
Under review as a conference paper at ICLR 2024

EXPLAINING GROKKING THROUGH CIRCUIT EFFI-
CIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a theory of grokking in neural networks which explains grokking in
terms of the relative efficiency of competing emergent sub-networks (circuits).
Grokking is an important generalisation phenomenon where continuing to train a
network which already achieves nearly perfect training loss can still dramatically
improve the test loss. Our theory explains why generalising circuits gradually out-
compete memorising circuits. This is because memorising circuits are inefficient
for compressing large datasets—the per-example cost is high—while generalising
circuits have a larger fixed cost but better per-example efficiency. Strikingly, our
theory is precise enough to produce novel predictions of previously unobserved
phenomena: ungrokking and semi-grokking.

1 INTRODUCTION

Grokking is a puzzling but important phenomenon: even after a network achieves nearly perfect
training loss but poor test loss, the test loss can dramatically improve with more training (Power et al.,
2021). Understanding why this sudden jump in model capabilities happens would aid a scientific
understanding of the generalisation behaviour of models produced by deep learning.

We present, formalise, and validate a theory of grokking. Despite much attention, previous attempts
to explain grokking have not yet extended to a full theory. Some, for example, focus on relatively
narrow special cases (Thilak et al., 2022) or find correlates of generalisation (Liu et al., 2022; 2023).

Our theory builds on a discovery by Nanda et al. (2023): grokking in modular arithmetic happens
when the network switches between two emergent sub-networks, which we term “circuits” following
Olah et al. (2020). The initial “memorising circuit” simply encodes examples seen so far and the later
“generalising circuit” learns an approximation of the underlying maths. This raises the key question
on which we focus: why does the generalising circuit develop and “take over” from the memorising
one, which already achieves nearly perfect training loss?

The answer lies in the relative “efficiency” of different circuits. More efficient circuits achieve the
same predictive loss with lower parameter norm. When multiple circuits achieve strong training
performance, parameter regularisation (weight decay) selects for circuits with higher efficiency.

Memorising circuits can be very efficient for small datasets, while generalising circuits pay a larger
up-front cost but scale better with dataset size. The generalising circuit lets the network encode
new data points cheaply. In contrast, memorising circuits incur significant cost to encode each
new datapoint. Even if the memorising circuit can achieve perfect accuracy, a regularised loss that
values efficiency will prefer an accurate generalising solution for a large enough dataset. Common
regularising losses like L2 weight decay can be derived using minimum-description length principles
as maximising the compression efficiency of a network given simple assumptions (Hinton & van
Camp, 1993).

As a result, three ingredients in combination can cause grokking: (1) one circuit generalises well
while another does not (2) the generalising circuit is more efficient (3) the generalising circuit is
learned more slowly.

We validate this explanation empirically. We can quantify the efficiencies of generalising and
memorising circuits as dataset size changes. We predict and validate the existence of a crossover
critical dataset size, Dcrit, at which the average efficiency of the generalising circuit is about the same

1

Under review as a conference paper at ICLR 2024

Train loss Test lossTest accuracy

0 5 10
Epochs 1e3

101

10 2

10 5Lo
ss

0

1

(a) Grokking (Power et al., 2021).

101 103 105

Epochs

101

10 2

10 5
0

1

(b) Ungrokking (novel).

0 1
Epochs 1e7

101

10 2

10 5
0

1

Ac
cu

ra
cy

(c) Semi-grokking (novel).

Figure 1: (a) Grokking. Train loss (pink) falls quickly but test loss (gold) stays high. Later, test
loss rapidly falls and 100% accuracy is achieved. (b) Ungrokking (our novel phenomenon). A
fully grokked network is now trained on a subset of the original training set (at dotted line) below
the critical dataset size. The network reverts to bad test loss/accuracy while train loss continues to
improve. Note the log-scale x-axis. (c) Semi-grokking (our novel phenomenon). A randomly
initialised network is trained on the critical dataset size. We see sharp delayed generalisation, but
only to partial test accuracy (∼60%).

as the memorising circuit. Using this, we predict and demonstrate two new behaviours (Figure 1). In
ungrokking, a model that has successfully grokked returns to poor test accuracy when further trained
on a subset of the original data much smaller than Dcrit. In semi-grokking, we choose a dataset size
near the critical dataset size where both circuits are similarly efficient, leading to a phase transition
with only middling test accuracy.

We make the following contributions:

1. We explain how three ingredients can cause grokking (Section 2).
2. We explain why generalising circuits can be more efficient than memorising (Section 3.1).
3. Our theory implies a “critical dataset size” which we use to predict two novel phenomena:

semi-grokking and ungrokking (Section 3.2).
4. We confirm our predictions empirically, providing support for the theory (Section 4).

2 THREE INGREDIENTS FOR GROKKING

The explanation of grokking which we elaborate and formalise builds on the presence of competing
sub-networks, or circuits, which generalise to different extents (Nanda et al., 2023). In this section,
we describe three ingredients which can jointly lead to grokking. In later sections, we discuss what
might cause the ingredients to be present, and show how they appear in practice.

Suppose that we have just a memorising and a generalising circuit that are constituents of a neural
network. In real networks, individual circuits are rarely entirely memorising or entirely generalising
and there are many overlapping circuits. But here, for the sake of clear exposition, we consider cases
like the one uncovered by Nanda et al. (2023) in which two distinct circuits are at opposite ends of
that spectrum. Grokking phenomena can happen whenever the following ingredients are present:

1. Generalising circuit: There are two families of circuits that both achieve good training
performance: a memorising circuit family with poor test performance, and a generalising
circuit family with good test performance.

2. Efficiency: The generalising circuit is more “efficient” than the memorising circuit for
marginal data, i.e., it can produce equal training predictive loss with a lower parameter norm.

3. Slow vs fast learning: The generalising circuit is learned more slowly than memorising, such
that during early phases of training the memorising circuit contributes more to predictions
than the generalising circuit.

Efficiency is an important conceptual tool for this explanation. We say that a circuit is more efficient
if it can achieve the same predictive loss (e.g., cross-entropy) with a lower L2 parameter norm (or

2

Under review as a conference paper at ICLR 2024

alternative regularising loss).1 This can be interpreted as compression efficiency within the minimum
description length framework given Gaussianity assumptions (Hinton & van Camp, 1993).

Predictive losses like cross-entropy encourage confident correct predictions—increasing the scale
of the output logits allows a lower loss (see Theorem D.1). The weight-decay loss opposes this,
penalising the larger weights that permit larger logits.

This balance of opposing forces means that optimisation selects for more efficient circuits. Consider
that the most efficient circuit is the one that can produce a given predictive loss with the lowest
parameter norm. When two circuits have the same confidently-large correct logits then the more
efficient one will have lower overall loss—so gradient descent will tend to increase the contribution
of that circuit to the network’s overall prediction. In addition, during training there is a gradient
pressure to produce accurate logits with a lower parameter norm by replacing a less efficient circuit
with a more efficient one, which causes generalising circuits to emerge.

Overall, we can explain grokking as follows. Early in training, a memorising circuit quickly appears
(ingredient 3) and is able to make good predictions on the training set. This leads to strong train
performance and poor test performance. As training progresses, a sufficiently good generalising
circuit emerges (ingredient 1). Because the generalising circuit is more efficient (ingredient 2), the
model “reallocates” parameter-norm “budget” towards the generalising circuit, causing improved test
performance.

In Appendix B.5 we describe the set-up for an illustrative example demonstrating these basic
ingredients. The empirical results of this illustration are shown in Figure 2a, which should not be
read as making any quantitative predictions about dynamics and is based on several simplifying
design choices for sake of clarity and analytical tractability including not using neural networks. The
illustration uses a weighted mixture model comprising a memorising and generalising circuit with
different hypothetical parameter norms.

In Figure 2a we show how grokking can appear when all three ingredients are present. The memorising
circuit is present initially and quickly achieves a high weight. The generalising circuit is learned more
slowly but is more efficient (by hypothesis) and eventually its weight dominates leading to lower test
loss. Figure 2b shows how the behaviour changes when it is not true that the generalising circuit is
more efficient. In this case, there is never any pressure to switch from the memorising circuit and
the test loss remains high. Last, Figure 2c shows how the behaviour changes when it is not true that
the generalising circuit is learned more slowly. When the generalising circuit is present right at the
beginning, the memorising circuit never needs to be used and no grokking is observed.

3 WHY GENERALISING CIRCUITS ARE MORE EFFICIENT

Section 2 demonstrated that grokking can arise when the generalising circuit is more efficient than
the memorising circuit, but left open the question of why. In this section, we develop a theory based
on training dataset size D, and use it to predict two new behaviours: ungrokking and semi-grokking.

3.1 RELATIONSHIP OF EFFICIENCY WITH DATASET SIZE

We should expect classifiers to generally get less efficient as dataset sizes grow. Consider a classifier
fD obtained by training optimally on a dataset D of size D with weight decay, and a classifier fD′

obtained by training optimally on the same dataset with one additional point: D′ = D ∪ {(x, y∗)}.
Intuitively, fD′ should not be more efficient than fD. Suppose it was more efficient—which means
that for the same predictive loss it would have a lower parameter norm. But then the model fD′ would
have been a lower-loss classifier for the original dataset than fD was, a contradiction. So we should
expect that, even when training is not always optimal, typically classifiers that learn larger datasets
will be less efficient.

