt{\alpha}}\right)$. When we select $\alpha = 0$, it degrades to the Noisy-FedAvg method. In fact, based on the comparison, we can see that when α is sufficiently small, i.e. $\alpha = 0.01$, its global sensitivity is almost at the same level as Noisy-FedAvg. In Table 5, we present a comparison between them. Although the proximal term provides limited improvement in accuracy, selecting an appropriate α significantly reduces global sensitivity. This implies that the privacy performance of Noisy-FedProx is far superior to that of Noisy-FedAvg. While achieving similar performance, the regularization proxy term can significantly reduce the global sensitivity of the output model, thereby enhancing privacy. This conclusion also demonstrates the superiority on privacy of a series of FL-DP optimization methods based on training with this regularization.

6 CONCLUSION

To our best knowledge, this paper is the first work to demonstrate convergent privacy for the general FL-DP paradigms. We comprehensively study and illustrate the fine-grained privacy level for Noisy-FedAvg and Noisy-FedProx methods based on f -DP analysis, an information-theoretic lossless DP definition. Moreover, we conduct comprehensive analysis with existing work on other DP frameworks and highlight the long-term cognitive bias of the privacy lower bound. Our analysis fills the theoretical gap in the convergent privacy of FL-DP while further providing a reliable theoretical guarantee for its privacy protection performance. Moreover, We conduct a series of experiments to verify the boundedness of global sensitivity and its influence on different variables, further validating that our theoretical analysis aligns more closely with practical scenarios.

486 REFERENCES
487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
490 *conference on computer and communications security*, pp. 308–318, 2016.

491 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
492 Saligrama. Federated learning based on dynamic regularization. In *International Conference on*
493 *Learning Representations*.

494

495 Jason Altschuler and Kunal Talwar. Privacy of noisy stochastic gradient descent: More iterations
496 without more privacy loss. *Advances in Neural Information Processing Systems*, 35:3788–3800,
497 2022.

498

499 Jason M Altschuler, Jinho Bok, and Kunal Talwar. On the privacy of noisy stochastic gradient descent
500 for convex optimization. *SIAM Journal on Computing*, 53(4):969–1001, 2024.

501 Pathum Chamikara Mahawaga Arachchige, Peter Bertok, Ibrahim Khalil, Dongxi Liu, Seyit Camtepe,
502 and Mohammed Atiquzzaman. Local differential privacy for deep learning. *IEEE Internet of*
503 *Things Journal*, 7(7):5827–5842, 2019.

504

505 Caridad Arroyo Arevalo, Sayedeh Leila Noorbakhsh, Yun Dong, Yuan Hong, and Binghui Wang.
506 Task-agnostic privacy-preserving representation learning for federated learning against attribute
507 inference attacks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
508 10909–10917, 2024.

509

510 Nicola Bastianello, Changxin Liu, and Karl H Johansson. Enhancing privacy in federated learning
511 through local training. *arXiv preprint arXiv:2403.17572*, 2024.

512

513 Jinho Bok, Weijie Su, and Jason M Altschuler. Shifted interpolation for differential privacy. *arXiv*
514 *preprint arXiv:2403.00278*, 2024.

515

516 Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui. Communication-
517 efficient federated learning. *Proceedings of the National Academy of Sciences*, 118(17):
518 e2024789118, 2021.

519

520 Shuzhen Chen, Dongxiao Yu, Yifei Zou, Jiguo Yu, and Xiuzhen Cheng. Decentralized wireless
521 federated learning with differential privacy. *IEEE Transactions on Industrial Informatics*, 18(9):
522 6273–6282, 2022.

523

524 Anda Cheng, Peisong Wang, Xi Sheryl Zhang, and Jian Cheng. Differentially private federated
525 learning with local regularization and sparsification. In *Proceedings of the IEEE/CVF conference*
526 *on computer vision and pattern recognition*, pp. 10122–10131, 2022.

527

528 Rishav Chourasia, Jiayuan Ye, and Reza Shokri. Differential privacy dynamics of langevin diffusion
529 and noisy gradient descent. *Advances in Neural Information Processing Systems*, 34:14771–14781,
530 2021.

531

532 Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. Dispfl: Towards communication-
533 efficient personalized federated learning via decentralized sparse training. In *International conference*
534 *on machine learning*, pp. 4587–4604. PMLR, 2022.

535

536 Rudraijit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk Topcu.
537 Faster non-convex federated learning via global and local momentum. In *Uncertainty in Artificial*
538 *Intelligence*, pp. 496–506. PMLR, 2022.

539

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. *Journal of the Royal*
Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

Cynthia Dwork. Differential privacy. In *International colloquium on automata, languages, and*
programming, pp. 1–12. Springer, 2006.

540 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
 541 ourselves: Privacy via distributed noise generation. In *Advances in Cryptology-EUROCRYPT*
 542 *2006: 24th Annual International Conference on the Theory and Applications of Cryptographic*
 543 *Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25*, pp. 486–503. Springer,
 544 2006a.

545 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
 546 private data analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference, TCC*
 547 *2006, New York, NY, USA, March 4-7, 2006. Proceedings 3*, pp. 265–284. Springer, 2006b.

548

549 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
 550 *and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014.

551

552 Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust trace-
 553 ability from trace amounts. In *2015 IEEE 56th Annual Symposium on Foundations of Computer*
 554 *Science*, pp. 650–669. IEEE, 2015.

555 Takumi Fukami, Tomoya Murata, Kenta Niwa, and Iifan Tyoo. Dp-norm: Differential privacy
 556 primal-dual algorithm for decentralized federated learning. *IEEE Transactions on Information*
 557 *Forensics and Security*, 2024.

558

559 Yuanyuan Gao, Lei Zhang, Lulu Wang, Kim-Kwang Raymond Choo, and Rui Zhang. Privacy-
 560 preserving and reliable decentralized federated learning. *IEEE Transactions on Services Computing*,
 561 16(4):2879–2891, 2023.

562 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
 563 easy is it to break privacy in federated learning? *Advances in neural information processing*
 564 *systems*, 33:16937–16947, 2020.

565

566 Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
 567 level perspective. *arXiv preprint arXiv:1712.07557*, 2017.

568

569 Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
 570 Shuffled model of differential privacy in federated learning. In *International Conference on*
 571 *Artificial Intelligence and Statistics*, pp. 2521–2529. PMLR, 2021.

572 Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
 573 methods. In *International Conference on Artificial Intelligence and Statistics*, pp. 3556–3564.
 574 PMLR, 2021.

575

576 Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training methods
 577 support client sampling? yes! In *International Conference on Artificial Intelligence and Statistics*,
 578 pp. 1055–1092. PMLR, 2023.

579

580 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 581 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 582 pp. 770–778, 2016.

583

584 Zaobo He, Lintao Wang, and Zhipeng Cai. Clustered federated learning with adaptive local differential
 585 privacy on heterogeneous iot data. *IEEE Internet of Things Journal*, 2023.

586

587 Rui Hu, Yuanxiong Guo, Hongning Li, Qingqi Pei, and Yanmin Gong. Personalized federated
 588 learning with differential privacy. *IEEE Internet of Things Journal*, 7(10):9530–9539, 2020.

589

590 Rui Hu, Yuanxiong Guo, and Yanmin Gong. Federated learning with sparsified model perturba-
 591 tion: Improving accuracy under client-level differential privacy. *IEEE Transactions on Mobile*
 592 *Computing*, 2023.

593

594 Divyansh Jhunjhunwala, Pranay Sharma, Aushim Nagarkatti, and Gauri Joshi. Fedvarp: Tackling
 595 the variance due to partial client participation in federated learning. In *Uncertainty in Artificial*
 596 *Intelligence*, pp. 906–916. PMLR, 2022.

594 Sanxiu Jiao, Lecai Cai, Xinjie Wang, Kui Cheng, and Xiang Gao. A differential privacy federated
 595 learning scheme based on adaptive gaussian noise. *CMES-Computer Modeling in Engineering &*
 596 *Sciences*, 138(2), 2024.

597

598 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
 599 privacy. In *International conference on machine learning*, pp. 1376–1385. PMLR, 2015.

600 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 601 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 602 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
 603 14(1–2):1–210, 2021.

604

605 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 606 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 607 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

608 Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, and Pramod
 609 Varshney. Stem: A stochastic two-sided momentum algorithm achieving near-optimal sample and
 610 communication complexities for federated learning. *Advances in Neural Information Processing
 611 Systems*, 34:6050–6061, 2021.

612

613 Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy:
 614 Trade-offs between privacy, utility, and communication. In *ICASSP 2021-2021 IEEE International
 615 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2650–2654. IEEE, 2021.

616 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

617

618 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 619 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

620 Bo Li, Mikkel N Schmidt, Tommy S Alstrøm, and Sebastian U Stich. On the effectiveness of partial
 621 variance reduction in federated learning with heterogeneous data. In *Proceedings of the IEEE/CVF
 622 Conference on Computer Vision and Pattern Recognition*, pp. 3964–3973, 2023.

623

624 Tao Lin, Sebastian Urban Stich, Kumar Kshitij Patel, and Martin Jaggi. Don't use large mini-batches,
 625 use local sgd. In *Proceedings of the 8th International Conference on Learning Representations*,
 626 2019.

627

628 Jie Ling, Junchang Zheng, and Jiahui Chen. Efficient federated learning privacy preservation method
 629 with heterogeneous differential privacy. *Computers & Security*, 139:103715, 2024.

630 Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momentum
 631 gradient descent. *IEEE Transactions on Parallel and Distributed Systems*, 31(8):1754–1766, 2020.

632

633 Andrew Lowy, Ali Ghafelebashi, and Meisam Razaviyayn. Private non-convex federated learning
 634 without a trusted server. In *International Conference on Artificial Intelligence and Statistics*, pp.
 635 5749–5786. PMLR, 2023.

636

637 Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance reduced proxskip: Algorithm, theory
 638 and application to federated learning. *Advances in Neural Information Processing Systems*, 35:
 15176–15189, 2022.

639

640 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 641 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 642 gence and statistics*, pp. 1273–1282. PMLR, 2017.

643

644 Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen. Local
 645 learning matters: Rethinking data heterogeneity in federated learning. In *Proceedings of the
 646 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8397–8406, 2022.

647

Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th computer security foundations symposium
 (CSF)*, pp. 263–275. IEEE, 2017.

648 Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
 649 local gradient steps provably lead to communication acceleration! finally! In *International*
 650 *Conference on Machine Learning*, pp. 15750–15769. PMLR, 2022.

651

652 Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
 653 Passive and active white-box inference attacks against centralized and federated learning. In *2019*
 654 *IEEE symposium on security and privacy (SP)*, pp. 739–753. IEEE, 2019.

655 Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private federated learning
 656 on heterogeneous data. In *International Conference on Artificial Intelligence and Statistics*, pp.
 657 10110–10145. PMLR, 2022.

658

659 Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
 660 Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
 661 zation. In *International conference on artificial intelligence and statistics*, pp. 2021–2031. PMLR,
 662 2020.

