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ABSTRACT

Although disentangled representations are often said to be beneficial for down-
stream tasks, current empirical and theoretical understanding is limited. In this
work, we provide evidence that disentangled representations coupled with sparse
base-predictors improve generalization. In the context of multi-task learning, we
prove a new identifiability result that provides conditions under which maximally
sparse base-predictors yield disentangled representations. Motivated by this the-
oretical result, we propose a practical approach to learn disentangled representa-
tions based on a sparsity-promoting bi-level optimization problem. Finally, we
explore a meta-learning version of this algorithm based on group Lasso multiclass
SVM base-predictors, for which we derive a tractable dual formulation. It obtains
competitive results on standard few-shot classification benchmarks, while each
task is using only a fraction of the learned representations.

1 INTRODUCTION

The recent literature on self-supervised learning has provided evidence that learning a representation
on large corpuses of data can yield strong performances on a wide variety of downstream tasks (De-
vlin et al., 2018; Chen et al., 2020), especially in few-shot learning scenarios where the training
data for these tasks is limited (Brown et al., 2020b; Dosovitskiy et al., 2021; Radford et al., 2021).
Beyond transferring across multiple tasks, these learned representations also lead to improved ro-
bustness against distribution shifts (Wortsman et al., 2022) as well as stunning text-conditioned
image generation (Ramesh et al., 2022). However, preliminary assessments of the latter has high-
lighted shortcomings related to compositionality (Marcus et al., 2022), suggesting new algorithmic
innovations are needed to make further progress.

Another line of work has argued for the integration of ideas from causality to make progress to-
wards more robust and transferable machine learning systems (Pearl, 2019; Schölkopf, 2019; Goyal
& Bengio, 2022). Causal representation learning has emerged recently as a field aiming to define
and learn representations suited for causal reasoning (Schölkopf et al., 2021). This set of ideas is
strongly related to learning disentangled representations (Bengio et al., 2013). Informally, a rep-
resentation is considered disentangled when its components are in one-to-one correspondence with
natural and interpretable factors of variations, such as object positions, colors or shape. Although a
plethora of works have investigated theoretically under which conditions disentanglement is possi-
ble (Hyvärinen & Morioka, 2016; 2017; Hyvärinen et al., 2019; Khemakhem et al., 2020a; Locatello
et al., 2020a; Klindt et al., 2021; Von Kügelgen et al., 2021; Gresele et al., 2021; Lachapelle et al.,
2022; Lippe et al., 2022b; Ahuja et al., 2022c), fewer works have tackled how a disentangled repre-
sentation could be beneficial for downstream tasks. Those who did mainly provide empirical rather
than theoretical evidence for or against its usefulness (Locatello et al., 2019; van Steenkiste et al.,
2019; Miladinović et al., 2019; Dittadi et al., 2021; Montero et al., 2021).

In this work, we explore synergies between disentanglement and sparse base-predictors in the con-
text of multi-task learning. At the heart of our contributions is the assumption that only a small
subset of all factors of variations are useful for each downstream task, and this subset might change
from one task to another. We will refer to such tasks as sparse tasks, and their corresponding sets
of useful factors as their supports. This assumption was initially suggested by Bengio et al. (2013,
Section 3.5): “the feature set being trained may be destined to be used in multiple tasks that may
have distinct [and unknown] subsets of relevant features. Considerations such as these lead us to
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the conclusion that the most robust approach to feature learning is to disentangle as many factors as
possible, discarding as little information about the data as is practical”. This strategy is very much
in line with the current self-supervised learning trend (Radford et al., 2021), except for its focus on
disentanglement.

Our main contributions are the following: (i) We formalize this “sparse task assumption” and ar-
gue theoretically and empirically how, in this context, disentangled representations coupled with
sparsity-regularized base-predictors can obtain better generalization than their entangled counter-
parts (Section 2.1). (ii) We introduce a novel identifiability result (Theorem 1) which shows how
one can leverage multiple sparse tasks to learn a shared disentangled representation by regulariz-
ing the task-specific predictors to be maximally sparse (Section 2.2.1). Crucially, Assumption 7
formalizes how diverse the task supports have to be in order to guarantee disentanglement. (iii) Mo-
tivated by this result, we propose a tractable bi-level optimization (Problem (4)) to learn the shared
representation while regularizing the task-specific base-predictors to be sparse (Section 2.2.2). We
validate our theory by showing our approach can indeed disentangle latent factors on tasks con-
structed from the 3D Shapes dataset (Burgess & Kim, 2018). (iv) Finally, we draw a connection
between this bi-level optimization problem and some formulations from the meta-learning litera-
ture (Section 2.3). Inspired by our identifiability result, we enhance an existing method (Lee et al.,
2019), where the base-learners are now group-sparse SVMs. We show that this new meta-learning
algorithm achieves competitive performance on the miniImageNet benchmark (Vinyals et al., 2016),
while only using a fraction of the learned representation.

2 SYNERGIES BETWEEN DISENTANGLEMENT AND SPARSITY

In this section, we formally introduce the notion of entangled and disentangled representations.
First, we assume the existence of some ground-truth encoder function fθ : Rd → Rm that maps
observations x ∈ X ⊆ Rd, e.g., images, to its corresponding interpretable and usually lower dimen-
sional representation fθ(x) ∈ Rm, m ≤ d. The exact form of this ground-truth encoder depends on
the task at hand, but also on what the machine learning practitioner considers as interpretable. The
learned encoder function is denoted by fθ̂ : Rd → Rm, and should not be conflated with the ground-
truth representation fθ. For example, fθ̂ can be parametrized by a neural network. Throughout, we
are going to use the following definition of disentanglement.
Definition 1 (Disentangled Representation, Khemakhem et al. 2020a; Lachapelle et al. 2022). A
learned encoder function fθ̂ : Rd → Rm is said to be disentangled w.r.t. the ground-truth represen-
tation fθ when there exists an invertible diagonal matrix D and a permutation matrix P such that,
for all x ∈ X , fθ̂(x) = DPfθ(x). Otherwise the encoder fθ̂ is said to be entangled.

Intuitively, a representation is disentangled when there is a one-to-one correspondence between its
components and the components of the ground-truth representation, up to rescaling. Note that there
exist less stringent notions of disentanglement which allow for component-wise nonlinear invertible
transformations of the factors (Hyvärinen & Morioka, 2017; Hyvärinen et al., 2019).

Notation. Capital bold letters denote matrices and lower case bold letters denote vectors. The
set of integers from 1 to n is denoted by [n]. We write ∥·∥ for the Euclidean norm on vectors
and the Frobenius norm on matrices. For a matrix A ∈ Rk×m, ∥A∥2,1 =

∑m
j=1 ∥A:j∥, and

∥A∥2,0 =
∑m

j=1 1∥A:j∦=0, where 1 is the indicator function. The ground-truth parameter of the
encoder function is θ, while that of the learned representation is θ̂. We follow this convention for
all the parameters throughout. Table 1 in Appendix A summarizes all the notation.

2.1 DISENTANGLEMENT AND SPARSE BASE-PREDICTORS FOR IMPROVED GENERALIZATION

In this section, we compare the generalization performance of entangled and disentangled repre-
sentations on sparse downstream tasks. We show that the maximum likelihood estimator (defined
in Problem (1)) computed on linearly equivalent representations (entangled or disentangled) yield
the same model (Proposition 1). However, disentangled representations have better generalization
properties when combined with a sparse base-predictor (Proposition 2 and Figure 1).

First, the learned representation fθ̂ is assumed to be linearly equivalent to the ground-truth repre-
sentation fθ, i.e. there exists an invertible matrix L such that, for all x ∈ X , fθ̂(x) = Lfθ(x).
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Note that despite being assumed linearly equivalent, the learned representation fθ̂ might not be dis-
entangled (Definition 1); in that case, we say the representation is linearly entangled. When we
refer to a disentangled representation, we write L := DP . Roeder et al. (2021) have shown that
many common methods learn representations identifiable up to linear equivalence, such as deep
neural networks for classification, contrastive learning (Oord et al., 2018; Radford et al., 2021) and
autoregressive language models (Mikolov et al., 2010; Brown et al., 2020a).

Consider the following maximum likelihood estimator (MLE):1

Ŵ (θ̂)
n := argmax

W̃

∑
(x,y)∈D

log p(y;η = W̃fθ̂(x)) , (1)

where y denotes the label, D := {(x(i), y(i))}ni=1 is the dataset, p(y;η) is a distribution over labels
parameterized by η ∈ Rk, and Ŵ ∈ Rk×m is the task-specific predictor2. The following result
shows that the maximum likelhood estimator defined in Problem (1) is invariant to invertible linear
transformations of the features. Note that it is an almost direct consequence of the invariance of
MLE to reparametrization (Casella & Berger, 2001, Thm. 7.2.10). See Appendix A for a proof.

Proposition 1 (MLE Invariance to Invertible Linear Transformations of the Features). Let Ŵ (θ̂)
n

and Ŵ
(θ)
n be the solutions to Problem (1) with the representations fθ̂ and fθ, respectively (which

we assume are unique). If there exists an invertible matrix L such that, ∀x ∈ X , fθ̂(x) = Lfθ(x);

then we have, ∀x ∈ X , Ŵ (θ̂)
n fθ̂(x) = Ŵ

(θ)
n fθ(x).

Proposition 1 shows that the model p(y; Ŵ (θ̂)
n fθ̂(x)) learned by Problem (1) is independent of L,

i.e., the model is the same for disentangled and linearly entangled representations. We thus expect
both disentangled and linearly entangled representations to perform identically on downstream tasks.