How does generalisation affect this picture? Let us suppose that fD successfully generalises to predict
y∗ for the new input x. Then, as we move from D to D′, Lx-ent(fD) likely does not worsen with this

1For brevity we focus on the common case where predictive loss is cross-entropy and it is regularised with
L2 weight decay. Our analysis extends to other predictive losses and regularisations (see Appendix D).

3

Under review as a conference paper at ICLR 2024

Train loss Test loss Gen logit Mem logit Parameter norm

0 5 10
Steps 1e3

101

100

10 1

10 2

Lo
ss

0

5

10

(a) All three ingredients. When
the generalising circuit is more ef-
ficient but learned slower, we ob-
serve grokking. Total parameter
norm falls due to the generalising
circuit’s higher efficiency.

0 5 10
Steps 1e3

101

100

10 1

10 2

Lo
ss

0

5

10

(b) Missing ingredient: Gener-
alisation more efficient. We
set the hyperparameter control-
ling generalisation efficiency to be
lower than memorisation efficiency.
Since generalisation is also learned
slower, it never grows, and test
loss stays high due to memorisa-
tion throughout training.

0 5 10
Steps 1e3

101

100

10 1

10 2

Lo
ss

0

5

10

(c) Missing ingredient: Generali-
sation learned slower. We set the
hyperparameter controlling learn-
ing speed to be the same for gen-
eralisation and memorisation. The
generalising circuit takes over from
the very beginning due to its higher
efficiency, and no grokking is ob-
served.

Figure 2: Generalisation must be learned slowly for grokking to arise. We plot the results from
our illustrative example (see Appendix B.5) showcasing the three ingredients for grokking: (1) a
generalising and a memorising circuit, where (2) the generalising circuit is more efficient, but (3)
slowly learned. We show that grokking does not occur when either of the last two ingredients are
removed.

new data point. Thus, we could expect to see the same classifier arise, with the same average logit
value, parameter norm, and efficiency.

Now suppose fD instead fails to predict the new data point (x, y∗). Then the classifier learned for D′

will likely be less efficient: Lx-ent(fD) would be much higher due to this new data point, and so the
new classifier must incur some additional regularisation loss to reduce Lx-ent on the new point.

Applying this analysis to our circuits, we should expect the generalising circuit’s efficiency to remain
unchanged as D increases arbitrarily high, since it does not need to change to accommodate new
training examples. In contrast, the memorising circuit must change with nearly every new data point,
and so we should expect its efficiency to decrease as D increases. Thus, when D is sufficiently large,
we expect generalisation to be more efficient than memorisation. (Note however that when the set of
possible inputs is small, even the maximal D may not be “sufficiently large”.)

Critical threshold for dataset size. Intuitively, we expect that for extremely small datasets (say,
D < 5), it is extremely easy to memorise the training dataset. So, we hypothesise that for these
very small datasets, the memorisation circuit is more efficient than the generalising one. However,
as argued above, memorisation will get less efficient as D increases, and so there will be a critical
dataset size Dcrit at which memorisation and generalisation are approximately equally efficient.
When D ≫ Dcrit, generalisation is more efficient and we expect grokking, and when D ≪ Dcrit,
memorisation is more efficient and so grokking should not happen.

Effect of weight decay on Dcrit. Since Dcrit is determined only by the relative efficiencies of the
generalising and memorising circuits, and none of these depends on the exact value of weight decay
(just on weight decay being present at all), our theory predicts that Dcrit should not change as a
function of weight decay. Of course, the strength of weight decay may still affect other properties
such as the number of epochs till grokking.

3.2 IMPLICATIONS OF CROSSOVER: UNGROKKING AND SEMI-GROKKING.

By thinking through the behaviour around the critical threshold for dataset size, we predict the
existence of two phenomena that, to the best of our knowledge, have not previously been reported.

4

Under review as a conference paper at ICLR 2024

Ungrokking. Suppose we take a network that has been trained on a dataset with D > Dcrit and has
already exhibited grokking, and continue to train it on a smaller dataset with size D′ < Dcrit. In this
new training setting, the memorising circuit is now more efficient than the generalising circuit, and so
we predict that with enough further training gradient descent will reallocate weight from the former
to the latter, leading to a transition from high test performance to low test performance. Since this is
exactly the opposite observation as in regular grokking, we term this behaviour “ungrokking”.

Ungrokking is superficially related to catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff,
1990), but with some large differences. Catastrophic forgetting involves training on a new dataset
and forgetting the old, while in ungrokking the “new” dataset can just be a subset of the old dataset.
Catastrophic forgetting also involves both a bad train and test loss on the old data, while ungrokking is
just a bad test loss. The underlying mechanisms are different, for example since Dcrit does not depend
on weight decay, we predict the amount of “forgetting” (i.e. the test accuracy at convergence) also
does not depend on weight decay. Finally, unlike catastrophic forgetting, since ungrokking should
only be expected once D′ < Dcrit, if we vary D′ we predict that there will be a sharp transition from
very strong to near-random test accuracy (around Dcrit).

Semi-grokking. Suppose we train a network on a dataset with D ≈ Dcrit. Generalising and
memorising circuits would be similarly efficient, and there are two possible cases for what we expect
to observe (illustrated in Theorem D.4).

In the first case, gradient descent would select either a memorising or a generalising circuit, and then
make it the maximal circuit. This could happen in a consistent manner (for example, perhaps since
memorisation is learned faster it always becomes the maximal circuit), or in a manner dependent
on the random initialisation. In either case we would simply observe the presence or absence of
grokking.

In the second case, gradient descent would produce a mixture of both memorising and generalising
circuits. Since neither memorisation nor generalisation would dominate the prediction on the test set,
we would expect middling test performance.

Memorisation would still be learned faster, and so this would look similar to grokking: an initial
phase with good train performance and bad test performance, followed by a transition to significantly
improved test performance. Since we only get to middling generalisation unlike in typical grokking,
we call this behaviour semi-grokking.

Our theory does not say which of the two cases will arise in practice, but in Section 4.3 we find that
semi-grokking does happen in our setting.

4 EXPERIMENTAL EVIDENCE

Our explanation of grokking has some support from from prior work. Generalising circuit: Nanda
et al. (2023, Figure 1) identify and characterise the generalising circuit learned at the end of grokking
in the case of modular addition. Slow vs fast learning: Nanda et al. (2023, Figure 7) demonstrate
“progress measures” showing that the generalising circuit develops and strengthens long after the
network achieves perfect training accuracy in modular addition.

To further validate our explanation, we empirically test our predictions from Section 3:

(P1) Efficiency: We confirm our prediction that the generalising circuit efficiencies are indepen-
dent of dataset size, while the memorising circuit efficiencies decrease as training dataset
size increases.

(P2) Ungrokking (phase transition): We confirm our prediction that ungrokking shows a phase
transition around Dcrit.

(P3) Ungrokking (weight decay): We confirm our prediction that the final test accuracy after
ungrokking is independent of the strength of weight decay.

(P4) Semi-grokking: We demonstrate that semi-grokking occurs in practice.

Training details. We train 1-layer Transformer models with the AdamW optimiser (Loshchilov &
Hutter, 2019) on cross-entropy loss (see Appendix B for more details). All results in this section

5

Under review as a conference paper at ICLR 2024

25 30 40 60 90
Parameter norm

30

60

90

Co
rre

ct
 lo

gi
t fixed logit values

0.5 1.0 2.0 4.0 8.0
Dataset size 1e3

25
30
40

60

90

Pa
ra

m
et

er
 n

or
m

0.5
1.0
2.0
4.0
8.0

Da
ta

se
t s

ize

1e3

50

60

70

Co
rre

ct
 lo

gi
t

(a) Memorisation scatter plot. At a fixed logit value
(dotted horizontal lines), parameter norm increases
with dataset size.

25 30 40 60 90
Parameter norm

30

60

90

Co
rre

ct
 lo

gi
t fixed logit values

0.5 1.0 2.0 4.0 8.0
Dataset size 1e3

25
30
40

60

90

Pa
ra

m
et

er
 n

or
m

0.5
1.0
2.0
4.0
8.0

Da
ta

se
t s

ize

1e3

50

60

70

Co
rre

ct
 lo

gi
t

(b) Memorisation isologit curves. Curves go up and
right, showing that parameter norm increases with
dataset size when holding logits fixed.

27 30 33
Parameter norm

30

60
90

120

Co
rre

ct
 lo

gi
t fixed logit values

4 6 8
Dataset size 1e3

27

30

33

Pa
ra

m
et

er
 n

or
m

4

6
8

Da
ta

se
t s

ize

1e3

50

70
90

Co
rre

ct
 lo

gi
t

(c) Generalisation scatter plot. There is no obvious
structure to the colours, suggesting that the logit to
parameter norm relationship is independent of dataset
size.

27 30 33
Parameter norm

30

60
90

120

Co
rre

ct
 lo

gi
t fixed logit values

4 6 8
Dataset size 1e3

27

30

33

Pa
ra

m
et

er
 n

or
m

4

6
8

Da
ta

se
t s

ize

1e3

50

70
90

Co
rre

ct
 lo

gi
t

(d) Generalisation isologit curves. The curves are
flat, showing that for fixed logit values the parameter
norm does not depend on dataset size.

