
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONVERGENT DIFFERENTIAL PRIVACY ANALYSIS FOR
GENERAL FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The powerful cooperation of federated learning (FL) and differential privacy (DP)
provides a promising paradigm for the large-scale private clients. However, existing
analyses in FL-DP mostly rely on the composition theorem and cannot tightly quan-
tify the privacy leakage challenges, which is tight for a few communication rounds
but yields an arbitrarily loose and divergent bound eventually. This also implies
a counterintuitive judgment, suggesting that FL-DP may not provide adequate
privacy support during long-term training under constant-level noisy perturbations,
yielding discrepancy between the theoretical and experimental results. To further
investigate the convergent privacy and reliability of the FL-DP framework, in this
paper, we comprehensively evaluate the worst privacy of two classical methods
under the non-convex and smooth objectives based on the f -DP analysis. With
the aid of the shifted interpolation technique, we successfully prove that privacy in
Noisy-FedAvg has a tight convergent bound. Moreover, with the regularization
of the proxy term, privacy in Noisy-FedProx has a stable constant lower bound.
Our analysis further demonstrates a solid theoretical foundation for the reliability
of privacy in FL-DP. Meanwhile, our conclusions can also be losslessly converted
to other classical DP analytical frameworks, e.g. (ϵ, δ)-DP and Rényi-DP (RDP),
to provide more fine-grained understandings for the FL-DP frameworks.

1 INTRODUCTION

Since McMahan et al. (2017) proposes the FedAvg method as a general FL framework, it has been
widely developed into a collaborative training standard with privacy protection attributes, which
successfully avoids direct leakage of sensitive data. As research on privacy progresses, researchers
have found that standard FL frameworks still face a threat from indirect leakage. Attackers can
potentially recover local private data through reverse inference by persistently stealing model states
via model (gradient) inversion attacks (Geiping et al., 2020) or distinguish whether individuals are
involved in the training via membership inference attacks (Nasr et al., 2019). To further strengthen
the reliability of FL, DP (Dwork, 2006; Dwork et al., 2014; Abadi et al., 2016) has naturally been
incorporated into the FL framework, yielding FL-DP (Wei et al., 2020). As a primary technique, the
noisy perturbation is widely applied in various advanced FL methods to further enhance its security.

However, the theoretical analysis of the FL-DP framework, especially in evaluating the privacy
levels, is currently unable to provide a comprehensive understanding of its proper application. Most
of the previous works are built upon the foundational lemma of privacy amplification by iteration,
directly resulting in divergent privacy bound as the training communication round T becomes large.
This implies an inference that contradicts intuition and empirical studies, which is, that the FL-DP
framework may completely lose its privacy protection attributes as T → ∞. Such a conclusion is
almost unacceptable for FL-DP. Therefore, establishing a precise and tight analysis is a crucial target.

Notably, significant progress has been made in characterizing convergent privacy in the noisy gradient
descent method in RDP analysis (Chourasia et al., 2021; Ye & Shokri, 2022; Altschuler & Talwar,
2022; Altschuler et al., 2024). However, due to the challenges and intricacies of the analytical
techniques adopted, similar results have not yet successfully been extended to the FL-DP. The multi-
step local updates on heterogeneous datasets lead to biased local models, posing significant obstacles
to the analysis. Recently, analyses based on f -DP (Dong et al., 2022) have brought a promising
resolution to this challenge. This information-theoretically lossless definition naturally evaluates
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Table 1: The worst privacy of the Noisy-FedAvg and Noisy-FedProx in our analysis. V is the
norm of clip gradient. K,T are local training interval and communication round. σ is the variance of
the noise. The trade-off function TG(·) [a] is defined in Definition 4. µ, c and z are constants.

Lr [b] Worst Privacy Convergent?
on T → ∞

Convergent?
on K → ∞

Noisy
FedAvg

C TG

(
2µVK√

mσ

√
(1+µL)K+1
(1+µL)K−1

(1+µL)KT−1
(1+µL)KT+1

)
CD TG

(
2cV ln(K+1)√

mσ

√
(1+K)cµL+1
(1+K)cµL−1

(1+K)cµLT−1
(1+K)cµLT+1

)
SD TG

(
2µVK√

mσ

√
2− 1

T

)
ID TG

(
2zV√
mσ

√
2− 1

T

)
Noisy
FedProx TG

(
2V√
mασ

√
2α−L

L

√
αT−(α−L)T

αT+(α−L)T

)
[a] For the trade-off function TG(s), smaller s means stronger privacy.
[b] Learning rate decaying policy. C: constant learning rate; CD: cyclically decaying; SD:
stage-wise decaying; ID: iteratively decaying. More details are stated in Theorem 3 4.

privacy by the Type I / II error trade-off curve of the hypothesis testing problem about whether a
given individual is in the training dataset. Combined with shifted interpolation techniques (Bok et al.,
2024), it successfully recovers tighter convergent privacy for strongly convex and convex objectives
in noisy gradient descent methods. This may make it possible to quantify convergent privacy in
FL-DP and may offer novel understandings about impacts of some key hyperparameters.

In this paper, we investigate the privacy of two classic DP-FL methods, i.e. Noisy-FedAvg and
Noisy-FedProx and successfully evaluate their worst privacy in the f -DP analysis, as shown in
Table 1. For the Noisy-FedAvg method, we investigate four typical learning rate decay strategies
and provide the coefficients corresponding to each case to ensure a tighter privacy lower bound. We
also prove that its iterative privacy on non-convex and smooth objectives could not diverge w.r.t.
the number of communication rounds T , i.e., a convergent privacy. To the best of our knowledge,
this contributes the first convergent privacy analysis in FL-DP methods for non-convex functions.
Furthermore, by exploring the decay properties of the proximal term in Noisy-FedProx, we prove
that its worst privacy can converge to a general constant lower bound. Our analysis successfully
challenges the long-standing belief that privacy budgets of FL-DP have to increase as training
processes and provides reliable guarantees for its privacy protection ability. At the same time, the
exploration from the proximal term provides a promising solution, suggesting that a well-designed
local regularization term can achieve a win-win solution for both optimization and privacy in FL-DP.

2 RELATED WORK

Federated Learning. FL is a classic learning paradigm that protects local privacy. Since McMahan
et al. (2017) proposes the basic framework, it has been widely studied in several communities. As its
foundational study, the local-SGD (Stich, 2019; Lin et al., 2019; Woodworth et al., 2020; Gorbunov
et al., 2021) method fully demonstrates the efficiency of local training. Based on this, FL further
considers the impacts of heterogeneous private datasets and communication bottlenecks (Wang et al.,
2020; Chen et al., 2021; Kairouz et al., 2021). To address these two basic issues, a series of studies
have explored these processes from different perspectives. One approach involves proposing better
optimization algorithms by defining concepts such as client drift (Karimireddy et al., 2020) and
heterogeneity similarity (Mendieta et al., 2022), specifically targeting and resolving the additional
error terms they cause. This mainly includes the natural application and expansion of variance-
reduction optimizers (Jhunjhunwala et al., 2022; Malinovsky et al., 2022; Li et al., 2023), the flexible
implementation of the advanced primal-dual methods (Zhang et al., 2021c; Wang et al., 2022; Sun
et al., 2023b; Mishchenko et al., 2022; Grudzień et al., 2023; Acar et al.; Sun et al., 2023a), and the
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additional deployment of the momentum-based correction (Liu et al., 2020; Khanduri et al., 2021;
Das et al., 2022; Sun et al., 2023c; 2024). Upgraded optimizers allow the aggregation frequency
to largely decrease while maintaining convergence. Another approach primarily focuses on sparse
training and quantization to reduce communication bits (Reisizadeh et al., 2020; Shlezinger et al.,
2020; Dai et al., 2022). Additionally, research based on data domain and feature domain has also
made significant contributions to the FL community (Yao et al., 2019; Zhang et al., 2021a; Xu et al.).

FL-DP. DP is a natural privacy-preserving framework with theoretical foundations (Dwork et al.,
2006b;a; Dwork, 2006). As one of the main algorithms for differential privacy, noise perturbation
has achieved great success in deep learning (Abadi et al., 2016; Zhao et al., 2019; Arachchige et al.,
2019; Wu et al., 2020). Combining this, FL-DP adds noise before transmitting their variables, i.e.
client-level noises (Geyer et al., 2017) and server-level noises (Wei et al., 2020). Since there is no
fundamental difference between the analysis of them, in this paper, we mainly consider client-level
noises. One major research direction involves conducting noise testing on widely developed federated
optimization algorithms (Zhu et al., 2021; Noble et al., 2022; Lowy et al., 2023; Zhang & Tang,
2022; Yang & Wu, 2023), and evaluating the performance of different methods under DP noises
through convergence analysis and privacy analysis. Another research direction involves injecting
noise into real-world systems to address practical challenges, which primarily focuses on personalized
scenarios (Hu et al., 2020; Yang et al., 2021; 2023; Wei et al., 2023), decentralized scenarios (Wittkopp
& Acker, 2020; Chen et al., 2022; Gao et al., 2023; Shi et al., 2023), and adaptive or asymmetric
update scenarios (Girgis et al., 2021; Wu et al., 2022; He et al., 2023). FL-DP has been extensively
tested across various scales of tasks and has successfully validated its robust local privacy protection
capabilities. At the same time, the theoretical analysis of FL-DP has been progressing systematically
and in tandem. Based on various DP relaxations, they provide a comparison of privacy performance
by analyzing concepts such as privacy budgets, and further understand the specific attributes of
privacy algorithms (Rodríguez-Barroso et al., 2020; Wei et al., 2021; Kim et al., 2021; Zheng et al.,
2021; Ling et al., 2024; Jiao et al., 2024). Theoretical advancements in DP have revolutionized how
we could quantify and safeguard privacy, offering unprecedented precision and robustness.