663 Nuria Rodríguez-Barroso, Goran Stipcich, Daniel Jiménez-López, José Antonio Ruiz-Millán, Eugenio
 664 Martínez-Cámara, Gerardo González-Seco, M Victoria Luzón, Miguel Angel Veganzones, and
 665 Francisco Herrera. Federated learning and differential privacy: Software tools analysis, the sherpa.
 666 ai fl framework and methodological guidelines for preserving data privacy. *Information Fusion*,
 667 64:270–292, 2020.

668 Lu Shi, Jiangang Shu, Weizhe Zhang, and Yang Liu. Hfl-dp: Hierarchical federated learning with
 669 differential privacy. In *2021 IEEE Global Communications Conference (GLOBECOM)*, pp. 1–7.
 670 IEEE, 2021.

671

672 Yifan Shi, Yingqi Liu, Kang Wei, Li Shen, Xueqian Wang, and Dacheng Tao. Make landscape
 673 flatter in differentially private federated learning. In *Proceedings of the IEEE/CVF Conference on*
 674 *Computer Vision and Pattern Recognition*, pp. 24552–24562, 2023.

675 Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang Cui. Uveqfed:
 676 Universal vector quantization for federated learning. *IEEE Transactions on Signal Processing*, 69:
 677 500–514, 2020.

678

679 Sebastian Urban Stich. Local sgd converges fast and communicates little. In *ICLR 2019-International*
 680 *Conference on Learning Representations*, 2019.

681 Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized sharpness
 682 aware minimization in federated learning: Approaching global consistency and smooth landscape.
 683 In *International Conference on Machine Learning*, pp. 32991–33013. PMLR, 2023a.

684

685 Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. Fedspeed: Larger local interval,
 686 less communication round, and higher generalization accuracy. *arXiv preprint arXiv:2302.10429*,
 687 2023b.

688

689 Yan Sun, Li Shen, Hao Sun, Liang Ding, and Dacheng Tao. Efficient federated learning via local
 690 adaptive amended optimizer with linear speedup. *IEEE Transactions on Pattern Analysis and*
 691 *Machine Intelligence*, 45(12):14453–14464, 2023c.

692

693 Yan Sun, Li Shen, and Dacheng Tao. Understanding how consistency works in federated learning via
 694 stage-wise relaxed initialization. *Advances in Neural Information Processing Systems*, 36, 2024.

695

696 Han Wang, Siddartha Marella, and James Anderson. Fedadmm: A federated primal-dual algorithm
 697 allowing partial participation. In *2022 IEEE 61st Conference on Decision and Control (CDC)*, pp.
 698 287–294. IEEE, 2022.

699

700 Yansheng Wang, Yongxin Tong, and Dingyuan Shi. Federated latent dirichlet allocation: A local
 701 differential privacy based framework. In *Proceedings of the AAAI Conference on Artificial*
 702 *Intelligence*, volume 34, pp. 6283–6290, 2020.

703

704 Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. *Journal of the*
 705 *American Statistical Association*, 105(489):375–389, 2010.

702 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
 703 and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
 704 analysis. *IEEE transactions on information forensics and security*, 15:3454–3469, 2020.

705 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Hang Su, Bo Zhang, and H Vincent Poor. User-level
 706 privacy-preserving federated learning: Analysis and performance optimization. *IEEE Transactions*
 707 *on Mobile Computing*, 21(9):3388–3401, 2021.

708 Kang Wei, Jun Li, Chuan Ma, Ming Ding, Wen Chen, Jun Wu, Meixia Tao, and H Vincent Poor.
 709 Personalized federated learning with differential privacy and convergence guarantee. *IEEE Trans-*
 710 *actions on Information Forensics and Security*, 2023.

711 Thorsten Wittkopp and Alexander Acker. Decentralized federated learning preserves model and
 712 data privacy. In *International Conference on Service-Oriented Computing*, pp. 176–187. Springer,
 713 2020.

714 Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan McMahan,
 715 Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In *International*
 716 *Conference on Machine Learning*, pp. 10334–10343. PMLR, 2020.

717 Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the
 718 noisy gradient descent that generalizes as sgd. In *International Conference on Machine Learning*,
 719 pp. 10367–10376. PMLR, 2020.

720 Xiang Wu, Yongting Zhang, Minyu Shi, Pei Li, Ruirui Li, and Neal N Xiong. An adaptive federated
 721 learning scheme with differential privacy preserving. *Future Generation Computer Systems*, 127:
 722 362–372, 2022.

723 Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
 724 and classifier collaboration. In *The Eleventh International Conference on Learning Representations*.

725 Ge Yang, Shaowei Wang, and Haijie Wang. Federated learning with personalized local differential
 726 privacy. In *2021 IEEE 6th International Conference on Computer and Communication Systems*
 727 (*ICCCS*), pp. 484–489. IEEE, 2021.

728 Xinyu Yang and Weisan Wu. A federated learning differential privacy algorithm for non-gaussian
 729 heterogeneous data. *Scientific Reports*, 13(1):5819, 2023.

730 Xiyuan Yang, Wenke Huang, and Mang Ye. Dynamic personalized federated learning with adaptive
 731 differential privacy. *Advances in Neural Information Processing Systems*, 36:72181–72192, 2023.

732 Xin Yao, Tianchi Huang, Chenglei Wu, Ruixiao Zhang, and Lifeng Sun. Towards faster and better
 733 federated learning: A feature fusion approach. In *2019 IEEE International Conference on Image*
 734 *Processing (ICIP)*, pp. 175–179. IEEE, 2019.

735 Jiayuan Ye and Reza Shokri. Differentially private learning needs hidden state (or much faster
 736 convergence). *Advances in Neural Information Processing Systems*, 35:703–715, 2022.

737 Lin Zhang, Yong Luo, Yan Bai, Bo Du, and Ling-Yu Duan. Federated learning for non-iid data via
 738 unified feature learning and optimization objective alignment. In *Proceedings of the IEEE/CVF*
 739 *international conference on computer vision*, pp. 4420–4428, 2021a.

740 Meng Zhang, Ermin Wei, and Randall Berry. Faithful edge federated learning: Scalability and privacy.
 741 *IEEE Journal on Selected Areas in Communications*, 39(12):3790–3804, 2021b.

742 Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. Fedpd: A federated learning
 743 framework with adaptivity to non-iid data. *IEEE Transactions on Signal Processing*, 69:6055–6070,
 744 2021c.

745 Yaling Zhang and Dongtai Tang. A differential privacy federated learning framework for accelerating
 746 convergence. In *2022 18th International Conference on Computational Intelligence and Security*
 747 (*CIS*), pp. 122–126. IEEE, 2022.

756 Jingwen Zhao, Yunfang Chen, and Wei Zhang. Differential privacy preservation in deep learning:
757 Challenges, opportunities and solutions. *IEEE Access*, 7:48901–48911, 2019.
758

759 Qinqing Zheng, Shuxiao Chen, Qi Long, and Weijie Su. Federated f-differential privacy. In
760 *International conference on artificial intelligence and statistics*, pp. 2251–2259. PMLR, 2021.
761

762 Linghui Zhu, Xinyi Liu, Yiming Li, Xue Yang, Shu-Tao Xia, and Rongxing Lu. A fine-grained
763 differentially private federated learning against leakage from gradients. *IEEE Internet of Things
764 Journal*, 9(13):11500–11512, 2021.
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 **Statement of Using LLMs.** Large language models (LLMs) were occasionally employed as writing
 811 aids in the preparation of this manuscript. Their use was restricted to detecting minor typographical
 812 errors and refining a small number of lengthy sentences for improved clarity. Beyond these limited
 813 writing-related adjustments, LLMs played no role in the research design, implementation, or analysis.
 814

815 **Statement of Ethical Concerns.** This paper is contributed to theoretical exploration and validation
 816 experiments conducted on publicly available datasets and models, and therefore does not involve any
 817 ethical concerns.
 818
 819

820 A NOTATIONS
 821
 822

823 In the subsequent content, we use italics for scalars and denote the integer set from 1 to a by $[a]$.
 824 All sequences of variables are represented in subscript, e.g. $w_{i,k,t}$. For arithmetic operators, unless
 825 specifically stated otherwise, the calculations are performed element-wise. Other symbols used in this
 826 paper will be explicitly defined when they are first introduced. We introduce a complete description
 827 in the following Table.
 828
 829

830 Table 6: Notations descriptions.
 831

T	Communication Round
K	Local Interval
m	Number of Clients
σ	Noise Level
V	Gradient Clipping
L	Lipschitz Constant
w	Parameters
g	Gradients
n	Noise
η	Learning Rates
α	Proxy Coefficient
λ	Interpolation Coefficient
\mathcal{S}	Local Dataset
\mathcal{C}	Client Union
\mathcal{M}	Training Mechanism
\mathcal{N}	Gaussian Distribution
$f(\cdot)$	Optimization Objective
$\phi(\cdot)$	Local Training
$T(\cdot, \cdot)$	Trade-off Function
$T_G(\cdot)$	Gaussian DP Trade-off Function
$\Phi(\cdot)$	Gaussian CDF

856 B GENERAL FL-DP FRAMEWORK
 857
 858

859 FL framework usually allows local clients to train several iterations and then aggregates these
 860 optimized local models for global consistency guarantees. Though indirect access to the dataset
 861 significantly mitigates the risk of data leakage, vanilla gradients or parameters communicated to
 862 the server still bring privacy concerns, i.e. indirect leakage. Thus, DP techniques are introduced
 863 by adding isotropic noises on local parameters before communication, to further enhance privacy
 864 protection.
 865

864 **Algorithm 1** General FL-DP Framework

865 **Input:** initial parameters w_0 , round T , interval K

866 **Output:** global parameters w_T

867 1: **for** $t = 0, 1, 2, \dots, T - 1$ **do**

868 2: activate local clients and communications

869 3: **for** client $i \in \mathcal{I}$ in parallel **do**

870 4: set the initialization $w_{i,0,t} = w_t$

871 5: **for** $k = 0, 1, 2, \dots, K - 1$ **do**

872 6: $w_{i,k+1,t} = L\text{-update}(w_{i,k,t})$

873 7: **end for**

874 8: generate a noise $n_i \sim \mathcal{N}(0, \sigma^2 I_d)$

875 9: communicate $w_{i,K,t} + n_i$ to the server

876 10: **end for**

877 11: $w_{t+1} = G\text{-update}(\{w_{i,K,t} + n_i\})$

878 12: **end for**

881 In our analysis, we consider the FL-DP framework with the classical normal client-level noises, as
 882 shown in Algorithm 1. At the beginning of each communication round t , the server activates local
 883 clients and communicates necessary variables. Then local clients begin the training in parallel. We
 884 describe this process as a total of $K > 1$ steps of $L\text{-update}$ function updates. Depending on algorithm
 885 designs, the specific form of local update functions varies. After training, the local clients enhance
 886 local privacy by adding noise perturbations to the uploaded model parameters. Our analysis primarily
 887 considers the properties of the isotropic Gaussian noise distribution, i.e. $n_i \sim \mathcal{N}(0, \sigma^2 I_d)$. Then the
 888 global server aggregates the noisy parameters to generate the global model w_{t+1} via the $G\text{-update}$
 889 function. Repeat this for T rounds and return w_T as output.