In what follows, we assume the data is generated according to the following process.
Assumption 1 (Data generation process). The input-label pairs are i.i.d. samples from the dis-
tribution p(x, y) := p(y | x)p(x) with p(y | x) := p(y;Wfθ(x)), where W ∈ Rk×m is the
ground-truth coefficient matrix.

To formalize the hypothesis that only a subset of the features fθ(x) are actually useful to predict the
target y, we assume that the ground-truth coefficient matrix W is column sparse, i.e., ∥Ŵ ∥2,0 =
ℓ < m. Under this assumption, it is natural to constrain the MLE as such:

Ŵ (θ̂,ℓ)
n := argmax

W̃

∑
(x,y)∈D

log p(y; W̃fθ̂(x)) s.t. ∥W̃ ∥2,0 ≤ ℓ . (2)

The following proposition will help us understand how this additional constraint interacts with rep-
resentations that are disentangled or linearly entangled. See Appendix A for a proof.

Proposition 2 (Population MLE for Linearly Entangled Representations). Let Ŵ (θ̂)
∞ be the solu-

tion of the population-based MLE, argmaxW̃ Ep(x,y) log p(y; W̃fθ̂(x)) (assumed to be unique).

Suppose fθ̂ is linearly equivalent to fθ, and Assumption 1 holds, then, Ŵ (θ̂)
∞ = WL−1.

From Proposition 2, one can see that if the representation fθ̂ is disentangled, then ∥Ŵ (θ̂)
∞ ∥2,0 =

∥W (DP )−1∥2,0 = ∥W ∥2,0 = ℓ. Thus, in that case, the sparsity constraint in Problem (2) does
not exclude the population MLE estimator from its hypothesis class, and yields a decrease in the
generalization gap (Bickel et al., 2009; Lounici et al., 2011a; Mohri et al., 2018) without biasing
the estimator. Contrarily, when fθ̂ is linearly entangled, the population MLE might have more
nonzero columns than the ground-truth, and thus would be excluded from the hypothesis space
of Problem (2), which, in turn, would bias the estimator.

Empirical validation. We now present a simple simulated experiment to validate the above claim
that disentangled representations coupled with sparsity regularization can have better generaliza-
tion. Figure 1 compares the generalization performance of the convex relaxation of Problem (2)

1We assume the solution is unique.
2p(y;η) could be a Gaussian density (regression) or a categorical distribution (classification).
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Figure 1: Test performance for the entangled and disentangled representation using Lasso and Ridge
regression. All the results are averaged over 10 seeds, with standard error shown in error bars.

(Lasso regression, Tibshirani 1996) and Ridge regression (Hoerl & Kennard, 1970) on both dis-
entangled and linearly entangled representations. Lasso regression coupled with the disentangled
representation obtains better generalization than the other alternatives when ℓ/m = 5% and when
the number of samples is very small. We can also see that, disentanglement, sparsity regularization
and sufficient sparsity in the ground-truth data generating process are necessary to see a significant
improvement, in line with our discussion. Lastly, the performance of all methods converge to the
same value when the number of samples grows. See Appendix D.1 for more details and discussion
on the results.

2.2 DISENTANGLEMENT VIA SPARSE MULTITASK LEARNING

In Section 2.1, we argued that disentangled representations can improve generalization when com-
bined with sparse base-predictors, but we did not provide an approach to learn them. We first provide
a new identification result (Theorem 1, Section 2.2.1), which states that in the context of sparse mul-
titask learning, sparse base-predictors yield disentangled representations. Then, in Section 2.2.2, we
provide a practical way to learn disentangled representations motivated by our identifiability result.

Throughout this section, we assume the learner is given a set of T datasets {D1, . . . ,DT } where
each dataset Dt := {(x(t,i), y(t,i))}ni=1 consists of n couples of input x ∈ Rd and label y ∈ Y .
The set of labels Y might contain either class indices or real values, depending on whether we are
concerned with classification or regression tasks.

2.2.1 IDENTIFIABILITY ANALYSIS

We now present the main theoretical result of our work which shows how learning a shared rep-
resentation across tasks while penalizing the task-specific base-predictor to be sparse can induce
disentanglement. Our theory relies on the following ground-truth data generating process:
Assumption 2 (Ground-truth data generating process). For each task t, the dataset Dt is made of
i.i.d. samples from the distribution p(x, y | W (t)) := p(y | x,W (t))p(x | W (t)) with p(y |
x,W (t)) := p(y;W (t)fθ(x)), where W (t) ∈ Rk×m is the task-specific ground-truth coefficient
matrix. Moreover, the matrices W (t) are i.i.d. samples from some probability measure PW with
support W . Also, for all W ∈ W , the support of p(x | W ) is X ⊆ Rd (fixed across tasks).

The above assumption states that (i) the ground-truth coefficient matrices W (t) are task-specific
while the representation fθ is shared across all the tasks, (ii) the task-specific W (t) are sampled
i.i.d. from some distribution PW , and (iii) the support of x is shared across tasks.
Assumption 3 (Identifiability of η). The parameter η is identifiable from p(y;η), i.e. ∀y; p(y;η) =
p(y; η̃) =⇒ η = η̃.

This property holds, e.g., when p(y;η) is a Gaussian in the usual µ, σ2 parameterization. Generally,
it also holds for minimal parameterizations of exponential families (Wainwright & Jordan, 2008).

The following assumption requires the ground-truth representation fθ(x) to vary enough such that
its image cannot be trapped inside a proper subspace.
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Figure 2: Illustration of Assumption 6 showing three examples of distri-
bution PW |S . The red distribution satisfies the assumption, but the blue
and orange distributions do not. The red lines are level sets of a Gaussian
distribution with full rank covariance. The blue line represents the support
of a Gaussian distribution with a low rank covariance. The orange dots rep-
resents a distribution with finite support. The green vector a shows that the
condition is violated for both the blue and the orange distribution, since, in
both cases, W1,Sa = 0 (orthogonal) with probability greater than zero.
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Figure 3: The leftmost figure
represents S , the support of
some p(S). The other figures
form a verification that As-
sumption 7 holds for S.

Assumption 4 (Sufficient representation variability). There exists x(1), . . . ,x(m) ∈ X such that the
matrix F := [fθ(x

(1)), . . . ,fθ(x
(m))] is invertible.

The following assumption requires that the support of the distribution PW is sufficiently rich.
Assumption 5 (Sufficient task variability). There exists W (1), . . . ,W (m) ∈ W and row indices
i1, . . . , im ∈ [k] such that the rows W (1)

i1,:
, . . . ,W

(m)
im,: are linearly independent.

Under Assumptions 2 to 5 the representation fθ is identifiable up to linear equivalence (see Theo-
rem 2 in Appendix B). Similar results where shown by Roeder et al. (2021); Ahuja et al. (2022c).
The next assumptions will guarantee disentanglement.

In order to formalize the intuitive idea that most tasks do not require all features, we will denote by
S(t) the support of the matrix W (t), i.e. S(t) := {j ∈ [m] | W (t)

:j ̸= 0}. In other words, S(t) is the
set of features which are useful to predict y in the t-th task; note that it is unknown to the learner. For
our analysis, we decompose PW as PW =

∑
S∈P([m]) p(S)PW |S , where P([m]) is the collection

of all subsets of [m], p(S) is the probability that the support of W is S and PW |S is the conditional
distribution of W given that its support is S. Let S be the support of the distribution p(S), i.e. S :=
{S ∈ P([m]) | p(S) > 0}. The set S will have an important role in Assumption 7 & Theorem 1.

The following assumption requires that PW |S does not concentrate on certain proper subspaces.

Assumption 6 (Intra-support sufficient task variability). For all S ∈ S and all a ∈ R|S|\0,
PW |S{W ∈ Rk×m | W:Sa = 0} = 0.

We illustrate the above assumption in the simpler case where k = 1. For instance, Assumption 6
holds when the distribution of W1,S | S has a density w.r.t. the Lebesgue measure on R|S|, which
is true for example when W1,S | S ∼ N (0,Σ) and the covariance matrix Σ is full rank (red
distribution in Figure 2). However, if Σ is not full rank, the probability distribution of W1,S | S
concentrates its mass on a proper linear subspace V ⊊ R|S|, which violates Assumption 6 (blue
distribution in Figure 2). Another important counter-example is when PW |S concentrates some of
its mass on a point W (0), i.e. PW |S{W (0)} > 0 (orange distribution in Figure 2). Interestingly,
there are distributions over W1,S | S that do not have a density w.r.t. the Lebesgue measure, but
still satisfy Assumption 6. This is the case, e.g., when W1,S | S puts uniform mass over a (|S|−1)-
dimensional sphere embedded in R|S| and centered at zero. See Appendix B.2 for a justification.

The following assumption requires that the support S of p(S) is “rich enough”.
Assumption 7 (Sufficient support variability). For all j ∈ [m],

⋃
S∈S|j ̸∈S S = [m] \ {j}.

Intuitively, Assumption 7 requires that, for every feature j, one can find a set of tasks such that their
supports cover all features except j itself. Figure 3 shows an example of S satisfying Assumption 7.
Removing the latter would only yield partial disentanglement (Lachapelle & Lacoste-Julien, 2022).

We are now ready to show the main theoretical result of this work, which provides a bi-level op-
timization problem for which the optimal representations are guaranteed to be disentangled. It as-
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sumes infinitely many tasks are observed, with task-specific ground-truth matrices W sampled from
PW . We denote by Ŵ (W ) the task-specific estimator of W . See Appendix B.1 for a proof. Note
that we suggest a tractable relaxation in Section 2.2.2.