3 PRELIMINARIES

Notations. In the subsequent content, we use italics for scalars and denote the integer set from 1 to a
by [a]. All sequences of variables are represented in subscript, e.g. wi,k,t. For arithmetic operators,
unless specifically stated otherwise, the calculations are performed element-wise. Other symbols
used in this paper will be explicitly defined when they are first introduced.

3.1 GENERAL FL-DP FRAMEWORK

We consider the general finite-sum minimization problem in the classical federated learning:

w⋆ ∈ argmin
w

f(w) ≜
1

m

∑
i∈I

fi(w), (1)

where fi(w) = Eε∼Di
[fi(w, ε)] denotes the local population risk. w ∈ Rd denotes d-dim learnable

parameters. ε ∼ Di denotes that the private dataset on client i is sampled from distribution Di. We
consider the general heterogeneity, i.e. Di can differ from Dj if i ̸= j, leading to fi(w) ̸= fj(w).

In our analysis, we consider the FL-DP framework with the classical client-level Gaussian noises.
The FL training process remains consistent with standard training procedures. The local clients
enhance local privacy by adding isotropic Gaussian noises to the uploaded model parameters, i.e.
ni ∼ N (0, σ2Id). Then the global server aggregates the noisy parameters as the global model wt+1.
Due to the page limitation, details of the algorithmic implementation are deferred to the Appendix A.

Noisy-FedAvg: we consider that each local client performs a fundamental gradient descent as follows:

wi,k+1,t = wi,k,t − ηk,tgi,k,t, (2)

where gi,k,t = ∇fi(wi,k,t, ε)/max{1, ∥∇fi(wi,k,t,ε)∥
V }, and V is a constant coefficient.

Noisy-FedProx: The vanilla local training in FedProx is based on solving the following surrogate:

min
w

fi(w) +
α

2
∥w − wt∥2. (3)
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To generally compare with Noisy-FedAvg, we consider an iterative form of gradient descent as:

wi,k+1,t = wi,k,t − ηk,t [gi,k,t + α(wi,k,t − wt)] . (4)

3.2 DP AND f -DP

Definition 1 We denote heterogeneous datasets on the client i by Si = {εij} and let the union of all
local datasets be C = {Si}. We say two unions are adjacent datasets if they only differ by one data
sample. For instance, there exists the union C′ = {S ′

i}. (C, C′) are adjacent datasets if there exists
the index pair (i⋆, j⋆) such that all other data samples are the same except for εi⋆j⋆ ̸= ε′i⋆j⋆ .

Definition 2 A randomized mechanism M is (ϵ, δ)-DP if for any event E the following satisfies:

P (M(C) ∈ E) ≤ eϵP (M(C′) ∈ E) + δ. (5)

Definition 2 is the widely used (ϵ, δ)-DP, which is a lossy relaxation in the DP analysis since its
probabilistic gaps. To bridge the discrepancy of precise DP definitions, statistic analysis demonstrates
that DP could be naturally deduced by hypothesis-testing problems (Wasserman & Zhou, 2010;
Kairouz et al., 2015). From the perspective of attackers, DP means the difficulty in distinguishing C
and C′ under the mechanism M. They can generally consider the following problem:

Given M, is the underlying union C (H0) or C′ (H1)?

To exactly quantify the difficulty of its answer, Dong et al. (2022) propose that distinguishing these
two hypotheses could be best delineated by the optimal trade-off between the possible type I and type
II errors. Specifically, by considering rejection rules 0 ≤ χ ≤ 1, type I and type II errors can be:

EI = EM(C) [χ] , EII = 1− EM(C′) [χ] , (6)

Here, we abuse M(C) to represent its probability distribution. To measure the fine-grained relation-
ships between these two testing errors, f -DP is introduced.
Definition 3 (Trade-off function) For any two probability distributions P and Q, the trade-off
function is defined as: T (P ;Q)(γ) = inf {1− EQ [χ] | EP [χ] ≤ γ}, where the infimum is taken
over all measurable rejection rules.

T (P ;Q)(γ) is convex, continuous, and non-increasing. For any possible rejection rules, it satisfies
T (P ;Q)(γ) ≤ 1− γ. It functions as the clear boundary between the achievable and unachievable
selections of type I and type II errors, essentially distinguishing the difficulties between these two
hypotheses. This relevant statistical property provides a stricter definition of privacy, which mitigates
the excessive relaxation of privacy based on composition analysis in existing approaches.
Definition 4 (f -DP and GDP) A mechanism M is f -DP if T (M(C),M(C′))(γ) ≥ f(γ) for all
possible adjacent datasets C and C′. When f measures two Gaussian distributions, namely Gaussian-
DP (GDP), denoted as TG(µ)(γ) ≜ T (N (0, 1),N (µ, 1)) (γ) for µ ≥ 0.

According to the definition, the explicit representation of GDP is TG(µ)(γ) = Φ(Φ−1(1− γ)− µ)
where Φ denotes the standard Gaussian CDF. Any single sampling mechanism that introduces Gaus-
sian noises can be considered as an exact GDP, which monotonically decreases when µ increases.

4 CONVERGENT PRIVACY

In this section, we primarily demonstrate how to provide the worst privacy in FL-DP and its convergent
bound. Generally, we assume that local objectives satisfy smoothness with a constant L,
Assumption 1 Each local objective function fi(·) satisfies L-smoothness, i.e.,

∥∇fi(w1)−∇fi(w2)∥ ≤ L∥w1 − w2∥. (7)

4.1 SHIFTED INTERPOLATION

To simplify presentations, we denote global updates at round t on the adjacent datasets C and C′ as:

C : wt+1 = ϕ(wt) + nt, C′ : w′
t+1 = ϕ′(w′

t) + n′
t. (8)

4
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Figure 1: Left: The global privacy amplification path induced by the shifted interpolation sequence.
Right: Estimation of the global sensitivity under local updates via an auxiliary sequence.

ϕ(wt) denotes the accumulation of total K steps from the initialization state wi,0,t = wt at round t.
nt could be considered as the averaged noise, i.e. nt ∼ N (0, σ2Id/m). Traditional methods require
performing privacy amplification T times based on the relationship between w and w′, yielding
non-convergent privacy as T . To avoid loose privacy amplification, we follow Bok et al. (2024) to
adopt the shifted interpolation technique. Specifically, we define the following sequence:

w̃t+1 = λt+1ϕ(wt) + (1− λt+1)ϕ
′(w̃t) + nt, (9)

where t = t0, · · · , T −1. By setting λT = 1, then w̃T = wT , and we add the definition of w̃t0 = w′
t0

as the beginning of interpolations. 0 ≤ λt ≤ 1 are interpolation coefficients to be optimized. As
shown in Figure 1 (left), the interpolation sequence path enables a privacy amplification analysis
over T − t0 times where t0 is an optimizable coefficient. Therefore, we can establish the following
theorem along this new privacy amplification path.
Theorem 1 Under Assumption 1 and corresponding updates in Eq.(8), After T training rounds on
the adjacent datasets C and C′, we can bound the trade-off function between wT and w′

T as:

T (wT ;w
′
T ) = T (w̃T ;w

′
T ) ≥ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1∥ϕ(wt)− ϕ′(w̃t)∥2

 . (10)

In addition to the influence of standard parameters, Theorem 1 highlights the critical relationship
between the privacy lower bound and the weighted sum of global sensitivity terms from t0 to T .
Therefore, we then analyze the global sensitivity term ∥ϕ(wt)− ϕ′(w̃t)∥.

4.2 GLOBAL SENSITIVITY

The sensitivity term ∥ϕ(wt)−ϕ′(w̃t)∥2 means the stability gaps between wt and w̃t after performing
local training on datasets C and C′ respectively. It is influenced by both the model parameters and
the data samples, making the analysis extremely challenging. To achieve a fine-grained analysis, we
propose an auxiliary sequence ϕ′(wt). As shown in Figure 1 (right), the global sensitivity can be split
into data sensitivity and model sensitivity. The data sensitivity measures the estimable errors obtained
after training on different datasets for several steps from the same initialization. This discrepancy is
solely caused by the data. The model sensitivity measures the estimable errors of the updates when
two different initialized states are trained on the same dataset. Clearly, this discrepancy is directly
related to the degree of similarity between the two initializations. Thus, we have:
Theorem 2 Under K local updates by Eq.(2) and Eq.(4), the global sensitivity in Noisy-FedAvg
and Noisy-FedProx methods can be shown as:

∥ϕ(wt)− ϕ′(w̃t)∥ ≤ ρt∥wt − w̃t∥︸ ︷︷ ︸
from model sensitivity

+ γt︸︷︷︸
from data sensitivity

, (11)

where ρt and γt are shown in Table 2.