Figure 3: Efficiency of memorisation-only and generalisation-only networks. We collect and
visualise a dataset of triples (oy , Pm, D) (correct logit, parameter norm, and dataset size), each
corresponding to a training run with varying random seed, weight decay, and dataset size, for both
memorising and generalising networks. Besides a standard scatter plot, we geometrically bucket logit
values into six buckets, and plot “isologit curves” showing the dependence of parameter norm on
dataset size for each bucket. The results validate our theory that (1) memorisation requires larger
parameter norm to produce the same logits as dataset size increases, and (2) generalisation uses the
same parameter norm to produce fixed logits, irrespective of dataset size. In addition, memorisation
has a much wider range of parameter norms than generalisation, and at the extreme can be more
efficient than generalisation.

are on the modular addition task (a + b mod P for a, b ∈ (0, . . . , P − 1) and P = 113) unless
otherwise stated; results on 9 additional tasks can be found in Appendix B.

4.1 RELATIONSHIP OF EFFICIENCY WITH DATASET SIZE

We first test our prediction about memorisation and generalisation efficiency:

(P1) Efficiency. We predict (Section 3.1) that memorisation efficiency decreases with increasing train
dataset size, while generalisation efficiency stays constant.

To test (P1), we look at training runs where only one circuit is present, and see how the logits oyi vary
with the parameter norm Pi (by varying the weight decay) and the dataset size D.

Experiment setup. We produce memorisation-only networks by using completely random labels
for the training data (Zhang et al., 2021), and assume that the entire parameter norm at convergence
is allocated to memorisation. We produce generalising-only networks by training on large dataset
sizes and checking that > 95% of the logit norm comes from just the trigonometric subspace (see
Appendix C for details).

Results. Figures 3a and 3b confirm our theoretical prediction for memorisation efficiency. Specifically,
to produce a fixed logit value, a higher parameter norm is required when dataset size is increased,
implying decreased efficiency. In addition, for a fixed dataset size, scaling up logits requires scaling up
parameter norm, as expected. Figures 3c and 3d confirm our theoretical prediction for generalisation

6

Under review as a conference paper at ICLR 2024

103 104

Reduced dataset size

0.0

0.5

1.0
Te

st
 a

cc
ur

ac
y x + y mod P

0.1
0.5
1.0
1.5
2.0

W
ei

gh
t d

ec
ay

Average accuracy Per seed accuracy

Figure 4: Ungrokking. We train on the full
dataset (achieving 100% test accuracy), and
then continue training on a subset of the full
dataset. We plot test accuracy against reduced
dataset size for a range of weight decays. We
see a sharp transition from strong test accuracy
to near-zero test accuracy, that is independent of
weight decay (different coloured lines overlap).
See Figure 9 for more tasks.

0 1 2 3
Epochs 1e7

0.0

0.5

1.0

Te
st

 a
cc

ur
ac

y

0.25
0.50
0.75
1.00

Fin
al

 a
cc

ur
ac

y

Figure 5: Semi-grokking. We plot test accu-
racy against training epochs for many training
runs with varying dataset sizes. Of 200 runs,
at least 6 show clear semi-grokking at the end
of training. Many other runs show transient
semi-grokking, hovering around middling test
accuracy for millions of epochs, or having mul-
tiple plateaus, before fully generalising.

efficiency. To produce a fixed logit value, the same parameter norm is required irrespective of the
dataset size.

Figure 3 shows significant variance across random seeds. We speculate that there are many different
circuits implementing the same overall algorithm, but they have different efficiencies, and the random
initialisation determines which one gradient descent finds. For example, in the case of modular
addition, the generalising algorithm depends on a set of “key frequencies” (Nanda et al., 2023);
different choices of key frequencies could lead to different efficiencies.

It may appear from Figure 3c that increasing parameter norm does not increase logit value, contra-
dicting our theory. However, this is a statistical artefact caused by the variance from the random seed.
We do see “stripes” of particular colours going up and right: these correspond to runs with the same
seed and dataset size, but different weight decay, and they show that when the noise from the random
seed is removed, increased parameter norm clearly leads to increased logits.

4.2 UNGROKKING: OVERFITTING AFTER GENERALISATION

We now turn to testing our predictions about ungrokking. Figure 1b demonstrates that ungrokking
happens in practice. In this section we focus on testing that it has the properties we expect.

(P2) Phase transition and (P3) weight decay. We predict (Section 3.2) that if we plot test accuracy
at convergence against the size of the reduced training dataset D′, there will be a phase transition
around Dcrit, and that test accuracy at convergence is independent of the strength of weight decay.

Experiment setup. We train a network to convergence on the full dataset to enable perfect generali-
sation, then continue training the model on a small subset of the full dataset, and measure the test
accuracy at convergence. We vary both the size of the small subset, as well as the strength of the
weight decay.

Results. Figure 4 shows the results, and clearly confirms both (P2) and (P3). Appendix B has
additional results, and in particular Figure 9 replicates the results for many additional tasks.

4.3 SEMI-GROKKING: EVENLY MATCHED CIRCUITS

Unlike the previous predictions, semi-grokking is not strictly implied by our theory. However, as we
will see, it turns out that it does occur in practice.

(P4) Semi-grokking. When training at around D ≈ Dcrit, where the memorisation and generalisation
circuits have roughly equal efficiencies, the final network at convergence should either be entirely
composed of the most efficient circuit, or of roughly equal proportions of memorisation and generali-
sation. If the latter, we should observe a transition to middling test accuracy well after near-perfect

7

Under review as a conference paper at ICLR 2024

train accuracy. We detail a number of difficulties with demonstrating semi-grokking in practice in
Appendix B.1.

Experiment setup. We train 10 seeds for each of 20 dataset sizes evenly spaced in the range
[1500, 2050] (somewhat above our estimate of Dcrit).

Results. Figure 1c shows an example of a single run that demonstrates semi-grokking, and Figure 5
shows test accuracies over time for every run. These validate our initial hypothesis that semi-grokking
may be possible, but also raise new questions.

In Figure 1c, we see a phenomenon peculiar to semi-grokking: training loss fluctuates in a set range.
We leave investigation of this to future work.

In Figure 5, we observe that there is often transient semi-grokking, where a run hovers around
middling test accuracy for millions of epochs, or has multiple plateaus, before generalising perfectly.
We speculate that each transition corresponds to gradient descent strengthening a new generalising
circuit that is more efficient than any previously strengthened circuit, but took longer to learn. We
would guess that if we had trained for longer, many of the semi-grokking runs would exhibit full
grokking, and many of the runs that didn’t generalise at all would generalise at least partially to show
semi-grokking.

5 RELATED WORK

Grokking. There are many attempts to explain grokking (Power et al., 2021). We extend and build
on initial explorations by Nanda et al. (2023, Appendix E) and Davies et al. (2023) which suggest
that grokking is explained by a generalising circuit that is slowly learned but is favoured by inductive
biases. We further operationalise the “inductive bias” argument by focusing on the relative efficiency
at producing large logits with small parameter norm. In addition, we provide significant empirical
support by predicting and verifying the existence of a critical threshold Dcrit and the novel phenomena
ungrokking and semi-grokking.

Other explanations have focused on narrow situations, such as cases where oscillations (Notsawo Jr
et al., 2023) or “slingshots” (Thilak et al., 2022) are present (which are not required or present in
any of our experiments). Alternatively, other works provide partial explanations which are consistent
with our theory but do not explain all the phenomena. For example, Liu et al. (2022) relate perfect
generalisation to sufficient data for representation learning, which does not predict or explain semi-
grokking. Liu et al. (2023) relate early memorisation to large parameter initialisation, which is
consistent with our theory but does not explain or predict the dynamics that our theory discovers.

The metrics for circuit strength which we use depend on both Nanda et al. (2023) and Chughtai
et al. (2023). Merrill et al. (2023) show similar results on sparse parity: in particular, they show that
a sparse subnetwork is responsible for the well-generalising logits, and that it grows as grokking
happens.

Weight decay. It is widely known that weight decay can improve generalisation (Krogh & Hertz,
1991), though the mechanisms for this effect are poorly understood (Zhang et al., 2018). One
hypothesis is that weight decay is equivalent to using a minimum description length principle,
assuming Gaussian distributions (Hinton & van Camp, 1993). This supports our model of generalising
circuits as being preferred by weight decay because they are more efficient than memorising circuits
at large dataset sizes.

Understanding deep learning through circuit-based analysis. One goal of interpretability is to
understand the internal mechanisms by which neural networks exhibit specific behaviours (Olah et al.,
2020; Elhage et al., 2021; Erhan et al., 2009; Meng et al., 2022; Cammarata et al., 2021; Wang et al.,
2022; Li et al., 2022; Geva et al., 2020). Such work can also be used to understand deep learning.

Olsson et al. (2022) explain a phase change in the training of language models by reference to
induction heads, a family of circuits that produce in-context learning. In concurrent work, Singh et al.
show that the in-context learning from induction heads is later replaced by in-weights learning in the
absence of weight decay, but remains strong when weight decay is present. We hypothesise that this
effect is also explained through circuit efficiency: the in-context learning from induction heads is a
generalising algorithm and so is favoured by weight decay given a large enough dataset size.

8

Under review as a conference paper at ICLR 2024

6 DISCUSSION

Most of our analysis focuses on weight decay regularisation with L2 norms (although in Appendix D
we prove results for a wider class of losses). Grokking has been observed even when weight decay
is not present (Power et al., 2021; Thilak et al., 2022) though it is slower and often much harder to
elicit (Nanda et al., 2023, Appendix D.1). This shows that our explanation is incomplete and at least
some other forces are able to cause grokking.

