
Human-Robot Commensality: Bite Timing Prediction
for Robot-Assisted Feeding in Groups

Jan Ondras∗
Cornell University

janko@cs.cornell.edu

Abrar Anwar∗
University of Southern California

abrar.anwar@usc.edu

Tong Wu∗

Rutgers University
tong.wu96@rutgers.edu

Fanjun Bu
Cornell Tech

fb266@cornell.edu

Malte Jung
Cornell University

mfj28@cornell.edu

Jorge Jose Ortiz
Rutgers University

jorge.ortiz@rutgers.edu

Tapomayukh Bhattacharjee
Cornell University

tapomayukh@cornell.edu

Abstract: We develop data-driven models to predict when a robot should feed
during social dining scenarios. Being able to eat independently with friends and
family is considered one of the most memorable and important activities for peo-
ple with mobility limitations. While existing robotic systems for feeding people
with mobility limitations focus on solitary dining, commensality, the act of eating
together, is often the practice of choice. Sharing meals with others introduces the
problem of socially appropriate bite timing for a robot, i.e. the appropriate timing
for the robot to feed without disrupting the social dynamics of a shared meal. Our
key insight is that bite timing strategies that take into account the delicate balance
of social cues can lead to seamless interactions during robot-assisted feeding in a
social dining scenario. We approach this problem by collecting a Human-Human
Commensality Dataset (HHCD) containing 30 groups of three people eating to-
gether. We use this dataset to analyze human-human commensality behaviors and
develop bite timing prediction models in social dining scenarios. We also transfer
these models to human-robot commensality scenarios. Our user studies show that
prediction improves when our algorithm uses multimodal social signaling cues
between diners to model bite timing. The HHCD dataset, videos of user studies,
and code are available at https://emprise.cs.cornell.edu/hrcom/
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1 Introduction
Nearly 27% of people living in the United States have a disability, and close to 24 million people
aged 18 years or older need assistance with activities of daily living (ADL) [1]. Key among these
activities is feeding, which is both time-consuming for the caregiver, and challenging for the care
recipient (patient) to accept socially [2]. Indeed, needing help with one or more ADLs is the most
cited reason for moving to assisted or institutionalized living [3, 4]. Although there are several au-
tomated feeding systems on the market [5–13], they have lacked widespread acceptance. One of the
key reasons is that all of them require manual triggering of bite timing by the user, which is chal-
lenging for users with cognitive disabilities and inconvenient in social settings. A key challenge for
the realization of autonomous robotic feeding systems is therefore to infer proper bite timing [14].
While existing systems focus on solitary dining (e.g. [15–32]), commensality, the act of eating
together, is often the practice of choice. People like to share meals with others. The social experience
of a shared meal is an important part of the overall eating experience and current robot feeding
systems are not designed with that experience in mind. Transferring the challenge of inferring
appropriate bite timing to a social dining setting requires not only attuning to the user’s eating
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Figure 1: Our bite timing prediction workflow: (Left) Human-Human Commensality Dataset collec-
tion: We record audio and video of participants eating food in triads. (Middle) Our Social Nibbling
NETwork (SoNNET) learns to predict whether a user intends to take a bite based on a 6-second win-
dow of social signals. (Right) We conduct a social robot-assisted feeding user study by deploying a
variation of SoNNET on a robot. We refer to the User also as a Target user.

behavior but also to the complex social dynamics of the group. For example, a robot should not
attempt to feed a user who is actively engaged in conversation. Motivated by a growing body of
research that seeks to develop models for robots to function in group settings [33, 34] we ask the
seemingly simple question: How should an assistive feeding robot decide the right timing for feeding
a user in ever-changing and dynamic social dining scenarios?
We developed an intelligent autonomous robot-assisted feeding system that uses multimodal sensing
to feed people in dynamic social dining scenarios. We collected a novel audio-visual Human-Human
Commensality Dataset (HHCD) capturing human social eating behaviors. Using this data, we then
trained multimodal machine learning models to predict bite timing in human-human commensality.
We explored how our models trained on human-human commensality scenarios performed in a
human-robot commensality setting and evaluated them in a user study. The overall workflow is
shown in Fig. 1. We made algorithmic and experimental design decisions by consulting with care
recipients, caregivers, and occupational therapists. We find that bite timing prediction improves
when our model accounts for social signaling among diners, and such a model is preferred over a
manual trigger and a fixed-interval trigger. Our main contributions include:
• A SOcial Nibbling NETwork (SoNNET) which captures the subtle inter-personal social dynamics

in human-human and human-robot groups for predicting bite timing in social-dining scenarios.
• Methods that can successfully transfer bite timing strategies learned from human-human com-

mensality cues to human-robot commensality situations, which we evaluate in a user study with a
robot in 10 triadic human groups.