Remark 2.1 The result in Eq.(11) aligns with the intuition of designing the splitting operators. It can
be observed that the coefficient ρt is consistently greater than 1, which is a typical characteristic of
non-convexity. It also implies that the sensitivity upper bound tends to diverge as t → ∞. However, in
Eq.(10), the parameters 0 ≤ λt ≤ 1 can efficiently scale the sensitivity terms. By carefully selecting
the optimal λt values, it can ultimately achieve a convergent privacy lower bound.
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Table 2: Specific formulation of ρt and γt in Theorem 2.
Learning rate ρt γt

Noisy-FedAvg

µ (1 + µL)
K 2µV

m K

µ
k+1 (1 +K)

cµL 2cV
m ln(K + 1)

µ
t+1

(
1 + µL

t+1

)K
2µV
m

K
t+1

µ
tK+k+1

(
t+2
t+1

)zµL
2zV
m ln

(
t+2
t+1

)
Noisy-FedProx non-increase α

α−L
2V
mα

4.3 MINIMIZATION PROBLEM ON t0 AND ITS RELAXATION

According to Eq.(10) and the sensitivity bound in Eq.(11), we denote the weighted accumulation of
the sensitivity term as H(λt, t0), where λt and t0 are both to-be-optimized parameters. Therefore,
we can provide the tight bound of the privacy by solving the minimization of the following problem:

H⋆ = min
λt,t0

H(λt, t0) ≜
T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
. (12)

If t0 is very small, it means that the introduced stability gap will also be very small. However,
consequently, the sensitivity terms will extremely increase due to the accumulation over T−t0 rounds.
Conversely, although the accumulated error is small, it remains divergent due to the unbounded global
sensitivity term. To avoid this uncertain analysis, we have to make a compromise. Because t0 is an
integer belonging to [0, T − 1], its optimal selection certainly exists when T is given. Therefore, we
consider a relaxed and simple problem instead, i.e. under t0 = 0,

H0 = min
λt

H(λt, 0) =

T−1∑
t=0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
. (13)

Its advantage lies in the fact that when t0 = 0, the sensitivity error is 0, avoiding its divergence.
Compared to the optimal solution H⋆, it satisfies H0 ≥ H⋆. More importantly, the solution of H0

eliminates the influence of t0 , allowing us to obtain an effective solution to the minimization problem
by directly minimizing the λt terms. The lower bound in Theorem 1 will be replaced by:

T (wT ;w
′
T ) ≥ TG

(√
mH⋆

σ

)
≥ TG

(√
mH0

σ

)
. (14)

Although this is a relaxation of the privacy lower bound, our subsequent proof confirms that H0 can
still achieve convergent into a constant form, which means local privacy can still achieve convergence.

4.4 CONVERGENT PRIVACY

In this part, we demonstrate our convergent privacy analysis. By solving Eq.(13) under corresponding
ρt and γt, we provide the worst privacy for the Noisy-FedAvg and Noisy-FedProx methods.
Theorem 3 Let fi(w) be a L-smooth and non-convex local objective and local updates be performed
as shown in Eq.(2). Under perturbations of isotropic noises ni ∼ N

(
0, σ2Id

)
, the worst privacy of

the Noisy-FedAvg method achieves:

(a) under constant learning rates ηk,t = µ:

T (wT ;w
′
T ) ≥ TG

(
2µV K√

mσ

√
(1 + µL)K + 1

(1 + µL)K − 1

(1 + µL)KT − 1

(1 + µL)KT + 1

)
. (15)

(b) under cyclically decaying ηk,t =
µ

k+1 :

T (wT ;w
′
T ) ≥ TG

(
2cV ln(K + 1)√

mσ

√
(1 +K)cµL + 1

(1 +K)cµL − 1

(1 +K)cµLT − 1

(1 +K)cµLT + 1

)
. (16)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(c) under stage-wise decaying ηk,t =
µ

t+1 :

T (wT ;w
′
T ) > TG

(
2µV K√

mσ

√
2− 1

T

)
. (17)

(d) under continuously decaying ηk,t =
µ

tK+k+1 :

T (wT ;w
′
T ) > TG

(
2zV√
mσ

√
2− 1

T

)
. (18)

Remark 3.1 (General Bound.) Theorem 3 provides the worst-case privacy analysis for the
Noisy-FedAvg method. Its privacy is primarily affected by the clipping norm V , the local
interval K, the scale m, and the noise intensity σ. A larger gradient clipping norm V always results
in larger gaps. The local interval K determines the sensitivity of the entire local process, which
is primarily influenced by the learning rate strategy. m in our proof represents the client scale; in
fact, the number of data samples is also proportional to m. An increased m will largely reduce the
sensitivity, yielding improvements in privacy. Infinite noise can provide perfect privacy, while zero
noise offers no privacy. Constant-level noise can still achieve convergent privacy.

Remark 3.2 (Partial Participation.) The above analysis also applies to the partial participation
setting. For example, suppose there are m clients in total, and in each round n clients are selected to
participate. This corresponds to a sampling process, where the expected privacy in each round is
amplified by a factor of m

n . Since the analysis of local iterations is carried out on each individual
node, it is not affected by this change. Therefore, under partial participation, the privacy upper
bound depends linearly on the number of participating nodes, and one can simply replace m with n.
In particular, when m = n = 1, the analysis reduces to the standard DP-SGD.

Theorem 4 Let fi(w) be a L-smooth and non-convex local objective and local updates be performed
as shown in Eq.(4). Let the proximal coefficient α > L and η < 1

α−L , under perturbations of
isotropic noises ni ∼ N

(
0, σ2Id

)
, the worst privacy of the Noisy-FedProx method achieves:

T (wT ;w
′
T ) ≥ TG

 2V√
mασ

√√√√√√2α− L

L

1− 2(
α

α−L

)T
+ 1


 , (19)

Remark 4.1 (Impacts of the Regularization Coefficient λ.) Aside from the influence of standard
coefficients, the worst-case privacy guarantee of Noisy-FedProx method enjoys an additional
desirable property. Specifically, when α > L, It can achieve convergent privacy under a constant
learning rate, independent of the local training length K. This property is consistent with the
conclusions of existing stability analyses. When α <= L, under a decayed learning rate, its worst
privacy bound remains convergent, which is consistent with the results of Noisy-FedAvg.

Theoretical comparisons. Table 3 demonstrates the comparison between existing theoretical results
and ours of the Noisy-FedAvg method. Existing analyses are mostly based on the DP relaxations
of (ϵ, δ)-DP and RDP (Mironov, 2017). Apart from the lossiness in their DP definition, an important
weakness is that privacy amplification on composition is entirely loose. For instance, the general
amplification in (ϵ, δ)-DP indicates, the composition of an (ϵ1, δ1)-DP and an (ϵ2, δ2)-DP leads to
an (ϵ1 + ϵ2, δ1 + δ2)-DP. Similarly, the composition of a (ζ, ϵ1)-RDP and a (ζ, ϵ2)-RDP results in a
(ζ, ϵ1 + ϵ2)-RDP. This simple parameter addition mechanism directly leads to a linear amplification
of the privacy budget. Therefore, in previous works, when achieving specific DP guarantees, it is
often required that the noise intensity σ2 is proportional to the communication rounds T (or TK).
Wei et al. (2020) prove a double-noisy single-step local training on both client and server sides is
possible to achieve the privacy amplification of O(T 2) rate. Shi et al. (2021) further consider the
local intervals K. Zhang et al. (2021b) and Noble et al. (2022) elevate the theoretical results to
O (TK). Subsequent research further indicates that the impact of the interval K can be eliminated to
achieve O (T ) rate via sparsified perturbation (Hu et al., 2023; Cheng et al., 2022), and algorithmic
improvements (Fukami et al., 2024). However, these conclusions all indicate that the condition for
achieving constant privacy guarantees is to continually increase the noise intensity. Bastianello et al.
(2024) provide constant privacy under β-strongly convex objectives.
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Table 3: Comparisons with the existing theoretical results in FL-DP. We losslessly transfer our
results into (ϵ, δ)-DP and RDP results. In (ϵ, δ)-DP, we compare the requirement of noise variance
corresponding to achieving (ϵ, δ)-DP. In (ζ, ϵ)-RDP, we directly compare the privacy budget term
δ(ζ). We mainly focus on the privacy changes on T and K. Ω(·), O(·), and o(·) correspond to the
lower, upper bound, and not tight upper bound of the complexity, respectively.

(ϵ, δ)-DP (ζ, ϵ)-RDP when T,K → ∞

Wei et al. (2020) σ = O
(

V
ϵm

√
T 2 −mL2

)
-

σ → ∞ on
non-convex

Shi et al. (2021) σ = O

(
V
√

log( 1
δ )

ϵ T
√
K

)
-

Zhang et al. (2021b) σ = O

(
V
√

log( 1
δ )

ϵm

√
T +mK

)
-

Noble et al. (2022) σ = Ω

(
V
√

log( 2T
δ )

ϵ
√
m

√
TK

)
-

Cheng et al. (2022) σ = Ω

(
V
√

log( 1
δ )

ϵ

√
T

)
-

Zhang & Tang (2022) - ϵ = Ω
(

ζV 2

σ2 TK
)

Hu et al. (2023) σ = Ω

(
V
√

ϵ+2 log( 1
δ )

ϵ

√
T

)
-

Fukami et al. (2024) σ = Ω

(
V (1+

√
1+ϵ)

√
log(e+ ϵ

δ )
ϵ

√
T

)
-

Bastianello et al. (2024) - ϵ = O
(

ζLV 2

β2σ2

(
1− e−βT

)) convergent on
β-strongly convex

Ours (Noisy-FedAvg) σ = o

(
V
√

(Φ−1(δ))2+4ϵ

ϵ
√
m

√
2− 1

T

)
ϵ = O

(
ζV 2

mσ2

(
2− 1

T

)) convergent on
non-convex

Table 4: Comparison of the accuracy under different experimental settings. We select the scale m
from [50, 100]. Each client holds 600 heterogeneous data samples of MNIST or 500 heterogeneous
data samples of CIFAR-10. For each scale, we test two settings of the local interval K = 50, 100,
and 200, respectively. Throughout the entire process, we fix TK = 30000. “-" means the training
loss diverges. Each result is repeated 5 times to compute its mean and variance.