However, we do not think this implies that the explanation is incorrect. We hypothesise that other
regularisers similarly favour generalisation circuits over memorisation circuits, such as the implicit
regularisation of gradient descent (Soudry et al., 2018; Lyu & Li, 2019; Wang et al., 2021; Smith
& Le, 2017), and that the speed of the transition from memorisation to generalisation is based on
the sum of these effects and the effect from weight decay. Although our explanations focus on
weight decay, the important part is that there is a systematic preference for the generalising circuit
during training, which might be provided by other sources of regularisation. This would explain why
grokking takes longer as weight decay decreases (Power et al., 2021), and does not completely vanish
in the absence of weight decay. Given that there is a potential extension of our theory that explains
grokking without weight decay, and the significant confirming evidence that we have found for our
theory in settings with weight decay, we are overall confident that our explanation is at least one part
of the true explanation when weight decay is present.

In addition, there are many constraints other than parameter norm that might affect the circuit selection:
fitting the training data, capacity in “bottleneck activations” (Elhage et al., 2021), interference between
circuits (Elhage et al., 2022), and more. This may limit the broader applicability of our theory, despite
its success in explaining grokking.

Broader applicability: realistic settings. We expect that the general concepts of circuits, efficiency,
and speed of learning continue to apply. However, in realistic settings, good performance would result
from different circuit families that contribute different aspects (e.g. language modelling requires
spelling, grammar, arithmetic, etc). We expect that these will have a wide continuum of learning
speeds and efficiencies. In contrast, for grokking in “algorithmic” tasks like modular arithmetic,
we explain the sharp transition occurring due to a shift from a memorising to a generalising cluster,
with no intermediate circuits in between. We demonstrate this difference with experiments on
MNIST (LeCun et al., 1998) in Figures 7 and 10.

Future work. Within grokking, several interesting puzzles are still left unexplained. Why does
the time taken to grok rise super-exponentially as dataset size decreases? How does the random
initialisation interact with efficiency to determine which circuits are found by gradient descent? What
causes generalising circuits to develop slower? Investigating these puzzles is a promising avenue for
further work.

While the direct application of our work is to understand the puzzle of grokking, we are excited about
the potential for understanding deep learning more broadly through the lens of circuit efficiency. We
would be excited to see work looking at the role of circuit efficiency in more realistic settings, and
work that extends circuit efficiency to consider other constraints that gradient descent must navigate.

7 CONCLUSION

The central question of our paper is: in grokking, why does the network’s test performance improve
dramatically upon continued training, having already achieved nearly perfect training performance?
Our explanation is: the generalising solution is more “efficient” but slower to learn than the memoris-
ing solution. After quickly learning the memorising circuit, gradient descent can still decrease loss
even further by simultaneously strengthening the efficient, generalising circuit and weakening the
inefficient, memorising circuit.

Based on our theory we predict and demonstrate two novel behaviours: ungrokking, in which a model
that has perfect generalisation returns to memorisation when it is further trained on a dataset with size
smaller than the critical threshold, and semi-grokking, where we train a randomly initialised network
on the critical dataset size which results in a grokking-like transition to middling test accuracy. Our
explanation is the only one we are aware of that has made (and confirmed) such surprising advance
predictions, and we have significant confidence in the explanation as a result.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We provide information about the datasets, setup, and hyperparameters required to reproduce our
experiments and minimal example in Appendix B. We describe difficulties with eliciting semi-
grokking in particular, and how we overcome them. We state and explain all proofs along with their
assumptions in Appendix D.

REFERENCES

Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and Chris Olah. Curve
circuits. Distill, 2021. doi: 10.23915/distill.00024.006. https://distill.pub/2020/circuits/curve-
circuits.

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. arXiv preprint arXiv:2302.03025, 2023.

Xander Davies, Lauro Langosco, and David Krueger. Unifying grokking and double descent. arXiv
preprint arXiv:2303.06173, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for Transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Geoffrey Hinton and Drew van Camp. Keeping neural networks simple by minimizing the description
lenghth of the weights. Conference on Learning Theory, 1993.

Adam Jermyn and Buck Shlegeris. Multi-component learning and s-curves, 2022.
URL https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/
multi-component-learning-and-s-curves.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022.

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. arXiv preprint
arXiv:2205.10343, 2022.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data,
2023.

10

https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves
https://www.alignmentforum.org/posts/RKDQCB6smLWgs2Mhr/multi-component-learning-and-s-curves

Under review as a conference paper at ICLR 2024

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2019.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
knowledge in GPT. arXiv preprint arXiv:2202.05262, 2022.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Pascal Notsawo Jr, Hattie Zhou, Mohammad Pezeshki, Irina Rish, Guillaume Dumas, et al. Predicting
grokking long before it happens: A look into the loss landscape of models which grok. arXiv
preprint arXiv:2306.13253, 2023.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. Grokking: Generalization beyond
overfitting on small algorithmic datasets. In Mathematical Reasoning in General Artificial In-
telligence Workshop, ICLR, 2021. URL https://mathai-iclr.github.io/papers/
papers/MATHAI_29_paper.pdf.

R Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychology Review, 97(2):285–308, 1990.

Aaditya Singh, Stephanie Chan, Theodore Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The
transient nature of emergent in-context learning in transformers. Forthcoming.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. arXiv preprint arXiv:1710.06451, 2017.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. The implicit bias for adaptive optimization
algorithms on homogeneous neural networks. In International Conference on Machine Learning,
pp. 10849–10858. PMLR, 2021.

11

https://openreview.net/forum?id=9XFSbDPmdW
https://mathai-iclr.github.io/papers/papers/MATHAI_29_paper.pdf
https://mathai-iclr.github.io/papers/papers/MATHAI_29_paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as a conference paper at ICLR 2024

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018.

12

Under review as a conference paper at ICLR 2024

A NOTATION

We consider classification using deep neural networks under the cross-entropy loss. In particular, we
are given a set of inputs X , a set of labels Y , and a training dataset, D = {(x1, y

∗
1), . . . (xD, y∗D)}.

For an arbitrary classifier f : X × Y → R, the softmax cross entropy loss is given by:

Lx-ent(f) = −
1

D

∑
(x,y∗)∈D

log
exp(f(x, y∗))∑

y′∈Y

exp(f(x, y′))
. (1)

The output of a classifier for a specific class is the class logit, denoted by oyf (x) := f(x, y). When
the input x is clear from context, we will denote the logit as oyf . We denote the vector of the logits for
all classes for a given input as o⃗f (x) or o⃗f when x is clear from context.

Parametric classifiers (such as neural networks) are parameterised with a vector θ that induces a
classifier fθ. The parameter norm of the classifier is Pfθ := ∥θ∥. It is common to add weight decay
regularisation, which is an additional loss term Lwd(fθ) =

1
2 (Pfθ)

2. The overall loss is given by

L(fθ) = Lx-ent(f) + αLwd(fθ), (2)

where α is a constant that trades off between softmax cross entropy and weight decay.

Circuits. Inspired by Olah et al. (2020), we use the term circuit to refer to an internal mechanism
by which a neural network works. We only consider circuits that map inputs to logits, so that a circuit
C induces a classifier fC for the overall task. We elide this distinction and simply write C to refer to
fC , so that the logits are oyC , the loss is L(C), and the parameter norm is PC .

For any given algorithm, there exist multiple circuits that implement that algorithm. Abusing notation,
we use generalising (memorising) circuit to refer either to the family of circuits that implements the
generalising (memorising) algorithm, or a single circuit from the appropriate family.

B EXPERIMENTAL DETAILS AND MORE EVIDENCE

For all our experiments, we use 1-layer decoder-only transformer networks (Vaswani et al., 2017)
with learned positional embeddings, untied embeddings/unembeddings, The hyperparameters are
as follows: dmodel = 128 is the residual stream width, dhead = 32 is the size of the query, key, and
value vectors for each attention head, dmlp = 512 is the number of neurons in the hidden layer of
the MLP, and we have dmodel/dhead = 4 heads per self-attention layer. We optimise the network
with full batch training (that is, using the entire training dataset for each update) using the AdamW
optimiser (Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.98, learning rate of 10−3, and weight
decay of 1.0. In some of our experiments we vary the weight decay in order to produce networks
with varying parameter norm.

Following Power et al. (2021), for a binary operation x ◦ y, we construct a dataset of the form
⟨x⟩⟨◦⟩⟨y⟩⟨=⟩⟨x ◦ y⟩, where ⟨a⟩ stands for the token corresponding to the element a. We choose a
fraction of this dataset at random as the train dataset, and the remainder as the test dataset. The first 4
tokens ⟨x⟩⟨◦⟩⟨y⟩⟨=⟩ are the input to the network, and we train with cross-entropy loss over the final
token ⟨x ◦ y⟩. For all modular arithmetic tasks we use the modulus p = 113, so for example the size
of the full dataset for modular addition is p2 = 12769, and dvocab = 115, including the ⟨+⟩ and ⟨=⟩
tokens.