• A socially-aware robot-assisted feeding system that extends our capacity to feed people in solitary
settings to groups of people sharing a meal.

• An analysis of various social and functional factors that affect human feeding behaviors during
human-human commensality.

• A novel Human-Human Commensality Dataset (HHCD) containing multi-view RGBD video and
directional audio recordings capturing 30 groups of three people sharing a meal.

2 Human-Robot Commensality
Eating is a complex activity that requires the sensitive coordination of several motor and sensory
functions. Anyone who has fed another knows that feeding, particularly social feeding where a
person is being fed in a social setting, is a delicate dance of multimodal signaling (via gaze, facial
expressions, gestures, and speech, to name a few). Research on commensality, the practice of eating
together, has highlighted the importance of the social nature of eating for social communion, order,

2



health, and well-being [35]. As a consequence, digital commensality has focused on understanding
the role of technology in facilitating or inhibiting the more pleasurable social aspects of dining [36].
When a person relies on assisted feeding, meals require that patient and caregiver coordinate their
behavior [37]. To achieve this subtle cooperation, the people involved must be able to initiate,
perceive, and interpret each other’s verbal and non-verbal behavior. The main responsibility for this
cooperation lies with caregivers, whose experiences, educational background, and personal beliefs
may influence the course of the mealtime [38]. Our goal in this work is to understand the rhythm
and timing of this dance to enable an automated feeding assistant to be thoughtful of when it should
feed the user in social dining settings. We introduce the concept of Human-Robot Commensality
at the intersection of commensality and robot-assisted feeding in social group settings.
Our research is motivated by the key insight that bite timing strategies that take into account ever-
changing social signals and group dynamics can lead to a seamless human-robot collaboration in
social dining scenarios. Fueled by this insight, we believe a feeding device that takes the initiative
and offers bites proactively during the meal at times when a bite is likely to be desired will create a
more seamless dining experience than a device that requires the user to initiate bites. Herlant [39]
designed an HMM to predict bite timing in dyadic robot-assisted feeding. However, her model only
considered the social cues of the user. Bhattacharjee et al. [40] found users preferred less intrusive
interfaces in a social dining scenario, specifically a web interface over a voice interface. Our work
aims to build non-intrusive bite timing strategies by focusing on learning when to feed a user in
triadic scenarios while using implicit social features from all diners.
Particularly, bite timing is important because the consequences of presenting a bite to the diner
earlier than expected is poorly tolerated. This can include an interruption to conversation or to
finishing chewing the prior bite. The consequences of presenting a bite later than desired can include
frustration towards the robot and disruption of the natural flow of conversation during the meal.
Parallels can be drawn to interruptibility research on finding the most appropriate timing to probe
a user. Researchers have found that people performed best on a task if interruptions were mediated
rather than timed immediately or on scheduled intervals [41, 42], often mediated based on modeling
contextual and social factors [43–46].
A socially-aware robot-assisted feeding system should be designed such that if needed, the user
should be able to communicate these intentions via multiple different modalities such as body lan-
guage, gaze, or speech. These various modalities have been found to be effective in modeling social
interactions [47–50]. Capturing these natural social interactions in computational models are likely
crucial to provide accurate bite timing without distracting users from the social ambiance.