Noisy
Intensity

m = 50 m = 100

K = 50 K = 100 K = 200 K = 50 K = 100 K = 200

MNIST
LeNet-5

σ = 1.0 - - - - - -
σ = 10−1 95.40±0.18 95.42±0.15 95.21±0.11 97.32±0.14 97.50±0.11 97.42±0.18

σ = 10−2 98.33±0.12 98.02±0.15 97.88±0.12 98.71±0.10 97.97±0.08 97.72±0.12

σ = 10−3 98.41±0.07 98.23±0.03 98.00±0.07 98.94±0.04 98.50±0.06 98.01±0.10

CIFAR-10
ResNet-18

σ = 1.0 - - - - - -
σ = 10−1 53.76±0.25 53.38±0.23 53.49±0.21 62.02±0.28 61.33±0.25 61.11±0.17

σ = 10−2 70.11±0.22 69.08±0.12 66.63±0.16 74.34±0.29 72.87±0.19 70.74±0.15

σ = 10−3 70.98±0.11 69.81±0.20 67.98±0.03 75.38±0.19 74.44±0.12 72.11±0.06

5 EMPIRICAL VALIDATION

Setups. We conduct experiments on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al.,
2009) with the LeNet-5 (LeCun et al., 1998) and ResNet-18 (He et al., 2016) models. We follow
the widely used standard federated learning experimental setups to introduce heterogeneity by the
Dirichlet splitting. The heterogeneity level is set high (Dir-0.1 splitting).
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Figure 2: Sensitivity studies on Noisy-FedAvg and Noisy-FedProx. The general setups are
m = 20, K = 5, and V = 10. In each group, we keep all other parameters fixed to ensure fairness.

Accuracy. Table 4 shows the comparison on Noisy-FedAvg. Our theory precisely addresses this
misconception and rigorously provides its privacy protection performance. It can be observed that
as the number of clients increases, the impact of noise gradually diminishes. We have previously
explained this principle: for the globally averaged model, the more noise involved in the averaging
process, the closer it gets to the noise mean, which is akin to the situation without noise interference.
When we adjust the intensity from σ = 10−3 to 10−1, the accuracy decreases by 5.57% and 1.62%
on m = 20 and 100 respectively on the MNIST and 14.19% and 11% on the CIFAR-10. The local
interval K does not significantly affect noise, and the accuracy drops consistently. K primarily affects
global sensitivity and higher aggregation frequency usually means better performance.

Sensitivity in Noisy-FedAvg. We mainly study the impact from the scale m, local interval K,
and clipping norm V , as shown in Fig. 2. The first figure clearly demonstrates the impact of the scale
m on sensitivity, which corresponds to the worst privacy bound O

(
1√
m

)
. More clients generally

imply stronger global privacy. The second figure shows evident that although increasing K can raise
the sensitivity during the process, it does not alter the upper bound of sensitivity after optimization
converges. This is entirely consistent with our analysis, indicating that the privacy lower bound exists
and is unaffected by T and K. The third figure indicates that the sensitivity will be affected by the V ,
which corresponds to the worst privacy bound O (V ).

Table 5: Performance and sensitivity (T = 600).
Accuracy Sensitivity

Noisy-FedAvg 60.67 31.33
Noisy-FedProx α = 0.01 60.69 30.97
Noisy-FedProx α = 0.1 60.94 18.52
Noisy-FedProx α = 1 56.33 6.34

Sensitivity in Noisy-FedProx.
As shown in Fig. 2 (the fourth figure),
the larger α means smaller global sen-
sitivity. This is consistent with our
analysis, which states that the lower
bound of privacy performance is given
by O

(
1√
α

)
. When we select α = 0,

it degrades to the Noisy-FedAvg
method. In fact, based on the comparison, we can see that when α is sufficiently small, i.e. α = 0.01,
its global sensitivity is almost at the same level as Noisy-FedAvg. In Table 5, we present a
comparison between them. Although the proximal term provides limited improvement in accuracy,
selecting an appropriate α significantly reduces global sensitivity. This implies that the privacy
performance of Noisy-FedProx is far superior to that of Noisy-FedAvg. While achieving
similar performance, the regularization proxy term can significantly reduce the global sensitivity of
the output model, thereby enhancing privacy. This conclusion also demonstrates the superiority on
privacy of a series of FL-DP optimization methods based on training with this regularization.

6 CONCLUSION

To our best knowledge, this paper is the first work to demonstrate convergent privacy for the
general FL-DP paradigms. We comprehensively study and illustrate the fine-grained privacy level for
Noisy-FedAvg and Noisy-FedProx methods based on f -DP analysis, an information-theoretic
lossless DP definition. Moreover, we conduct comprehensive analysis with existing work on other DP
frameworks and highlight the long-term cognitive bias of the privacy lower bound. Our analysis fills
the theoretical gap in the convergent privacy of FL-DP while further providing a reliable theoretical
guarantee for its privacy protection performance. Moreover, We conduct a series of experiments to
verify the boundedness of global sensitivity and its influence on different variables, further validating
that our theoretical analysis aligns more closely with practical scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regularization. In International Conference on
Learning Representations.

Jason Altschuler and Kunal Talwar. Privacy of noisy stochastic gradient descent: More iterations
without more privacy loss. Advances in Neural Information Processing Systems, 35:3788–3800,
2022.

Jason M Altschuler, Jinho Bok, and Kunal Talwar. On the privacy of noisy stochastic gradient descent
for convex optimization. SIAM Journal on Computing, 53(4):969–1001, 2024.

Pathum Chamikara Mahawaga Arachchige, Peter Bertok, Ibrahim Khalil, Dongxi Liu, Seyit Camtepe,
and Mohammed Atiquzzaman. Local differential privacy for deep learning. IEEE Internet of
Things Journal, 7(7):5827–5842, 2019.

Nicola Bastianello, Changxin Liu, and Karl H Johansson. Enhancing privacy in federated learning
through local training. arXiv preprint arXiv:2403.17572, 2024.

Jinho Bok, Weijie Su, and Jason M Altschuler. Shifted interpolation for differential privacy. arXiv
preprint arXiv:2403.00278, 2024.

Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui. Communication-
efficient federated learning. Proceedings of the National Academy of Sciences, 118(17):
e2024789118, 2021.

Shuzhen Chen, Dongxiao Yu, Yifei Zou, Jiguo Yu, and Xiuzhen Cheng. Decentralized wireless
federated learning with differential privacy. IEEE Transactions on Industrial Informatics, 18(9):
6273–6282, 2022.

Anda Cheng, Peisong Wang, Xi Sheryl Zhang, and Jian Cheng. Differentially private federated
learning with local regularization and sparsification. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10122–10131, 2022.

Rishav Chourasia, Jiayuan Ye, and Reza Shokri. Differential privacy dynamics of langevin diffusion
and noisy gradient descent. Advances in Neural Information Processing Systems, 34:14771–14781,
2021.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. Dispfl: Towards communication-
efficient personalized federated learning via decentralized sparse training. In International confer-
ence on machine learning, pp. 4587–4604. PMLR, 2022.

Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S Dhillon, and Ufuk Topcu.
Faster non-convex federated learning via global and local momentum. In Uncertainty in Artificial
Intelligence, pp. 496–506. PMLR, 2022.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 84(1):3–37, 2022.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Advances in Cryptology-EUROCRYPT
2006: 24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25, pp. 486–503. Springer,
2006a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006b.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust trace-
ability from trace amounts. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 650–669. IEEE, 2015.

Takumi Fukami, Tomoya Murata, Kenta Niwa, and Iifan Tyou. Dp-norm: Differential privacy
primal-dual algorithm for decentralized federated learning. IEEE Transactions on Information
Forensics and Security, 2024.

Yuanyuan Gao, Lei Zhang, Lulu Wang, Kim-Kwang Raymond Choo, and Rui Zhang. Privacy-
preserving and reliable decentralized federated learning. IEEE Transactions on Services Computing,
16(4):2879–2891, 2023.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of differential privacy in federated learning. In International Conference on
Artificial Intelligence and Statistics, pp. 2521–2529. PMLR, 2021.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
methods. In International Conference on Artificial Intelligence and Statistics, pp. 3556–3564.
PMLR, 2021.
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Statement of Using LLMs. Large language models (LLMs) were occasionally employed as writing
aids in the preparation of this manuscript. Their use was restricted to detecting minor typographical
errors and refining a small number of lengthy sentences for improved clarity. Beyond these limited
writing-related adjustments, LLMs played no role in the research design, implementation, or analysis.

Statement of Ethical Concerns. This paper is contributed to theoretical exploration and validation
experiments conducted on publicly available datasets and models, and therefore does not involve any
ethical concerns.

A GENERAL FL-DP FRAMEWORK

FL framework usually allows local clients to train several iterations and then aggregates these
optimized local models for global consistency guarantees. Though indirect access to the dataset
significantly mitigates the risk of data leakage, vanilla gradients or parameters communicated to
the server still bring privacy concerns, i.e. indirect leakage. Thus, DP techniques are introduced
by adding isotropic noises on local parameters before communication, to further enhance privacy
protection.

Algorithm 1 General FL-DP Framework
Input: initial parameters w0, round T , interval K
Output: global parameters wT

1: for t = 0, 1, 2, · · · , T − 1 do
2: activate local clients and communications
3: for client i ∈ I in parallel do
4: set the initialization wi,0,t = wt

5: for k = 0, 1, 2, · · · ,K − 1 do
6: wi,k+1,t = L-update(wi,k,t)
7: end for
8: generate a noise ni ∼ N (0, σ2Id)
9: communicate wi,K,t + ni to the server

10: end for
11: wt+1 = G-update({wi,K,t + ni})
12: end for

In our analysis, we consider the FL-DP framework with the classical normal client-level noises, as
shown in Algorithm 1. At the beginning of each communication round t, the server activates local
clients and communicates necessary variables. Then local clients begin the training in parallel. We
describe this process as a total of K > 1 steps of L-update function updates. Depending on algorithm
designs, the specific form of local update functions varies. After training, the local clients enhance
local privacy by adding noise perturbations to the uploaded model parameters. Our analysis primarily
considers the properties of the isotropic Gaussian noise distribution, i.e. ni ∼ N (0, σ2Id). Then the
global server aggregates the noisy parameters to generate the global model wt+1 via the G-update
function. Repeat this for T rounds and return wT as output.