Theorem 1 (Sparse multi-task learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x))

s.t. ∀W ∈ W, Ŵ (W ) ∈ argmin
W̃ s.t.

||W̃ ||2,0≤||W ||2,0

Ep(x,y|W ) − log p(y; W̃fθ̂(x)) . (3)

Then, under Assumptions 2 to 7, fθ̂ is disentangled w.r.t. fθ (Definition 1).

Intuitively, this optimization problem effectively selects a representation fθ̂ that (i) allows a perfect
fit of the data distribution, and (ii) allows the task-specific estimators Ŵ (W ) to be as sparse as the
ground-truth W . With the same disentanglement guarantees, Theorem 4 in Appendix B presents a
variation of Problem (3) which enforces the weaker constraint EPW

∥Ŵ (W )∥2,0 ≤ EPW
∥W ∥2,0,

instead of ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for each task W individually.

2.2.2 TRACTABLE BILEVEL OPTIMIZATION PROBLEMS FOR SPARSE MULTITASK LEARNING

Problem (3) was shown to yield a disentangled representation (Theorem 1), but is intractable due
to the L2,0-seminorm. Thus we use the L2,1 convex relaxation of the L2,0-seminorm, which is also
known to promote group sparsity (Obozinski et al., 2006; Argyriou et al., 2008; Lounici et al., 2009):

min
θ̂

− 1

Tn

T∑
t=1

∑
(x,y)∈Dt

log p(y; Ŵ (t)fθ̂(x))

s.t. ∀ t ∈ [T ], Ŵ (t) ∈ argmin
W̃

− 1

n

∑
(x,y)∈Dt

log p(y; W̃fθ̂(x)) + λt||W̃ ||2,1 .

(4)

Following Bengio (2000); Pedregosa (2016), one can compute the (hyper)gradient of the outer func-
tion using implicit differentiation, even if the inner optimization problem is non-smooth (Bertrand
et al., 2020; Bolte et al., 2021; Malézieux et al., 2022; Bolte et al., 2022). Once the hypergradient is
computed, one can optimize Problem (4) using usual first-order methods (Wright & Nocedal, 1999).

Note that the quantity Ŵ (t)fθ̂(x) is invariant to simultaneous rescaling of Ŵ (t) by a scalar and
of fθ̂(x) by its inverse. Thus, without constraints on fθ̂(x), ∥Ŵ

(t)∥2,1 can be made arbitrarily
small. This is a usual problem in sparse dictionary learning (Kreutz-Delgado et al., 2003; Mairal
et al., 2008; 2009; 2011), where unit-norm constraints are usually imposed on the column of the
dictionary. Here, since fθ̂ is parametrized by a neural network, we suggest to apply batch or layer
normalization (Ioffe & Szegedy, 2015; Ba et al., 2016) to control its norm. Since the number of
relevant features might be task-dependent, Problem (4) has one regularization hyperparameter λt

per task. To limit the number of hyperparameters in practice, we select λt := λ for all t ∈ [T ].

2.3 LINK WITH META-LEARNING

In the setting known as meta-learning (Finn et al., 2017), for a large number of tasks T , we are
given training datasets Dtrain

t , which usually contains a small number of samples n. Unlike in
the multi-task setting though (i.e., unlike in Section 2.2), we are also given separated test datasets
Dtest

t to evaluate how well the learned model generalizes to new test samples. In meta-learning,
the goal is to learn a training procedure which will generalize well on out-of-distribution tasks.
The bi-level formulation Problem (4) is closely related to metric-based meta-learning (Snell et al.,
2017; Bertinetto et al., 2019), where a shared representation fθ̂ is learned across all tasks. The
representation is jointly learned with simple task-specific classifiers, which are usually optimization-
based classifiers, such as support-vector machines. Formally, metric-based meta-learning can be
formulated as follows

min
θ̂

T∑
t=1

∑
(x,y)∈Dtest

t

Lout

(
Ŵ

(t)

θ̂
; fθ̂(x), y

)
s.t. Ŵ (t)

θ̂
∈ argmin

W̃

∑
(x,y)∈Dtrain

t

Lin

(
W̃ ; fθ̂(x), y

)
.
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Inspired by Lee et al. (2019), where the base-classifiers were multiclass support-vector machines
(SVMs, Crammer & Singer 2001), we propose to use group Lasso penalized multiclass SVMs, in
order to introduce sparsity in the base-learners, with Y ∈ Rn×k the one-hot encoding of y ∈ Rn:

Lin(W ; fθ̂(x)), y) := max
l∈[k]

(
(Wyi: −Wl:) · fθ̂(x)− Y:l

)
+ λ1

n ∥W ∥2,1 + λ2

2n∥W ∥2. (5)

In few-shot learning settings, the number of features m is usually much larger than the number of
samples n (in Lee et al. 2019, m = 1.6·104 and n ≤ 25). In such scenarios, SVMs-like problems are
usually solved through their dual (Boyd et al., 2004, Chap. 5) problems, for computational (Hsieh
et al., 2008) and theoretical (Shalev-Shwartz & Zhang, 2012) benefits.
Proposition 3. (Dual Group Lasso Soft-Margin Multiclass SVM.) The dual of the inner problem
with Lin as defined in (5) writes

min
Λ∈Rn×k

1

λ2

m∑
j=1

∥BST
(
(Y −Λ)⊤F:j , λ1

)
∥2 + ⟨Y ,Λ⟩+

n∑
i=1

1 k∑
l=1

Λil=1
+

n∑
i=1

k∑
l=1

1Λil≥0 , (6)

with BST the block soft-thresholding operator: BST : (a, τ) 7→ (1− τ/∥a∥)+ a, F ∈ Rn×m

the concatenation of {fθ̂(x)}(x,y)∈Dtrain . In addition, the primal-dual link writes, for all j ∈ [m],
W:j = BST

(
(Y −Λ)⊤F:j , λ1

)
/λ2.

Proof of Proposition 3 can be found in Appendix C.1. The objective of Problem (6) is composed of a
smooth term and block separable non-smooth term, hence it can be solved efficiently using proximal
block coordinate descent (Tseng, 2001). As stated in Section 2.2, argmin differentiation of the
solution of Problem (6) can be done using implicit differentiation (Bertrand et al., 2022). Although
Theorem 1 is not directly applicable to the meta-learning formulation proposed in this section, we
conjecture that similar techniques could be reused to prove an identifiability result in this setting.

3 RELATED WORK

Disentanglement. Since the work of Bengio et al. (2013), many methods have been proposed to
learn disentangled representations based on various heuristics (Higgins et al., 2017; Chen et al.,
2018; Kim & Mnih, 2018; Kumar et al., 2018; Bouchacourt et al., 2018). Following the work
of Locatello et al. (2019), which highlighted the lack of identifiability in modern deep generative
models, many works have proposed more or less weak forms of supervision motivated by identifia-
bility analyses (Locatello et al., 2020a; Klindt et al., 2021; Von Kügelgen et al., 2021; Ahuja et al.,
2022a;c; Zheng et al., 2022). A similar line of work have adopted the causal representation learn-
ing perspective (Lachapelle et al., 2022; Lachapelle & Lacoste-Julien, 2022; Lippe et al., 2022b;a;
Ahuja et al., 2022b; Yao et al., 2022; Brehmer et al., 2022). The problem of identifiability was
well known among the independent component analysis (ICA) community (Hyvärinen et al., 2001;
Hyvärinen & Pajunen, 1999) which came up with solutions for general nonlinear mixing functions
by leveraging auxiliary information (Hyvärinen & Morioka, 2016; 2017; Hyvärinen et al., 2019;
Khemakhem et al., 2020a;b). Another approach is to consider restricted hypothesis classes of mix-
ing functions (Taleb & Jutten, 1999; Gresele et al., 2021). Contrarily to most of the above works, we
do not assume that the inputs x are generated by transforming a latent random variable z through
a bijective decoder g. Instead, we assume the existence of a not necessarily bijective ground-truth
feature extractor fθ(x) from which the labels can be predicted using only a subset of its compo-
nents in every tasks (Assumption 2). Many of these works make assumptions about the distribution
of latent factors, e.g., (conditional) independence, exponential family or other parametric assump-
tions. In contrast, we make comparatively weaker assumptions on the support of the ground-truth
features (Assumption 4), which are allowed to present dependencies (Section 4). Locatello et al.
(2020b) proposed a semi-supervised learning approach to disentangle in cases where a few samples
are labelled with the factors of variations themselves. This is different from our approach as the la-
bels that we consider can be sampled from some p(y;Wfθ̂(x)), which is more general. Ahuja et al.
(2022c) consider a setting similar to ours, but they rely on the independence and non-gaussianity of
the latent factors for disentanglement using linear ICA.

Multi-task, transfer & invariant learning. The statistical advantages of multi-task representation
learning is well understood (Lounici et al., 2011a;b; Maurer et al., 2016). However, apart from Zhang
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Figure 4: Disentanglement performance (MCC) for inner-Lasso, inner-Ridge and inner-Ridge com-
bined with ICA as a function of the regularization parameter (left and middle). Varying level of
correlation between latents (top) and of noise on the latents (bottom). The right columns shows
performance of the best hyperparameter for different values of correlation and noise.

et al. (2022), theoretical benefits of disentanglement for transfer learning are not clearly established.
Some works have investigated this question empirically and obtained both positive (van Steenkiste
et al., 2019; Miladinović et al., 2019; Dittadi et al., 2021) and negative results (Locatello et al.,
2019; Montero et al., 2021). Invariant risk minimization (Arjovsky et al., 2020; Ahuja et al., 2020;
Krueger et al., 2021; Lu et al., 2021) aims at learning a representation that elicits a task-invariant
base-predictor. This differs from our approach which learns base-predictors that are task-specific .

