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Abstract
Adversarial patches have been of interest to re-
searchers in recent years due to their easy imple-
mentation in real world attacks. In this paper we
expand upon previous research by demonstrat-
ing a new hidden patch attack on optical flow.
By altering the transparency during training we
can generate patches that are invariant to their
background meaning they can be inconspicuously
applied using a transparent film to any number
of objects. This also has the added benefit of
reducing training costs when mass producing ad-
versarial objects, since only one trained patch is
needed for any application. Although this specific
implementation is demonstrated using a white
box attack on optical flow, it can be generalized
to other scenarios such as object recognition or
semantic segmentation.

1. Introduction
As a number of adversarial examples have been demon-
strated on photo data in recent years, it’s only natural to add
another dimension and extend this to video data. Despite
the additional complexity associated with adding the tem-
poral dimension, this also provides new attack vectors that
can be leveraged by bad actors. One potential attack vec-
tor is disrupting optical flow, a popular modality for action
recognition and object tracking. Optical flow describes the
apparent movement of pixels in an image sequence and is
typically represented as a vector field (u,v) that corresponds
to the displacement of each pixel in the image sequence.

Adversarial patches attacking optical flow have serious im-
plications for automated driving systems that use deep learn-
ing optical flow algorithms as an input. This is a safety
critical application, so if an effective attack against these
systems can be demonstrated then that will influence design
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Figure 1. By adjusting the alpha value of the patch, we can hide
it within the image. From left to right we have an alpha of 0 (no
patch), 0.1, and 1 (fully opaque).

decisions. This is especially true considering (Athalye et al.,
2017) has demonstrated the effectiveness of 3D printed ad-
versarial attacks. Additionally, if it can be shown that these
attacks are effective for low alpha values (transparency) such
as in Figure 1, then real-world attacks become more feasible.
Instead of having to develop adversarial patches for each
object we apply the patch to, since trained to be invariant
to the background then implementing this attack on a wide
variety of objects is as simple as applying a transparent film
to it. In this pilot study we show our method for carrying
out such an attack and demonstrate its effectiveness.

The primary contributions of our paper include: A new hid-
den adversarial patch attack that is invariant to background
appearance. Given its generalizability to different back-
grounds, it reduces the computational cost of implementing
this attack on a variety of objects in real world situations.
This attack is inconspicuous to human observers.

2. Related Work
In this section we cover related work in disguised adversarial
attacks as well as previous attacks on optical flow.

2.1. Disguised Adversarial Attacks

In a 2016 paper, the researchers (Kurakin et al., 2017) first
demonstrated how adversarial images can be effective in
real world attacks. After training adversarial patches for
their image classifier, they then printed out these patches
and demonstrated how these attacks can be realized in the
real world. They even showed how these attacks can be
disguised by constraining to optimization to fit a certain
template such as peace stickers. Taking this one step further
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(Sharif et al., 2016) performed a real world attack on facial
recognition systems through the use of eyeglasses and other
accessories. The researchers (Athalye et al., 2017) subse-
quently built upon these previous works by developing a
new training method incorporating various transformations
during training to generate attacks robust to changes in view.
By doing so they were able to 3D print an adversarial turtle
that tricked their object detector into thinking it was a rifle
for all viewing angles.

Compared with our method, each of these attacks requires
training for the individual examples. An advantage in our
approach is the ability for our patches to be discretely ap-
plied to a wide variety of objects and backgrounds. This
reduces training time and increases the viability of these
types of attacks.

2.2. Attacks on Optical Flow

Recently there has been a move toward deep learning optical
flow predictors over classical methods as they can provide
results in near time making then ideal for applications such
as automated driving. FlowNet (Ilg et al., 2017) was the first
of these deep learning models, but more recently methods
that combine classical and deep learning methods such as
SpyNet (Ranjan & Black, 2016) and PWC-Net (Sun et al.,
2018) have achieved state of the art results.