B MORE EXPERIMENTS VALIDATION

In this section, we present additional experimental validations, including larger client scales and
different neural network architectures, to further substantiate our analysis.

Table 7 summarizes additional results under different noise intensities, client scales, and local
iteration lengths. Overall, when the noise level is very large, the model fails to converge, showing
the detrimental effect of excessive perturbation. As the noise weakens, performance improves
steadily, confirming the expected trade-off between privacy and accuracy. Increasing the client
scale consistently leads to higher accuracy, since more participants help average out the injected
noise and stabilize training. In contrast, enlarging the local iteration length tends to slightly degrade
performance, especially under stronger noise, as longer updates accumulate errors. These findings
further support our theoretical claims: moderate noise is essential for balancing utility and privacy,
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Table 7: More experiments (hyperparameters are fixed as the same selection with Table. 4).

Noisy
Intensity

m = 20 m = 500

K = 50 K = 100 K = 200 K = 50 K = 100 K = 200

CIFAR-10
ResNet-18

σ = 1.0 - - - - - -
σ = 10−1 42.69±0.33 41.69±0.28 41.94±0.35 68.42±0.49 66.93±0.41 66.36±0.55

σ = 10−2 58.99±0.18 58.59±0.14 55.62±0.27 77.68±0.13 76.25±0.19 73.84±0.23

σ = 10−3 60.23±0.08 59.35±0.13 56.13±0.18 78.14±0.22 77.32±0.34 76.07±0.17

larger client populations enhance robustness, and overly strong noise inevitably causes learning to
fail. These observations highlight several important insights. First, the results demonstrate that
privacy-preserving noise must be carefully calibrated: too strong a perturbation eliminates useful
signal, while moderate levels allow training to proceed effectively. Second, the consistent benefit
of larger client scales indicates that federated participation not only improves model generalization
but also plays a role in mitigating the variance introduced by noise. Finally, the relatively minor
but noticeable impact of longer local iterations suggests a delicate balance between communication
efficiency and robustness to noise. Together, these findings provide empirical evidence that supports
the theoretical analysis in the main text, and further confirm the scalability and stability of our
proposed approach under diverse settings.

Results on ViT-Small. We conducted tests on ViT-Small, and the results show a similar trend to
ResNet-18, although the sensitivity is higher, the convergence behavior remains largely consistent.
We use the m = 50, K = 5, and V = 10. To ensure satisfactory convergence of the ViT-Small
model, we increased the number of training steps to T = 1000.

Table 6: Results on ViT-Small.
T = 200 T = 400 T = 600 T = 800 T = 1000

ResNet-18 16.94 23.13 24.04 24.11 24.17
ViT-Small 23.52 31.37 35.66 36.32 36.58

Sensitivity of ResNet-18 converges after approximately 600 steps, while that of ViT-Small converges
after 800 steps. Table 6 compares the sensitivity curves of ResNet-18 and ViT-Small under different
training steps. We observe that the sensitivity of ResNet-18 stabilizes after roughly 600 iterations,
while ViT-Small requires about 800 iterations to reach convergence. This indicates that larger
and more expressive models generally take longer to stabilize, as their higher capacity introduces
additional variance in the early stage of training. Nevertheless, although the convergence point is
delayed for ViT-Small, the eventual sensitivity magnitude does not exceed that of ResNet-18, which
confirms that our theoretical stability upper bound remains unchanged regardless of model size.
These results suggest that scaling up the model primarily affects the rate of convergence but not the
asymptotic stability guarantee, thereby validating the robustness of our analysis in both CNN- and
Transformer-based architectures.

C PRELIMINARY PROPERTIES OF f -DP

In this section, we mainly supplement some basic properties of f -DP, all of which are lemmas
proposed by Dong et al. (2022). Specifically, Lemmas 1 and 2 are employed in our theoretical
analysis, whereas Lemmas 3 and 4 facilitate a lossless translation of our results into other standard
DP frameworks for comparative purposes.
Lemma 1 (Post-processing) If a randomized mechanism M is f -DP, any post processing mecha-
nism based on M is still at least f -DP, i.e. T (P ′;Q′) ≥ T (P ;Q) for any post-processing mapping
which leads to P → P ′ and Q → Q′.

Intuitively, post-processing mappings bring some changes in the original distributions. However,
such changes can not allow the updated distributions to be much easier to discern. This lemma also
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widely exists in other DP relaxations and stands as one of the foundational elements in current privacy
analyses. In f -DP, this lemma also clearly demonstrates that the difficulty of hypothesis testing
problems can not be simplified with the addition of known information, which still preserves the
original distinguishability.
Lemma 2 (Composition) We have a series of mechanisms Mi and a joint serial composition mech-
anism M. Let each private mechanism Mi(·, y1, · · · , yi−1) be fi-DP for all y1 ∈ Y1, · · · , yi−1 ∈
Yi−1. Then the n-fold composed mechanism M : X → Y1 × · · · × Yn is f1 ⊗ · · · ⊗ fn-DP,
where ⊗ denotes the joint distribution. For instance, if f = T (P ;Q) and g = T (P ′;Q′), then
f ⊗ g = T (P × P ′;Q×Q′).

The composition in the f -DP framework is closed and tight. This is also one of the advantages of
privacy representation in f -DP. Correspondingly, the advanced composition theorem for (ε, δ)-DP
can not admit the optimal parameters to exactly capture the privacy in the composition process (Dwork
et al., 2015). However, the trade-off function has an exact probabilistic interpretation and can precisely
measure the composition.
Lemma 3 (GDP → (ϵ, δ)-DP) A µ-GDP mechanism with a trade-off function TG(µ) is also
(ϵ, δ(ϵ))-DP for all ϵ ≥ 0 where

δ(ϵ) = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
. (20)

Lemma 4 (GDP → RDP) A µ-GDP mechanism with a trade-off function TG(µ) is also
(
ζ, 1

2µ
2ζ
)
-

RDP for any ζ > 1.

We state the transition and conversion calculations from f -DP (we specifically consider the GDP)
to other DP relaxations, e.g. for the (ε, δ)-DP and RDP. These lemmas can effectively compare
our theoretical results with existing ones. Our comparison primarily aims to demonstrate that the
convergent privacy obtained in our analysis would directly derive bounded privacy budgets in other
DP relaxations. Moreover, we will illustrate how the convergent f -DP further addresses conclusions
that current FL-DP work cannot cover theoretically, which provides solid support for understanding
its reliability of privacy protection.

D PROOF OF MAIN THEOREMS

D.1 PROOFS OF THEOREM 1

We consider the general updates on the adjacent datasets C and C′ on round t as follows:

wt+1 = ϕ(wt) +
1

m

∑
i∈I

ni,t,

w′
t+1 = ϕ′(w′

t) +
1

m

∑
i∈I

n′
i,t,

(21)

where w0 is the initial state. ni,t and n′
i,t are two noises generated from the normal distribution

N (0, σ2Id). To construct the interpolated sequence, we introduce the concentration coefficients λt to
provide a convex combination of the updates above, which is,

w̃t+1 = λt+1ϕ(wt) + (1− λt+1)ϕ
′(w̃t) +

1

m

∑
i∈I

ni,t, (22)

for t = t0, t0+1, · · · , T−1. Furthermore, we set λT = 1 to let w̃T = ϕ(wT−1)+
1
m

∑
i∈I ni,T−1 =

wT , and we add the definition of w̃t0 = w′
t0 as the interpolation beginning. t0 determines the length

of the interpolation sequence.

Lemma 5 According to the expansion of trade-off functions, for the general updates in Eq.(22), we
have the following recurrence relation:

T
(
w̃t+1;w

′
t+1

)
≥ T (w̃t;w

′
t)⊗ TG

(√
m

σ
λt+1∥ϕ(wt)− ϕ′(w̃t)∥

)
. (23)
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Proof. Based on the post-processing and compositions, let z and z′ be the corresponding noises
above, for any constant λ ∈ [0, 1], we have (subscripts are temporarily omitted):

T (λϕ(w) + (1− λ)ϕ′(w̃) + z;ϕ′(w′) + z′)

= T (ϕ′(w̃) + λ (ϕ(w)− ϕ′(w̃)) + z;ϕ′(w′) + z′)

≥ T ((ϕ′(w̃), λ (ϕ(w)− ϕ′(w̃)) + z) ; (ϕ′(w′), z′))

≥ T (ϕ′(w̃);ϕ′(w′))⊗ T (λ (ϕ(w)− ϕ′(w̃)) + z; z′)

≥ T (w̃;w′)⊗ T (λ (ϕ(w)− ϕ′(w̃)) + z; z′) ,

where z and z′ are two Gaussian noises that can be considered to be sampled from N (0, σ2

m Id) (av-
erage of m isotropic Gaussian noises). Therefore, the distinguishability between the first term and
the second term does not exceed the mean shift of the distribution, which is ∥

√
m
σ λ (ϕ(w)− ϕ′(w̃)) ∥.

By taking w = wt and λ = λt+1, the proofs are completed.

According to the above lemma, by expanding it from t = t0 to T − 1 and the factor T (w̃t0 ;w
′
t0) =

TG(0), we can prove the formulation in Eq. (10).