B.1 SEMI-GROKKING

There are a number of difficulties in demonstrating an example of semi-grokking in practice. First,
the time to grok increases super-exponentially as the dataset size D decreases (Power et al., 2021,
Figure 1), and Dcrit is significantly smaller than the smallest dataset size at which grokking has
been demonstrated. Second, the random seed causes significant variance in the efficiency of the
generalising and memorising circuits, which in turn affects Dcrit for that run. Third, accuracy changes
sharply with the ratio of strengths of generalisation to memorisation (Figure 12). To observe a
transition to middling accuracy, we need to have balanced generalising and memorising circuit

13

Under review as a conference paper at ICLR 2024

0.0

0.5

1.0

Ac
cu

ra
cy

train test

101

10 2

10 5Lo
ss

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Epochs 1e7

30

40

50

Pa
ra

m
et

er
 n

or
m

Figure 6: Examining a single semi-grokking run in detail. We plot accuracy, loss, and parameter
norm over training for a single cherry-picked modular addition run at a dataset size of 1532 (12% of
the full dataset). This run shows transient semi-grokking. At epoch 0.8 × 107, test accuracy rises
to around 0.55, and then stays there for 107 epochs, because generalising and memorising circuit
efficiencies are balanced. At epoch 1.8× 107, we speculate that gradient descent finds an even more
efficient generalising circuit, as parameter norm drops suddenly and test accuracy rises to 1. At epoch
3.2 × 107 we see test loss rise, we do not know why. There seem to be multiple phases, perhaps
corresponding to the network transitioning between mixtures of multiple circuits with increasing
efficiencies, but further investigation is needed.

0 2 4 6 8 10
Epoch

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Dataset size
10
100
1000
10000

Figure 7: Attempting semi-grokking on MNIST. We train a small CNN on MNIST at various
dataset sizes. Unlike in modular arithmetic, we see immediate rather than delayed generalisation to
partial test accuracy. Increasing the dataset size smoothly and consistently increases the test accuracy
(rather than showing a phase change). This is explained by a spectrum of feature-circuits, which form
at increasing dataset sizes, and which cumulatively lead to smoothly increasing generalisation.

14

Under review as a conference paper at ICLR 2024

outputs, but this is difficult to arrange due to the variance with random seed. To address these
challenges, we run many different training runs, on dataset sizes slightly above our best estimate of
the typical Dcrit, such that some of the runs will (through random noise) have an unusually inefficient
generalising circuit or an unusually efficient memorising circuit, such that the efficiencies match and
there is a chance to semi-grok.

Given the difficulty of demonstrating semi-grokking, we only run this experiment on modular
addition. However, our experience with modular addition shows that if we only care about values
at convergence, we can find them much faster by ungrokking from a grokked network (instead of
semi-grokking from a randomly initialised network). Thus the ungrokking results on other tasks
(Figure 9) provide some support that we would see semi-grokking on those tasks as well.

In Section 4.3 we looked at all semi-grokking training runs in Figure 5. Here, we investigate a single
example of transient semi-grokking in more detail (see Figure 6). We speculate that there are multiple
circuits with increasing efficiencies that generalise, and in these cases the more efficient circuits
are slower to learn. This would explain transient semi-grokking: gradient descent first finds a less
efficient generalising circuit and we see partial test accuracy, but since we are using the upper range
of Dcrit, eventually gradient descent finds a more efficient generalising circuit leading to full test
accuracy.

B.2 UNGROKKING

In Figure 8, we show many ungrokking runs for modular addition, and in Figure 9 we show ungrokking
across many other tasks.

We have already seen that Dcrit is affected by the random initialisation. It is interesting to compare
Dcrit when starting with a given random initialisation, and when ungrokking from a network that was
trained to full generalisation with the same random initialisation. Figure 5 shows a semi-grokking run
that achieves a test accuracy of ∼0.7 with a dataset size of ∼2000, while Figure 8 shows ungrokking
runs that achieve a test accuracy of ∼0.7 with a dataset size of around 800–1000, less than half of
what the semi-grokking run required.

In Figure 12b, the final test accuracy after ungrokking shows a smooth relationship with dataset size,
which we might expect if the generalising circuit is getting stronger on a smoothly increasing number
of inputs compared to the memorising circuit. However due to the difficulties discussed previously,
we don’t see a smooth relationship between test accuracy and dataset size in semi-grokking.

These results suggest that Dcrit is an oversimplified concept, because in reality the initialisation and
training dynamics affect which circuits are found, and therefore the dataset size at which we see
middling generalisation.

B.3 GENERALISING AND MEMORISING CIRCUIT DEVELOPMENT DURING GROKKING

In Figure 11 we show generalising and memorising circuit development via the proxy measures
defined in Appendix C for a randomly-picked grokking run. Looking at these measures was very
useful to form a working theory for why grokking happens. However as we note in Appendix C,
these proxy measures tend to overestimate generalisation and underestimate memorisation.

We note some interesting phenomena in Figure 11:

1. Between epochs 200 to 1500, both the generalisation and memorisation logits are rising
while parameter norm is falling, indicating that gradient descent is improving efficiency
(possibly by removing irrelevant parameters).

2. After epoch 4000, the generalisation logit falls while the memorisation logit is already ∼0.
Since test loss continues to fall, we expect that incorrect logits from the memorising circuit
on the test dataset are getting cleaned up, as described in Nanda et al. (2023).

B.4 TRADEOFFS BETWEEN GENERALISATION AND MEMORISATION

In Section 3.1 we looked at the efficiency of generalisation-only and memorisation-only circuits. In
this section we train on varying dataset sizes so that the network develops a mixture of generalising

15

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Epochs 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

400

600

800

1000
1200
1400

Re
du

ce
d

da
ta

se
t s

ize

Figure 8: Many ungrokking runs. We show test accuracy over epochs for a range of ungrokking
runs for modular addition. Each line represents a single run, and we sweep over 7 geometrically
spaced dataset sizes in [390, 1494] with 10 seeds each. Each run is initialised with parameters from
a network trained on the full dataset (the initialisation runs are not shown), so test accuracy starts
at 1 for all runs. When the dataset size is small enough, the network ungroks to poor test accuracy,
while train accuracy remains at 1 (not shown). For an intermediate dataset size, we see ungrokking to
middling test accuracy as generalising and memorising circuit efficiencies are balanced.

103 104
0.0

0.5

1.0

Te
st

 a
cc

ur
ac

y

x/y mod P

103 104

x y mod P

103 104

xy mod P

103 104
0.0

0.5

1.0

Te
st

 a
cc

ur
ac

y

x/y mod P or x y mod P

103 104

x2 + y2 mod P

103 104

x2 + xy + y2 mod P

103 104

Reduced dataset size

0.0

0.5

1.0

Te
st

 a
cc

ur
ac

y

xyx 1 for x, y S5

103 104

Reduced dataset size

xy for x, y S5

103 104

Reduced dataset size

xyx for x, y S5 0.1

0.5

1.0

1.5

2.0

W
ei

gh
t d

ec
ay

Average accuracy Per seed accuracy

Figure 9: Ungrokking on many other tasks. We plot test accuracy against reduced dataset size for
many other modular arithmetic and symmetric group tasks (Power et al., 2021). For each run, we
train on the full dataset (achieving 100% accuracy), and then further train on a reduced subset of the
dataset for 100k steps. The results show clear ungrokking, since in many cases test accuracy falls
below 100%, often to nearly 0%. For most datasets the transition point is independent of weight
decay (different coloured lines almost perfectly overlap).

16

Under review as a conference paper at ICLR 2024

101 102 103 104

Reduced dataset size

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

0.1

0.5

1.0

1.5

2.0

W
ei

gh
t d

ec
ay

Average accuracy Per seed accuracy

Figure 10: Attempting ungrokking on MNIST. When we try to exhibit ungrokking on MNIST, we
instead see a smooth decline in test accuracy as dataset size reduces, consistent with a continuous
spectrum of generalising-feature circuits, each of which forms at a fixed dataset size. Contrast this
with Figure 9 where there is usually a critical dataset size at which we see a sharp change. Since
each circuit’s efficiency relative to memorisation depends only on the dataset size and not the weight
decay, the aggregate behaviour is also independent of weight decay (different coloured lines almost
perfectly overlap). The exception is at a weight decay of 0.1 because retraining does not converge in
10 epochs here.

0 2000 4000 6000 8000 10000
Epochs

10 9
10 7
10 5
10 3
10 1
101

Lo
ss

Train loss Test loss

0
15
30
45
60

Ctrig logit Cmem logit Parameter norm

Figure 11: Grokking occurs because the generalising circuit is more efficient than the memo-
rising one. We show loss, parameter norm, and the value of the correct logit for generalisation and
memorisation for a randomly-picked training run. By step 200, the train accuracy is already perfect
(not shown), train loss is low while test loss has risen, and parameter norm is at its maximum value,
indicating strong memorisation. Train loss continues to fall rapidly until step 1500, as parameter
norm falls and the generalising logit becomes higher than the memorising logit. At step 3500, test
loss starts to fall as the high generalising logit starts to dominate, and by step 6000 we get good
generalisation.

17

Under review as a conference paper at ICLR 2024

103 104

Dataset size

10 2

100

102

104

oy t
/o

y m

(a) Logit ratio (oyt /o
y
m) vs dataset size (D).

Colours correspond to different bucketed values
of parameter norm (P). Each line shows that as
dataset size increases, a fixed parameter norm
(fixed colour) is being reallocated smoothly to-
wards increasing the trigonometric logit com-
pared to the memorisation logit.

103 104

Dataset size

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

(b) Test accuracy vs dataset size (D). We
see a smooth dependence on dataset size.
Each line shows that as dataset size in-
creases, the reallocation of a fixed parameter
norm (fixed colour) towards the generalisa-
tion circuit from memorisation results in
increasing accuracy.