3 Problem Formulation
The objective of the bite timing prediction problem in robot-assisted feeding with a single diner is
to predict the timing of when this user will take a bite of food by capturing their signals U such as
voice, body gestures, head movements or speaking status. We define the proper timing for when a
robot should feed as when the user intends to take a bite of food. It takes input signals U(t0 : t) from
time t0 to time t and learns a function F(U) to predict a Boolean y(t+ h) = F (U (t0 : t)), which
indicates whether the user intends to take a bite in the time horizon h and trigger a bite transfer at
time t+1. When a person lifts their fork off the plate to eat, they intend to take a bite of food, where
this time horizon h is the time it takes to transfer the food to their mouth from their plate.
In this paper, we consider a social variant of the bite timing prediction problem where a user is
interacting with two co-diners. Our goal is to predict the timing of a user to take a bite of food based
on the social cues within the interaction. From an initial time t0 to time t, the user receives social
signals L(t0 : t) and R(t0 : t) from their left and right conversational co-diners, respectively. Given
these external social signals and the target user’s own history of signals U(t0 : t), we aim to predict
y. We note that it may not always be possible to track the same set of features for a user and their
co-diners. Therefore, for some time range k = t− t0 and feature dimensions n,m for the user and
co-diners respectively, U ∈ Rk×n while L,R ∈ Rk×m, where n does not necessarily equal m. The
function to learn is:

y(t+ 1) = F (U (t0 : t) ,L (t0 : t) ,R (t0 : t))

4 Model: SOcial Nibbling NETwork (SoNNET)
We present the SOcial Nibbling NETwork (SoNNET) that predicts when a user has the intention to
eat based on various social signals. We selected features to represent both human eating and social
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Figure 2: Triplet-SoNNET contains three interacting channels for features of a target user and two
co-diners. Each channel concatenates the input of time, gaze, speaking and skeleton features from
each single diner. Couplet-SoNNET eliminates all features from the target user by dropping the
last channel; however, it continues to use the user’s bite features. Batch normalization layers are not
shown in the figure.

behavior: bite features, which include the number of bites taken so far and the time since the last bite
of food b ∈ R2, a diner’s gaze and head pose direction d ∈ R4, binary speaking status s ∈ {0, 1},
and face and body keypoints o ∈ R168 from OpenPose [51]. We note that, in our case, the bite
features b are computed only for the user and not the co-diners, since we do not estimate in real-time
whether a co-diner is taking a bite of food. Thus, for a time interval k = t − t0, these features are
temporally stacked to construct the input signals U ∈ Rk×175,L ∈ Rk×173,R ∈ Rk×173 for the
user, left co-diner, and right co-diner, respectively.
Recently, convolutional neural networks (CNNs) have demonstrated significant success for multi-
channel time series classification from various kinds of signals [52–54]. Wu et al. [46] proposed
PazNet: a multi-channel deep convolutional neural network which is able to handle inputs of dif-
ferent dimensions. PazNet is designed to predict the interruptibility of individual drivers. However,
the information of different channels is not shared, and it lacks ability to capture social interactions
among multiple people.
We design the Social Nibbling NETwork (SoNNET), a new model architecture which follows a
multi-channel pattern allowing multiple interconnected branches to interleave and fuse at different
stages. We create input processing channels for each diner, then add interleaving tunnels between
each convolutional module and adjacent branches. The information capturing visually-observable
behaviors between the diners is allowed to flow between the frames and channels. We conjecture
that our model will learn a socially-coherent structure, allowing the model to implicitly represent the
diners in an embedding space. Therefore, each channel has the same structure but does not share the
same weight parameters. To help capture informative features, we performed dimension-reduction
after the interleaving components using max pooling layers and 1 × 1 convolutional layers. These
per-diner channels are concatenated and then followed by two dense layers for classification, which
decides whether the user intends to feed or not. For SoNNET, the range between t and t0 is six
seconds. The social signals in this range are used to predict a user’s bite intentions.
Triplet-SoNNET. For modeling the bite-timing prediction of three users with no mobility limita-
tions, we propose Triplet-SoNNET which uses social signals from the left and right co-diners L,R
and signals from the user U. Depicted in Fig. 2, Triplet-SoNNET ensures that the features from
other co-diners L,R interleave into the target user’s features U.
Couplet-SoNNET. To run Triplet-SoNNET in a robot-assisted feeding setting, there would be a
distribution shift in the kinds of signals a target user outputs. Our goal is to feed people with
mobility limitations while they are engaged in social conversations. The features from someone
self-feeding are inherently different from someone using a robot-assisted feeding system. In the
case of body pose, a target user with C3-C5 SCI would be largely still, which is different from the
training data. Our Human-Human Commensality Dataset consists of adult diners with no mobility
limitations, thus applying a trained Triplet-SoNNET model to robot-assisted feeding of a user with
mobility limitations would be out-of-distribution. Although our target users with C3-C5 SCI cannot