890 **Threat model and Privacy.** In the FL-DP framework, we primarily consider two types of privacy:
 891 (1) client-side privacy when uploading local parameters to the server, which is protected by injecting
 892 DP noise; and (2) global-model privacy when sending aggregated parameters back to the clients,
 893 ensuring that no information can be extracted or inferred from the global model. In the standard
 894 FL-DP framework, the protection of local privacy is straightforward. Our analysis therefore focuses
 895 on the second aspect: the privacy behavior associated with the global model.

896
897 C MORE EXPERIMENTS VALIDATION

898 In this section, we present additional experimental validations, including larger client scales and
 899 different neural network architectures, to further substantiate our analysis.

900 Table 8 summarizes additional results under different noise intensities, client scales, and local
 901 iteration lengths. Overall, when the noise level is very large, the model fails to converge, showing
 902 the detrimental effect of excessive perturbation. As the noise weakens, performance improves
 903 steadily, confirming the expected trade-off between privacy and accuracy. Increasing the client
 904 scale consistently leads to higher accuracy, since more participants help average out the injected
 905 noise and stabilize training. In contrast, enlarging the local iteration length tends to slightly degrade
 906 performance, especially under stronger noise, as longer updates accumulate errors. These findings
 907 further support our theoretical claims: moderate noise is essential for balancing utility and privacy,
 908 larger client populations enhance robustness, and overly strong noise inevitably causes learning to
 909 fail. These observations highlight several important insights. First, the results demonstrate that
 910 privacy-preserving noise must be carefully calibrated: too strong a perturbation eliminates useful
 911 signal, while moderate levels allow training to proceed effectively. Second, the consistent benefit
 912 of larger client scales indicates that federated participation not only improves model generalization
 913 but also plays a role in mitigating the variance introduced by noise. Finally, the relatively minor
 914 but noticeable impact of longer local iterations suggests a delicate balance between communication
 915 efficiency and robustness to noise. Together, these findings provide empirical evidence that supports
 916 the theoretical analysis in the main text, and further confirm the scalability and stability of our
 917 proposed approach under diverse settings.

918
919

Table 8: More experiments (hyperparameters are fixed as the same selection with Table. 4).

	Noisy Intensity	m = 20			m = 500		
		K = 50	K = 100	K = 200	K = 50	K = 100	K = 200
CIFAR-10	$\sigma = 1.0$	-	-	-	-	-	-
	$\sigma = 10^{-1}$	42.69 ± 0.33	41.69 ± 0.28	41.94 ± 0.35	68.42 ± 0.49	66.93 ± 0.41	66.36 ± 0.55
ResNet-18	$\sigma = 10^{-2}$	58.99 ± 0.18	58.59 ± 0.14	55.62 ± 0.27	77.68 ± 0.13	76.25 ± 0.19	73.84 ± 0.23
	$\sigma = 10^{-3}$	60.23 ± 0.08	59.35 ± 0.13	56.13 ± 0.18	78.14 ± 0.22	77.32 ± 0.34	76.07 ± 0.17

920
921
922
923
924
925
926
927

Table 9: Sensitivity of different learning rates on LeNet.

	T = 100	T = 200	T = 300	T = 400	T = 500	T = 600
constant	19.77	29.24	33.52	36.37	37.52	37.98
cyclically	15.36	28.44	33.37	36.24	37.82	38.15
stage-wise	15.24	24.33	26.89	27.77	28.69	29.03
iteratively	14.33	22.14	23.35	24.11	24.52	24.68

930
931
932
933
934
935
936

Results on ViT-Small. We conducted tests on ViT-Small, and the results show a similar trend to ResNet-18, although the sensitivity is higher, the convergence behavior remains largely consistent. We use the $m = 50$, $K = 5$, and $V = 10$. To ensure satisfactory convergence of the ViT-Small model, we increased the number of training steps to $T = 1000$.

941
942
943
944

Table 7: Results on ViT-Small.

	T = 200	T = 400	T = 600	T = 800	T = 1000
ResNet-18	16.94	23.13	24.04	24.11	24.17
ViT-Small	23.52	31.37	35.66	36.32	36.58

945
946
947
948

Sensitivity of ResNet-18 converges after approximately 600 steps, while that of ViT-Small converges after 800 steps. Table 7 compares the sensitivity curves of ResNet-18 and ViT-Small under different training steps. We observe that the sensitivity of ResNet-18 stabilizes after roughly 600 iterations, while ViT-Small requires about 800 iterations to reach convergence. This indicates that larger and more expressive models generally take longer to stabilize, as their higher capacity introduces additional variance in the early stage of training. Nevertheless, although the convergence point is delayed for ViT-Small, the eventual sensitivity magnitude does not exceed that of ResNet-18, which confirms that our theoretical stability upper bound remains unchanged regardless of model size. These results suggest that scaling up the model primarily affects the rate of convergence but not the asymptotic stability guarantee, thereby validating the robustness of our analysis in both CNN- and Transformer-based architectures.

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

Our experiments follow the standard settings used in prior classical work. For complex neural networks, using a constant learning rate throughout training may lead to instability, which is mainly a training issue rather than the focus of this paper, as our primary contribution lies in the privacy theory. In this part, we additionally train the model under four different learning-rate schedules and report the results below. As training progresses, the privacy guarantee of the model continues to exhibit a strong convergence trend, which is consistent with our theoretical analysis.

965
966
967
968
969
970
971

Results on CIFAR-100 and TinyImagenet. We conduct additional noisy experiments on CIFAR-100 and TinyImagenet, and the observed behavior is consistent with the results on CIFAR-10 and MNIST. The effect of noise strength is direct, and prior work has extensively studied this phenomenon, as the introduction of noise inevitably degrades the convergence rate. This degradation stems from the optimization process itself and reflects the fundamental trade-off between privacy and utility: optimization prefers smaller noise, while privacy requires larger noise. Our analysis further improves the lower bound in privacy characterization. Previous analyses often viewed this trade-off as inherently conflicting and irreconcilable. However, our results reveal a more nuanced relationship

972 in the federated learning setting. Specifically, given a desired privacy guarantee, the convergence
 973 speed does not decay indefinitely.
 974

975
976 Table 10: More experiments (hyperparameters are fixed as the same selection with Table. 4).

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025				977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025			
Noisy Intensity	CIFAR-100				TinyImagenet			
	$K = 50$	$K = 100$	$K = 200$	$K = 500$	$K = 50$	$K = 100$	$K = 200$	$K = 500$
$\sigma = 10^{-1}$	35.42	34.18	33.25	33.21	28.52	27.39	25.94	25.65
$\sigma = 10^{-2}$	38.42	38.11	37.36	37.03	34.99	34.36	34.10	33.84
$\sigma = 10^{-3}$	38.95	38.73	38.11	37.84	35.15	34.87	34.64	34.21

983
984
985 **Empirical Studies of Membership Inference.** We conduct an empirical study using membership
 986 inference attacks to validate the stability of the privacy guarantees. We consider a federated learning
 987 setup with 100 clients, among which 10 are designated as target clients. The attacker is assumed to
 988 intercept the transmitted parameters during communication but has no knowledge of their source.
 989 Using gradient inversion, the attacker attempts to identify the target clients in the different training
 990 rounds. We report the attack success rate over 500 steps.

991
992 Table 11: Results of membership inference.

	$T = 200$	$T = 400$	$T = 600$	$T = 800$	$T = 1000$
$\sigma = 1.0$	0%	0%	10%	10%	0%
$\sigma = 0.1$	20%	30%	30%	40%	30%
$\sigma = 0.01$	40%	50%	60%	60%	70%
$\sigma = 0$	40%	80%	100%	100%	100%

1000 It can be seen that in the absence of noise, the attack success rate eventually stabilizes at 100%,
 1001 indicating a complete lack of privacy protection. Under extremely strong noise, the attack performance
 1002 is nearly equivalent to random guessing, which indicates a high level of privacy protection. Under
 1003 different levels of constant noise, the attack success rate does not approach 100% even in the later
 1004 stages of training. With a noise level of 0.01, the success rate eventually stabilizes around 70%, while
 1005 a stronger noise level of 0.1 reduces it to about 30%. This demonstrates that the privacy protection
 1006 does not rely on an ever-increasing noise magnitude; instead, the convergence of privacy is an inherent
 1007 outcome.

1008 **Different number of data samples.** Since the local noise is injected at each client after completing
 1009 its local training in every round, the amount of local data does not have a substantial impact. We
 1010 conducted the following validation on CIFAR-10 by varying both the number of clients and the
 1011 amount of data per client, and we report the resulting sensitivity differences after 500 rounds of
 1012 training.

1013
1014 Table 12: Sensitivity of different sample numbers and client numbers.

	$S = 100$	$S = 200$	$S = 300$	$S = 400$	$S = 500$
$m = 80$	17.41	17.34	17.15	17.22	17.25
$m = 50$	24.95	24.93	24.62	24.83	24.53
$m = 20$	30.12	30.38	30.45	29.89	30.08

1022
1023

D EMPIRICAL STUDIES OF CONVERGENT PRIVACY

1024 We additionally conducted the following experiments on CIFAR-10 and CIFAR-100. Specifically, we
 1025 evaluate the privacy performance on label reconstruction, gradient inversion attack, attribute inference

1026 attack, and knowledge extraction attack to demonstrate that convergent privacy can be empirically
 1027 satisfied.

1028 **Label Reconstruction.** Label Reconstruction is a privacy attack in which an adversary attempts to
 1029 infer and reconstruct the true labels of training samples from the model’s outputs or gradients. We
 1030 randomly select 1000 samples from the test set to evaluate the label reconstruction ability, which
 1031 reflects the change in privacy leakage.

1034 Table 13: Label reconstruction performance on different constant level noise.

	Noise level	$T = 100$	$T = 200$	$T = 300$	$T = 400$	$T = 500$
CIFAR-10	$\sigma = 0.1$	17.7	20.4	22.0	22.5	22.8
CIFAR-10	$\sigma = 0.01$	32.5	38.3	44.2	46.6	48.2
CIFAR-10	$\sigma = 0$	36.5	44.7	53.1	59.8	65.4
CIFAR-100	$\sigma = 0.1$	12.3	15.5	17.5	19.0	19.2
CIFAR-100	$\sigma = 0.01$	20.3	25.5	28.6	29.7	30.6
CIFAR-100	$\sigma = 0$	24.4	30.1	36.5	40.5	43.3

1043
 1044 It can be observed that without noise, the reconstruction accuracy steadily increases, as the correspon-
 1045 dence between gradients and labels is highly pronounced in the noise-free setting. After injecting
 1046 noise with sufficient strength, the recovery accuracy gradually stabilizes at a certain level and no
 1047 longer improves. This is consistent with our theoretical analysis.