2 × 101

3 × 101

4 × 101

Pa
ra

m
et

er
 n

or
m

Figure 12: Relative strength at convergence. We report logit ratios and test accuracy at convergence
across a range of training runs, generated by sweeping over the weight decay and random seed to
obtain different parameter norms at the same dataset size. We use the ungrokking runs from Figure 8,
so every run is initialised with parameters obtained by training on the full dataset.

and memorising circuits, and study their relative strength using the correct logit as a proxy measure
(described in Appendix C).

As we demonstrated previously, memorisation’s efficiency drops with increasing dataset size, while
generalisation’s stays constant. Theorem D.4 (case 2) suggests that parameter norm allocated to a
circuit is proportional to efficiency, and since logit values also increase with parameter norm, this
implies that the ratio of the generalisation to memorisation logit oyt /o

y
m should increase monotonically

with dataset size.

In Figure 12a we see exactly this: the logit ratio changes monotonically (over 6 orders of magnitude)
with increasing dataset size.

Due to the difficulties in training to convergence at small dataset sizes, we initialised all parameters
from a generalisation-only network trained on the full dataset. We confirmed that in all the runs, at
convergence, the training loss was lower than the training loss from a randomly initialised network,
indicating that this initialisation allows our optimiser to find a better minimum than from random
initialisation.

B.5 ILLUSTRATIVE EXAMPLE

We describe a minimal example showing how the the three ingredients (described in Section 2)
can lead to grokking. This should be read as an illustration of the ingredients, rather than making
quantitative predictions about dynamics. We make several simplifying design choices to make the
example clear and tractable. For analytical tractability, we let the generalisation and memorisation
circuits be weighted input-output lookup tables, rather than internal circuits in neural networks.

Set up. For our illustration, we want to contrast an idealised generalising circuit with an idealised
memorising circuit. An idealised memorising circuit makes perfect predictions for all points in the
training data but incorrect predictions elsewhere. Meanwhile an idealised generalising circuit makes
perfect predictions for all points in both training and test data. We can formally express this by
writing the output logits oyf (x)—defined with respect to the input, x, label, y, and classifier, f—for

18

Under review as a conference paper at ICLR 2024

each of the two circuits as indicator functions of the datasets that they have perfect performance on.
oyG(x) = 1 [(x, y) ∈ D or (x, y) ∈ Dtest] (3)

oyM (x) = 1 [(x, y) ∈ D or (x, y) ∈ Dmem] . (4)
Here, the training dataset is D; the classifier is evaluated on the test dataset, Dtest; and Dmem is a set
of datapoints with the same x as the test dataset but with confident wrong answers. In a real network,
a generalising circuit and memorising circuit would not have such extreme performance.

In a neural network, multiple circuits combine to produce the final output. In a similar way, and
allowing us to model learning, we look at the weighted combination of these two circuits.

oy(x) = wGo
y
G(x) + wMoyM (x)

Unfortunately, if we learn wG and wM directly with gradient descent, we have no control over the
speed at which the weights are learned. Inspired by Jermyn & Shlegeris (2022), we instead compute
weights as multiples of two “subweights”, and then learn the subweights with gradient descent. More
precisely, we let wG = wG1

wG2
and wM = wM1

wM2
, and update each subweight according to

wi ← wi − λ · ∂L/∂wi. The speed at which the weights are strengthened by gradient descent can
then be controlled by the initial values of the weights.

We can also model the “parameter norm” and its relationship to the relative weights of the two
circuits. Because the circuits here are non-parametric idealisations we need to give an illustrative
hyperparameter for each describing a hypothetical parameter norm, PG and PM , which we define as
the parameter norms when wM = wG = 1. By hypothesis, because the generalising circuit is more
efficient, PG < PM (ingredient 2).

When one of the circuits is better for prediction, its weight in the mixture will increase. This
corresponds intuitively to the weights of a neural network scaling up so that the final logits scale up.
In a κ-layer MLP with Relu activations and without biases, scaling all parameters by a constant c
would scale the outputs by cκ. Inspired by this, we model the parameter norm of the generalising
circuit as w1/κ

G PG for some κ > 0, and similarly for the memorising circuit.

Theoretical analysis. We first analyse the optimal solutions to the setup above. We can ignore the
subweights, as they only affect the speed of learning: Lx-ent and Lwd depend only on the weights, not
subweights. Intuitively, to get minimal loss, we must assign higher weights to more efficient circuits –
but it is unclear whether we should assign no weight to less efficient circuits, or merely smaller but
still non-zero weights. Theorem D.4 shows that in our example, both of these cases can arise: which
one we get depends on the value of κ.

In Figure 2 we show that two ingredients: multiple circuits with different efficiencies, and slow and
fast circuit development, are sufficient to reproduce learning curves that qualitatively demonstrate
grokking. In Table 1 we provide details about the simulation used to produce this figure.

C GENERALISATION AND MEMORISATION IN MODULAR ADDITION

In modular addition, given two integers a, b and a modulus p as input, where 0 ≤ a, b < p, the task
is to predict a+ b mod p. Nanda et al. (2023) identified the generalising algorithm implemented
by a 1-layer transformer after grokking (visualised in Figure 13), which we call the “trigonometric”
algorithm. In this section we summarise the algorithm, and explain how we produce our proxy
metrics for the strength of the generalising and memorising circuits.

Trigonometric logits. We explain the structure of the logits produced by the trigonometric al-
gorithm. For each possible label c ∈ {0, 1, . . . p − 1}, the trigonometric logit oc will be given by∑

ωk
cos(ωk(a + b − c)), for a few key frequencies ωk = 2π k

p with integer k. For the true label
c∗ = a+b mod p, the term ωk(a+b−c∗) is an integer multiple of 2π, and so cos(ωk(a+b−c∗)) = 1.
For any incorrect label c ̸= a+ b mod p, it is very likely that at least some of the key frequencies
satisfy cos(ωk(a+ b− c))≪ 1, creating a large difference between oc and oc

∗
.

Trigonometric algorithm. There is a set of key frequencies ωk. (These frequencies are typically
whichever frequencies were highest at the time of random initialisation.) For an arbitrary label c, the
logit oc is computed as follows:

19

Under review as a conference paper at ICLR 2024

Table 1: Hyperparameters used for our simulations.

(a) Generalisation is learned
slower but is more efficient than
memorisation.

Parameter Value
Pg 1
Pm 2
κ 1.2
α 0.005

wg1(0) 0
wg2(0) 0.005
wm1(0) 0
wm2

(0) 1
q 113
λ 0.01

(b) Generalisation less efficient
than memorisation.

Parameter Value
Pg 4
Pm 2
κ 1.2
α 0.005

wg1(0) 0
wg2(0) 0.005
wm1(0) 0
wm2

(0) 1
q 113
λ 0.01

(c) Generalisation and memorisa-
tion learned at equal speeds.

Parameter Value
Pg 1
Pm 2
κ 1.2
α 0.005

wg1(0) 0
wg2(0) 1
wm1(0) 0
wm2

(0) 1
q 113
λ 0.01

Figure 13: The trigonometric algorithm for modular arithmetic (reproduced from Nanda et al.
(2023)). Given two numbers a and b, the model projects each point onto a corresponding rotation
using its embedding matrix. Using its attention and MLP layers, it then composes the rotations to get
a representation of a+ b mod p. Finally, it “reads off” the logits for each c ∈ {0, 1, . . . , p− 1}, by
rotating by −c to get cos(ω(a+ b− c)), which is maximised when a+ b ≡ c mod P (since ω is a
multiple of 2π).

1. Embed the one-hot encoded number a to sin(ωka) and cos(ωka) for the various frequencies
ωk. Do the same for b.

2. Compute cos(ωk(a + b)) and sin(ωk(a + b)) using the intermediate attention and MLP
layers via the trigonometric identities:

cos(ωk(a+ b)) = cos(ωka) cos(ωka)− sin(ωka) sin(ωkb)

sin(ωk(a+ b)) = sin(ωka) cos(ωkb) + cos(ωka) sin(ωkb)

3. Use the output and unembedding matrices to implement the trigonometric identity:

oc =
∑
ωk

cos(ωk(a+ b− c)) =
∑
ωk

cos(ωk(a+ b)) cos(ωkc) + sin(ωk(a+ b)) sin(ωkc).

Isolating trigonometric logits. Given a classifier f , we can aggregate its logits on every possible
input, resulting in a vector Z⃗f of length p3 where Z⃗a,b,c

f = ocf (“a + b =”) is the logit for label c on
the input (a, b). We are interested in identifying the contribution of the trigonometric algorithm to Z⃗f .

20

Under review as a conference paper at ICLR 2024

We use the same method as Chughtai et al. (2023) and restrict Z⃗f to a much smaller trigonometric
subspace.

For a frequency ωk, let us define the p3-dimensional vector Z⃗ωk
as Z⃗a,b,c

ωk
= cos(ωk(a + b − c)).

Since Z⃗ωk
= Z⃗ωp−k

, we set 1 ≤ k ≤ K, where K = ⌈(p − 1)/2⌉, to obtain K distinct vectors,
ignoring the constant bias vector. These vectors are orthogonal, as they are part of a Fourier basis.