D.2 PROOFS OF THEOREM 2

Lemma 5 provides the general recursive relationship on the global states along the communication
round t. To obtain the lower bound of the trade-off function, we only need to solve for the gaps
∥ϕ(w)− ϕ′(w̃)∥. It is worth noting that the local update process here involves dual replacement of
both the dataset (ϕ and ϕ′) and the initial state (w and w̃). Therefore, we measure their maximum
discrepancy by assessing their respective distances to the intermediate variable constructed by the
cross-items:

∥ϕ(w)− ϕ′(w̃)∥ ≤ ∥ϕ(w)− ϕ′(w)∥︸ ︷︷ ︸
Data Sensitivity

+ ∥ϕ′(w)− ϕ′(w̃)∥︸ ︷︷ ︸
Model Sensitivity

. (24)

The first term measures the disparity in training on different datasets and the second term measures
the gap in training from different initial models. One of our contributions is to provide their general
gaps. In our paper, we expand the update function ϕ(x) by considering the multiple local iterations
and federated cross-device settings. By simply setting the local interval to 1 and the number of clients
to 1, our results can easily reproduce the original conclusion in (Bok et al., 2024). Furthermore, our
comprehensive considerations have led to a new understanding of the impact of local updates on
privacy.

ϕ(wt) and ϕ′(wt) begin from wt. ϕ′(wt) and ϕ′(w̃t) adopt the data samples ε′ ∈ C′. We naturally use
wi,k,t and w̃i,k,t to represent individual states in ϕ(wt) and ϕ′(w̃t), respectively. To avoid ambiguity,
we define the states in ϕ′(wt) as ŵi,k,t. When i ̸= i⋆, since ε = ε′, then wi,k,t only differs from
ŵi,k,t on i⋆-th client.

ON THE NOISY-FEDAVG METHOD:

Lemma 6 (Data Sensitivity.) The data sensitivity caused by gradient descent steps can be bounded
as:

∥ϕ(wt)− ϕ′(wt)∥ ≤ 2V

m

K−1∑
k=0

ηk,t, (25)

where ηk,t is the learning rate at the k-th iteration of t-th communication round.
Proof. By directly expanding the update functions ϕ and ϕ′ at wt, we have:

∥ϕ(wt)− ϕ′(wt)∥

= ∥wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(wi,k,t, ε)− wt +
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(ŵi,k,t, ε
′)∥

≤ 1

m

∑
i∈I

K−1∑
k=0

ηk,t∥∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε
′)∥
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=
1

m

K−1∑
k=0

ηk,t∥∇fi⋆(wi⋆,k,t, ε)−∇fi⋆(ŵi⋆,k,t, ε
′)∥ ≤ 2V

m

K−1∑
k=0

ηk,t.

The last equation adopts ε = ε′ when i ̸= i⋆. This completes the proofs.

Lemma 7 (Model Sensitivity.) The model sensitivity caused by gradient descent steps can be
bounded as:

∥ϕ′(wt)− ϕ′(w̃t)∥ ≤ (1 + η(K, t)L) ∥wt − w̃t∥, (26)

where η(K, t) = η0,t +
∑K−1

k=1 ηk,t
∏k−1

j=0 (1 + ηj,tL) is a constant related the selection of learning
rates.

Proof. We first learn an individual case. On the t-th round, we assume the initial states of two
sequences are wt and w̃t. Each is performed by the update function ϕ′ for local K steps. For each
step, we have:

∥ŵi,k+1,t − w̃i,k+1,t∥
≤ ∥ŵi,k,t − w̃i,k,t∥+ ηk,t∥∇fi(ŵi,k,t, ε

′)−∇fi(w̃i,k,t, ε
′)∥

≤ (1 + ηk,tL)∥ŵi,k,t − w̃i,k,t∥.

This implies each gap when k ≥ 1 can be upper bounded by:

∥ŵi,k,t − w̃i,k,t∥ ≤ (1 + ηk−1,tL)∥ŵi,k−1,t − w̃i,k−1,t∥ ≤ · · · ≤
k−1∏
j=0

(1 + ηj,tL) ∥wt − w̃t∥.

Then we consider the recursive formulation of the stability gaps along the iterations k. We can
directly apply Eq.(22) to obtain the relationship for the differences updated from different initial
states on the same dataset. By directly expanding the update function ϕ′ at wt and w̃t, we have:

∥ϕ′(wt)− ϕ′(w̃t)∥

= ∥wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(ŵi,k,t, ε
′)− w̃t +

1

m

∑
i∈I

K−1∑
k=0

ηk,t∇fi(w̃i,k,t, ε
′)∥

≤ ∥wt − w̃t∥+ ∥ 1

m

∑
i∈I

K−1∑
k=0

ηk,t (∇fi(ŵi,k,t, ε
′)−∇fi(w̃i,k,t, ε

′)) ∥

≤ ∥wt − w̃t∥+
L

m

∑
i∈I

K−1∑
k=0

ηk,t∥ŵi,k,t − w̃i,k,t∥

≤

1 +
η0,t +

K−1∑
k=1

ηk,t

k−1∏
j=0

(1 + ηj,tL)

L

 ∥wt − w̃t∥.

This completes the proofs.

We have successfully quantified the specific form of the problem as above. By solving for a series
of reasonable values of the auxiliary variable λ to minimize the above problem, we obtain the tight
lower bound on privacy. Before that, let’s discuss the learning rate to simplify this expression. Both
η(K, t) and

∑
ηk,t terms are highly related to the selections of learning rates. Typically, this choice

is determined by the optimization process. Whether it’s generalization or privacy analysis, both are
based on the assumption that the optimization can converge properly. Therefore, we selected several
different learning rate designs based on various combination methods to complete the subsequent
analysis. Due to the unique two-stage learning perspective of federated learning, current methods
for designing the learning rate generally choose between a constant rate or a rate that decreases
with local rounds or iterations. Therefore, we discuss them separately including constant learning
rate, cyclically decaying learning rate, stage-wise decaying learning rate, and continuously decaying
learning rate. We provide a simple comparison in Figure 3.
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Figure 3: Four general setups of learning rate adopted in the federated learning community. From left
to right, they are: Constant learning rates, Cyclically decaying learning rates, Stage-wise decaying
learning rate, and Continuously decaying learning rate.

Constant learning rates This is currently the simplest case. We consider the learning rate to
always be a constant, i.e. ηk,t = µ. Then we have that the accumulation term

∑K−1
k=0 ηk,t = µK. For

the η(K, t) term, we have:

η(K, t) = η0,t +

K−1∑
k=1

ηk,t

k−1∏
j=0

(1 + ηj,tL) = µ

K−1∑
k=0

(1 + µL)
k
=

1

L

(
(1 + µL)K − 1

)
.

When K is selected, both of them can be considered as a constant related to K. The choice of µ also
requires careful consideration. Although it is a constant, its selection is typically related to m, K,
and T based on the optimization process. We will discuss this point in the final theorems.

Cyclically decaying learning rates Some works treat this learning process as an aggregation
process of several local training processes, i.e. each local client learns from a better initial state
(knowledge learned from other clients). And since the client pool is very large, most clients will exit
after obtaining the model they desire. This setting is often used in “cross-device" scenarios (Kairouz
et al., 2021). Thus, local learning can be considered as an independent learning process. In this
case, the learning rate is designed to decay in an inversely proportional function to achieve optimal
local accuracy, i.e. ηk,t = µ

k+1 , and is restored to a larger initial value at the start of each round, i.e.
η0,t = µ. Then we have the accumulation term:

ln(K + 1) =

∫ K

k=0

1

k + 1
dk ≤

K−1∑
k=0

1

k + 1
≤ 1 +

∫ K−1

0

1

k + 1
dk = 1 + ln(K). (27)

When K is large, this term is dominated by O(ln(K)). Based on the fact that K is very large in
federated learning, we further approximate this term to c ln(K + 1) where c is a scaled constant. It is
easy to check that there must exist 1 ≤ c < 1.543 for any K ≥ 1. Thus we have the accumulation
term as

∑K−1
k=0 ηk,t = cµ ln(K + 1). For the η(K, t) term, we have its upper bound:

η(K, t) = µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

(
1 +

µL

j + 1

)
≤ µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

exp

(
µL

j + 1

)

= µ+

K−1∑
k=1

µ

k + 1

exp
k−1∑

j=0

1

j + 1

µL

=

K−1∑
k=0

µ

k + 1
[exp (c ln(k + 1))]

µL

= µ

K−1∑
k=0

(k + 1)
cµL−1 ≤ µ

∫ K

k=0

(k + 1)
cµL−1

dk =
1

cL

(
(1 +K)cµL − 1

)
.

The first inequality adopts 1 + x ≤ ex and the last adopts the concavity. Actually, we still can learn
its general lower bound by a scaling constant. By adopting a scaling b, we can have 1 + x ≥ ebx,
which is equal to b ≤ ln(x+1)

x . It is also easy to check 0.693 < b < 1 when 0 < x ≤ 1. Thus we
have:

η(K, t) = µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

(
1 +

µL

j + 1

)
≥ µ+

K−1∑
k=1

µ

k + 1

k−1∏
j=0

exp

(
µbL

j + 1

)
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= µ+

K−1∑
k=1

µ

k + 1

exp
k−1∑

j=0

1

j + 1

µbL

=

K−1∑
k=0

µ

k + 1
[exp (c ln(k + 1))]

µbL

= µ

K−1∑
k=0

(k + 1)
cµbL−1 ≥ µ

∫ K−1

k=−1

(k + 1)
cµbL−1

dk =
1

cbL
KcµbL.

The last inequality also adopts concavity. Through this simple scaling, we learn the general bounds
for the learning rate function η(K, t) as:

1

cbL
KcµbL ≤ η(K, t) ≤ 1

cL

(
(1 +K)cµL − 1

)
, (28)

where 1 ≤ c < 1.543, 0.693 < b < 1 and µ ≤ 1
L (this condition is almost universally satisfied in

current optimization theories). Although we cannot precisely find the tight bound of this function
η(K, t), we can still treat it as a form based on constants to complete the subsequent analysis, i.e. it
could be approximated as a larger upper bound 1

L

(
(1 +K)cµL − 1

)
. More importantly, we have

determined that this learning rate function still diverges as K increases.