4



move their arms to feed themselves, there is still a large spectrum of severity in mobility limitations
depending on the users’ conditions. From our discussions with key stakeholders, caregivers, and
occupational therapists we design, Couplet-SoNNET, where we ignore most social signals from
the target user by removing the last channel in Triplet-SoNNET. Therefore, the intention to feed
y(t + 1) = F (Ub (t0 : t) ,L (t0 : t) ,R (t0 : t)), where Ub ∈ Rk×2 are the user’s bite features for
k = t − t0. The user’s bite features, such as the time since the last bite and the number of bites
since the onset of the feeding activity, are the only social signals from the target user. Additional
discussion on this design choice can be found in App. 8.2.2.

5 Human-Human Commensality Dataset (HHCD)

We introduce a novel Human-Human Commensality Dataset (HHCD) of three participants with no
mobility limitations eating in a social scenario. We used this dataset to develop models that predict a
diner’s intention to take a bite of food while taking into account subtle social cues. We deployed the
trained models in a social robot-assisted feeding setting where one diner is fed by a robot. Beyond
predicting bite timing, we are excited for the robot learning community to find other interesting
challenges within our dataset that leverage understanding social dynamics.
Data Collection Setup. We recruited 90 people among our Institution-affiliated fully-vaccinated
students, faculty, and staff to eat a meal in a triadic dining scenario. Each participant was 18+ years
old and took part in the study only once. The study setup is illustrated in Fig. 1 (left). There are
three cameras (mutually at 120◦) in the middle of the table, each capturing one participant, and
a fourth camera capturing the whole scene. All four cameras are Intel RealSense Depth Cameras
D455 [55]. The scene audio was captured by a ReSpeaker Mic Array v2.0 [56] placed in the middle
of the table. The ReSpeaker microphone array has four microphones arranged at the corners of a
square and estimates the direction of sound arrival. For the study setup measures, see App. 8.1.2.
Participants were free to bring any kind of food and any utensil with them. They could also bring a
drink (some drank from a cup, others from a bottle or both, with or without a straw) and were pro-
vided with napkins. Before the study, each participant was asked to fill in a pre-study questionnaire
about their demographic background, relationship to other participants, and social dining habits.
The experimenter then asked them to eat their meals and have natural conversations. At this point,
the experimenter started the recording and left the room. When all three participants finished eating
or after 60 minutes have passed, whichever was earlier, the experimenter stopped the recording and
asked participants to fill in a post-study questionnaire about their dining experience. The specific
questions asked in both pre/post-study questionnaires can be found in App. 8.1.3. The study was
approved by Cornell’s IRB.
Data Annotation. We annotated each participant’s video based on their interactions with
food, drink, and napkins. In particular, we annotated food entered, food lifted, food to mouth,
drink entered, drink lifted, drink to mouth, napkin entered, napkin lifted, napkin to mouth, and
mouth open events. We chose these events as they are key transition points during feeding. We
spent 151 hours annotating and used the ELAN annotation tool [57]. We assigned the annotation
value ∈ {fork, knife, spoon, chopsticks, hand} based on the utensil performing the food-to-mouth
handover. While annotating, we also noted down per-participant food types and observations of
interesting behaviors. All annotation types with detailed rules are provided in App. 8.1.4.
Data Statistics. There were 56 female and 34 male participants, and their ages ranged 18-38 (µ =
22, σ = 3) years. Session durations ranged 21-55 (µ = 37, σ = 9) minutes and 1 session was at
breakfast, 10 at lunch, and 19 at dinner time. For additional dataset statistics, see App. 8.1.5.
For a summary of all available data in the dataset and its detailed analysis, see App. 8.1. For the
purposes of this work, we only consider bite features, speaking status, gaze and head pose, and body
and face keypoints.