Dictionary learning and sparse coding. We contrast our approach, which jointly learns a dense
representation and sparse base-predictors (Problem (4)), with the line of work which consists in
learning sparse representations (Chen et al., 1998; Gribonval & Lesage, 2006). For instance, sparse
dictionary learning (Mairal et al., 2009; 2011; Maurer et al., 2013) is an unsupervised technique
which aims at learning sparse representations that refer to atoms of a learned dictionary. Contrar-
ily to our method which computes the representation of a single input x by evaluating a function
approximator fθ̂, in sparse dictionary learning, the representation of a single input is computed by
minimizing a reconstruction loss. In the case of supervised dictionary learning (Mairal et al., 2008),
an additional (potentially expressive) classifier is learned. This large literature has lead to a wide
variety of estimators: for instance, Mairal et al. (2008, Eq. 4), which minimizes the sum of the
classification error and the approximation error of the code, or Mairal et al. (2011); Malézieux et al.
(2022), which introduce bi-level formulations which shares similarities with our formulations.

4 EXPERIMENTS

Semi-real experiments on 3D Shapes. We now illustrate Theorem 1 by applying Problem (4) to
tasks generated using the 3D Shapes dataset (Burgess & Kim, 2018).

Data generation. For all tasks t, the labelled dataset Dt = {(x(t,i)), y(t,i))}ni=1 is generated by first
sampling the ground-truth latent variables z(t,i) := fθ(x

(t,i)) i.i.d. according to some distribution
p(z), while the corresponding input is obtained doing x(t,i) := f−1

θ (z(t,i)) (fθ is invertible in 3D
Shapes). Then, a sparse weight vector w(t) is sampled randomly to compute the labels of each
example as y(t,i) := w(t) · x(t,i) + ϵ(t,i), where ϵ(t,i) is independent Gaussian noise. Figure 4
explores various choice of p(z), i.e. by varying the level of correlation between the latent variables
and by varying the level of noise on the ground-truth latents. See Appendix D.2 for more details
about the data generating process.

Algorithms. In this setting where p(y; η) is a Gaussian with fixed variance, the inner problem
of Problem (4) amounts to Lasso regression, we thus refer to this approach as inner-Lasso. We
also evaluate a simple variation of Problem (4) in which the L1 norm is replaced by an L2 norm, and
refer to it as inner-Ridge. In addition we evaluate the representation obtained by performing linear
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Figure 5: Effect of sparsity on the percentage of tasks using specific features, with our meta-learning
objective, on miniImageNet (left). The accuracy of the meta-learning algorithm and the average level
of sparsity in the base-learners, as λ varies (right).

ICA (Comon, 1992) on the representation learned by inner-Ridge: the case λ = 0 corresponds to
the approach of Ahuja et al. (2022c).

Discussion. Figure 4 reports disentanglement performance of the three methods, as measured by the
mean correlation coefficient, or MCC (Hyvärinen & Morioka, 2016; Khemakhem et al., 2020a) (Ap-
pendix D.2). In all settings, inner-Lasso obtains high MCC for some values of λ, being on par or
surpassing the baselines. As the theory suggests, it is robust to high levels of correlations between
the latents, as opposed to inner-Ridge with ICA which is very much affected by strong correlations
(since ICA assumes independence). We can also see how additional noise on the latent variables
hurts inner-Ridge with ICA while leaving inner-Lasso unaffected. Figure 6 in Appendix D.2 shows
that all methods find a representation which is linearly equivalent to the ground-truth representa-
tion, except for very large values of λ. Refer to Appendix D.2 for more details. Appendix D.2.4
presents experiments showing to what extent inner-Lasso is robust to violations of Assumption 7.
Appendix D.2.5 presents a visual evaluation of disentanglement. Appendix D.2.6 shows results for
the same experiments with the DCI metric (Eastwood & Williams, 2018).

Few-shot learning experiments. Despite the lack of ground-truth latent factors in standard few-shot
learning benchmarks, we also evaluate our meta-learning objective introduced in Section 2.3, using
the dual formulation of the group Lasso penalized SVM as our base-learner, on the miniImageNet
dataset (Vinyals et al., 2016). The objective of this experiment is to show that the sparse formulation
of the meta-learning objective is capable of reaching similar levels of performance, while using a
fraction of the features. Details about the experimental settings are provided in Appendix D.3.

Discussion. In Figure 5 (left), we report how frequently the learned features are used by the base-
learner on meta-training tasks; the gradual decrease in usage suggests that the features are reused in
different contexts, across different tasks. We also observe (Figure 5, right) that adding sparsity to the
base learner may also improve performance on meta-training tasks, while only using a fraction of
all the features available in the learned representation, supporting our observations in Section 2.1 on
the effect of sparsity on generalization on natural images (see Appendix D.3 for further discussion
about how this still tests generalization). We also observe that some level of sparsity improves the
performance on novel meta-test tasks, albeit to a smaller extent.

5 CONCLUSION

In this work, we investigated the synergies between sparsity, disentanglement and generalization.
We showed that when the downstream task can be solved using only a fraction of the factors of
variations, disentangled representations combined with sparse base-predictors can improve general-
ization (Section 2.1). Our novel identifiability result (Theorem 1) sheds light on how, in a multi-task
setting, sparsity regularization on the task-specific predictors can induce disentanglement. This led
to a practical bi-level optimization problem that was shown to yield disentangled representations on
regression tasks based on the 3D Shapes dataset. Finally, we explored a meta-learning formulation
extending this approach, and showed how sparse base-learners can help with generalization, while
only using a small fraction of the features.
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P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods
for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

G. Roeder, L. Metz, and D. P. Kingma. On linear identifiability of learned representations. In
Proceedings of the 38th International Conference on Machine Learning, 2021.

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Toward
causal representation learning. Proceedings of the IEEE - Advances in Machine Learning and
Deep Neural Networks, 2021.

B. Schölkopf. Causality for machine learning, 2019.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. The Journal of Machine Learning Research, 2012.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems, 30, 2017.

A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions on Signal
Processing, 1999.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109(3):475–494, 2001.

S. van Steenkiste, F. Locatello, J. Schmidhuber, and O. Bachem. Are disentangled representations
helpful for abstract visual reasoning? In Advances in Neural Information Processing Systems,
2019.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.
Advances in neural information processing systems, 29, 2016.

J. Von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, and F. Locatello.
Self-supervised learning with data augmentations provably isolates content from style. In Thirty-
Fifth Conference on Neural Information Processing Systems, 2021.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Found. Trends Mach. Learn., 2008.

M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs, R. G. Lopes, H. Hajishirzi,
A. Farhadi, H. Namkoong, and L. Schmidt. Robust fine-tuning of zero-shot models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7959–7971, June 2022.

S. Wright and J. Nocedal. Numerical optimization. Springer Science, 35(67-68):7, 1999.

W. Yao, Y. Sun, A. Ho, C. Sun, and K. Zhang. Learning temporally causal latent processes from
general temporal data. In International Conference on Learning Representations, 2022.

H. Zhang, Y.-F. Zhang, W. Liu, A. Weller, B. Schölkopf, and E. Xing. Towards principled disentan-
glement for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Y. Zheng, I. Ng, and K. Zhang. On the identifiability of nonlinear ICA with unconditional priors. In
ICLR2022 Workshop on the Elements of Reasoning: Objects, Structure and Causality, 2022.

14



Under review as a conference paper at ICLR 2023

CONTENTS

1 Introduction 1

2 Synergies between Disentanglement and Sparsity 2

2.1 Disentanglement and sparse base-predictors for improved generalization . . . . . . 2

2.2 Disentanglement via sparse multitask learning . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Identifiability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Tractable bilevel optimization problems for sparse multitask learning . . . 6

2.3 Link with meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Related Work 7

4 Experiments 8

5 Conclusion 9

A Proofs of Section 2.1 16

B Identifiability Theory 17

B.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.2 A distribution without density satisfying Assumption 6 . . . . . . . . . . . . . . . 21

C Optimization details 21

C.1 Group Lasso SVM Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D Experimental details 23

D.1 Disentangled representation coupled with sparsity regularization improves general-
ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Semi-Real Experiments on 3D Shapes . . . . . . . . . . . . . . . . . . . . . . . . 24

D.2.1 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.2.3 Architecture, inner solver & hyperparameters . . . . . . . . . . . . . . . . 25

D.2.4 Experiments violating assumptions . . . . . . . . . . . . . . . . . . . . . 25

D.2.5 Visual evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2.6 Additional metrics for disentanglement . . . . . . . . . . . . . . . . . . . 27

D.3 Meta-learning experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

15



Under review as a conference paper at ICLR 2023

Table 1: Table of Notation.

Norms & pseudonorms
∥·∥ Euclidean norm on vectors and Frobenius norm on matrices

∥A∥2,1 :=
∑m

j=1 ∥A:j∥
∥A∥2,0 :=

∑m
j=1 1∥A:j∦=0, where 1 is the indicator function.

Data

x ∈ Rd Observations
X ⊂ Rd Support of observations
y ∈ R Target
Y ⊂ R Support of targets

Learned/ground-truth model

W ∈ Rk×m Ground-truth coefficients
Ŵ ∈ Rk×m Learned coefficients

θ Ground-truth parameters of the representation
θ̂ Learned parameters of the representation

fθ : Rd → Rm Ground-truth representation
fθ̂ : Rd → Rm Learned representation

η ∈ Rk Parameter of the distribution p(y;η)
PW Distribution over ground-truth coefficient matrices W
S := {j ∈ [m] | W:j ̸= 0} (support of W )

PW |S Conditional distribution of W given S.
p(S) Ground-truth distribution over possible supports S

S Support of the distribution p(S)

Optimization

W Primal variable
Λ Dual variable

h∗ : a 7→ supb∈Rd⟨a, b⟩ − h(b), Fenchel conjugate of the function h : Rd → R
f□g : a 7→ minb f(a− b) + g(b) , inf-convolution of the functions f and g

BST : (a, τ) 7→ (1− τ/∥a∥)+ a, block soft-thresholding operator

A PROOFS OF SECTION 2.1

Proposition 1 (MLE Invariance to Invertible Linear Transformations of the Features). Let Ŵ (θ̂)
n

and Ŵ
(θ)
n be the solutions to Problem (1) with the representations fθ̂ and fθ, respectively (which

we assume are unique). If there exists an invertible matrix L such that, ∀x ∈ X , fθ̂(x) = Lfθ(x);

then we have, ∀x ∈ X , Ŵ (θ̂)
n fθ̂(x) = Ŵ

(θ)
n fθ(x).

