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ABSTRACT

Although disentangled representations are often said to be beneficial for down-
stream tasks, current empirical and theoretical understanding is limited. In this
work, we provide evidence that disentangled representations coupled with sparse
base-predictors improve generalization. In the context of multi-task learning, we
prove a new identifiability result that provides conditions under which maximally
sparse base-predictors yield disentangled representations. Motivated by this the-
oretical result, we propose a practical approach to learn disentangled representa-
tions based on a sparsity-promoting bi-level optimization problem. Finally, we
explore a meta-learning version of this algorithm based on group Lasso multiclass
SVM base-predictors, for which we derive a tractable dual formulation. It obtains
competitive results on standard few-shot classification benchmarks, while each
task is using only a fraction of the learned representations.

1 INTRODUCTION

The recent literature on self-supervised learning has provided evidence that learning a representation
on large corpuses of data can yield strong performances on a wide variety of downstream tasks (De-
vlin et al., 2018; Chen et al., 2020), especially in few-shot learning scenarios where the training
data for these tasks is limited (Brown et al., 2020b; Dosovitskiy et al., 2021; Radford et al., 2021).
Beyond transferring across multiple tasks, these learned representations also lead to improved ro-
bustness against distribution shifts (Wortsman et al., 2022) as well as stunning text-conditioned
image generation (Ramesh et al., 2022). However, preliminary assessments of the latter has high-
lighted shortcomings related to compositionality (Marcus et al., 2022), suggesting new algorithmic
innovations are needed to make further progress.

Another line of work has argued for the integration of ideas from causality to make progress to-
wards more robust and transferable machine learning systems (Pearl, 2019; Schoélkopf, 2019; Goyal
& Bengio, 2022). Causal representation learning has emerged recently as a field aiming to define
and learn representations suited for causal reasoning (Scholkopf et al., 2021). This set of ideas is
strongly related to learning disentangled representations (Bengio et al., 2013). Informally, a rep-
resentation is considered disentangled when its components are in one-to-one correspondence with
natural and interpretable factors of variations, such as object positions, colors or shape. Although a
plethora of works have investigated theoretically under which conditions disentanglement is possi-
ble (Hyvirinen & Morioka, 2016; 2017; Hyvérinen et al., 2019; Khemakhem et al., 2020a; Locatello
et al., 2020a; Klindt et al., 2021; Von Kiigelgen et al., 2021; Gresele et al., 2021; Lachapelle et al.,
2022; Lippe et al., 2022b; Ahuja et al., 2022c), fewer works have tackled how a disentangled repre-
sentation could be beneficial for downstream tasks. Those who did mainly provide empirical rather
than theoretical evidence for or against its usefulness (Locatello et al., 2019; van Steenkiste et al.,
2019; Miladinovi¢ et al., 2019; Dittadi et al., 2021; Montero et al., 2021).

In this work, we explore synergies between disentanglement and sparse base-predictors in the con-
text of multi-task learning. At the heart of our contributions is the assumption that only a small
subset of all factors of variations are useful for each downstream task, and this subset might change
from one task to another. We will refer to such tasks as sparse tasks, and their corresponding sets
of useful factors as their supports. This assumption was initially suggested by Bengio et al. (2013,
Section 3.5): “the feature set being trained may be destined to be used in multiple tasks that may
have distinct [and unknown] subsets of relevant features. Considerations such as these lead us to
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the conclusion that the most robust approach to feature learning is to disentangle as many factors as
possible, discarding as little information about the data as is practical”. This strategy is very much
in line with the current self-supervised learning trend (Radford et al., 2021), except for its focus on
disentanglement.

Our main contributions are the following: (i) We formalize this “sparse task assumption” and ar-
gue theoretically and empirically how, in this context, disentangled representations coupled with
sparsity-regularized base-predictors can obtain better generalization than their entangled counter-
parts (Section 2.1). (ii) We introduce a novel identifiability result (Theorem 1) which shows how
one can leverage multiple sparse tasks to learn a shared disentangled representation by regulariz-
ing the task-specific predictors to be maximally sparse (Section 2.2.1). Crucially, Assumption 7
formalizes how diverse the task supports have to be in order to guarantee disentanglement. (iii) Mo-
tivated by this result, we propose a tractable bi-level optimization (Problem (4)) to learn the shared
representation while regularizing the task-specific base-predictors to be sparse (Section 2.2.2). We
validate our theory by showing our approach can indeed disentangle latent factors on tasks con-
structed from the 3D Shapes dataset (Burgess & Kim, 2018). (iv) Finally, we draw a connection
between this bi-level optimization problem and some formulations from the meta-learning litera-
ture (Section 2.3). Inspired by our identifiability result, we enhance an existing method (Lee et al.,
2019), where the base-learners are now group-sparse SVMs. We show that this new meta-learning
algorithm achieves competitive performance on the minilmageNet benchmark (Vinyals et al., 2016),
while only using a fraction of the learned representation.