6 Model Evaluation on Human-Human Commensality Dataset

In this section, we evaluate Triplet- and Couplet-SoNNET against other models on the HHCD. In
particular, we compare against a regularized linear SVM trained with SGD to evaluate performance
of linear classifiers. We also consider a Temporal Convolution Network (TCN) [58, 59], which uses
causal convolutions and dilations to represent temporal data. TCNs have been found to perform
better than LSTMs and GRUs on temporal anomaly detection [60] and robot food manipulation tasks
[20], therefore they would provide a strong baseline to compare our models to. We also perform an
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Table 1: Ablation study on different modali-
ties from various data sources. We use aver-
age over LOSO cross-validation.
Method Acc. Prec. Rec. F1 nMCC

Triplet-SoNNET 0.820 0.861 0.871 0.862 0.772
- Speaking Status 0.816 0.864 0.863 0.856 0.771
- Gaze & Head Pose 0.815 0.863 0.863 0.856 0.769
- Bite Features 0.781 0.832 0.855 0.834 0.727
- Body & Face 0.820 0.854 0.886 0.865 0.771

Table 2: Model comparison on LOSO cross-
validation over 29 sessions.
Method Acc. Prec. Rec. F1 nMCC

Always Feed 0.72 0.72 1 0.83 0.5

Linear SVM (SGD) 0.68 0.82 0.77 0.74 0.64
Triplet-TCN 0.82 0.82 0.96 0.88 0.72
Triplet-SoNNET 0.82 0.86 0.87 0.86 0.77
Couplet-TCN 0.73 0.73 0.98 0.83 0.55
Couplet-SoNNET 0.76 0.78 0.96 0.85 0.66

ablation study to investigate the importance of various modalities. Implementation details about
baseline models, SoNNET, and training procedure can be found in App. 8.2.
For training, we use 6811 food lifted annotations as positive training labels since they precede an
actual bite of food and indicate an intention to eat. We use a time interval of k = t− t0 = 6 seconds
because it takes roughly 6 seconds for the robot to move from its wait position to feeding the user.
Since bite actions are sparsely distributed over time, we select 2486 6-second clips as negative
samples that are in the middle of two food lifted annotations. All reported models are trained with
leave-one-session-out (LOSO) cross-validation to evaluate generalizability to new groups of people.
Due to an issue with recording, we train over 29 sessions if speaking status features are used.
The user’s bite features b ∈ R2 (time since last bite and the number of bites eaten since the start)
are indicators of eating rate. To ensure this feature is not dominated by higher dimensional features,
we scale the size of the input by γ. This hyperparameter γ scales b ∈ R2 → b ∈ R2γ . We selected
γ = 100 after a grid search over the training set on the TCN and SoNNET models.
Evaluation Metrics. A high recall indicates that our model can reliably feed when it should. In
contrast, a high precision indicates that a model tends to be stricter in deciding when to feed. Due
to our dataset imbalance, the average accuracy across 29 sessions for a model that predicts it should
always feed is 71.56%. This classifier achieves perfect recall, and relatively high precision, causing
the model to have a high F1 score. It is clear that given this class imbalance, a high F1 score
poorly represents the capabilities of this model. To evaluate our model effectively, we consider the
normalized Matthews Correlation Coefficient (nMCC) in addition to F1 score, precision, recall, and
accuracy. Unlike F1 score, nMCC considers the size of the majority and minority classes, and can
only produce high scores if a classifier is able to make correct predictions for a majority of both the
negative and positive classes [61]. A value of 0.5 indicates random prediction, while 0 is inverse
prediction and 1 is perfect prediction.
Effects of Modality. We are interested in investigating features that are the most informative for
designing a good bite timing predictor in social dining. We perform a feature ablation study on the
Triplet-SoNNET model, as shown in Table 1. We selectively remove feature streams, such as body
and face data from OpenPose, gaze and head features from RT-GENE, speaking status signals, and
the user’s bite features. We find that users’ bite features such as the time since last bite and the
number of bites are important, as accuracy drops drastically without them. Intuitively, we believe
this feature is important because a user’s bite features are a proxy for their level of eating rate. We
also see that without body and face features, F1 and recall slightly increase. This could be due to
the fact these data streams are noisy; however, as indicated by the lower accuracy and nMCC when
removing OpenPose features, these features are useful.
Effects of Model Type. Table 2 shows the outcomes of various model comparisons when trained
using LOSO. We compare performance of Triplet-SoNNET against a linear SVM and TCN trained
on all three diners. We call this TCN a Triplet-TCN. Triplet-TCN has all the diners’ features con-
catenated per-timestep, and we compare this result to Triplet-SoNNET. We find that Triplet-SoNNet
achieves higher accuracy and nMCC compared to all other models; however, it performs worse on
recall and F1 score compared to Triplet-TCN. In our scenario, we want to ensure that the robot feeds
when it should and does not feed when it should not. A bite prediction model that overfeeds or un-
derfeeds is not ideal. A high nMCC balances the roles of recall and precision and better represents
whether a classifier should or should not feed. Therefore, for our scenarios, Triplet-SoNNET is a
more effective predictor of bite timing than other models trained on all three diners.
Effects of Social Scenario. We are interested in comparing the ability of models to learn social
behaviors using only two co-diners’ features rather than having full observability. We compare
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Couplet-SoNNET to a similarly-named Couplet-TCN trained on two co-diners’ features and a user’s
bite features. As expected, Couplet-TCN and Couplet-SoNNET perform worse than their Triplet-
counterparts, with Couplet-TCN being close to random prediction with an nMCC of 0.5539 while
Couplet-SoNNET has an nMCC of 0.6648. We find that Couplet-SoNNET performs better than
Couplet-TCN. This result reveals Couplet-SoNNET is able to understand social signals better than
a predictor that always feeds. This implies that it is possible to predict the behavior of a user using
only their co-diner information, which indicates that there is social coordination in human-human
commensality. These findings also suggest that social signals were captured by the interleaving
structure of the SoNNET models.