Proof. By definition of Ŵ (θ̂), we have that, for all Ŵ ∈ Rk×m,∑
(x,y)∈D

log p(y; Ŵ (θ̂)fθ̂(x)) ≥
∑

(x,y)∈D

log p(y; Ŵfθ̂(x)) (7)

∑
(x,y)∈D

log p(y; Ŵ (θ̂)Lfθ(x)) ≥
∑

(x,y)∈D

log p(y; ŴLfθ(x)) . (8)
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Because Rk×mL = Rk×m, we have that, for all Ŵ ∈ Rk×m,∑
(x,y)∈D

log p(y; Ŵ (θ̂)Lfθ(x)) ≥
∑

(x,y)∈D

log p(y; Ŵfθ(x)) , (9)

which is to say that Ŵ (θ) = Ŵ (θ̂)L, or put differently, Ŵ (θ̂) = Ŵ (θ)L−1. It implies

Ŵ (θ̂)fθ̂(x) = Ŵ (θ)L−1Lfθ(x) = Ŵ (θ)fθ(x) , (10)

which is what we wanted to show.

Proposition 2 (Population MLE for Linearly Entangled Representations). Let Ŵ (θ̂)
∞ be the solu-

tion of the population-based MLE, argmaxW̃ Ep(x,y) log p(y; W̃fθ̂(x)) (assumed to be unique).

Suppose fθ̂ is linearly equivalent to fθ, and Assumption 1 holds, then, Ŵ (θ̂)
∞ = WL−1.

Proof. By definition of Ŵ (θ̂)
∞ , we have that, for all W̃ ∈ Rk×m,

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ fθ̂(x)) ≥ Ep(x,y) log p(y; W̃fθ̂(x)) (11)

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ Lfθ(x)) ≥ Ep(x,y) log p(y; W̃Lfθ(x)) . (12)

In particular, the inequality holds for W̃ := WL−1, which yields

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ Lfθ(x)) ≥ Ep(x,y) log p(y;Wfθ(x)) (13)

0 ≥ Ep(x,y)

[
log p(y;Wfθ(x))− log p(y; Ŵ (θ̂)

∞ Lfθ(x))
]

(14)

0 ≥ Ep(x)KL(p(y;Wfθ(x)) || p(y; Ŵ (θ̂)
∞ Lfθ(x))) . (15)

Since the KL is always non-negative, we have that,

Ep(x)KL(p(y;Wfθ(x)) || p(y; Ŵ (θ̂)
∞ Lfθ(x))) = 0 , (16)

which in turn implies

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ Lfθ(x)) = Ep(x,y) log p(y;Wfθ(x)) (17)

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ Lfθ(x)) = Ep(x,y) log p(y;WL−1Lfθ(x)) (18)

Ep(x,y) log p(y; Ŵ
(θ̂)
∞ fθ̂(x)) = Ep(x,y) log p(y;WL−1fθ̂(x)) (19)

(20)

Since the solution to the population MLE from Proposition 2 is assumed to be unique, this equality

holds if and only if Ŵ (θ̂)
∞ = WL−1.

B IDENTIFIABILITY THEORY

The following lemma will be important for proving Theorem 3. The argument is taken
from Lachapelle et al. (2022).

Lemma 1 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an
invertible matrix. Then, there exists a permutation σ such that Li,σ(i) ̸= 0 for all i.

Proof. Since the matrix L is invertible, its determinant is non-zero, i.e.

det(L) :=
∑

σ∈Sm

sign(σ)
m∏
i=1

Li,σ(i) ̸= 0 , (21)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is
non-zero, meaning there exists σ ∈ Sm such that for all i ∈ [m], Li,σ(i) ̸= 0.
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For all W ∈ W , we are going to denote by Ŵ (W ) some estimator of W . The following result
provides conditions under which if Ŵ (W ) allows a perfect fit of the ground-truth distribution p(y |
x,W ), then the representation fθ and the parameter W are identified up to an invertible linear
transformation. Many works have showed similar results in various context (Hyvärinen & Morioka,
2016; Khemakhem et al., 2020a; Roeder et al., 2021; Ahuja et al., 2022c). We reuse some of their
proof techniques.

Theorem 2 (Linear identifiability). Let Ŵ (·) : W → Rk×m. Suppose Assumptions 2 to 5 hold and
that, for all W ∈ W , x ∈ X and y ∈ Y , the following holds

p(y; Ŵ (W )fθ̂(x)) = p(y;Wfθ(x)) . (22)

Then, there exists an invertible matrix L ∈ Rm×m such that, for all x ∈ X , fθ(x) = Lfθ̂(x) and
such that, for all W ∈ W , Ŵ (W ) = WL

Proof. By Assumption 3, Equation (23) implies that Wfθ(x) = Ŵ (W )fθ̂(x). Assumption 5

ensures that we can construct an invertible matrix U :=


W

(1)
i1,:
...

W
(dz)
idz ,:

. Construct analogously Û :=


Ŵ

(W (1))
i1,:

...

Ŵ
(W (dz))
idz ,:

. This allows us to write Ufθ(x) = Ûfθ̂(x). Left-multiplying by U−1 on both sides

yields fθ(x) = Lfθ̂(x), where L := U−1Û . Using the invertible matrix F from Assumption 4, we
can thus write F = LF̂ where we defined F̂ := [fθ̂(x

(1)), · · · ,fθ̂(x
(dz))]. Since F is invertible,

so are L and F̂ .

By substituting F = LF̂ in WF = Ŵ (W )F̂ , we obtain WLF̂ = Ŵ (W )F̂ . By right-multiplying
both sides by F̂−1, we obtain WL = Ŵ (W ).

The following theorem is where most of the theoretical contribution of this work lies. Note that The-
orem 1, from the main text, is a straightforward application of this result.

Theorem 3. (Disentanglement via task sparsity) Let Ŵ (·) : W → Rk×m. Suppose Assumptions 3
to 7 hold and that, for all W ∈ W , x ∈ X and y ∈ Y , the following holds

p(y; Ŵ (W )fθ̂(x)) = p(y;Wfθ(x)) . (23)

Morevover, assume that E∥Ŵ (W )∥2,0 ≤ E∥W ∥2,0, where both expectations are taken w.r.t. PW

and ∥W ∥2,0 :=
∑m

j=1 1(W:j ̸= 0) with 1(·) the indicator function. Then, fθ̂ is disentangled w.r.t.
fθ (Definition 1).

Proof. First of all, by Assumptions 3 to 5, we can apply Theorem 2 to conclude that fθ(x) =

Lfθ̂(x) and WL = Ŵ (W ) for some invertible matrix L.

We can thus write E∥WL∥2,0 ≤ E∥W ∥2,0.
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We can write

E∥W ∥2,0 = Ep(S)E[
m∑
j=1

1(W:j ̸= 0) | S] (24)

= Ep(S)

m∑
j=1

E[1(W:j ̸= 0) | S] (25)

= Ep(S)

m∑
j=1

PW |S [W:j ̸= 0] (26)

= Ep(S)

m∑
j=1

1(j ∈ S) , (27)

where the last step follows from the definition of S.

We now perform similar steps for E∥WL∥2,0:

E∥WL∥2,0 = Ep(S)E[
m∑
j=1

1(WL:j ̸= 0) | S] (28)

= Ep(S)

m∑
j=1

E[1(WL:j ̸= 0) | S] (29)

= Ep(S)

m∑
j=1

PW |S [WL:j ̸= 0] (30)

= Ep(S)

m∑
j=1

PW |S [W:SLS,j ̸= 0] . (31)

Notice that

PW |S [W:SLS,j ̸= 0] = 1− PW |S [W:SLS,j = 0] (32)

Let Nj be the support of L:j , i.e. Nj := {i ∈ [m] | Li,j ̸= 0}. When S ∩ Nj = ∅, LS,j = 0
and thus PW |S [W:SLS,j = 0] = 1. When S ∩Nj ̸= ∅, LS,j ̸= 0, by Assumption 6 we have that
PW |S [W:SLS,j = 0] = 0. Thus

PW |S [W:SLS,j ̸= 0] = 1− 1(S ∩Nj = ∅) (33)

= 1(S ∩Nj ̸= ∅) , (34)

which allows us to write

E∥WL∥2,0 = Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) . (35)

We thus have that

E∥WL∥2,0 ≤ E∥W ∥2,0 (36)

Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) . (37)

Since L is invertible, by Lemma 1, there exists a permutation σ : [m] → [m] such that, for all
j ∈ [m], Lj,σ(j) ̸= 0. In other words, for all j ∈ [m], j ∈ Nσ(j). Of course we can permute the
terms of the l.h.s. of eq. (37), which yields

Ep(S)

m∑
j=1

1(S ∩Nσ(j) ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) (38)

Ep(S)

m∑
j=1

(
1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S)

)
≤ 0 . (39)
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We notice that each term 1(S ∩ Nσ(j) ̸= ∅) − 1(j ∈ S) ≥ 0 since whenever j ∈ S, we also have
that j ∈ S ∩ Nσ(j) (recall j ∈ Nσ(j)). Thus, the l.h.s. of eq. (39) is a sum of non-negative terms
which is itself non-positive. This means that every term in the sum is zero:

∀S ∈ S, ∀j ∈ [m], 1(S ∩Nσ(j) ̸= ∅) = 1(j ∈ S) . (40)

Importantly,

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ S ∩Nσ(j) = ∅ , (41)

and since S ∩Nσ(j) = ∅ ⇐⇒ Nσ(j) ⊆ Sc we have that

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ Nσ(j) ⊆ Sc (42)

∀j ∈ [m], Nσ(j) ⊆
⋂

S∈S|j ̸∈S

Sc . (43)

By Assumption 7, we have that
⋃

S∈S|j ̸∈S S = [m] \ {j}. By taking the complement on both
sides and using De Morgan’s law, we get

⋂
S∈S|j ̸∈S Sc = {j}, which implies that Nσ(j) = {j}

by Equation (43). Thus, L = DP where D is an invertible diagonal matrix and P is a permutation
matrix.