2 SYNERGIES BETWEEN DISENTANGLEMENT AND SPARSITY

In this section, we formally introduce the notion of entangled and disentangled representations.
First, we assume the existence of some ground-truth encoder function fg : R — R™ that maps
observations © € X C R, e.g., images, to its corresponding interpretable and usually lower dimen-
sional representation fg(x) € R™, m < d. The exact form of this ground-truth encoder depends on
the task at hand, but also on what the machine learning practitioner considers as interpretable. The
learned encoder function is denoted by f; : R? — R™, and should not be conflated with the ground-
truth representation fg. For example, f,4 can be parametrized by a neural network. Throughout, we
are going to use the following definition of disentanglement.

Definition 1 (Disentangled Representation, Khemakhem et al. 2020a; Lachapelle et al. 2022). A
learned encoder function fg R — R™ is said to be disentangled w.r.t. the ground-truth represen-
tation fg when there exists an invertible diagonal matrix D and a permutation matrix P such that,
forallz € X, fs(x) = DP fg(x). Otherwise the encoder f is said to be entangled.

Intuitively, a representation is disentangled when there is a one-to-one correspondence between its
components and the components of the ground-truth representation, up to rescaling. Note that there
exist less stringent notions of disentanglement which allow for component-wise nonlinear invertible
transformations of the factors (Hyvirinen & Morioka, 2017; Hyvérinen et al., 2019).

Notation. Capital bold letters denote matrices and lower case bold letters denote vectors. The
set of integers from 1 to n is denoted by [n]. We write ||-|| for the Euclidean norm on vectors
and the Frobenius norm on matrices. For a matrix A € R¥>™ ||A|l,, = > 1A, and

1Al = E;”Zl 1) 4,,|120- where 1 is the indicator function. The ground-truth parameter of the

encoder function is @, while that of the learned representation is 0. We follow this convention for
all the parameters throughout. Table 1 in Appendix A summarizes all the notation.

2.1 DISENTANGLEMENT AND SPARSE BASE-PREDICTORS FOR IMPROVED GENERALIZATION

In this section, we compare the generalization performance of entangled and disentangled repre-
sentations on sparse downstream tasks. We show that the maximum likelihood estimator (defined
in Problem (1)) computed on linearly equivalent representations (entangled or disentangled) yield
the same model (Proposition 1). However, disentangled representations have better generalization
properties when combined with a sparse base-predictor (Proposition 2 and Figure 1).

First, the learned representation fj is assumed to be linearly equivalent to the ground-truth repre-
sentation fg, i.e. there exists an invertible matrix L such that, for all z € X, fs(x) = Lfo(x).
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Note that despite being assumed linearly equivalent, the learned representation f; might not be dis-
entangled (Definition 1); in that case, we say the representation is linearly entangled. When we
refer to a disentangled representation, we write L := DP. Roeder et al. (2021) have shown that
many common methods learn representations identifiable up to linear equivalence, such as deep
neural networks for classification, contrastive learning (Oord et al., 2018; Radford et al., 2021) and
autoregressive language models (Mikolov et al., 2010; Brown et al., 2020a).

Consider the following maximum likelihood estimator (MLE):'

W9 = argmax Y logp(y;n =W fs(z)), )
W (x,y)eD

where y denotes the label, D := {(x(®, y(?))}7_, is the dataset, p(y; n) is a distribution over labels

parameterized by n € R¥, and W € RFX™ is the task-specific predictor’. The following result
shows that the maximum likelhood estimator defined in Problem (1) is invariant to invertible linear
transformations of the features. Note that it is an almost direct consequence of the invariance of
MLE to reparametrization (Casella & Berger, 2001, Thm. 7.2.10). See Appendix A for a proof.