7 Transferring from Human-Human to Human-Robot Commensality

Our objective is to develop a bite timing strategy for a robot that feeds a user in a social dining
setting. We design a study where users evaluate the effect of different bite timing strategies on their
overall social dining experience. To simulate robotic caregiving scenarios for people with upper-
extremity mobility limitations, we instructed users to not move their upper body. This study was
approved by Cornell’s IRB.
Experimental Setup. We evaluate a learned bite timing strategy against two baseline bite timing
strategies inspired by our conversations with care recipients, occupational therapists, and caregivers
who told us how they know when to feed. The strategies are further depicted in Fig. 3:
1. Learned Timing. This social, fully autonomous bite timing strategy feeds based on our Couplet-

SoNNET model’s output. We sample this model every three seconds with the last six seconds
of preprocessed features at a rate of 15 frames per second. This approach takes into account
the social context. Since we want to evaluate the generalization performance, we train Couplet-
SoNNET on 80% of the HHCD data and use the remaining 20% of HHCD data to select early-
stopping criteria.

2. Fixed-Interval Timing. This fully autonomous bite timing strategy feeds every 44.5 seconds,
which is a scaled average time a robot should take to feed a user after it has picked up a food item.
To derive this value, we first find the appropriate scaling factor between human motion from the
HHCD and robot motion. We note the average time for a human from the food entered transition
to food lifted transition is 9.9 seconds. The robot end-effector motion is not designed to match
the human speed but rather to be perceived as safe and comfortable to a user being fed. We find
the equivalent key transitions for the robot to be 5x slower than a human. Since we define the
intention to take a bite as when the food is lifted, the robot should take 49.5 seconds to feed a
user after picking up a food item. Given the robot takes roughly 5 seconds to move to its wait
position after picking the food, the robot waits 44.5 seconds. Further details about this wait-time
can be found in App. 8.3.2.

3. Mouth-Open Timing. This partially autonomous bite timing strategy feeds only when the user
prompts the robot by opening their mouth. The target user is prompted each time by the robot
saying ”When ready, look at me and open your mouth”. This approach gives the user explicit
control of when the robot should feed [40].