1048
 1049 **Gradient Inversion Attack.** Gradient inversion attack aims to reconstruct the original input data by
 1050 exploiting the gradients shared during training. Since we use images as the data in this setting, the
 1051 reconstruction quality is evaluated by the average L2 norm between the recovered images and the
 1052 original ones. We randomly select 500 samples from the CIFAR-10 for evaluation.

1054 Table 14: Gradient inversion attack performance on different constant level noise.

	Noise level	$T = 100$	$T = 200$	$T = 300$	$T = 400$	$T = 500$
CIFAR-10	$\sigma = 0.1$	20.45	18.32	17.17	16.65	16.34
CIFAR-10	$\sigma = 0.01$	15.51	12.26	10.35	8.44	8.02
CIFAR-10	$\sigma = 0$	10.23	4.55	1.72	1.34	0.97

1060
 1061 The reconstruction results show that without noise, the recovered images become highly accurate as
 1062 training progresses, since the mapping from gradients to images is very direct in LeNet. In contrast,
 1063 when noise is injected, the reconstruction quality is significantly degraded and eventually stabilizes at
 1064 a constant magnitude.

1065
 1066 **Attribute Inference Attack.** Attribute inference attack is a privacy attack in which an adversary
 1067 attempts to infer hidden or sensitive attributes of training samples from the model’s outputs or
 1068 intermediate representations. Here we follow Arevalo et al. (2024) to evaluate the attribute of
 1069 "Animal or not". We select 1000 data samples to test and report the attribute inference accuracy.

1071 Table 15: Attribute inference attack performance on different constant level noise.

	Noise level	$T = 100$	$T = 200$	$T = 300$	$T = 400$	$T = 500$
CIFAR-10	$\sigma = 0.1$	20.4	28.1	34.2	38.8	42.5
CIFAR-10	$\sigma = 0.01$	30.1	46.4	53.3	58.8	62.1
CIFAR-10	$\sigma = 0$	30.3	52.2	59.2	67.3	74.4

1077
 1078 Attribute inference attacks share certain similarities with label reconstruction attacks, but differ in that
 1079 the inferred attribute is an unlabeled feature that often exhibits clustering behavior during inference.

1080 Injecting noise significantly increases the difficulty of effectively identifying this attribute. Our
 1081 experiments further confirm that the privacy leakage detected by such attacks remains stable under
 1082 limited noise injection: its growth does not increase indefinitely but instead stays within a gradually
 1083 shrinking range and eventually converges to a stable level.

1084 **Knowledge Extraction Attack.** Knowledge Extraction Attack is a privacy attack in which an
 1085 adversary queries the target model’s outputs to train a substitute model that mimics the target model’s
 1086 behavior. In our experiments, we train the attacker model using the stolen noisy logits, and evaluate
 1087 the privacy protection capability by comparing the resulting training loss. It can be observed that
 1088 constant noise effectively maintains stable privacy protection, which is fully consistent with our
 1089 theoretical predictions.

1090

1091

1092 Table 16: Knowledge extraction attack performance on different constant level noise.

	Noise level	Vanilla Model	Attacker
CIFAR-10	$\sigma = 0.1$	74.25	60.20
CIFAR-10	$\sigma = 0.01$	78.44	72.43
CIFAR-10	$\sigma = 0$	82.55	80.35
CIFAR-100	$\sigma = 0.1$	32.36	15.52
CIFAR-100	$\sigma = 0.01$	37.41	26.49
CIFAR-100	$\sigma = 0$	45.25	38.36

1100

1101

1102

1103 E PRELIMINARY PROPERTIES OF f -DP

1104

1105 In our analysis, the f -DP composition is applied to the sequence of perturbed model updates, each of
 1106 which is a Gaussian mechanism. For Gaussian mechanisms, a valid coupling is guaranteed to exist:
 1107 the optimal transport coupling that aligns the two output distributions via a shared Gaussian noise
 1108 source. Formally, for adjacent datasets C and C' , the mechanisms can be written as:

1109

$$\mathcal{M}(C) = \text{Standard FL Update}(C) + Z \text{ and } \mathcal{M}(C') = \text{Standard FL Update}(C') + Z,$$

1110

1111 where `Standard FL Update()` is generally defined by the algorithm itself, e.g. FedAvg and FedProx
 1112 in our paper. Z is the shared Gaussian noise. This defines a measurable coupling, since the pair
 1113 $(\text{Standard FL Update}(C) + Z, \text{Standard FL Update}(C') + Z)$ is a measurable mapping of Gaussian
 1114 random variable. Under this coupling, the privacy-loss random variable has the explicit closed form
 1115 used in f -DP analysis, and its mean shift is

1116

1117

$$\mu_t = \frac{\|\text{Standard FL Update}(C) - \text{Standard FL Update}(C')\|^2}{2\sigma^2},$$

1118

1119

1120 which is finite and fully controlled through our sensitivity bounds. Therefore, the total mean shift
 $\sum_t \mu_t$ is well-defined and directly bounded by our model-sensitivity recursion, ensuring that the
 1121 f -DP composition lemma applies without additional assumptions.

1122

1123

1124 In this section, we mainly supplement some basic properties of f -DP, all of which are lemmas
 1125 proposed by Dong et al. (2022). Specifically, Lemmas 1 and 2 are employed in our theoretical
 1126 analysis, whereas Lemmas 3 and 4 facilitate a lossless translation of our results into other standard
 1127 DP frameworks for comparative purposes.

1128

1125

1126 **Lemma 1 (Post-processing)** *If a randomized mechanism \mathcal{M} is f -DP, any post processing mecha-
 1127 nism based on \mathcal{M} is still at least f -DP, i.e. $T(P'; Q') \geq T(P; Q)$ for any post-processing mapping
 1128 which leads to $P \rightarrow P'$ and $Q \rightarrow Q'$.*

1129

1130

1131

1132

1133

1134 Intuitively, post-processing mappings bring some changes in the original distributions. However,
 1135 such changes can not allow the updated distributions to be much easier to discern. This lemma also
 1136 widely exists in other DP relaxations and stands as one of the foundational elements in current privacy
 1137 analyses. In f -DP, this lemma also clearly demonstrates that the difficulty of hypothesis testing
 1138 problems can not be simplified with the addition of known information, which still preserves the
 1139 original distinguishability.

1134 **Lemma 2 (Composition)** *We have a series of mechanisms \mathcal{M}_i and a joint serial composition mech-
 1135 anism \mathcal{M} . Let each private mechanism $\mathcal{M}_i(\cdot, y_1, \dots, y_{i-1})$ be f_i -DP for all $y_1 \in Y_1, \dots, y_{i-1} \in$
 1136 Y_{i-1} . Then the n -fold composed mechanism $\mathcal{M} : X \rightarrow Y_1 \times \dots \times Y_n$ is $f_1 \otimes \dots \otimes f_n$ -DP,
 1137 where \otimes denotes the joint distribution. For instance, if $f = T(P; Q)$ and $g = T(P'; Q')$, then
 1138 $f \otimes g = T(P \times P'; Q \times Q')$.*
 1139

1140 The composition in the f -DP framework is *closed* and *tight*. This is also one of the advantages of
 1141 privacy representation in f -DP. Correspondingly, the advanced composition theorem for (ε, δ) -DP
 1142 can not admit the optimal parameters to exactly capture the privacy in the composition process (Dwork
 1143 et al., 2015). However, the trade-off function has an exact probabilistic interpretation and can precisely
 1144 measure the composition.

1145 **Lemma 3 (GDP $\rightarrow (\varepsilon, \delta)$ -DP)** *A μ -GDP mechanism with a trade-off function $T_G(\mu)$ is also
 1146 $(\varepsilon, \delta(\varepsilon))$ -DP for all $\varepsilon \geq 0$ where*

$$\delta(\varepsilon) = \Phi\left(-\frac{\varepsilon}{\mu} + \frac{\mu}{2}\right) - e^\varepsilon \Phi\left(-\frac{\varepsilon}{\mu} - \frac{\mu}{2}\right). \quad (20)$$

1150 **Lemma 4 (GDP \rightarrow RDP)** *A μ -GDP mechanism with a trade-off function $T_G(\mu)$ is also $(\zeta, \frac{1}{2}\mu^2\zeta)$ -
 1151 RDP for any $\zeta > 1$.*

1152 We state the transition and conversion calculations from f -DP (we specifically consider the GDP)
 1153 to other DP relaxations, e.g. for the (ε, δ) -DP and RDP. These lemmas can effectively compare
 1154 our theoretical results with existing ones. Our comparison primarily aims to demonstrate that the
 1155 convergent privacy obtained in our analysis would directly derive bounded privacy budgets in other
 1156 DP relaxations. Moreover, we will illustrate how the convergent f -DP further addresses conclusions
 1157 that current FL-DP work cannot cover theoretically, which provides solid support for understanding
 1158 its reliability of privacy protection.

1159 **Lemma 5 (Accumulation in GDP.)** *For GDP, $T_G(\mu_1) \otimes \dots \otimes T_G(\mu_n) = T_G(\sqrt{\mu_1^2 + \dots + \mu_n^2})$.*

1160 **Proof.** *Let $\mu = (\mu_1, \mu_2) \in \mathbb{R}^2$ and I_2 be the 2×2 identity matrix. Then*

$$T_G(\mu_1) \otimes T_G(\mu_2) = T(\mathcal{N}(0, 1) \times \mathcal{N}(0, 1); \mathcal{N}(\mu_1, 1) \times \mathcal{N}(\mu_2, 1)) = T(\mathcal{N}(0, I_2); \mathcal{N}(\mu, I_2)).$$

1161 *Again we use the invariance of trade-off functions under invertible transformations. $\mathcal{N}(0, I_2)$ is
 1162 rotation invariant, so we can rotate $\mathcal{N}(\mu, I_2)$ so that the mean is $(\sqrt{\mu_1^2 + \mu_2^2}, 0)$, i.e.,*

$$T(\mathcal{N}(0, I_2); \mathcal{N}(\mu, I_2)) = T(\mathcal{N}(0, 1); \mathcal{N}(\sqrt{\mu_1^2 + \mu_2^2}, 1)) \otimes T(\mathcal{N}(0, 1); \mathcal{N}(0, 1)) = T_G(\sqrt{\mu_1^2 + \mu_2^2}).$$

1170 F A DISCUSSION OF TIGHTNESS IN RELAXATION

1171 The appropriateness of our relaxation can be justified through parallels with prior work, especially
 1172 the analysis in shifted-interpolation on DP-SGD. The essential challenge arises from the fact that
 1173 obtaining the worst-case privacy loss requires minimizing the privacy term jointly over λ_t and
 1174 t_0 , which is an NP-hard problem. To make the computation feasible, Bok et al. assume that the
 1175 optimization domain has diameter D , thereby ensuring that the global sensitivity at every t_0 is
 1176 bounded by this constant. Although this assumption simplifies the optimization, such a projection
 1177 is rarely aligned with practical training dynamics. If t_0 were a fixed and known constant, the
 1178 assumption would indeed apply. However, when t_0 increases with the total number of training
 1179 steps T , this simplification may no longer hold. Our analysis introduces a relaxed upper bound, but
 1180 comparison with their results indicates that our bound differs only by a constant multiplicative term.
 1181 As $T/t_0 \rightarrow \infty$, this discrepancy shrinks rapidly and becomes negligible.