Proposition 1 (MLE Invariance to Invertible Linear Transformations of the Features). Let W,&")

and Wég) be the solutions to Problem (1) with the representations fs and fo, respectively (which
we assume are unique). If there exists an invertible matrix L such that, V& € X, fs(x) = Lfo(x);

then we have, Vx € X, VAVT(Lé)fé(a:) =W 7$9)f0(33)~

Proposition 1 shows that the model p(y; W, fs(x)) learned by Problem (1) is independent of L,
i.e., the model is the same for disentangled and linearly entangled representations. We thus expect
both disentangled and linearly entangled representations to perform identically on downstream tasks.

In what follows, we assume the data is generated according to the following process.

Assumption 1 (Data generation process). The input-label pairs are i.i.d. samples from the dis-
tribution p(x,y) := p(y | x)p(x) with p(y | =) := p(y; W fo(x)), where W € R¥*™ s the
ground-truth coefficient matrix.

To formalize the hypothesis that only a subset of the features fo(x) are actually useful to predict the

target y, we assume that the ground-truth coefficient matrix W is column sparse, i.e., W| 2,0 =
¢ < m. Under this assumption, it is natural to constrain the MLE as such:
Wéé’e) 1= arg max Z log p(y; Wfé(a:)) st |[Wlao < 2. (2)

W (z)eD

The following proposition will help us understand how this additional constraint interacts with rep-
resentations that are disentangled or linearly entangled. See Appendix A for a proof.

Proposition 2 (Population MLE for Linearly Entangled Representations). Let Wéf ) be the solu-
tion of the population-based MLE, arg maxy, Ep, 5.,y log p(y; W fg(x)) (assumed to be unique).

Suppose fg4 is linearly equivalent to fo, and Assumption I holds, then, Wéf ) =wL

From Proposition 2, one can see that if the representation fj is disentangled, then HWO%’ ) l20 =
|[W(DP)™ |20 = ||[W]l2,0 = £. Thus, in that case, the sparsity constraint in Problem (2) does
not exclude the population MLE estimator from its hypothesis class, and yields a decrease in the
generalization gap (Bickel et al., 2009; Lounici et al., 2011a; Mohri et al., 2018) without biasing
the estimator. Contrarily, when fg is linearly entangled, the population MLE might have more
nonzero columns than the ground-truth, and thus would be excluded from the hypothesis space
of Problem (2), which, in turn, would bias the estimator.

Empirical validation. We now present a simple simulated experiment to validate the above claim
that disentangled representations coupled with sparsity regularization can have better generaliza-
tion. Figure 1 compares the generalization performance of the convex relaxation of Problem (2)

"'We assume the solution is unique.
2p(y; 1) could be a Gaussian density (regression) or a categorical distribution (classification).
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Figure 1: Test performance for the entangled and disentangled representation using Lasso and Ridge
regression. All the results are averaged over 10 seeds, with standard error shown in error bars.

(Lasso regression, Tibshirani 1996) and Ridge regression (Hoerl & Kennard, 1970) on both dis-
entangled and linearly entangled representations. Lasso regression coupled with the disentangled
representation obtains better generalization than the other alternatives when ¢/m = 5% and when
the number of samples is very small. We can also see that, disentanglement, sparsity regularization
and sufficient sparsity in the ground-truth data generating process are necessary to see a significant
improvement, in line with our discussion. Lastly, the performance of all methods converge to the
same value when the number of samples grows. See Appendix D.1 for more details and discussion
on the results.

2.2 DISENTANGLEMENT VIA SPARSE MULTITASK LEARNING

In Section 2.1, we argued that disentangled representations can improve generalization when com-
bined with sparse base-predictors, but we did not provide an approach to learn them. We first provide
a new identification result (Theorem 1, Section 2.2.1), which states that in the context of sparse mul-
titask learning, sparse base-predictors yield disentangled representations. Then, in Section 2.2.2, we
provide a practical way to learn disentangled representations motivated by our identifiability result.

Throughout this section, we assume the learner is given a set of T datasets {Dy, ..., Dy} where
each dataset D; := {(x®? y*))}1_ consists of n couples of input € R? and label y € Y.
The set of labels ) might contain either class indices or real values, depending on whether we are
concerned with classification or regression tasks.

2.2.1 IDENTIFIABILITY ANALYSIS

We now present the main theoretical result of our work which shows how learning a shared rep-
resentation across tasks while penalizing the task-specific base-predictor to be sparse can induce
disentanglement. Our theory relies on the following ground-truth data generating process:
Assumption 2 (Ground-truth data generating process). For each task t, the dataset D, is made of
iid. samples from the distribution p(x,y | W®) = p(y | &, WO)p(x | WO) with p(y |
x, W®) = p(y; WO fg(x)), where W € RFX™ js the task-specific ground-truth coefficient
matrix. Moreover, the matrices W) are i.i.d. samples from some probability measure Py with
support W. Also, for all W € W, the support of p(x | W) is X C R (fixed across tasks).