The robot user is seated on a wheelchair mounted with a Kinova Gen3 6-DoF arm [62], which is
used to feed the participant (Fig. 3, left). For discussion of our bite timing strategies, the use of voice
prompting, and implementation details of the robot study, see App. 8.3.2-8.3.4.
Experimental Procedure. In this study, participants are seated in a similar setup as that used for
HHCD data collection in Sec. 5. All participants were asked to bring their own food, and each group
chose who would be fed by the robot. We recruited 30 participants over 10 sessions. There were 16
female and 14 male participants, and their ages ranged from 19-70 (µ = 27, σ = 9) years.
A single trial consists of bite acquisition, followed by one of the three bite timing strategies, then
bite transfer. For bite acquisition, the robot alternates feeding the user cantaloupes and strawberries.
We chose these fruits due to their high acquisition success rates [24]. We used the bite acquisition
strategies and bite transfer strategies from [25, 26]. All participants take a survey after each trial,
which administers a forced-choice question on the participants’ preferences between the previous
and current conditions. Each pair of comparisons between any two conditions occurs three times,
leading to ten trials. The condition orderings are counterbalanced over ten trials. Additionally, we
ask participants whether they felt the robot fed them too early, on-time, or too late. The experiment
questionnaire after each trial further includes questions about bite timing appropriateness, distrac-
tions due to the robot, ability to have natural conversations, ability to feel comfortable around the
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Figure 3: Left: We use a 6-DoF Kinova Gen3 robotic arm [62] on Rovi wheelchair [63]. Middle:
User study conditions/bite timing strategies: Learned, Fixed-Interval, and Mouth-Open Timings.
Top right: Preferences for bite timing strategies rated by users, two co-diners, and all three diners.
Bottom right: Level of distraction by the robot perceived by users, two co-diners, and all three
diners on a Likert scale 1-5 (agreement with “I felt distracted by the robot”), for each bite timing
strategy. ∗, ∗∗, ∗∗∗ denote statistically significant differences with p0.05, p0.005, p0.0005 respectively.

robot, as well as system reliability and trust in the robot [64]. For details on user study question-
naires see App. 8.3.6. To avoid interruptions in social conversations due to the presence of a robot
in human groups, we provide the participants with a list of questions (see App. 8.3.5), which they
could optionally use to help get the conversation started at each trial, similarly to previous work [39].
Results and Discussion. As shown in Fig. 3 (top right), users and co-diners preferred the Learned
strategy for bite timing as compared to Fixed-Interval or Mouth-Open Timing. This confirms that
our insight to incorporate social signals in model structure (SoNNET) improves bite timing predic-
tion. These results using Couplet-SoNNET also imply that it is possible to predict the behavior of a
user using only their co-diner information, which indicates that there is social coordination in human
groups even in the presence of a robot. In Fig. 3 (bottom right) we further compared the level of dis-
traction by the robot as perceived by participants. We performed Kruskal-Wallis H-tests and Tukey
HSD post-hoc tests and found that Mouth-Open Timing distracts dining participants significantly
more than Learned or Fixed-Interval Timing. We believe this is because the Mouth-Open strategy
prompts the user using a voice interface, which can disrupt the rhythm of conversation. Even though
the participants had a clear preference for the Learned strategy when given a forced-choice, when
asked to individually rate the conditions using a 5-point Likert scale, interestingly we could not find
any statistically significant differences between Mouth-Open Timing and Learned Timing. This is
probably because the Mouth-Open Timing strategy provides full control of bite timing to the users
themselves. Note, regardless of the conditions, the users found the system comfortable, reliable, and
trustworthy. Detailed analysis is given in App. 8.3.7.
Limitations. There is a risk that our results from human-robot user studies on adults with no mobil-
ity limitations may not generalize to those with people with mobility limitations. People with mo-
bility limitations may have different preferences and cognitive workload associated with a robotic
intervention. Although our target diner is not a person with such C3-C5 SCI, our model does not
use their movements to infer when to feed. As transferability is a function of their behavior, our
experiments demonstrate good transferability across scenarios. We expect it to similarly transfer
to users with C3-C5 SCI, though it remains to be investigated in future work. We also made mul-
tiple assumptions when transferring our results from human-human to human-robot commensality
scenarios. During human-human commensality, the user was self-feeding whereas in human-robot
commensality the user was being fed. We also assumed that the addition of a robot into a human-
human commensality scenario does not change the social dynamics of the diners significantly. Given
these assumptions, it would be interesting to see how our models perform when trained on similar
human-robot commensality scenarios. Finally, it is an open question as to how these models would
perform with groups of different cultures. Social science literature on commensality studied the
interplay between factors such as culture [65, 66], age [67], and social context [68] on how long
eating takes and what people are eating. We are excited about the potential to study how the pres-
ence of a robot can alter the communal act of eating together across cultures. This motivates further
investigation into human-robot commensality, both from technical and societal perspectives.
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[27] G. Canal, G. Alenyà, and C. Torras. Personalization framework for adaptive robotic feeding
assistance. In International conference on social robotics, pages 22–31. Springer, 2016.