1183 G PROOF OF MAIN THEOREMS

1184 **Proof Sketch.** Since the standard interpolation technique cannot be directly applied to the federated
 1185 learning setting, we introduce a more sophisticated interpolation construction. In this design, the
 1186 interpolation sequence is defined at the level of the global model, while its evolution is implicitly

1188 governed by the local training updates performed on each client. To quantify the effect of this
 1189 interpolation on the original optimization trajectory, we conduct separate analyses of model sensitivity
 1190 and data sensitivity for the local sequences, which allow us to derive upper bounds on how these
 1191 sensitivities change. Using the global interpolation, we then obtain the complete f-DP privacy
 1192 characterization of the FL-DP framework, which ultimately leads to a bounded privacy guarantee. In
 1193 this section, we provide the main lemmas of sensitivity studies on the different cases.

1194 **G.1 PROOFS OF THEOREM 1**

1195 We consider the general updates on the adjacent datasets \mathcal{C} and \mathcal{C}' on round t as follows:

$$\begin{aligned} 1198 \quad w_{t+1} &= \phi(w_t) + \frac{1}{m} \sum_{i \in \mathcal{I}} n_{i,t}, \\ 1199 \quad w'_{t+1} &= \phi'(w'_t) + \frac{1}{m} \sum_{i \in \mathcal{I}} n'_{i,t}, \end{aligned} \quad (21)$$

1200 where w_0 is the initial state. $n_{i,t}$ and $n'_{i,t}$ are two noises generated from the normal distribution
 1201 $\mathcal{N}(0, \sigma^2 I_d)$. To construct the interpolated sequence, we introduce the concentration coefficients λ_t to
 1202 provide a convex combination of the updates above, which is,

$$1203 \quad \tilde{w}_{t+1} = \lambda_{t+1} \phi(w_t) + (1 - \lambda_{t+1}) \phi'(\tilde{w}_t) + \frac{1}{m} \sum_{i \in \mathcal{I}} n_{i,t}, \quad (22)$$

1204 for $t = t_0, t_0 + 1, \dots, T - 1$. Furthermore, we set $\lambda_T = 1$ to let $\tilde{w}_T = \phi(w_{T-1}) + \frac{1}{m} \sum_{i \in \mathcal{I}} n_{i,T-1} =$
 1205 w_T , and we add the definition of $\tilde{w}_{t_0} = w'_{t_0}$ as the interpolation beginning. t_0 determines the length
 1206 of the interpolation sequence.

1207 **Lemma 6** *According to the expansion of trade-off functions, for the general updates in Eq.(22), we*
 1208 *have the following recurrence relation:*

$$1209 \quad T(\tilde{w}_{t+1}; w'_{t+1}) \geq T(\tilde{w}_t; w'_t) \otimes T_G \left(\frac{\sqrt{m}}{\sigma} \lambda_{t+1} \|\phi(w_t) - \phi'(\tilde{w}_t)\| \right). \quad (23)$$

1210 **Proof.** *Based on the post-processing and compositions, let z and z' be the corresponding noises*
 1211 *above, for any constant $\lambda \in [0, 1]$, we have (subscripts are temporarily omitted):*

$$\begin{aligned} 1212 \quad &T(\lambda \phi(w) + (1 - \lambda) \phi'(\tilde{w}) + z; \phi'(w') + z') \\ 1213 \quad &= T(\phi'(\tilde{w}) + \lambda(\phi(w) - \phi'(\tilde{w})) + z; \phi'(w') + z') \\ 1214 \quad &\geq T((\phi'(\tilde{w}), \lambda(\phi(w) - \phi'(\tilde{w})) + z); (\phi'(w'), z')) \\ 1215 \quad &\geq T(\phi'(\tilde{w}); \phi'(w')) \otimes T(\lambda(\phi(w) - \phi'(\tilde{w})) + z; z') \\ 1216 \quad &\geq T(\tilde{w}; w') \otimes T(\lambda(\phi(w) - \phi'(\tilde{w})) + z; z'), \end{aligned}$$

1217 *where z and z' are two Gaussian noises that can be considered to be sampled from $\mathcal{N}(0, \frac{\sigma^2}{m} I_d)$ (average
 1218 of m isotropic Gaussian noises). Therefore, the distinguishability between the first term and
 1219 the second term does not exceed the mean shift of the distribution, which is $\|\frac{\sqrt{m}}{\sigma} \lambda(\phi(w) - \phi'(\tilde{w}))\|$.
 1220 By taking $w = w_t$ and $\lambda = \lambda_{t+1}$, the proofs are completed.*

1221 According to the above lemma, by expanding it from $t = t_0$ to $T - 1$ and the factor $T(\tilde{w}_{t_0}; w'_{t_0}) =$
 1222 $T_G(0)$, we can prove the formulation in Eq. (10).

1223 **G.2 PROOFS OF THEOREM 2**

1224 Lemma 6 provides the general recursive relationship on the global states along the communication
 1225 round t . To obtain the lower bound of the trade-off function, we only need to solve for the gaps
 1226 $\|\phi(w) - \phi'(\tilde{w})\|$. It is worth noting that the local update process here involves dual replacement of
 1227 both the dataset (ϕ and ϕ') and the initial state (w and \tilde{w}). Therefore, we measure their maximum

discrepancy by assessing their respective distances to the intermediate variable constructed by the cross-items:

$$\|\phi(w) - \phi'(\tilde{w})\| \leq \underbrace{\|\phi(w) - \phi'(w)\|}_{\text{Data Sensitivity}} + \underbrace{\|\phi'(w) - \phi'(\tilde{w})\|}_{\text{Model Sensitivity}}. \quad (24)$$

The first term measures the disparity in training on different datasets and the second term measures the gap in training from different initial models. One of our contributions is to provide their general gaps. In our paper, we expand the update function $\phi(x)$ by considering the multiple local iterations and federated cross-device settings. By simply setting the local interval to 1 and the number of clients to 1, our results can easily reproduce the original conclusion in (Bok et al., 2024). Furthermore, our comprehensive considerations have led to a new understanding of the impact of local updates on privacy.

$\phi(w_t)$ and $\phi'(w_t)$ begin from w_t . $\phi'(w_t)$ and $\phi'(\tilde{w}_t)$ adopt the data samples $\varepsilon' \in \mathcal{C}'$. We naturally use $w_{i,k,t}$ and $\tilde{w}_{i,k,t}$ to represent individual states in $\phi(w_t)$ and $\phi'(\tilde{w}_t)$, respectively. **To avoid ambiguity, we define the states in $\phi'(w_t)$ as $\hat{w}_{i,k,t}$.** When $i \neq i^*$, since $\varepsilon = \varepsilon'$, then $w_{i,k,t}$ only differs from $\hat{w}_{i,k,t}$ on i^* -th client.

ON THE NOISY-FEDAVG METHOD:

Lemma 7 (Data Sensitivity.) *The data sensitivity caused by gradient descent steps can be bounded as:*

$$\|\phi(w_t) - \phi'(w_t)\| \leq \frac{2V}{m} \sum_{k=0}^{K-1} \eta_{k,t}, \quad (25)$$

where $\eta_{k,t}$ is the learning rate at the k -th iteration of t -th communication round.

Proof. By directly expanding the update functions ϕ and ϕ' at w_t , we have:

$$\begin{aligned} & \|\phi(w_t) - \phi'(w_t)\| \\ &= \|w_t - \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \nabla f_i(w_{i,k,t}, \varepsilon) - w_t + \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \nabla f_i(\hat{w}_{i,k,t}, \varepsilon')\| \\ &\leq \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \|\nabla f_i(w_{i,k,t}, \varepsilon) - \nabla f_i(\hat{w}_{i,k,t}, \varepsilon')\| \\ &= \frac{1}{m} \sum_{k=0}^{K-1} \eta_{k,t} \|\nabla f_{i^*}(w_{i^*,k,t}, \varepsilon) - \nabla f_{i^*}(\hat{w}_{i^*,k,t}, \varepsilon')\| \leq \frac{2V}{m} \sum_{k=0}^{K-1} \eta_{k,t}. \end{aligned}$$

The last equation adopts $\varepsilon = \varepsilon'$ when $i \neq i^*$. This completes the proofs.

Lemma 8 (Model Sensitivity.) *The model sensitivity caused by gradient descent steps can be bounded as:*

$$\|\phi'(w_t) - \phi'(\tilde{w}_t)\| \leq (1 + \eta(K, t)L) \|w_t - \tilde{w}_t\|, \quad (26)$$

where $\eta(K, t) = \eta_{0,t} + \sum_{k=1}^{K-1} \eta_{k,t} \prod_{j=0}^{k-1} (1 + \eta_{j,t}L)$ is a constant related the selection of learning rates.

Proof. We first learn an individual case. On the t -th round, we assume the initial states of two sequences are w_t and \tilde{w}_t . Each is performed by the update function ϕ' for local K steps. For each step, we have:

$$\begin{aligned} & \|\hat{w}_{i,k+1,t} - \tilde{w}_{i,k+1,t}\| \\ &\leq \|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| + \eta_{k,t} \|\nabla f_i(\hat{w}_{i,k,t}, \varepsilon') - \nabla f_i(\tilde{w}_{i,k,t}, \varepsilon')\| \\ &\leq (1 + \eta_{k,t}L) \|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\|. \end{aligned}$$

This implies each gap when $k \geq 1$ can be upper bounded by:

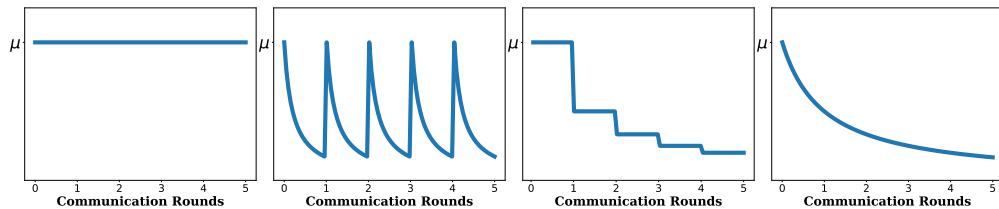
$$\|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| \leq (1 + \eta_{k-1,t}L) \|\hat{w}_{i,k-1,t} - \tilde{w}_{i,k-1,t}\| \leq \dots \leq \prod_{j=0}^{k-1} (1 + \eta_{j,t}L) \|w_t - \tilde{w}_t\|.$$