Notice that any circuit that was exactly following the learned algorithm described above would only
produce logits in the directions Z⃗ωk

for the key frequencies ωk. So, we can define the trigonometric
contribution to Z⃗f as the projection of Z⃗f onto the directions Z⃗ωk

. We may not know the key
frequencies in advance, but we can sum over all K of them, giving the following definition for
trigonometric logits:

Z⃗f,T =

K∑
k=1

(Z⃗f · Ẑωk
)Ẑωk

where Ẑωk
is the normalised version of Z⃗ωk

. This corresponds to projecting onto a K-dimensional
subspace of the p3-dimensional space in which Z⃗f lives.

Memorisation logits. Early in training, neural networks memorise the training dataset without
generalising, suggesting that there exists a memorisation algorithm, implemented by the memorising
circuit2. Unfortunately, we do not understand the algorithm underlying memorisation, and so cannot
design a similar procedure to isolate the memorising circuit’s contribution to the logits. However,
we hypothesise that for modular addition, generalisation and memorisation are the only two circuit
families of importance for the loss. This allows us to define the memorisation contribution to the
logits as the residual:

Z⃗f,M = Z⃗f − Z⃗f,T

Trigonometric and memorisation circuits. We say that a circuit is a trigonometric circuit if it
implements the trigonometric algorithm, and similarly for memorisation circuits. Importantly, this is
a many-to-one mapping: there are many possible circuits that implement a given algorithm.

We isolate trigonometric (o⃗t) and memorisation (o⃗m) logits by projecting the output logits (o⃗) as
described in Appendix C. We cannot directly measure the circuit weights wt and wm, but instead use
an indirect measure: the value of the logit for the correct class given by each circuit, i.e. oyt and oym.

Flaws These metrics should be viewed as an imperfect proxy measure for the true strength of the
trigonometric and memorisation circuits, as they have a number of flaws:

1. When both trigonometric and memorisation circuits are present in the network, they are
both expected to produce high values for the correct logits, and low values for incorrect
logits, on the train dataset. Since the trigonometric and memorisation logits are correlated,
it becomes more likely that Z⃗f,T captures memorisation logits too.

2. In this case we would expect our proxy measure to overestimate the strength of the trigono-
metric circuit and underestimate the strength of memorisation. In fact, in our experiments
we do see large negative correct logit values for memorisation on training for semi-grokking,
which probably arises because of this effect.

3. Logits are not inherently meaningful; what matters for loss is the extent to which the correct
logit is larger than the incorrect logits. This is not captured by our proxy metric, which only
looks at the size of the correct logit. In a binary classification setting, we could instead use
the difference between the correct and incorrect logit, but it is not clear what a better metric
would be in the multiclass setting.

2In reality, there are at least two different memorisation algorithms: commutative memorisation (which
predicts the same answer for (a, b) and (b, a)) and non-commutative memorisation (which does not). However,
this difference does not matter for our analyses, and we will call both of these “memorisation” in this paper.

21

Under review as a conference paper at ICLR 2024

D PROOFS OF THEOREMS

We assume we have a set of inputs X , a set of labels Y , and a training dataset, D =
{(x1, y1), . . . (xD, yD)}. Let f be a classifier that assigns a real-valued logit for each possible
label given an input. We denote an individual logit as oyf (x) := f(x, y). When the input x is clear
from context, we will denote the logit as oyf . Excluding weight decay, the loss for the classifier is
given by the softmax cross-entropy loss:

Lx-ent(f) = −
1

D

∑
(x,y)∈D

log
exp(oyf)∑

y′∈Y

exp(o
y′

f)
.

For any c ∈ R, let c · f be the classifier whose logits are multipled by c, that is, (c · f)(x, y) =
c× f(x, y). Intuitively, once a classifier achieves perfect accuracy, then the true class logit oy

∗
will

be larger than any incorrect class logit oy
′
, and so loss can be further reduced by scaling up all of the

logits further (increasing the gap between oy
∗

and oy
′
).

Theorem D.1. Suppose that the classifier f has perfect accuracy, that is, for any (x, y∗) ∈ D and
any y′ ̸= y∗ we have o

y∗

f > o
y′

f . Then, for any c > 1, we have Lx-ent(c · f) < Lx-ent(f).

Proof. First, note that we can rewrite the loss function as:

Lx-ent(f) = −
1

D

∑
(x,y∗)

log
exp(o

y∗

f)∑
y′

exp(o
y′

f)
=

1

D

∑
(x,y∗)

log

∑
y′

exp(o
y′

f)

exp(o
y∗

f)

 =
1

D

∑
(x,y∗)

log

1 +
∑

y′ ̸=y∗

exp(o
y′

f − o
y∗

f)

Since we are given that oy
∗

f > o
y′

f , for any c > 1 we have c(oy
′

f − o
y∗

f)) < o
y′

f − o
y∗

f . Since exp, log,
and sums are all monotonic, this gives us our desired result:

Lx-ent(c·f) =
1

D

∑
(x,y∗)

log

1 +
∑

y′ ̸=y∗

exp(c(o
y′

f − o
y∗

f))

 <
1

D

∑
(x,y∗)

log

1 +
∑

y′ ̸=y∗

exp(o
y′

f − o
y∗

f)

 = Lx-ent(f).

We now move on to Theorem D.4. First we establish some basic lemmas that will be used in the
proof:

Lemma D.2. Let a, b, r ∈ R with a, b ≥ 0 and 0 < r ≤ 1. Then (a+ b)r ≤ ar + br.

Proof. The case with a = 0 or b = 0 is clear, so let us consider a, b > 0. Let x = a
a+b and

y = b
a+b . Since 0 ≤ x ≤ 1, we have x(1−r) ≤ 1, which implies x ≤ xr. Similarly y ≤ yr. Thus

xr + yr ≥ x + y = 1. Substituting in the values of x and y we get ar+br

(a+b)r ≥ 1, which when
rearranged gives us the desired result.

Lemma D.3. For any x, c, r ∈ R with r ≥ 1, there exists some δ > 0 such that for any ϵ < δ we
have xr − (x− ϵ)r > δ(rxr−1 − c).

Proof. The function f(x) = xr is everywhere-differentiable and has derivative rxr−1. Thus we
can choose δ such that for any ϵ < δ we have −c < xr−(x−ϵ)r

δ − rxr−1 < c. Rearranging, we get
xr − (x− ϵ)r > δ(rxr−1 − c) as desired.

22

Under review as a conference paper at ICLR 2024

D.1 WEIGHT DECAY FAVOURS EFFICIENT CIRCUITS

To flesh out the argument in Section 2, we construct a minimal example of multiple circuits
{C1, . . . CI} of varying efficiencies that can be scaled up or down through a set of non-negative
weights wi. Our classifier is given by f =

∑I
i=1 wiCi, that is, the output f(x, y) is given by∑I

i=1 wiCi(x, y).

We take circuits Ci that are normalised, that is, they produce the same average logit value. Pi denotes
the parameter norm of the normalised circuit Ci. We decide to call a circuit with lower Pi more
efficient. However, it is hard to define efficiency precisely. Consider instead the parameter norm
P ′
i of the scaled circuit wiCi. If we define efficiency as either the ratio ∥o⃗Ci∥/P ′

i or the derivative
d∥o⃗Ci∥/dP ′

i , then it would vary with wi since o⃗Ci and P ′
i can in general have different relationships

with wi. We prefer Pi as a measure of relative efficiency as it is intrinsic to Ci rather than depending
on its scaling wi.

Gradient descent operates over the weights wi (but not Ci or Pi) to minimise L = Lx-ent + αLwd.
Lx-ent can easily be rewritten in terms of wi, but for Lwd we need to model the parameter norm of the
scaled circuits wiCi. Notice that, in a κ-layer MLP with Relu activations and without biases, scaling
all parameters by a constant c scales the outputs by cκ. Inspired by this observation, we model the
parameter norm of wiCi as w1/κ

i Pi for some κ > 0. This gives the following effective loss:

L(w⃗) = Lx-ent

(
I∑

i=1

wiCi

)
+

α

2

I∑
i=1

(w
1
κ
i Pi)

2

We will generalise this to any Lq-norm (where q > 0). Standard weight decay corresponds to
q = 2. We will also generalise to arbitrary differentiable, bounded training loss functions, instead
of cross-entropy loss specifically. In particular, we assume that there is some differentiable Ltrain(f)
such that there exists a finite bound B ∈ R such that ∀f : Ltrain(f) ≥ B. (In the case of cross-entropy
loss, B = 0.)

With these generalisations, the overall loss is now given by:

L(w⃗) = Ltrain

(
I∑

i=1

wiCi

)
+

α

q

I∑
i=1

(w
1
κ
i Pi)

q (5)

The following theorem establishes that the optimal weight vector allocates more weight to more
efficient circuits, under the assumption that the circuits produce identical logits on the training dataset.

Theorem D.4. Given I circuits Ci and associated Lq parameter norms Pi, assume that every
circuit produces the same logits on the training dataset, i.e. ∀i, j, ∀(x, _) ∈ D, ∀y′ ∈ Y we have
o
y′

Ci
(x) = o

y′

Cj
(x). Then, any weight vector w⃗∗ ∈ RI that minimizes the loss in Equation 5 subject to

wi ≥ 0 satisfies:

1. If κ ≥ q, then w∗
i = 0 for all i such that Pi > minj Pj .

2. If 0 < κ < q, then w∗
i ∝ P

− qκ
q−κ

i .