[28] T. Rhodes and M. Veloso. Robot-driven trajectory improvement for feeding tasks. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2991–2996. IEEE, 2018.

[29] I. Naotunna, C. J. Perera, C. Sandaruwan, R. Gopura, and T. D. Lalitharatne. Meal assistance
robots: A review on current status, challenges and future directions. In 2015 IEEE/SICE
International Symposium on System Integration (SII), pages 211–216. IEEE, 2015.

[30] E. K. Gordon, X. Meng, M. Barnes, T. Bhattacharjee, and S. S. Srinivasa. Learning from
failures in robot-assisted feeding: Using online learning to develop manipulation strategies for
bite acquisition. 2019.

[31] D. Park, Y. Hoshi, and C. C. Kemp. A multimodal anomaly detector for robot-assisted
feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters,
3(3):1544–1551, 2018.

[32] D. Park, H. Kim, Y. Hoshi, Z. Erickson, A. Kapusta, and C. C. Kemp. A multimodal
execution monitor with anomaly classification for robot-assisted feeding. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5406–5413. IEEE,
2017.

[33] S. Sebo, B. Stoll, B. Scassellati, and M. F. Jung. Robots in groups and teams: a literature
review. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2):1–36, 2020.

10



[34] M. F. Jung, D. DiFranzo, S. Shen, B. Stoll, H. Claure, and A. Lawrence. Robot-assisted tower
construction—a method to study the impact of a robot’s allocation behavior on interpersonal
dynamics and collaboration in groups. ACM Transactions on Human-Robot Interaction
(THRI), 10(1):1–23, 2020.

[35] H. Jönsson, M. Michaud, and N. Neuman. What is commensality? a critical discussion of an
expanding research field. International Journal of Environmental Research and Public
Health, 18(12):6235, 2021.

[36] C. Spence, M. Mancini, and G. Huisman. Digital commensality: Eating and drinking in the
company of technology. Frontiers in psychology, 10:2252, 2019.

[37] E. Athlin, A. Norberg, and K. Asplund. Caregivers’ perceptions and interpretations of
severely demented patients during feeding in a task assignment system. Scandinavian Journal
of Caring Sciences, 4(4):147–156, 1990.

[38] E. Athlin and A. Norberg. Interaction between the severely demented patient and his
caregiver during feeding. Scandinavian Journal of Caring Sciences, 1(3-4):117–123, 1987.

[39] L. V. Herlant. Algorithms, implementation, and studies on eating with a shared control robot
arm. PhD Dissertation, 2018. URL
http://www.cs.cmu.edu/afs/cs/user/lcv/www/herlant-thesis.pdf.

[40] T. Bhattacharjee, E. K. Gordon, R. Scalise, M. E. Cabrera, A. Caspi, M. Cakmak, and S. S.
Srinivasa. Is more autonomy always better? exploring preferences of users with mobility
impairments in robot-assisted feeding. In 2020 15th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 181–190. IEEE, 2020.

[41] D. C. McFarlane. Comparison of four primary methods for coordinating the interruption of
people in human-computer interaction. Human-Computer Interaction, 17(1):63–139, 2002.

[42] M. Czerwinski, E. Cutrell, and E. Horvitz. Instant messaging: Effects of relevance and
timing. In People and computers XIV: Proceedings of HCI, volume 2, pages 71–76, 2000.
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