Stage-wise decaying learning rates This is one of the most common selections of learning rate
in the current federated community, which is commonly applied in “cross-silo" scenarios (Kairouz
et al., 2021). When the client pool is not very large, clients who participate in the training often aim
to establish long-term cooperation to continuously improve their models. Therefore, each client will
contribute to the entire training process over a long period. From a learning perspective, local training
is more like exploring the path to a local optimum rather than actually achieving the local optimum.
Therefore, each local training will adopt a constant learning rate and perform several update steps, i.e.
ηk,t = ηt. At each communication round, the learning rate decays once and continues to the next
stage, i.e. ηt = µ

t+1 . Based on the analysis of the constant learning rate, the accumulation term is∑K−1
k=0 ηk,t =

µK
t+1 . For the η(K, t) term, we have:

η(K, t) =
µ

t+ 1
+

K−1∑
k=1

µ

t+ 1

k−1∏
j=0

(
1 +

µL

t+ 1

)

=
µL

t+ 1

K−1∑
k=0

(
1 +

µL

t+ 1

)k

=
1

L

((
1 +

µL

t+ 1

)K

− 1

)
.

It can be seen that the analysis of this function is more challenging because the learning rate function
η(K, t) is decided by t, which introduces complexity to the subsequent analysis. We will explain this
in detail in the subsequent discussion.

Continuously decaying learning rates This is a common selection of learning rate in the federated
community, involving dual learning rate decay along both local training and global training. This
can almost be applied to all methods to adapt to the final training, including both the cross-silo and
cross-device cases. At the same time, its analysis is also more challenging because the learning rate
is coupled with communication rounds and local iterations, yielding new upper and lower bounds.
We consider the general case ηk,t =

µ
tK+k+1 . Therefore, the accumulation term can be bounded as:

K−1∑
k=0

1

tK + k + 1
>

∫ K

k=0

1

tK + k + 1
dk = ln

(
tK +K + 1

tK + 1

)
,

K−1∑
k=0

1

tK + k + 1
<

1

tK + 1
+

∫ K−1

k=0

1

tK + k + 1
dk =

1

tK + 1
+ ln

(
tK +K

tK + 1

)
.

Similarly, when K is large enough, this term is dominated by O
(
ln
(
t+1
t

))
. For simplicity in the

subsequent proof, we follow the process above and let it be z ln
(

t+2
t+1

)
to include the term at t = 0.

It is also easy to check that z > 1 is a constant for any K > 1. And z is also a constant. It means
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we can always select the lower bound as its representation. Therefore, for the learning rate function
η(K, t), we have:

η(K, t) =
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

k−1∏
j=0

(
1 +

µL

tK + j + 1

)

≤ µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

exp
k−1∑

j=0

1

tK + j + 1

µL

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

[
exp

(
z ln

(
tK + k + 1

tK + 1

))]µL

=
µ

(tK + 1)
zµL

K−1∑
k=0

(tK + k + 1)
zµL−1

≤ µ

(tK + 1)
zµL

∫ K

k=0

(tK + k + 1)
zµL−1

dk =
1

zL

((
tK +K + 1

tK + 1

)zµL

− 1

)
.

Similarly, we introduce the coefficient b to provide the lower bound as:
η(K, t)

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

k−1∏
j=0

(
1 +

µL

tK + j + 1

)

≥ µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

exp
k−1∑

j=0

1

tK + j + 1

µbL

=
µ

tK + 1
+

K−1∑
k=1

µ

tK + k + 1

[
exp

(
z ln

(
tK + k + 1

tK + 1

))]µbL

=
µ

(tK + 1)
zµbL

K−1∑
k=0

(tK + k + 1)
zµbL−1

≥ µ

(tK + 1)
zµbL

∫ K−1

k=−1

(tK + k + 1)
zµbL−1

dk =
1

zbL

((
tK +K

tK + 1

)zµbL

−
(

tK

tK + 1

)zµbL
)

>
1

zbL

((
tK +K

tK + 1

)zµbL

− 1

)
.

Through the sample scaling, we learn the general bounds for the learning rate function η(K, t) as:

1

zbL

((
tK +K

tK + 1

)zµbL

− 1

)
< η(K, t) ≤ 1

zL

((
tK +K + 1

tK + 1

)zµL

− 1

)
, (29)

where 1 < z, 0.693 < b < 1 and µ ≤ 1
L . Obviously, when K is large enough, the learning rate term

is still dominated by O
((

t+2
t+1

)zµL
− 1

)
. Therefore, to learn the general cases, we can consider the

specific form of the learning rate function based on the constant scaling as 1
L

((
t+2
t+1

)zµL
− 1

)
. As

t increases, this function will approach zero.

ON THE NOISY-FEDPROX METHOD:

In this part, we will address the differential privacy analysis of a noisy version of another classical
federated learning optimization method, i.e. the Noisy-FedProx method. The vanilla FedProx
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method is an optimization algorithm designed for cross-silo federated learning, particularly to address
the challenges caused by data heterogeneity across different clients. Unlike traditional federated
learning algorithms like FedAvg, which can struggle with variations in data distribution, it introduces
a proximal term to the objective function. This helps to stabilize the training process and improve
convergence. Specifically, it adopts the consistency as the penalized term to correct the local objective:

min
w

fi(w) +
α

2
∥w − wt∥2. (30)

The proximal term is a very common regularization term in federated learning and has been widely
used in both federated learning and personalized federated learning approaches. It introduces an
additional penalty to the local objective, ensuring that local updates are optimized towards the
local optimal solution while being subject to an extra global constraint, i.e. each local update does
not stray too far from the initialization point. In fact, there are many optimization methods that
apply such regularization terms. For example, various federated primal-dual methods based on
the ADMM approach construct local Lagrangian functions, and in personalized federated learning,
local privatization regularization terms are introduced to differentiate from the vanilla consistency
objective. The analysis of the above methods is fundamentally based on a correct understanding of
the advantages and significance of the proximal term in stability error. In this paper, to achieve a
cross-comparison while maintaining generality, we consider the optimization process of local training
as total K-step updates:

ϕ(wt) = wt −
1

m

∑
i∈I

K−1∑
k=0

ηk,t (∇fi(wi,k,t, ε) + α (wi,k,t − wt)) . (31)

Here, we also employ the proofs mentioned in the previous section, and our study of the difference
term is based on both data sensitivity and model sensitivity perspectives. We provide these two main
lemmas as follows.

Lemma 8 (Data Sensitivity.) The local data sensitivity of the Noisy-FedProx method at t-th
communication round can be upper bounded as:

∥ϕ(wt)− ϕ′(wt)∥ ≤ 2V

mα
. (32)

Proof. We first consider a single step in Eq.(31) as:

wi,k+1,t = wi,k,t − ηk,t (∇fi(wi,k,t, ε) + α(wi,k,t − wt)) .

The proximal term brings more opportunities to enhance the analysis of local updates. We can split
the proximal term and subtract the wt term on both sides, resulting in a recursive formula for the
cumulative update term:

wi,k+1,t − wt = (1− ηk,tα) (wi,k,t − wt)− ηk,t∇fi(wi,k,t, ε).

The above equation indicates that a reduction factor 1 − ηk,tα < 1 can limit the scale of local
updates. This is a very good property, allowing us to shift the analysis of the data sensitivity to their
relationship of local updates. According to the above, we can upper bound the gaps between {wi,k,t}
and {ŵi,k,t} sequences as:

∥(wi,k+1,t − wt)− (ŵi,k+1,t − wt)∥
= ∥ (1− ηk,tα) [(wi,k,t − wt)− (ŵi,k,t − wt)]− ηk,t(∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε

′))∥
≤ (1− ηk,tα) ∥ (wi,k,t − wt)− (ŵi,k,t − wt) ∥+ ηk,t∥∇fi(wi,k,t, ε)−∇fi(ŵi,k,t, ε

′)∥
≤ (1− ηk,tα) ∥ (wi,k,t − wt)− (ŵi,k,t − wt) ∥+ 2ηk,tV.

Different from proofs in Lemma 6, the term 1− ηk,tα can further decrease the stability gap during
accumulation. By summing form k = 0 to K − 1, we can obtain:

∥(wi,K,t − wt)− (ŵi,K,t − wt)∥

≤
K−1∏
k=0

(1− ηk,tα) ∥(wi,0,t − wt)− (ŵi,0,t − wt)∥+
K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 2ηk,tV

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

= 2V

K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 ηk,t.

Here, we provide a simple proof using a constant learning rate to demonstrate that its upper bound
can be independent of K. By considering ηk,t = µ, we have:

K−1∑
k=0

 K−1∏
j=k+1

(1− ηj,tα)

 ηk,t =

K−1∑
k=0

 K−1∏
j=k+1

(1− µα)

µ =
1− (1− µα)K

α
<

1

α
.

In fact, when the learning rate decays with k, it can still be easily proven to have a constant upper
bound. Therefore, in the subsequent proofs, we directly use the form of this constant upper bound as
the result of data sensitivity in the Noisy-FedProx method. Based on the definition of ϕ(w), we
have:

∥ϕ(wt)− ϕ′(wt)∥ = ∥ (ϕ(wt)− wt)− (ϕ′(wt)− wt) ∥ = ∥ 1

m

∑
i∈I

[(wi,K,t − wt)− (ŵi,K,t − wt)] ∥

=
1

m
∥ (wi⋆,K,t − wt)− (ŵi⋆,K,t − wt) ∥ <

2V

mα
.