A paper by the the researchers (Sevilla-Lara et al., 2017)
suggest optical flow is useful in video classification as it is
invariant to appearance. Additionally, they found that the
ability for optical flow to identify small movements as well
as its accuracy at boundaries were both highly correlated
with performance for action recognition tasks. This suggests
that attacks targeted at optical flow will how downstream
effects on video classifiers.

The researchers (Inkawhich et al., 2018) demonstrated this
in their 2018 paper titled Adversarial Attacks for Optical
Flow-Based Action Recognition Classifiers. The author
demonstrates an attack on two-stream action recognition
classifiers that use optical flow as an input. They generate
adversarial examples targeting optical flow and show its
effectiveness at misclassifying video clips from the UCF-
101 dataset for both white box and black box scenarios.

In a 2019 paper, the researchers (Ranjan et al., 2019) built
upon previous work by developing a white box patch attack
targeting optical flow. They demonstrated the effectiveness
of this attack on several deep learning optical flow models
in a virtual environment before then implement this attack
in real world situations by printing the patch and measuring
how it disrupts optical flow.

Figure 2. The patches generated during training for each alpha
value.

3. Methodology
The full model was implemented in python and used Pytorch
as the backbone for training and broadly follows the process
outlined by (Ranjan et al., 2019). For our training data we
used videos from the UCF-101 dataset (Soomro et al., 2012).
For each video 2 consecutive frames were selected. We then
use a flownet F to generate a pseudo ground truth (u, v)
for the image sequence. SpyNet (Ranjan & Black, 2016)
was selected as the flownet model for this white box attack
because of its hybrid spatial pyramid deep learning structure
which makes it particularly robust to adversarial examples.

Once a pseudo ground truth is established, the patch p̂ is
then multiplied by its alpha value and applied to the image
sequence in a random location before the optical flow is once
again calculated using SpyNet. We label the function used to
insert the patch as H(u, v, l, α) where α is the transparency
value and l is the random location in the image sequence.
The subsequent adversarial flow is (ũ, ṽ). We then initialize
our patches to cover 4.0% of the image which is comparable
to the largest patch used in (Ranjan et al., 2019). Following
this, loss is then calculated as the cosine similarity between
the original flow values and the adversarial flow values. In
summary we solve the following:

p̂ = argmin
p

(u, v) · (ũ, ṽ)
‖(u, v)‖ · ‖(ũ, ṽ)‖

(1)

Where
(u, v) = F (u, v)

(ũ, ṽ) = F (H(u, v, l, α))

Gradient descent is used to find the gradients of each pixel in
the patch that minimizes this loss since a lower cosine value
represents more dissimilar flows. The patch pixel values
are then updated with the gradients. Since the gradients
are several orders of magnitude lower than the actual pixel
values, the learning rate was set to 100 in order to speed up
training and ensure the pixel values update. These values
are clamped so as to limit each pixel update to 2 units of
change for any given iteration. This process was repeated
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Alpha Training EPE Change No Flow EPE Change

0.1 61.7% 0.42%
0.5 13.1% 0.51%
1 8.3% 0.35%

Table 1. The relative change in EPE for each alpha value during
both training and the zero flow test.

for alpha values of 0.5 and 0.1 to assess how this impacts
performance compared to the baseline which was assigned
an alpha value of 1 meaning totally opaque.

4. Results
To ensure the patches were training properly, we tracked the
cosine similarity loss and end point error (EPE)1 for both
the training and validation data. We then selected the patch
for each experiment that maximized the EPE. These patches
can be visualized in Figure 2. We compare the relative dif-
ference between original and adversarial EPE for each test
in Table 1. Our results show that after just 250 epochs of
training each of the patches was able to increase the EPE on
the validation set. Although based on this metric it appears
that the lowest alpha value performed the best, the magni-
tude of this change isn’t meaningful since in our analysis
the patches remain stationary across the image sequence
whereas there is significant movement in the background
which will increase error for low alpha values. For this
experiment we only considered whether this value increased
in order to determine if it converged. In order to perform a
direct comparison we conducted a zero flow test for each
alpha value.