The above assumption states that (i) the ground-truth coefficient matrices W) are task-specific
while the representation fg is shared across all the tasks, (ii) the task-specific W®) are sampled
i.i.d. from some distribution Py, and (iii) the support of « is shared across tasks.

Assumption 3 (Identifiability of ). The parameter m is identifiable from p(y; n), i.e. Vy; p(y;m) =
py;m) = n=n.

This property holds, e.g., when p(y; ) is a Gaussian in the usual i, 02 parameterization. Generally,
it also holds for minimal parameterizations of exponential families (Wainwright & Jordan, 2008).

The following assumption requires the ground-truth representation fy(x) to vary enough such that
its image cannot be trapped inside a proper subspace.
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Fwis Wi Figure 2: Illustration of Assumption 6 showing three examples of distri-
a bution Py |s. The red distribution satisfies the assumption, but the blue
and orange distributions do not. The red lines are level sets of a Gaussian
distribution with full rank covariance. The blue line represents the support
of a Gaussian distribution with a low rank covariance. The orange dots rep-
resents a distribution with finite support. The green vector a shows that the
§= (12} condition is violated for both the blue and the orange distribution, since, in
e both cases, Wi sa = 0 (orthogonal) with probability greater than zero.
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Assumption 4 (Sufficient representation variability). There exists W 2™ e X such that the
matrix F := [fo(x™M), ..., fo(x™)] is invertible.

The following assumption requires that the support of the distribution Pyy is sufficiently rich.

Assumption 5 (Sufficient task variability). There exists W) ... W (™) < W and row indices
i1y ..., im € [k] such that the rows Wi(l) . W™ are linearly independent.

1,27 ° Tm 5-
Under Assumptions 2 to 5 the representation fy is identifiable up to linear equivalence (see Theo-

rem 2 in Appendix B). Similar results where shown by Roeder et al. (2021); Ahuja et al. (2022c).
The next assumptions will guarantee disentanglement.

In order to formalize the intuitive idea that most tasks do not require all features, we will denote by
S®) the support of the matrix W), ie. S® := {j € [m] | Wgt) # 0}. In other words, S*) is the
set of features which are useful to predict y in the ¢-th task; note that it is unknown to the learner. For
our analysis, we decompose Pw as Pw = > gcp () P(S)Pw s , where P([m]) is the collection
of all subsets of [m], p(S) is the probability that the support of W is S and Pyy | is the conditional
distribution of W given that its support is S. Let S be the support of the distribution p(S), i.e. S :=
{S € P([m]) | p(S) > 0}. The set S will have an important role in Assumption 7 & Theorem 1.

The following assumption requires that Py g does not concentrate on certain proper subspaces.

Assumption 6 (Intra-support sufficient task variability). For all S € S and all a € RI® o,
PW|S{W € Rkxm | W.sa = 0} =0.

We illustrate the above assumption in the simpler case where £ = 1. For instance, Assumption 6
holds when the distribution of W3 g | S has a density w.r.t. the Lebesgue measure on RISI, which
is true for example when Wi g | S ~ N(0,X) and the covariance matrix X is full rank (red
distribution in Figure 2). However, if 3 is not full rank, the probability distribution of W7 g | S
concentrates its mass on a proper linear subspace V' C RIS|, which violates Assumption 6 (blue
distribution in Figure 2). Another important counter-example is when Pyy |5 concentrates some of
its mass on a point W), ie. Pw| s{W (1 > 0 (orange distribution in Figure 2). Interestingly,
there are distributions over W ¢ | S that do not have a density w.r.t. the Lebesgue measure, but
still satisfy Assumption 6. This is the case, e.g., when W7 g | S puts uniform mass over a (|S| — 1)-
dimensional sphere embedded in RI®I and centered at zero. See Appendix B.2 for a justification.

The following assumption requires that the support S of p(.S) is “rich enough”.
Assumption 7 (Sufficient support variability). For all j € [m], g Sligs S = [m]\ {4}
Intuitively, Assumption 7 requires that, for every feature 7, one can find a set of tasks such that their

supports cover all features except j itself. Figure 3 shows an example of S satisfying Assumption 7.
Removing the latter would only yield partial disentanglement (Lachapelle & Lacoste-Julien, 2022).