This completes the proofs.

Lemma 9 (Model Sensitivity.) The local model sensitivity of the Noisy-FedProx method at t-th
communication round can be upper bounded as:

∥ϕ′(wt)− ϕ′(w̃t)∥ ≤ α

αL
∥wt − w̃t∥. (33)

Proof. We also adopt the splitting above. Since both sequences are trained on the same dataset, the
gradient difference can be measured by the parameter difference. Therefore, we directly consider the
form of the parameter difference:

∥ŵi,k+1,t − w̃i,k+1,t∥
= ∥(1− ηk,tα)(ŵi,k,t − w̃i,k,t)− ηk,t(∇fi(ŵi,k,t, ε

′)−∇fi(w̃i,k,t, ε
′))− ηk,tα(wt − w̃t)∥

≤ (1− ηk,tα)∥ŵi,k,t − w̃i,k,t∥+ ηk,tL∥ŵi,k,t − w̃i,k,t∥+ ηk,tα∥wt − w̃t∥
= (1− ηk,tαL)∥ŵi,k,t − w̃i,k,t∥+ ηk,tα∥wt − w̃t∥,

where αL = α − L is a constant. Here, we consider α > L. When α ≤ L, its upper bound can
not be guaranteed to be reduced. When α > L, it can restore the property of decayed stability. By
summing from k = 0 to K − 1, we can obtain:

∥ŵi,K,t − w̃i,K,t∥

≤
K−1∏
k=0

(1− ηk,tαL)∥ŵi,0,t − w̃i,0,t∥+
K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα∥wt − w̃t∥

=

K−1∏
k=0

(1− ηk,tαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα

 ∥wt − w̃t∥.

Similarly, we learn the upper bound from a simple constant learning rate. By select ηk,t = µ, we
have:

K−1∏
k=0

(1− ηk,tαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− ηk,tαL)

 ηk,tα

=

K−1∏
k=0

(1− µαL) +

K−1∑
k=0

 K−1∏
j=k+1

(1− µαL)

µα
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= (1− µαL)
K + α

1− (1− µαL)
K

αL

=
α

αL
− L(1− µαL)

K

αL
<

α

αL
.

The same, it can also be checked that the general upper bound of the stability gaps is a constant
even if the learning rate is selected to be decayed along iteration k. Therefore, in the subsequent
proofs, we directly use the form of this constant upper bound as the result of model sensitivity in the
Noisy-FedProx method. Based on the definition of ϕ(w), we have:

∥ϕ′(wt)− ϕ′(w̃t)∥ = ∥ 1

m

∑
i∈I

(ŵi,K,t − w̃i,K,t) ∥ ≤ 1

m

∑
i∈I

∥ŵi,K,t − w̃i,K,t∥ ≤ α

αL
∥wt − w̃t∥.

This completes the proofs.

D.3 SOLUTION OF EQ. (13)

According to the recurrence relation in Lemma 5, we can confine the privacy amplification process to
a finite number of steps with the aid of an interpolation sequence, yielding to the convergent bound.
Therefore, we have:

T (wT ;w
′
T ) = T (w̃T ;w

′
T )

≥ T
(
w̃T−1;w

′
T−1

)
⊗ TG

(√
m

σ
λT ∥ϕ(wT−1)− ϕ′(w̃T−1)∥

)
≥ T

(
w̃t0 ;w

′
t0

)
⊗ · · · ⊗ TG

(√
m

σ
λT ∥ϕ(wT−1)− ϕ′(w̃T−1)∥

)

= T
(
w′

t0 ;w
′
t0

)
⊗ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1∥ϕ(wt)− ϕ′(w̃t)∥2


≥ TG

√
m

σ

√√√√T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2

 .

Although the above form appears promising, an inappropriate selection of the key parameters will
still cause divergence due to the recurrence term coefficient 1 + η(K, t)L > 1, leading it to approach
infinity as t increases. For instance, small t0 will result in a significantly increased λ and the bound
will be closed to the stability gap ∥wT − w′

T ∥, and large t0 will result in a long accumulation of the
stability gaps, which is also unsatisfied. At the same time, it is also crucial to choose appropriate
λ to ensure that the stability accumulation can be reasonably diluted. Therefore, we also need
to thoroughly investigate how significant the stability gap caused by the interpolation points is.
According to Eq.(21) and (22), we have:

∥wt+1 − w̃t+1∥ ≤ (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

The above relationship further constrains the stability of the interpolation sequence. It is worth noting
that the upper bound of the final step is independent of the choice of λ. At the same time, since all
terms are positive, given a group of specific λ, taking the upper bound at each possible t will result in
the maximum error accumulation. This is also the worst-case privacy we have constructed. Therefore,
solving the worst privacy could be considered as solving the following problem:

min
{λt+1},t0

max
{∥wt−w̃t∥}

T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2
,︸ ︷︷ ︸

worst privacy︸ ︷︷ ︸
tight privacy lower bound

s.t. ∥wt+1 − w̃t+1∥ ≤ (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

(34)

Based on the above analysis, this problem can be directly transformed into a privacy minimization
problem when the interpolation sequence reaches the maximum stability error. Therefore, we just
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need to solve the following problem:

min
{λt+1},t0

T−1∑
t=t0

λ2
t+1 (γt∥wt − w̃t∥+ γt)

2
,

s.t. ∥wt+1 − w̃t+1∥ = (1− λt+1) (ρt∥wt − w̃t∥+ γt) .

(35)

It is important to note that this upper bound condition is usually loose because the probability that the
interpolation terms simultaneously reach their maximum deviation is very low. This is merely the
theoretical worst-case privacy scenario.

Then we solve the minimization problem. By considering the worst stability conditions, we can
provide the relationship between the gaps and coefficients λt+1 as:

∥wt+1 − w̃t+1∥ = ρt∥wt − w̃t∥+ γt − λt+1 (ρt∥wt − w̃t∥+ γt) .

Expanding it from t = t0 to T , we have:

0 = ∥wT − w̃T ∥ =

(
T−1∏
t=t0

ρt

)
∥wt0 − w̃t0∥+

T−1∑
t=t0

 T−1∏
j=t+1

ρj

 [γt − λt+1 (ρt∥wt − w̃t∥+ γt)] .

Due to the term λt+1 (ρt∥wt − w̃t∥+ γt) being part of the analytical form of the minimization
objective, we preserve the integrity of this algebraic form and only split it from the perspectives of
coefficients λt, ρt and γt. According to the definition w̃t0 = w′

t0 , then we have:

T−1∑
t=t0

 T−1∏
j=t+1

ρj

λt+1 (ρt∥wt − w̃t∥+ γt) =

(
T−1∏
t=t0

ρt

)
∥wt0 −w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt. (36)

The above equation presents the summation of the term λt+1 (ρt∥wt − w̃t∥+ γt) accompanied by
a scaling coefficient

(∏T−1
j=t+1 ρj

)
> 1. It naturally transforms the summation form into an initial

stability gap and a constant term achieved through a combination of learning rates. To solve it, we
can directly adopt the Cauchy-Schwarz inequality to separate the terms and construct a constant term
based on the form of the scaling coefficient to find its achievable lower bound:

T−1∑
t=t0

λ2
t+1 (ρt∥wt − w̃t∥+ γt)

2

≥

T−1∑
t=t0

 T−1∏
j=t+1

ρj

λt+1 (ρt∥wt − w̃t∥+ γt)

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1

=

(T−1∏
t=t0

ρt

)
∥wt0 − w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1

.

Although the original problem requires solving the λt+1, here we can know one possible minimum
form of the problem no longer includes this parameter. In fact, this parameter has been transformed
into the optimality condition of the Cauchy-Schwarz inequality.

Therefore, we only need to optimize it w.r.t the parameter t0. Unfortunately, this part highly
correlates with the stability gaps ∥wt0 −w′

t0∥. Current research progress indicates that in non-convex
optimization, this term diverges as the number of training rounds t increases. This makes it difficult
for us to accurately quantify its specific impact on the privacy bound. If t0 is very small, it means
that the introduced stability gap will also be very small. However, consequently, the coefficients of
the ρt and γt terms will increase due to the accumulation over T − t0 rounds. To detail this, we have
to make certain compromises. Because t0 is an integer belonging to [0, T − 1], we denote its optimal
selection by t⋆ (it certainly exists when T is given). Therefore, the privacy lower bound under other
choices of t0 will certainly be more relaxed, i.e. Privacyt0 ≤ Privacyt⋆ (privacy is weak at other
selection of t0). This allows us to look for other asymptotic solutions instead of finding the optimal
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solution. Although we cannot ultimately achieve the form of the optimal solution, we can still provide
a stable privacy lower bound. To eliminate the impact of stability error, we directly choose t0 = 0,
yielding the following bound:

H⋆ ≤ H0 =

(T−1∏
t=t0

ρt

)
∥wt0 − w′

t0∥+
T−1∑
t=t0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=t0

 T−1∏
j=t+1

ρj

2


−1 ∣∣∣
t0=0

=

T−1∑
t=0

 T−1∏
j=t+1

ρj

 γt

2
T−1∑

t=0

 T−1∏
j=t+1

ρj

2


−1

.

By substituting the values of ρt and γt under different cases, then we can prove the main theorems in
this paper.

27


	Introduction
	Related Work
	Preliminaries
	General FL-DP framework
	DP and f-DP

	Convergent Privacy
	Shifted Interpolation
	Global Sensitivity
	Minimization Problem on t0 and Its Relaxation
	Convergent Privacy

	Empirical Validation
	Conclusion
	General FL-DP Framework
	More Experiments Validation
	Preliminary Properties of f-DP
	Proof of Main Theorems
	Proofs of Theorem 1
	Proofs of Theorem 2
	Solution of Eq. (13)