B.1 PROOF OF THEOREM 1

Before presenting Theorem 1 from the main text, we first present a variation of it where we con-
strain E∥Ŵ (W )∥2,0 to be smaller than E∥W ∥2,0. We note that this is weaker than imposing
∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for all W ∈ W , as is the case in Problem (3) of Theorem 1.

Theorem 4 (Sparse multitask learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x))

s.t. ∀ W ∈ W, Ŵ (W ) ∈ argmin
W̃

Ep(x,y|W ) − log p(y; W̃fθ̂(x))

EPW
∥Ŵ (W )∥2,0 ≤ EPW

∥W ∥2,0 .

(44)

Then, under Assumptions 2 to 7, fθ̂ is disentangled w.r.t. fθ (Definition 1).

Proof. First, notice that

0 ≤ EPW
Ep(x|W )KL(p(y;Wfθ(x)) || p(y; Ŵ (W )fθ̂(x))) (45)

EPW
Ep(x,y|W ) − log p(y;Wfθ(x)) ≤ EPW

Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x)) . (46)

For a fixed value of x and W , it is well known that KL(p(y;Wfθ(x)) || p(y; Ŵ (W )fθ̂(x))) = 0

if and only if, for all y ∈ Y , p(y;Wfθ(x)) = p(y; Ŵ (W )fθ̂(x)). By Assumption 3, this is
equivalent to Wfθ(x) = Ŵ (W )fθ̂(x). Thus, for the equality to hold in eq. (45), we need
Wfθ(x) = Ŵ (W )fθ̂(x) everywhere. Of course, the global minimum can be achieved by re-
specting EPW

∥Ŵ (W )∥2,0 ≤ EPW
∥W ∥2,0, simply by setting θ̂ := θ and Ŵ (W ) := W .

The above implies that if θ̂ is some minimizer of Problem (44), we must have that Wfθ(x) =

Ŵ (W )fθ̂(x) everywhere and EPW
||Ŵ (W )||0 ≤ EPW

||W ||0. Thus, Theorem 3 implies the desired
conclusion.

Based on Theorem 4, we can slightly adjust the argument to prove Theorem 1 from the main text.

Theorem 1 (Sparse multi-task learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x))

s.t. ∀W ∈ W, Ŵ (W ) ∈ argmin
W̃ s.t.

||W̃ ||2,0≤||W ||2,0

Ep(x,y|W ) − log p(y; W̃fθ̂(x)) . (3)

Then, under Assumptions 2 to 7, fθ̂ is disentangled w.r.t. fθ (Definition 1).
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Proof. The first part of the argument in the proof of Theorem 4 applies here as well, meaning: for the
equality to hold in eq. (45), we need Wfθ(x) = Ŵ (W )fθ̂(x) everywhere. This global minimum
can be achieved by respecting ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for all W ∈ W simply by setting θ̂ := θ

and Ŵ (W ) := W .

This means that if θ̂ is some minimizer of Problem (3), we must have that Wfθ(x) = Ŵ (W )fθ̂(x)

holds everywhere and that, for all W ∈ W , ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0. Of course, this means
EPW

||Ŵ (W )||0 ≤ EPW
||W ||0, which allows us to apply Theorem 3 to obtain the desired conclu-

sion.

B.2 A DISTRIBUTION WITHOUT DENSITY SATISFYING ASSUMPTION 6

Interestingly, there are distributions over W1,S | S that do not have a density w.r.t. the Lebesgue
measure, but still satisfy Assumption 6. This is the case, e.g., when W1,S | S puts uniform mass
over a (|S| − 1)-dimensional sphere embedded in R|S| and centered at zero. In that case, for all
a ∈ R|S|\{0}, the intersection of span{a}⊥, which is (|S| − 1)-dimensional, with the (|S| − 1)-
dimensional sphere is (|S| − 2)-dimensional and thus has probability zero of occurring. One can
certainly construct more exotic examples of measures satisfying Assumption 6 that concentrate mass
on lower dimensional manifold.

C OPTIMIZATION DETAILS

C.1 GROUP LASSO SVM DUAL

Notation. The Fenchel conjugate of a function h : Rd → R is written h∗ and is defined for any
y ∈ Rd, by h∗(y) = supx∈Rd⟨x, y⟩ − h(x).
Definition 2. (Primal Group Lasso Soft-Margin Multiclass SVM.) The primal problem of the group
Lasso soft-margin multiclass SVM is defined as

min
W∈Rk×m

Lin(W ;F ,Y ) :=

n∑
i=1

max
l∈[k]

(1 + (Wyi: −Wl:)Fi: − Yil) + λ1∥W ∥2,1 + λ2

2 ∥W ∥2

(47)
Proposition 3. (Dual Group Lasso Soft-Margin Multiclass SVM.) The dual of the inner problem
with Lin as defined in (5) writes

min
Λ∈Rn×k

1

λ2

m∑
j=1

∥BST
(
(Y −Λ)⊤F:j , λ1

)
∥2 + ⟨Y ,Λ⟩+

n∑
i=1

1 k∑
l=1

Λil=1
+

n∑
i=1

k∑
l=1

1Λil≥0 , (6)

with BST the block soft-thresholding operator: BST : (a, τ) 7→ (1− τ/∥a∥)+ a, F ∈ Rn×m

the concatenation of {fθ̂(x)}(x,y)∈Dtrain . In addition, the primal-dual link writes, for all j ∈ [m],
W:j = BST

(
(Y −Λ)⊤F:j , λ1

)
/λ2.

The primal objective 47 can be hard to minimize with modern solvers. Moreover in few-shot learn-
ing applications, the number of features m is usually much larger than the number of samples n (in
Lee et al. 2019, m = 1.6 · 104 and n ≤ 25), hence we solve the dual of Problem (47).

Proof of Proposition 3. Let g : u 7→ λ1∥u∥ + λ2

2 ∥u∥2. Proof of Proposition 3 is composed of the
following lemmas.

Lemma 2. i) The dual of Problem (47) is

min
Λ∈Rn×k

m∑
j=1

g∗((Y −Λ)⊤F:j) + ⟨Y ,Λ⟩

s.t. ∀i ∈ [n],

k∑
l=1

Λil = 1 , ∀i ∈ [n], l ∈ [k], Λil ≥ 0 ,

(48)

where g∗ is the Fenchel conjugate of the function g.
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ii) The Fenchel conjugate of the function g writes

∀v ∈ RK , g∗(v) =
1

λ2
∥BST(v, λ1)∥2 . (49)

Lemmas 4 i) and 4 ii) yields Proposition 3.

Proof of Lemma 4 i). The Lagrangian of Problem (47) writes:

L(W , ξ,Λ) =

m∑
j=1

g(W:j) +
∑
i

ξi +

n∑
i=1

k∑
l=1

(1− ξi −Wyi: · Fi: +Wl: · Fi: − Yil)Λil . (50)

∂ξL(W , ξ,Λ) = 0 yields ∀i ∈ [n],
∑k

l=1 Λil = 1. Then the Lagrangian rewrites

min
W

min
ξ

L(W , ξ,Λ) = min
W ,ξ

m∑
j=1

g(W:j) +

n∑
i=1

ξi +

n∑
i=1

k∑
l=1

(−ξi −Wyi: · Fi: +Wl: · Fi: − Yil)Λil

=

m∑
j=1

min
W:j

g(W:j)−
n∑

i=1

k∑
l=1

(Fi:Yil − Fi:Λil)Wl:︸ ︷︷ ︸
=⟨(Y −Λ)⊤F:j ,W:j⟩︸ ︷︷ ︸

=−g∗((Y −Λ)⊤F:j)

−
n∑

i=1

k∑
l=1

YilΛil .

Then the dual problem writes:

min
Λ∈Rn×k

m∑
j=1

g∗
(
(Y −Λ)⊤F:j

)
+ ⟨Y ,Λ⟩ (51)

s. t. ∀i ∈ [n]

k∑
l=1

Λil = 1 ,∀i ∈ [n], l ∈ [k], Λil ≥ 0 . (52)

Proof of Lemma 4 ii). Let h : u 7→ ∥u∥2 + κ
2 ∥u∥

2. The proof of Lemma 4 i) is done using the
following steps.

Lemma 3. i) h∗(v) = 1
2κ∥v∥

2
2 −

(
κ
2 ∥·∥

2
2□∥·∥2

)
(v/κ).

ii)
(
κ
2 ∥·∥

2
2□∥·∥2

)
(v) = κ

2 ∥v∥
2
2 − 1

2κ∥BST(κv, 1)∥
2.