A zero flow test compares optical flow predictions between
two pairs of identical images: raw and adversarial. First the
flow is predicted for the raw images in order to generate
the ground truth2. From here, the adversarial patch is then
applied and it is once again passed through the flownet.
The difference between these two flow fields give us an
indication of how much the adversarial patch influences the
predicted flow. This was measured by taking the mean EPE
across the 500 validation samples, and then visualized by
converting the flow field to RGB as seen in Figure 3.

1A popular metric in optical flow evaluation
2Although the EPE should be 0 for identical images, DNN

flownets have some inherent error so this is required to produce a
more accurate baseline.

Figure 3. The RGB results from the zero flow test demonstrate the
effect our trained patches had on optical flow. On the left side we
have the raw images with the patch embedded in the top left for
alpha values of 0, 0.1, 0.5, and 1. On the right we can see how the
artifacts present in optical flow increase with the patch’s alpha.

5. Discussion
We have demonstrated how hidden patch attacks can be
effectively leveraged to interupt optical flow predictions in
white box scenarios. Given the simplicity of this method, it
can be generalized to other scenarios such black box attacks
or to generate adversarial examples in image classification
tasks.

As a pilot study, our approach has several limitations. First,
since this experiment was run with only 2000 training sam-
ples, all models had some trouble generalizing to the vali-
dation set during training. This issue can be overcome by
training on a larger more diverse training set. In addition
to this, for low alpha (Transparency) values our model be-
comes harder to train with it often diverging. This can be
overcome by reducing the learning rate and increasing the
number of epochs. Finally due to the limited amount of
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data, we decided to limit the transformations to randomly
insterting the patch into the image. However, since previous
work has already demonstrated how training with rotations
and resizing can lead to more robust examples, we would
expect this would apply to our method as well.

6. Conclusion
This hidden patch attack allows for the training of inconspic-
uous patches that can be applied to any background in order
to disrupt optical flow. This improves their deniability and
feasibility in real world attacks. Additionally, this attack
is generalizable beyond optical flow to other patch attacks
such as those on image classification models. Quantitative
and qualitative results from the zero flow test suggest that
these methods are able to disrupt optical flow and have the
potential to be implemented in real world situations.
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Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A.,
and Black, M. J. On the Integration of Optical Flow and
Action Recognition. CoRR, abs/1712.08416, 2017. URL
http://arxiv.org/abs/1712.08416. eprint:
1712.08416.

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K.
Accessorize to a Crime: Real and Stealthy Attacks on
State-of-the-Art Face Recognition. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 1528–1540, Vienna Austria,
October 2016. ACM. ISBN 978-1-4503-4139-4. doi:
10.1145/2976749.2978392. URL https://dl.acm.
org/doi/10.1145/2976749.2978392.

Soomro, K., Zamir, A. R., and Shah, M. UCF101: A Dataset
of 101 Human Actions Classes From Videos in The Wild.
CoRR, abs/1212.0402, 2012. URL http://arxiv.
org/abs/1212.0402. eprint: 1212.0402.

Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. PWC-Net:
CNNs for Optical Flow Using Pyramid, Warping, and
Cost Volume. arXiv:1709.02371 [cs], June 2018. URL
http://arxiv.org/abs/1709.02371. arXiv:
1709.02371.

http://arxiv.org/abs/1707.07397
http://arxiv.org/abs/1707.07397
http://ieeexplore.ieee.org/document/8099662/
http://ieeexplore.ieee.org/document/8099662/
http://arxiv.org/abs/1811.11875
http://arxiv.org/abs/1811.11875
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.00850
http://arxiv.org/abs/1611.00850
http://arxiv.org/abs/1910.10053
http://arxiv.org/abs/1910.10053
http://arxiv.org/abs/1712.08416
https://dl.acm.org/doi/10.1145/2976749.2978392
https://dl.acm.org/doi/10.1145/2976749.2978392
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1709.02371