Intuition . Since every circuit produces identical logits, their weights are interchangeable with each
other from the perspective of Lx-ent, and so we must analyse how interchanging weights affects Lwd.
Lwd grows as O(w

2/κ
i). When κ > 2, Lwd grows sublinearly, and so it is cheaper to add additional

weight to the largest weight, creating a “rich get richer” effect that results in a single maximally
efficient circuit getting all of the weight. When κ < 2, Lwd grows superlinearly, and so it is cheaper
to add additional weight to the smallest weight. As a result, every circuit is allocated at least some
weight, though more efficient circuits are still allocated higher weight than less efficient circuits.
Sketch . The assumption that every circuit produces the same logits on the training dataset implies
that Ltrain is purely a function of

∑I
i=1 wi. So, for Ltrain, a small increase δw to wi can be balanced

by a corresponding decrease δw to some other weight wj .

23

Under review as a conference paper at ICLR 2024

For Lwd, an increase δw to wi produces a change of approximately δLwd
δwi
· δw = α

κ (Pi(wi)
r)

q · δw,

where r = 1
κ−

1
q = q−κ

qκ . So, an increase of δw to wi can be balanced by a decrease of
(

Pi(wi)
r

Pj(wj)r

)q
δw

to some other weight wj . The two cases correspond to r ≤ 0 and r > 0 respectively.

Case 1: r ≤ 0. Consider i, j with Pj > Pi. The optimal weights must satisfy w∗
i ≥ w∗

j (else you
could swap w∗

i and w∗
j to decrease loss). But then w∗

j must be zero: if not, we could increase w∗
i by δw

and decrease w∗
j by δw, which keeps Lx-ent constant and decreases Lwd (since Pi(w

∗
i)

r < Pj(w
∗
j)

r).

Case 2: r > 0. Consider i, j with Pj > Pi. As before we must have w∗
i ≥ w∗

j . But now w∗
j must

not be zero: otherwise we could increase w∗
j by δw and decrease w∗

i by δw to keep Lx-ent constant
and decrease Lwd, since Pj(w

∗
j)

r = 0 < Pi(w
∗
i)

r. The balance occurs when Pj(w
∗
j)

r = Pi(w
∗
i)

r,

which means w∗
i ∝ P

−1/r
i .

Proof. First, notice that our conclusions trivially hold for w⃗∗ = 0⃗ (which can be a minimum if e.g.
the circuits are worse than random). Thus for the rest of the proof we will assume that at least one
weight is non-zero.

In addition, L → ∞ whenever any wi → ∞ (because Ltrain ≥ B and Lwd → ∞ as any one
wi →∞). Thus, any global minimum must have finite w⃗.

Notice that, since the circuit logits are independent of i, we have f = (
∑

i wi) f , and so Ltrain(w⃗) is
purely a function of the sum of weights

∑I
i=1 wi, and the overall loss can be written as:

L(w⃗) = Ltrain

(
I∑

i=1

wi

)
+

α

q

I∑
i=1

((wi)
1
κPi)

q

We will now consider each case in order.

Case 1: κ ≥ q. Assume towards contradiction that there is a global minimum w⃗∗ where w∗
j > 0

for some circuit Cj with non-minimal Pj . Let Ci be a circuit with minimal Pi (so that Pi < Pj), and
let its weight be w∗

i .

Consider an alternate weight assignment w⃗′ that is identical to w⃗∗ except that w′
j = 0 and w′

i =

w∗
i + w∗

j . Clearly
∑

i w
∗
i =

∑
i w

′
i, and so Ltrain(w⃗

∗) = Ltrain(w⃗
′). Thus, we have:

L(w⃗∗)− L(w⃗′)

=

(
α

q

I∑
m=1

((w∗
m)

1
κPm)q

)
−

(
α

q

I∑
m=1

((w′
m)

1
κPm)q

)
=

α

q

(
(w∗

i)
q
κP q

i + (w∗
j)

q
κP q

j − (w′
i)

q
κP q

i

)
>

α

q
P q
i

(
(w∗

i)
q
κ + (w∗

j)
q
κ − (w′

i)
q
κ

)
since Pj > Pi

=
α

q
P q
i

(
(w∗

i)
q
κ + (w∗

j)
q
κ − (w∗

i + w∗
j)

q
κ

)
definition of w′

i

≥ α

q
P q
i

(
(w∗

i)
q
κ + (w∗

j)
q
κ −

(
(w∗

i)
q
κ + (w∗

j)
q
κ

))
using Lemma D.2 since 0 <

q

κ
≤ 1

= 0

Thus we have L(w⃗∗) > L(w⃗′), contradicting our assumption that w⃗∗ is a global minimum of L. This
completes the proof for the case that κ ≥ q.

Case 2: κ < q. First, we will show that all weights are non-zero at a global minimum (excluding
the case where w⃗∗ = 0⃗, discussed at the beginning of the proof). Assume towards contradiction
that there is a global minimum w⃗∗ with w∗

j = 0 for some j. Choose some arbitrary circuit Ci with
nonzero weight w∗

i .

24

Under review as a conference paper at ICLR 2024

Choose some ϵ1 > 0 satisfying ϵ1 < q
2κ (w

∗
i)

q
κ−1. By applying Lemma D.3 with x = w∗

i , c = ϵ1, r =
q
κ , we can get some δ > 0 such that for any ϵ < δ we have (w∗

i)
q
κ − (w∗

i − ϵ)
q
κ > δ(qκ (w

∗
i)

q
κ−1− ϵ1).

Choose some ϵ2 > 0 satisfying ϵ2 < min(w∗
i , δ,

[
q
2κ (w

∗
i)

q
κ−1 P q

i

P q
j

] 1
q
κ

−1
). Consider an alternate

weight assignment defined w⃗′ that is identical to w⃗∗ except that w′
j = ϵ2 and w′

i = w∗
i − ϵ2. As in

the previous case, Ltrain(w⃗
∗) = Ltrain(w⃗

′). Thus, we have:

L(w⃗∗)− L(w⃗′)

=
α

q

(
(w∗

i)
q
κP q

i − (w∗
i − ϵ2)

q
κP q

i − ϵ
q
κ
2 P

q
j

)
=

α

q

(
P q
i ((w

∗
i)

q
κ − (w∗

i − ϵ2)
q
κ)− ϵ

q
κ
2 P

q
j

)
>

α

q

(
P q
i δ(

q

κ
(w∗

i)
q
κ−1 − ϵ1)− ϵ

q
κ
2 P

q
j

)
application of Lemma D.3 discussed above

>
α

q

(
P q
i δ(

q

κ
(w∗

i)
q
κ−1 − q

2κ
(w∗

i)
q
κ−1)− ϵ

q
κ
2 P

q
j

)
we chose ϵ1 <

q

2κ
(w∗

i)
q
κ−1

>
α

q

(
P q
i ϵ2

q

2κ
(w∗

i)
q
κ−1 − ϵ

q
κ
2 P

q
j

)
we chose ϵ2 < δ

=
αϵ2
q

(q

2κ
(w∗

i)
q
κ−1P q

i − ϵ
q
κ−1
2 P q

j

)
>

αϵ2
q

(
q

2κ
(w∗

i)
q
κ−1P q

i −
q

2κ
(w∗

i)
q
κ−1P

q
i

P q
j

P q
j

)
we chose ϵ2 <

[
q

2κ
(w∗

i)
q
κ−1P

q
i

P q
j

] 1
q
κ

−1

)

= 0

Note that in the last step, we rely on the fact that κ < q: this lets us use an upper bound on ϵ2 to get
an upper bound on ϵ

q
κ−1
2 , and so a lower bound on the overall expression.

Thus we have L(w⃗∗) > L(w⃗′), contradicting our assumption that w⃗∗ is a global minimum of L. So,
for all i we have wi > 0.

In addition, as wi →∞ we have L(w⃗)→∞, so w⃗∗ cannot be at the boundaries, and instead lies in
the interior. Since q > κ, L(w⃗) is differentiable everywhere. Thus, we can conclude that its gradient
at w⃗∗ is zero:

δL
δwi

= 0

δLtrain

δwi
+

αP q
i

κ
(w∗

i)
q
κ−1 = 0

P q
i (w

∗
i)

q−κ
κ = −κ

α

δLtrain

δwi

w∗
i P

qκ
q−κ

i =

(
−κ

α

δLtrain

δwi

) κ
q−κ

Since Ltrain(w⃗) is a function of
I∑

j=1

wj , we can conclude that δLtrain
δwi

= δLtrain
δ
∑

j wj
· δ

∑
j wj

δwi
= δLtrain

δ
∑

j wj
,

which is independent of i. So the right hand side of the equation is independent of i, allowing us to

conclude that w∗
i ∝ P

− qκ
q−κ

i .

25

	Introduction
	Three ingredients for grokking
	Why generalising circuits are more efficient
	Relationship of efficiency with dataset size
	Implications of crossover: ungrokking and semi-grokking.

	Experimental evidence
	Relationship of efficiency with dataset size
	Ungrokking: overfitting after generalisation
	Semi-grokking: evenly matched circuits

	Related work
	Discussion
	Conclusion
	Notation
	Experimental details and more evidence
	Semi-grokking
	Ungrokking
	Generalising and memorising circuit development during grokking
	Tradeoffs between generalisation and memorisation
	Illustrative example

	Generalisation and memorisation in modular addition
	Proofs of theorems
	Weight decay favours efficient circuits