Proof of Lemma 4 i). With κ = λ2/λ1, the Fenchel transform of h : w 7→ ∥w∥2 + κ∥w∥2.

h(u) = ∥u∥2 + κ
2 ∥u∥

2
2

h∗(v) = sup
w

(
v⊤w − ∥w∥2 − κ

2 ∥w∥22
)

= 1
2κ∥v∥

2
2 + sup

w

(
−κ

2 ∥w − v/κ∥22 − ∥w∥2
)

= 1
2κ∥v∥

2
2 − inf

w

(
κ
2 ∥w − v/κ∥22 + ∥w∥2

)
= 1

2κ∥v∥
2
2 − (κ2 ∥·∥

2
2□∥·∥2)(v/κ) .
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Proof of Lemma 4 ii).

(κ2 ∥·∥
2
2□∥·∥2)(v) = (κ2 ∥·∥

2
2□∥·∥2)∗∗(v)

= ( 1
2κ∥·∥

2
2 + ιB2

)∗(v)

= sup
∥w∥2≤1

(
v⊤w − 1

2κ∥w∥22
)

= κ
2 ∥v∥

2 + sup
∥w∥2≤1

− 1
2κ∥κv −w∥22

= κ
2 ∥v∥

2 − 1
2κ∥BST(κv, 1)∥

2
2 .

g∗(u) = λ1h
∗(u/λ1)

=
λ1

2κ
∥BST(u/λ1, 1)∥2

=
λ2
1

2λ2
∥BST(u/λ1, 1)∥2

=
1

λ2
∥BST(u, λ1)∥2 .

D EXPERIMENTAL DETAILS

D.1 DISENTANGLED REPRESENTATION COUPLED WITH SPARSITY REGULARIZATION
IMPROVES GENERALIZATION

We consider the following data generating process: We sample the ground-truth features fθ(x) from
a Gaussian distribution N (0,Σ) where Σ ∈ Rm×m and Σi,j = 0.9|i−j|. Moreover, the labels are
given by y = w ·fθ(x)+ϵ where w ∈ Rm, ϵ ∼ N (0, 0.04) and m = 100. The ground-truth weight
vector w is sampled once from N (0, Im×m) and mask some of its components to zero: we vary the
fraction of meaningful features (ℓ/m) from very sparse (ℓ/m = 5%) to less sparse (ℓ/m = 80%)
settings. For each case, we study the sample complexity by varying the number of training samples
from 25 to 150, but evaluating the generalization performance on a larger test dataset (1000 sam-
ples). To generate the entangled representations, we multiply the true latent variables fθ(x) by a
randomly sampled orthogonal matrix L, i.e., fθ̂(x) := Lfθ(x). For the disentangled representa-
tion, we simply consider the true latents, i.e. fθ̂(x) := fθ(x). Note that in principle we could have
considered an invertible matrix L that is not orthogonal for the linearly entangled representation and
a component-wise rescaling for the disentangled representation. The advantage of not doing so and
opting for our approach is that the conditioning number of the covariance matrix of fθ̂(x) is the
same for both the entangled and the disentangled, hence offering a fairer comparison.

For both the case of entangled and disentangled representation, we solve the regression problem
with Lasso and Ridge regression, where the associated hyperparameters (regularization strength)
were inferred using 5-fold cross validation on the input training dataset. Using both lasso and ridge
regression would help us to show the effect of encouraging sparsity.

In Figure 1 for the sparsest case (ℓ/m = 5%), we observe that that Disentangled-Lasso approach
has the best performance when we have less training samples, while the Entangled-Lasso approach
performs the worst. As we increase the number of training samples, the performance of Entangled-
Lasso approaches that of Disentangled-Lasso, however, learning under the Disentangled-Lasso ap-
proach is sample efficient. Disentangled-Lasso obtains R2 greater than 0.5 with only 25 training
samples, while other approaches obtain R2 close to zero. Also, Disentagled-Lasso converges to the
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optimal R2 using only 50 training samples, while Entangled-Lasso does the same with 150 samples
samples.

Note that the improvement due to disentanglement does not happen for the case of ridge regression
as expected and there is no of a difference between the methods Disentangled-Ridge and Entangled-
Ridge because the L2 norm is invariant to orthogonal transformation. Also, having sparsity in
the underlying task is important. Disentangled-Lasso shows the max improvement for the case of
ℓ/m = 5%, with the gains reducing as we decrease the sparsity in the underlying task (l/m = 80%).

D.2 SEMI-REAL EXPERIMENTS ON 3D SHAPES
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Figure 6: Prediction performance (R Score) for inner-Lasso, inner-Ridge and inner-Ridge combined
with ICA as a function of the regularization parameter (left and middle). Varying level of correlation
between latents (top) and noise on the latents (bottom). The right columns shows performance of
the best hyperparameter for different values of correlation and noise levels.

D.2.1 DATASET GENERATION

Details on 3D Shapes. The 3D Shapes dataset (Burgess & Kim, 2018) contains synthetic images
of colored shapes resting in a simple 3D scene. These images vary across 6 factors: Floor hue (10
values linearly spaced in [0, 1]); Wall hue (10 values linearly spaced in [0, 1]); Object hue (10 values
linearly spaced in [0, 1]); Scale (8 values linearly spaced in [0, 1]); Shape (4 values in [0, 1, 2, 3]);
and Orientation (15 values linearly spaced in [-30, 30]). These are the factors we aim to disentangle.
We standardize them to have mean 0 and variance 1. We denote by Z ⊂ R6, the set of all possible
latent factor combinations. In our framework, this corresponds to the support of the ground-truth
features fθ(x). We note that the points in Z are arranged in a grid-like fashion in R6.

Task generation. For all tasks t, the labelled dataset Dt = {(x(t,i)), y(t,i))}ni=1 is generated by
first sampling the ground-truth latent variables z(t,i) := fθ(x

(t,i)) i.i.d. according to some dis-
tribution p(z) over Z , while the corresponding input is obtained doing x(t,i) := f−1

θ (z(t,i)) (fθ

is invertible in 3D Shapes). Then, a sparse weight vector w(t) is sampled randomly by doing
w(t) := w̄(t) ⊙ s(t), were ⊙ is the Hadamard (component-wise) product, w̄(t) ∼ N (0, I) and
s ∈ {0, 1}6 is a binary vector with independent components sampled from a Bernoulli distribution
with (p = 0.5). Then, the labels are computedfor each example as y(t,i) := w(t) · x(t,i) + ϵ(t,i),
where ϵ(t,i) is independent Gaussian noise. In every tasks, the dataset has size n = 50. New tasks
are generated continuously as we train. Figures 4 and 6 explores various choices of p(z), i.e. by
varying the level of correlation between the latent variables and by varying the level of noise on the
ground-truth latents.
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Noise on latents. To make the dataset slightly more realistic, we get rid of the artificial grid-like
structure of the latents by adding noise to it. This procedure transforms Z into a new support Zα,
where α is the noise level. Formally, Zα :=

⋃
z∈Z{z + uz} where the uz are i.i.d samples from

the uniform over the hypercube[
−α

∆z1
2

, α
∆z1
2

]
×
[
−α

∆z2
2

, α
∆z2
2

]
× . . .×

[
−α

∆z6
2

, α
∆z6
2

]
,

where ∆zi denotes the gap between contiguous values of the factor zi. When α = 0, no noise is
added and the support Z is unchanged, i.e., Z1 = Z . As long as α ∈ [0, 1], contiguous points in Z
cannot be interchanged in Zα. We also clarify that the ground-truth mapping fθ is modified to fθ,α

consequently: for all x ∈ X , fθ,α(x) := fθ(x) + uz . We emphasize that the uz are sampled only
once such that fθ,α(x) is actually a deterministic mapping.

Varying correlations. To verify that our approach is robust to correlations in the latents, we con-
struct p(z) as follows: We consider a Gaussian density centered at 0 with covariance Σi,j :=

ρ+ 1(i = j)(̇1− ρ). Then, we evaluate this density on the points of Zα and renormalize to have a
well-defined probability distribution over Zα. We denote by pα,ρ(z) the distribution obtain by this
construction.

In the top rows of Figures 4 and 6, the latents are sampled from pα=1,ρ(z) and ρ varies between 0
and 0.99. In the bottom rows of Figures 4 and 6, the latents are sampled from pα,ρ=0.9(z) and α
varies from 0 to 1.

D.2.2 METRICS

We evaluate disentanglement via the mean correlation coefficient (Hyvärinen & Morioka,
2016; Khemakhem et al., 2020a) which is computed as follows: The Pearson correlation ma-
trix C between the ground-truth features and learned ones is computed. Then, MCC =
maxπ∈permutations

1
m

∑m
j=1 |Cj,π(j)|. We also evaluate linear equivalence by performing linear re-

gression to predict the ground-truth factors from the learned ones, and report the mean of the Pear-
son correlations between the ground-truth latents and the learned ones. This metric is known as
the coefficient of multiple correlation, R, and turns out to be the square-root of the more widely
known coefficient of determination, R2. The advantage of using R over R2 is that we always have
MCC ≤ R.

D.2.3 ARCHITECTURE, INNER SOLVER & HYPERPARAMETERS

We use the four-layer convolutional neural network typically used in the disentanglement litera-
ture (Locatello et al., 2019). As mentioned in Section 2.2.2, the norm of the representation fθ̂(x)
must be controlled to make sure the regularization remains effective. To do so, we apply batch nor-
malization (Ioffe & Szegedy, 2015) at the very last layer of the neural network and do not learn its
scale and shift parameters. Empirically, we do see the expected behavior that, without any normal-
ization, the norm of fθ̂(x) explodes as we train, leading to instabilities and low sparsity.