1296 Then we consider the recursive formulation of the stability gaps along the iterations k . We can
 1297 directly apply Eq.(22) to obtain the relationship for the differences updated from different initial
 1298 states on the same dataset. By directly expanding the update function ϕ' at w_t and \tilde{w}_t , we have:
 1299

$$\begin{aligned}
 1300 \quad & \|\phi'(w_t) - \phi'(\tilde{w}_t)\| \\
 1301 \quad & = \|w_t - \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \nabla f_i(\hat{w}_{i,k,t}, \varepsilon') - \tilde{w}_t + \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \nabla f_i(\tilde{w}_{i,k,t}, \varepsilon')\| \\
 1304 \quad & \leq \|w_t - \tilde{w}_t\| + \left\| \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} (\nabla f_i(\hat{w}_{i,k,t}, \varepsilon') - \nabla f_i(\tilde{w}_{i,k,t}, \varepsilon')) \right\| \\
 1305 \quad & \leq \|w_t - \tilde{w}_t\| + \frac{L}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} \|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| \\
 1307 \quad & \leq \left[1 + \left(\eta_{0,t} + \sum_{k=1}^{K-1} \eta_{k,t} \prod_{j=0}^{k-1} (1 + \eta_{j,t} L) \right) L \right] \|w_t - \tilde{w}_t\|.
 \end{aligned}$$

1313 This completes the proofs.
 1314

1316 We have successfully quantified the specific form of the problem as above. By solving for a series
 1317 of reasonable values of the auxiliary variable λ to minimize the above problem, we obtain the tight
 1318 lower bound on privacy. Before that, let's discuss the learning rate to simplify this expression. Both
 1319 $\eta(K, t)$ and $\sum \eta_{k,t}$ terms are highly related to the selections of learning rates. Typically, this choice
 1320 is determined by the optimization process. Whether it's generalization or privacy analysis, both are
 1321 based on the assumption that the optimization can converge properly. Therefore, we selected several
 1322 different learning rate designs based on various combination methods to complete the subsequent
 1323 analysis. Due to the unique two-stage learning perspective of federated learning, current methods
 1324 for designing the learning rate generally choose between a constant rate or a rate that decreases
 1325 with local rounds or iterations. Therefore, we discuss them separately including constant learning
 1326 rate, cyclically decaying learning rate, stage-wise decaying learning rate, and continuously decaying
 1327 learning rate. We provide a simple comparison in Figure 3.
 1328



1336 Figure 3: Four general setups of learning rate adopted in the federated learning community. From left
 1337 to right, they are: *Constant learning rates*, *Cyclically decaying learning rates*, *Stage-wise decaying*
 1338 *learning rate*, and *Continuously decaying learning rate*.
 1339

1341 **Constant learning rates** This is currently the simplest case. We consider the learning rate to
 1342 always be a constant, i.e. $\eta_{k,t} = \mu$. Then we have that the accumulation term $\sum_{k=0}^{K-1} \eta_{k,t} = \mu K$. For
 1343 the $\eta(K, t)$ term, we have:
 1344

$$\eta(K, t) = \eta_{0,t} + \sum_{k=1}^{K-1} \eta_{k,t} \prod_{j=0}^{k-1} (1 + \eta_{j,t} L) = \mu \sum_{k=0}^{K-1} (1 + \mu L)^k = \frac{1}{L} ((1 + \mu L)^K - 1).$$

1348 When K is selected, both of them can be considered as a constant related to K . The choice of μ also
 1349 requires careful consideration. Although it is a constant, its selection is typically related to m , K ,
 and T based on the optimization process. We will discuss this point in the final theorems.

1350 **Cyclically decaying learning rates** Some works treat this learning process as an aggregation
 1351 process of several local training processes, i.e. each local client learns from a better initial state
 1352 (knowledge learned from other clients). And since the client pool is very large, most clients will exit
 1353 after obtaining the model they desire. This setting is often used in “cross-device” scenarios (Kairouz
 1354 et al., 2021). Thus, local learning can be considered as an independent learning process. In this
 1355 case, the learning rate is designed to decay in an inversely proportional function to achieve optimal
 1356 local accuracy, i.e. $\eta_{k,t} = \frac{\mu}{k+1}$, and is restored to a larger initial value at the start of each round, i.e.
 1357 $\eta_{0,t} = \mu$. Then we have the accumulation term:

$$\ln(K+1) = \int_{k=0}^K \frac{1}{k+1} dk \leq \sum_{k=0}^{K-1} \frac{1}{k+1} \leq 1 + \int_0^{K-1} \frac{1}{k+1} dk = 1 + \ln(K). \quad (27)$$

1361 When K is large, this term is dominated by $\mathcal{O}(\ln(K))$. Based on the fact that K is very large in
 1362 federated learning, we further approximate this term to $c \ln(K+1)$ where c is a scaled constant. It is
 1363 easy to check that there must exist $1 \leq c < 1.543$ for any $K \geq 1$. Thus we have the accumulation
 1364 term as $\sum_{k=0}^{K-1} \eta_{k,t} = c\mu \ln(K+1)$. For the $\eta(K, t)$ term, we have its upper bound:

$$\begin{aligned} \eta(K, t) &= \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{j+1}\right) \leq \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \prod_{j=0}^{k-1} \exp\left(\frac{\mu L}{j+1}\right) \\ &= \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \left[\exp\left(\sum_{j=0}^{k-1} \frac{1}{j+1}\right) \right]^{\mu L} = \sum_{k=0}^{K-1} \frac{\mu}{k+1} [\exp(c \ln(k+1))]^{\mu L} \\ &= \mu \sum_{k=0}^{K-1} (k+1)^{c\mu L-1} \leq \mu \int_{k=0}^K (k+1)^{c\mu L-1} dk = \frac{1}{cL} ((1+K)^{c\mu L} - 1). \end{aligned}$$

1366 The first inequality adopts $1+x \leq e^x$ and the last adopts the concavity. Actually, we still can learn
 1367 its general lower bound by a scaling constant. By adopting a scaling b , we can have $1+x \geq e^{bx}$,
 1368 which is equal to $b \leq \frac{\ln(x+1)}{x}$. It is also easy to check $0.693 < b < 1$ when $0 < x \leq 1$. Thus we
 1369 have:

$$\begin{aligned} \eta(K, t) &= \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{j+1}\right) \geq \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \prod_{j=0}^{k-1} \exp\left(\frac{\mu b L}{j+1}\right) \\ &= \mu + \sum_{k=1}^{K-1} \frac{\mu}{k+1} \left[\exp\left(\sum_{j=0}^{k-1} \frac{1}{j+1}\right) \right]^{\mu b L} = \sum_{k=0}^{K-1} \frac{\mu}{k+1} [\exp(c \ln(k+1))]^{\mu b L} \\ &= \mu \sum_{k=0}^{K-1} (k+1)^{c\mu b L-1} \geq \mu \int_{k=-1}^{K-1} (k+1)^{c\mu b L-1} dk = \frac{1}{cbL} K^{c\mu b L}. \end{aligned}$$

1370 The last inequality also adopts concavity. Through this simple scaling, we learn the general bounds
 1371 for the learning rate function $\eta(K, t)$ as:

$$\frac{1}{cbL} K^{c\mu b L} \leq \eta(K, t) \leq \frac{1}{cL} ((1+K)^{c\mu L} - 1), \quad (28)$$

1372 where $1 \leq c < 1.543$, $0.693 < b < 1$ and $\mu \leq \frac{1}{L}$ (this condition is almost universally satisfied in
 1373 current optimization theories). Although we cannot precisely find the tight bound of this function
 1374 $\eta(K, t)$, we can still treat it as a form based on constants to complete the subsequent analysis, i.e. it
 1375 could be approximated as a larger upper bound $\frac{1}{L} ((1+K)^{c\mu L} - 1)$. More importantly, we have
 1376 determined that this learning rate function still diverges as K increases.

1377 **Stage-wise decaying learning rates** This is one of the most common selections of learning rate
 1378 in the current federated community, which is commonly applied in “cross-silo” scenarios (Kairouz
 1379 et al., 2021). When the client pool is not very large, clients who participate in the training often aim
 1380 to establish long-term cooperation to continuously improve their models. Therefore, each client will
 1381 contribute to the entire training process over a long period. From a learning perspective, local training

is more like exploring the path to a local optimum rather than actually achieving the local optimum. Therefore, each local training will adopt a constant learning rate and perform several update steps, i.e. $\eta_{k,t} = \eta_t$. At each communication round, the learning rate decays once and continues to the next stage, i.e. $\eta_t = \frac{\mu}{t+1}$. Based on the analysis of the constant learning rate, the accumulation term is $\sum_{k=0}^{K-1} \eta_{k,t} = \frac{\mu K}{t+1}$. For the $\eta(K, t)$ term, we have:

$$\begin{aligned} \eta(K, t) &= \frac{\mu}{t+1} + \sum_{k=1}^{K-1} \frac{\mu}{t+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{t+1}\right) \\ &= \frac{\mu L}{t+1} \sum_{k=0}^{K-1} \left(1 + \frac{\mu L}{t+1}\right)^k = \frac{1}{L} \left(\left(1 + \frac{\mu L}{t+1}\right)^K - 1 \right). \end{aligned}$$

It can be seen that the analysis of this function is more challenging because the learning rate function $\eta(K, t)$ is decided by t , which introduces complexity to the subsequent analysis. We will explain this in detail in the subsequent discussion.

Continuously decaying learning rates This is a common selection of learning rate in the federated community, involving dual learning rate decay along both local training and global training. This can almost be applied to all methods to adapt to the final training, including both the cross-silo and cross-device cases. At the same time, its analysis is also more challenging because the learning rate is coupled with communication rounds and local iterations, yielding new upper and lower bounds. We consider the general case $\eta_{k,t} = \frac{\mu}{tK+k+1}$. Therefore, the accumulation term can be bounded as:

$$\begin{aligned} \sum_{k=0}^{K-1} \frac{1}{tK+k+1} &> \int_{k=0}^K \frac{1}{tK+k+1} dk = \ln \left(\frac{tK+K+1}{tK+1} \right), \\ \sum_{k=0}^{K-1} \frac{1}{tK+k+1} &< \frac{1}{tK+1} + \int_{k=0}^{K-1} \frac{1}{tK+k+1} dk = \frac{1}{tK+1} + \ln \left(\frac{tK+K}{tK+1} \right). \end{aligned}$$

Similarly, when K is large enough, this term is dominated by $\mathcal{O}(\ln(\frac{t+1}{t}))$. For simplicity in the subsequent proof, we follow the process above and let it be $z \ln(\frac{t+2}{t+1})$ to include the term at $t = 0$. It is also easy to check that $z > 1$ is a constant for any $K > 1$. And z is also a constant. It means we can always select the lower bound as its representation. Therefore, for the learning rate function $\eta(K, t)$, we have:

$$\begin{aligned} \eta(K, t) &= \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{tK+j+1}\right) \\ &\leq \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \left[\exp \left(\sum_{j=0}^{k-1} \frac{1}{tK+j+1} \right) \right]^{\mu L} \\ &= \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \left[\exp \left(z \ln \left(\frac{tK+k+1}{tK+1} \right) \right) \right]^{\mu L} \\ &= \frac{\mu}{(tK+1)^{z\mu L}} \sum_{k=0}^{K-1} (tK+k+1)^{z\mu L-1} \\ &\leq \frac{\mu}{(tK+1)^{z\mu L}} \int_{k=0}^K (tK+k+1)^{z\mu L-1} dk = \frac{1}{zL} \left(\left(\frac{tK+K+1}{tK+1} \right)^{z\mu L} - 1 \right). \end{aligned}$$