In these experiments, the distribution p(y;η) used for learning is a Gaussian with fixed variance.
In that case, the inner problem of Section 2.2.2 reduces to Lasso regression. Computing the hy-
pergradient w.r.t. θ requires solving this inner problem. To do so, we use Proximal Coordinate
Descent (Tseng, 2001; Richtárik & Takáč, 2014).

In Figures 4 and 6, we explore various levels of regularization λ. In our implementation of inner-
Lasso, λmax := 1

n∥F
⊤y∥∞ where F ∈ Rn×m is the design matrix of the features of the samples

of a task, while in the inner-Ridge implementation, λmax := 1
n∥F ∥2.

D.2.4 EXPERIMENTS VIOLATING ASSUMPTIONS

In this section, we explore variations of the experiments of Section 4, but this time the assumptions
of Theorem 1 are violated.

Figure 7 shows different degrees of violation of Assumption 7. We consider the cases where
S := {{1, 2}, {3, 4}, {5, 6}} (block size = 2), S := {{1, 2, 3}, {4, 5, 6}} (block size = 3) and
S := {{1, 2, 3, 4, 5, 6}} (block size = 6). Note that the latter case corresponds to having no sparsity
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at all in the ground-truth model, i.e. all tasks requires all features. The reader can verify that these
three cases indeed violate Assumption 7. In all cases, the distribution p(S) puts uniform mass over
its support S. Similarly to the experiments from the main text, w := w̄ ⊙ s, where w̄ ∼ N (0, I)
and s ∼ p(S) (s is the binary representation of the set S). Overall, we can see that inner-Lasso does
not perform as well when Assumption 7 is violated. For example, when there is no sparsity at all
(block size = 6), inner-Lasso performs poorly and is even surpassed by inner-Ridge. Nevertheless,
for mild violations (block size = 2), disentanglement (as measured by MCC) remains reasonably
high. We further notice that all methods obtain very good R score in all settings. This is expected
in light of Theorem 2, which guarantees identifiability up to linear transformation without requiring
Assumption 7.
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Figure 7: Disentanglement (MCC, top) and prediction (R Score, bottom) performances for inner-
Lasso, inner-Ridge and inner-Ridge combined with ICA as a function of the regularization param-
eter. The metrics are plotted for multiple value of block size for the support. Block size = 6
corresponds to no sparsity in the ground truth coefficients.

Figure 8 presents experiments that are identitical to those of Figure 4 in the main text, except for
how w is generated. Here, the components of w are sampled independently according to wi ∼
Laplace(µ = 0, b = 1). We note that, under this process, the probability that wi = 0 is zero.
This means all features are useful and Assumption 7 is violated. That being said, due to the fat tail
behavior of the Laplacian distribution, many components of w will be close to zero (relatively to
its variance). Thus, this can be thought of as a weaker form of sparsity where many features are
relatively unimportant. Figure 8 shows that inner-Lasso can still disentangle very well. In fact, the
performance is very similar to the experiments that presented actual sparsity (Figure 4).

D.2.5 VISUAL EVALUATION

Figures 9 to 12 show how various learned representations respond to changing a single factor of
variation in the image (Higgins et al., 2017, Figure 7.A.B). We see what was expected: the higher
the MCC, the more disentangled the learned features appear, thus validating MCC as a good metric
for disentanglement. See captions for details.
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Figure 8: Same experiment as Figure 4, but the task coefficient vectors w are sampled from a
Laplacian distribution (instead of what was described in Appendix D.2.1). Performance is barely
affected, showing some amount of robustness to violations of Assumption 7.

D.2.6 ADDITIONAL METRICS FOR DISENTANGLEMENT

We implemented metrics from the DCI framework (Eastwood & Williams, 2018) to evaluate dis-
entanglement. 1) DCI-Disentanglement: How many ground truth latent components are related
to a particular component of the learned latent representation; 2) DCI-Completeness: How many
learned latent components are related to a particular component of the ground truth latent represen-
tation. Note that for the definition of disentanglement used in the present work Definition 1, we want
both DCI-disentanglement and DCI-completeness to be high.

The DCI framework requires a matrix of relative importance. In our implementation, this matrix is
the coefficient matrix resulting from performing linear regression with inputs as the learned latent
representation fθ̂(x) and targets as the ground truth latent representation fθ(x), and denote the
solution as the matrix W . Further, denote by I = |W | as the importance matrix, as Ii,j denotes the
relevance of inferred latent fθ̂(x)j for predicting the true latent fθ(x)i.

27



Under review as a conference paper at ICLR 2023

Now, for computing DCI-disentanglement, we normalize each row of the importance matrix I[i, :]
by its sum so that it represents a probability distribution. Then disentanglement is given by 1

m ×∑m
i 1 − H(I[i, :]), where H denotes the entropy of a distribution. Note that for the desired case

of each ground truth latent component being explained by a single inferred latent component, we
would have H(I[i, :]) = 0 as we have a one-hot vector for the probability distribution. Similarly,
for the case of each ground truth latent component being explained uniformly by all the inferred
latents, H(I[i, :]) would be maximized and hence the DCI score would be minimized. To compute
the DCI-completeness, we first normalize each column of the importance matrix I[:, j] by its sum
so that it represents a probability distribution and then compute 1

m ×
∑m

i 1−H(I[:, j]).

Figure 13 shows the results for the 3D Shapes experiments (Section 4) with the DCI metric to
evaluate disentanglement. Notice that we find the same trend as we had with the MCC metric 4,
that inner-Lasso is more robust to correlation between the latent variables, and inner-Ridge + ICA
performance drops down significantly with increasing correlation.

D.3 META-LEARNING EXPERIMENTS

Experimental settings. We evaluate the performance of our meta-learning algorithm based on a
group-sparse SVM base-learner on the miniImageNet (Vinyals et al., 2016) dataset. Following the
standard nomenclature in few-shot classification (Hospedales et al., 2021) with k-shot N -way, where
N is the number of classes in each classification task, and k is the number of samples per class in
the training dataset Dtrain

t , we consider 2 settings: 1-shot 5-way, and 5-shot 5-way. Note that the
results presented in Figure 5 only show the performance on 5-shot classification. We use the same
residual network architecture as in (Lee et al., 2019), with 12 layers and a representation of size
p = 1.6× 104.

Even though we consider a similar base-learner as MetaOptNet (Lee et al., 2019) (namely, a SVM),
our control experiment with λ = 0 cannot be directly compared to the performance of the model
reported in that prior work. The reason is that in order to control for any other sources of “effective
regularization” (e.g., data augmentation, label smoothing), we do not include the modifications made
in MetaOptNet to improve performance. Moreover, we used a different solver (proximal block-
coordinate descent, as opposed to a QP solver) to solve the inner problem Problem (6).

Generalization on meta-training tasks. In Section 2.3, we argued that evaluating the performance
of the learned representations on meta-training tasks (i.e., tasks similar to the ones seen during meta-
training) still shows the generalization capacity to new tasks. Indeed, those new tasks on which we
evaluate performance were created using the same classes as the tasks used during meta-training,
but using a combination of classes that may have not been seen in any tasks used for optimizing
Problem (5). However, evaluation in meta-learning is typically done on meta-test tasks, i.e. tasks
based on concepts that were never seen by any task during meta-training. This evaluation requires a
stronger notion of generalization, closer to out-of-distribution generalization.

Base-learner 5-way 1-shot 5-way 5-shot

SVM (λ = 0) 53.29± 0.60% 69.26± 0.51%
Group-sparse SVM (λ = 0.01) 54.22± 0.61% 70.01± 0.51%

MetaOptNet (Lee et al., 2019) 64.09± 0.62% 80.00± 0.45%

Table 2: Performance of our meta-learning algorithm on the miniImageNet benchmark. The perfor-
mance is reported as the mean accuracy and 95% confidence interval on 1000 meta-test tasks. We
also report the performance of MetOptNet (Lee et al., 2019) as reference, even though the perfor-
mance is not directly comparable to our SVM baseline (see text for details).

Nonetheless, we observe in Table 2 that the performance of the meta-learning method improves as
the base-learners are group-sparse.
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Figure 9: Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned by inner-Lasso (best hyperparameter) on a
dataset with 0 correlation between latents and a noise scale of 1. The corresponding MCC is 0.99.
We can see that varying a single factor in the image always result in changing a single factor in the
learned representation.
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Figure 10: Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned without regularization of any kind (i.e. with
inner-Ridge without regularization coefficient equal to zero) on a dataset with 0 correlation between
and a noise scale of 1. The corresponding MCC is 0.63. We can see that varying a single factor in
the image result in changing multiple factors in the learned representation, i.e. the representation is
not disentangled. 30
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Figure 11: Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned with inner-Lasso (best hyperparameter) on a
dataset with correlation 0.9 between latents and a noise scale of 1. The corresponding MCC is
0.96. Qualitatively, the representation appears to be well disentangled, but not as well as in Figure 9
(reflected by a drop in MCC of 0.03).
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Figure 12: Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned with inner-Ridge (best hyperparameter) on a
dataset with correlation 0.9 between latents and a noise scale of 1. The corresponding MCC is
0.79. For most latent factors, we cannot identify a dominant feature, except maybe for background
and object colors. The representation appears more disentangled than Figure 10, but less disentan-
gled than Figure 11, as reflected by their corresponding MCC values.
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Figure 13: Disentanglement performance (DCI) for inner-Lasso, inner-Ridge and inner-Ridge com-
bined with ICA as a function of the regularization parameter (left and middle). The right columns
shows performance of the best hyperparameter for different values of correlation and noise. The top
row shows the results for the disentanglement metric of DCI and the bottom row shows the results
for the completeness metric of DCI.
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