Similarly, we introduce the coefficient b to provide the lower bound as:

$$\begin{aligned} \eta(K, t) &= \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{tK+j+1}\right) \\ &= \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \prod_{j=0}^{k-1} \left(1 + \frac{\mu L}{tK+j+1}\right) \end{aligned}$$

$$\begin{aligned}
& \geq \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \left[\exp \left(\sum_{j=0}^{k-1} \frac{1}{tK+j+1} \right) \right]^{\mu bL} \\
& = \frac{\mu}{tK+1} + \sum_{k=1}^{K-1} \frac{\mu}{tK+k+1} \left[\exp \left(z \ln \left(\frac{tK+k+1}{tK+1} \right) \right) \right]^{\mu bL} \\
& = \frac{\mu}{(tK+1)^{z\mu bL}} \sum_{k=0}^{K-1} (tK+k+1)^{z\mu bL-1} \\
& \geq \frac{\mu}{(tK+1)^{z\mu bL}} \int_{k=-1}^{K-1} (tK+k+1)^{z\mu bL-1} dk = \frac{1}{zbL} \left(\left(\frac{tK+K}{tK+1} \right)^{z\mu bL} - \left(\frac{tK}{tK+1} \right)^{z\mu bL} \right) \\
& > \frac{1}{zbL} \left(\left(\frac{tK+K}{tK+1} \right)^{z\mu bL} - 1 \right).
\end{aligned}$$

Through the sample scaling, we learn the general bounds for the learning rate function $\eta(K, t)$ as:

$$\frac{1}{zbL} \left(\left(\frac{tK+K}{tK+1} \right)^{z\mu bL} - 1 \right) < \eta(K, t) \leq \frac{1}{zL} \left(\left(\frac{tK+K+1}{tK+1} \right)^{z\mu L} - 1 \right), \quad (29)$$

where $1 < z$, $0.693 < b < 1$ and $\mu \leq \frac{1}{L}$. Obviously, when K is large enough, the learning rate term is still dominated by $\mathcal{O} \left(\left(\frac{t+2}{t+1} \right)^{z\mu L} - 1 \right)$. Therefore, to learn the general cases, we can consider the specific form of the learning rate function based on the constant scaling as $\frac{1}{L} \left(\left(\frac{t+2}{t+1} \right)^{z\mu L} - 1 \right)$. As t increases, this function will approach zero.

ON THE NOISY-FEDPROX METHOD:

In this part, we will address the differential privacy analysis of a noisy version of another classical federated learning optimization method, i.e. the Noisy-FedProx method. The vanilla FedProx method is an optimization algorithm designed for cross-silo federated learning, particularly to address the challenges caused by data heterogeneity across different clients. Unlike traditional federated learning algorithms like FedAvg, which can struggle with variations in data distribution, it introduces a proximal term to the objective function. This helps to stabilize the training process and improve convergence. Specifically, it adopts the consistency as the penalized term to correct the local objective:

$$\min_w f_i(w) + \frac{\alpha}{2} \|w - w_t\|^2. \quad (30)$$

The proximal term is a very common regularization term in federated learning and has been widely used in both federated learning and personalized federated learning approaches. It introduces an additional penalty to the local objective, ensuring that local updates are optimized towards the local optimal solution while being subject to an extra global constraint, i.e. each local update does not stray too far from the initialization point. In fact, there are many optimization methods that apply such regularization terms. For example, various federated primal-dual methods based on the ADMM approach construct local Lagrangian functions, and in personalized federated learning, local privatization regularization terms are introduced to differentiate from the vanilla consistency objective. The analysis of the above methods is fundamentally based on a correct understanding of the advantages and significance of the proximal term in stability error. In this paper, to achieve a cross-comparison while maintaining generality, we consider the optimization process of local training as total K -step updates:

$$\phi(w_t) = w_t - \frac{1}{m} \sum_{i \in \mathcal{I}} \sum_{k=0}^{K-1} \eta_{k,t} (\nabla f_i(w_{i,k,t}, \varepsilon) + \alpha (w_{i,k,t} - w_t)). \quad (31)$$

1512 Here, we also employ the proofs mentioned in the previous section, and our study of the difference
 1513 term is based on both data sensitivity and model sensitivity perspectives. We provide these two main
 1514 lemmas as follows.

1515

1516

1517 **Lemma 9 (Data Sensitivity.)** *The local data sensitivity of the Noisy-FedProx method at t-th
 1518 communication round can be upper bounded as:*

1519

1520

1521

Proof. We first consider a single step in Eq.(31) as:

1522

1523

$$w_{i,k+1,t} = w_{i,k,t} - \eta_{k,t} (\nabla f_i(w_{i,k,t}, \varepsilon) + \alpha(w_{i,k,t} - w_t)).$$

1524

1525

1526

The proximal term brings more opportunities to enhance the analysis of local updates. We can split
 the proximal term and subtract the w_t term on both sides, resulting in a recursive formula for the
 cumulative update term:

1527

1528

$$w_{i,k+1,t} - w_t = (1 - \eta_{k,t}\alpha) (w_{i,k,t} - w_t) - \eta_{k,t} \nabla f_i(w_{i,k,t}, \varepsilon).$$

1529

1530

1531

1532

The above equation indicates that a reduction factor $1 - \eta_{k,t}\alpha < 1$ can limit the scale of local
 updates. This is a very good property, allowing us to shift the analysis of the data sensitivity to their
 relationship of local updates. According to the above, we can upper bound the gaps between $\{w_{i,k,t}\}$
 and $\{\hat{w}_{i,k,t}\}$ sequences as:

1533

1534

1535

1536

1537

$$\begin{aligned} & \| (w_{i,k+1,t} - w_t) - (\hat{w}_{i,k+1,t} - w_t) \| \\ &= \| (1 - \eta_{k,t}\alpha) [(w_{i,k,t} - w_t) - (\hat{w}_{i,k,t} - w_t)] - \eta_{k,t} (\nabla f_i(w_{i,k,t}, \varepsilon) - \nabla f_i(\hat{w}_{i,k,t}, \varepsilon')) \| \\ &\leq (1 - \eta_{k,t}\alpha) \| (w_{i,k,t} - w_t) - (\hat{w}_{i,k,t} - w_t) \| + \eta_{k,t} \| \nabla f_i(w_{i,k,t}, \varepsilon) - \nabla f_i(\hat{w}_{i,k,t}, \varepsilon') \| \\ &\leq (1 - \eta_{k,t}\alpha) \| (w_{i,k,t} - w_t) - (\hat{w}_{i,k,t} - w_t) \| + 2\eta_{k,t}V. \end{aligned}$$

1538

1539

1540

Different from proofs in Lemma 7, the term $1 - \eta_{k,t}\alpha$ can further decrease the stability gap during
 accumulation. By summing from $k = 0$ to $K - 1$, we can obtain:

1541

1542

1543

1544

1545

1546

1547

1548

$$\begin{aligned} & \| (w_{i,K,t} - w_t) - (\hat{w}_{i,K,t} - w_t) \| \\ &\leq \prod_{k=0}^{K-1} (1 - \eta_{k,t}\alpha) \| (w_{i,0,t} - w_t) - (\hat{w}_{i,0,t} - w_t) \| + \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{j,t}\alpha) \right) 2\eta_{k,t}V \\ &= 2V \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{j,t}\alpha) \right) \eta_{k,t}. \end{aligned}$$

1549

1550

Here, we provide a simple proof using a constant learning rate to demonstrate that its upper bound
 can be independent of K . By considering $\eta_{k,t} = \mu$, we have:

1551

1552

1553

1554

$$\sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{j,t}\alpha) \right) \eta_{k,t} = \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \mu\alpha) \right) \mu = \frac{1 - (1 - \mu\alpha)^K}{\alpha} < \frac{1}{\alpha}.$$

1555

1556

1557

1558

In fact, when the learning rate decays with k , it can still be easily proven to have a constant upper
 bound. Therefore, in the subsequent proofs, we directly use the form of this constant upper bound as
 the result of data sensitivity in the Noisy-FedProx method. Based on the definition of $\phi(w)$, we
 have:

1559

1560

1561

1562

1563

$$\begin{aligned} \|\phi(w_t) - \phi'(w_t)\| &= \| (\phi(w_t) - w_t) - (\phi'(w_t) - w_t) \| = \left\| \frac{1}{m} \sum_{i \in \mathcal{I}} [(w_{i,K,t} - w_t) - (\hat{w}_{i,K,t} - w_t)] \right\| \\ &= \frac{1}{m} \| (w_{i^*,K,t} - w_t) - (\hat{w}_{i^*,K,t} - w_t) \| < \frac{2V}{m\alpha}. \end{aligned}$$

1564

This completes the proofs.

1565

1566 **Lemma 10 (Model Sensitivity.)** *The local model sensitivity of the Noisy-FedProx method at*
 1567 *t-th communication round can be upper bounded as:*

$$1569 \quad \|\phi'(w_t) - \phi'(\tilde{w}_t)\| \leq \frac{\alpha}{\alpha_L} \|w_t - \tilde{w}_t\|. \quad (33)$$

1571 **Proof.** We also adopt the splitting above. Since both sequences are trained on the same dataset, the
 1572 gradient difference can be measured by the parameter difference. Therefore, we directly consider the
 1573 form of the parameter difference:

$$\begin{aligned} 1574 \quad & \|\hat{w}_{i,k+1,t} - \tilde{w}_{i,k+1,t}\| \\ 1575 \quad & = \|(1 - \eta_{k,t}\alpha)(\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}) - \eta_{k,t}(\nabla f_i(\hat{w}_{i,k,t}, \varepsilon') - \nabla f_i(\tilde{w}_{i,k,t}, \varepsilon')) - \eta_{k,t}\alpha(w_t - \tilde{w}_t)\| \\ 1576 \quad & \leq (1 - \eta_{k,t}\alpha)\|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| + \eta_{k,t}L\|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| + \eta_{k,t}\alpha\|w_t - \tilde{w}_t\| \\ 1577 \quad & = (1 - \eta_{k,t}\alpha_L)\|\hat{w}_{i,k,t} - \tilde{w}_{i,k,t}\| + \eta_{k,t}\alpha\|w_t - \tilde{w}_t\|, \end{aligned}$$

1579 where $\alpha_L = \alpha - L$ is a constant. Here, we consider $\alpha > L$. When $\alpha \leq L$, its upper bound can
 1580 not be guaranteed to be reduced. When $\alpha > L$, it can restore the property of decayed stability. By
 1581 summing from $k = 0$ to $K - 1$, we can obtain:

$$\begin{aligned} 1582 \quad & \|\hat{w}_{i,K,t} - \tilde{w}_{i,K,t}\| \\ 1583 \quad & \leq \prod_{k=0}^{K-1} (1 - \eta_{k,t}\alpha_L)\|\hat{w}_{i,0,t} - \tilde{w}_{i,0,t}\| + \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{k,t}\alpha_L) \right) \eta_{k,t}\alpha\|w_t - \tilde{w}_t\| \\ 1584 \quad & = \left[\prod_{k=0}^{K-1} (1 - \eta_{k,t}\alpha_L) + \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{k,t}\alpha_L) \right) \eta_{k,t}\alpha \right] \|w_t - \tilde{w}_t\|. \end{aligned}$$

1590 Similarly, we learn the upper bound from a simple constant learning rate. By select $\eta_{k,t} = \mu$, we
 1591 have:

$$\begin{aligned} 1592 \quad & \prod_{k=0}^{K-1} (1 - \eta_{k,t}\alpha_L) + \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \eta_{k,t}\alpha_L) \right) \eta_{k,t}\alpha \\ 1593 \quad & = \prod_{k=0}^{K-1} (1 - \mu\alpha_L) + \sum_{k=0}^{K-1} \left(\prod_{j=k+1}^{K-1} (1 - \mu\alpha_L) \right) \mu\alpha \\ 1594 \quad & = (1 - \mu\alpha_L)^K + \alpha \frac{1 - (1 - \mu\alpha_L)^K}{\alpha_L} \\ 1595 \quad & = \frac{\alpha}{\alpha_L} - \frac{L(1 - \mu\alpha_L)^K}{\alpha_L} < \frac{\alpha}{\alpha_L}. \end{aligned}$$

1604 The same, it can also be checked that the general upper bound of the stability gaps is a constant
 1605 even if the learning rate is selected to be decayed along iteration k . Therefore, in the subsequent
 1606 proofs, we directly use the form of this constant upper bound as the result of model sensitivity in the
 1607 Noisy-FedProx method. Based on the definition of $\phi(w)$, we have:

$$1608 \quad \|\phi'(w_t) - \phi'(\tilde{w}_t)\| = \left\| \frac{1}{m} \sum_{i \in \mathcal{I}} (\hat{w}_{i,K,t} - \tilde{w}_{i,K,t}) \right\| \leq \frac{1}{m} \sum_{i \in \mathcal{I}} \|\hat{w}_{i,K,t} - \tilde{w}_{i,K,t}\| \leq \frac{\alpha}{\alpha_L} \|w_t - \tilde{w}_t\|.$$

1610 This completes the proofs.

1612 G.3 SOLUTION OF EQ. (13)

1614 According to the recurrence relation in Lemma 6, we can confine the privacy amplification process to
 1615 a finite number of steps with the aid of an interpolation sequence, yielding to the convergent bound.
 1616 Therefore, we have:

$$\begin{aligned} 1617 \quad & T(w_T; w'_T) = T(\tilde{w}_T; w'_T) \\ 1618 \quad & \geq T(\tilde{w}_{T-1}; w'_{T-1}) \otimes T_G \left(\frac{\sqrt{m}}{\sigma} \lambda_T \|\phi(w_{T-1}) - \phi'(\tilde{w}_{T-1})\| \right) \end{aligned}$$

$$\begin{aligned}
&\geq T(\tilde{w}_{t_0}; w'_{t_0}) \otimes \cdots \otimes T_G \left(\frac{\sqrt{m}}{\sigma} \lambda_T \|\phi(w_{T-1}) - \phi'(\tilde{w}_{T-1})\| \right) \\
&= T(w'_{t_0}; w'_{t_0}) \otimes T_G \left(\frac{\sqrt{m}}{\sigma} \sqrt{\sum_{t=t_0}^{T-1} \lambda_{t+1}^2 \|\phi(w_t) - \phi'(\tilde{w}_t)\|^2} \right) \\
&\geq T_G \left(\frac{\sqrt{m}}{\sigma} \sqrt{\sum_{t=t_0}^{T-1} \lambda_{t+1}^2 (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)^2} \right).
\end{aligned}$$

Although the above form appears promising, an inappropriate selection of the key parameters will still cause divergence due to the recurrence term coefficient $1 + \eta(K, t)L > 1$, leading it to approach infinity as t increases. For instance, small t_0 will result in a significantly increased λ and the bound will be closed to the stability gap $\|w_T - w'_T\|$, and large t_0 will result in a long accumulation of the stability gaps, which is also unsatisfied. At the same time, it is also crucial to choose appropriate λ to ensure that the stability accumulation can be reasonably diluted. Therefore, we also need to thoroughly investigate how significant the stability gap caused by the interpolation points is. According to Eq.(21) and (22), we have:

$$\|w_{t+1} - \tilde{w}_{t+1}\| \leq (1 - \lambda_{t+1}) (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t).$$

The above relationship further constrains the stability of the interpolation sequence. It is worth noting that the upper bound of the final step is independent of the choice of λ . At the same time, since all terms are positive, given a group of specific λ , taking the upper bound at each possible t will result in the maximum error accumulation. This is also the worst-case privacy we have constructed. Therefore, solving the worst privacy could be considered as solving the following problem:

$$\min_{\{\lambda_{t+1}\}, t_0} \underbrace{\max_{\{\|w_t - \tilde{w}_t\|\}} \sum_{t=t_0}^{T-1} \lambda_{t+1}^2 (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)^2}_{\substack{\text{worst privacy} \\ \text{tight privacy lower bound}}} , \quad (34)$$

$$\text{s.t. } \|w_{t+1} - \tilde{w}_{t+1}\| \leq (1 - \lambda_{t+1}) (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t) .$$

Based on the above analysis, this problem can be directly transformed into a privacy minimization problem when the interpolation sequence reaches the maximum stability error. Therefore, we just need to solve the following problem:

$$\min_{\{\lambda_{t+1}\}, t_0} \sum_{t=t_0}^{T-1} \lambda_{t+1}^2 (\gamma_t \|w_t - \tilde{w}_t\| + \gamma_t)^2, \quad (35)$$

s.t. $\|w_{t+1} - \tilde{w}_{t+1}\| = (1 - \lambda_{t+1}) (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)$.

It is important to note that this upper bound condition is usually loose because the probability that the interpolation terms simultaneously reach their maximum deviation is very low. This is merely the theoretical worst-case privacy scenario.

Then we solve the minimization problem. By considering the worst stability conditions, we can provide the relationship between the gaps and coefficients λ_{t+1} as:

$$\|w_{t+1} - \tilde{w}_{t+1}\| = \rho_t \|w_t - \tilde{w}_t\| + \gamma_t - \lambda_{t+1} (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t).$$

Expanding it from $t = t_0$ to T , we have:

$$0 = \|w_T - \tilde{w}_T\| = \left(\prod_{t=t_0}^{T-1} \rho_t \right) \|w_{t_0} - \tilde{w}_{t_0}\| + \sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) [\gamma_t - \lambda_{t+1} (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)].$$

Due to the term $\lambda_{t+1}(\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)$ being part of the analytical form of the minimization objective, we preserve the integrity of this algebraic form and only split it from the perspectives of coefficients λ_t , ρ_t and γ_t . According to the definition $\tilde{w}_{t_0} = w'_{t_0}$, then we have:

$$\sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \lambda_{t+1} (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t) = \left(\prod_{t=t_0}^{T-1} \rho_t \right) \|w_{t_0} - w'_{t_0}\| + \sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \gamma_t. \quad (36)$$

1674
 1675 The above equation presents the summation of the term $\lambda_{t+1} (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)$ accompanied by
 1676 a scaling coefficient $(\prod_{j=t+1}^{T-1} \rho_j) > 1$. It naturally transforms the summation form into an initial
 1677 stability gap and a constant term achieved through a combination of learning rates. To solve it, we
 1678 can directly adopt the Cauchy-Schwarz inequality to separate the terms and construct a constant term
 1679 based on the form of the scaling coefficient to find its achievable lower bound:

$$\begin{aligned} & \sum_{t=t_0}^{T-1} \lambda_{t+1}^2 (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t)^2 \\ & \geq \left(\sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \lambda_{t+1} (\rho_t \|w_t - \tilde{w}_t\| + \gamma_t) \right)^2 \left(\sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right)^2 \right)^{-1} \\ & = \left(\left(\prod_{t=t_0}^{T-1} \rho_t \right) \|w_{t_0} - w'_{t_0}\| + \sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \gamma_t \right)^2 \left(\sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right)^2 \right)^{-1}. \end{aligned}$$

1691 Although the original problem requires solving the λ_{t+1} , here we can know one possible minimum
 1692 form of the problem no longer includes this parameter. In fact, this parameter has been transformed
 1693 into the optimality condition of the Cauchy-Schwarz inequality.

1694 Therefore, we only need to optimize it w.r.t the parameter t_0 . Unfortunately, this part highly
 1695 correlates with the stability gaps $\|w_{t_0} - w'_{t_0}\|$. Current research progress indicates that in non-convex
 1696 optimization, this term diverges as the number of training rounds t increases. This makes it difficult
 1697 for us to accurately quantify its specific impact on the privacy bound. If t_0 is very small, it means
 1698 that the introduced stability gap will also be very small. However, consequently, the coefficients of
 1699 the ρ_t and γ_t terms will increase due to the accumulation over $T - t_0$ rounds. To detail this, we have
 1700 to make certain compromises. Because t_0 is an integer belonging to $[0, T - 1]$, we denote its optimal
 1701 selection by t^* (it certainly exists when T is given). Therefore, the privacy lower bound under other
 1702 choices of t_0 will certainly be more relaxed, i.e. $\text{Privacy}_{t_0} \leq \text{Privacy}_{t^*}$ (privacy is weak at other
 1703 selection of t_0). This allows us to look for other asymptotic solutions instead of finding the optimal
 1704 solution. Although we cannot ultimately achieve the form of the optimal solution, we can still provide
 1705 a stable privacy lower bound. To eliminate the impact of stability error, we directly choose $t_0 = 0$,
 1706 yielding the following bound:

$$\begin{aligned} \mathcal{H}_* & \leq \mathcal{H}_0 = \left(\left(\prod_{t=t_0}^{T-1} \rho_t \right) \|w_{t_0} - w'_{t_0}\| + \sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \gamma_t \right)^2 \left(\sum_{t=t_0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right)^2 \right)^{-1} \Big|_{t_0=0} \\ & = \left(\sum_{t=0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right) \gamma_t \right)^2 \left(\sum_{t=0}^{T-1} \left(\prod_{j=t+1}^{T-1} \rho_j \right)^2 \right)^{-1}. \end{aligned}$$

1715 By substituting the values of ρ_t and γ_t under different cases, then we can prove the main theorems in
 1716 this paper.

1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727