We are now ready to show the main theoretical result of this work, which provides a bi-level op-
timization problem for which the optimal representations are guaranteed to be disentangled. It as-
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sumes infinitely many tasks are observed, with task-specific ground-truth matrices W sampled from

Pw . We denote by W W) the task-specific estimator of W. See Appendix B.1 for a proof. Note
that we suggest a tractable relaxation in Section 2.2.2.

Theorem 1 (Sparse multi-task learning for disentanglement). Let 0 be a minimizer of

méinEpWEp(m,y\W) log p(y; W) f4())

st. VWew, W ¢ argmin  Epgw) — log p(y; Wfé(a:)) . €)
W s.t.
[[W]l2,0<[[W]l2,0
Then, under Assumptions 2 to 7, fg is disentangled w.r.t. fo (Definition 1).

Intuitively, this optimization problem effectively selects a representation f4 that (i) allows a perfect

fit of the data distribution, and (ii) allows the task-specific estimators WW) (o be as sparse as the
ground-truth W. With the same disentanglement guarantees, Theorem 4 in Appendix B presents a

variation of Problem (3) which enforces the weaker constraint Ep, || W) |50 < Epy, [|W /2.0,
instead of |[W W) ||y o < ||W]||2,0 for each task W individually.

2.2.2 TRACTABLE BILEVEL OPTIMIZATION PROBLEMS FOR SPARSE MULTITASK LEARNING

Problem (3) was shown to yield a disentangled representation (Theorem 1), but is intractable due
to the Lo g-seminorm. Thus we use the L ; convex relaxation of the Lj ¢-seminorm, which is also
known to promote group sparsity (Obozinski et al., 2006; Argyriou et al., 2008; Lounici et al., 2009):

min ——Z > logp(y; W fy())

6 t=1 (2,9)€D, @)

~ 1 ~
st. Vte [T, W® ¢ argmin —— Z logp(y; W fa(x)) + N
w " (z,y)€D:

Following Bengio (2000); Pedregosa (2016), one can compute the (hyper)gradient of the outer func-
tion using implicit differentiation, even if the inner optimization problem is non-smooth (Bertrand
et al., 2020; Bolte et al., 2021; Malézieux et al., 2022; Bolte et al., 2022). Once the hypergradient is
computed, one can optimize Problem (4) using usual first-order methods (Wright & Nocedal, 1999).

Note that the quantity w® fg(x) is invariant to simultaneous rescaling of w® by a scalar and

of fa(x) by its inverse. Thus, without constraints on f4 (<), |[W®)]|5.1 can be made arbitrarily
small. This is a usual problem in sparse dictionary learning (Kreutz-Delgado et al., 2003; Mairal
et al., 2008; 2009; 2011), where unit-norm constraints are usually imposed on the column of the
dictionary. Here, since f, is parametrized by a neural network, we suggest to apply batch or layer
normalization (Ioffe & Szegedy, 2015; Ba et al., 2016) to control its norm. Since the number of
relevant features might be task-dependent, Problem (4) has one regularization hyperparameter \;
per task. To limit the number of hyperparameters in practice, we select \; := A for all ¢ € [T7.

2.3 LINK WITH META-LEARNING

In the setting known as meta-learning (Finn et al., 2017), for a large number of tasks 7', we are
given training datasets D™, which usually contains a small number of samples n. Unlike in
the multi-task setting though (i.e., unlike in Section 2.2), we are also given separated test datasets
D}t to evaluate how well the learned model generalizes to new test samples. In meta-learning,
the goal is to learn a training procedure which will generalize well on out-of-distribution tasks.
The bi-level formulation Problem (4) is closely related to metric-based meta-learning (Snell et al.,
2017; Bertinetto et al., 2019), where a shared representation fé is learned across all tasks. The
representation is jointly learned with simple task-specific classifiers, which are usually optimization-
based classifiers, such as support-vector machines. Formally, metric-based meta-learning can be
formulated as follows

mln Z Z Lous A gt); fo(@), ) s.t. Wé(t) € arg min Z Ein(VV; fo(x),y).

t=1 (g,y)eDiost w (z,y)€Dirain
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Inspired by Lee et al. (2019), where the base-classifiers were multiclass support-vector machines
(SVMs, Crammer & Singer 2001), we propose to use group Lasso penalized multiclass SVMs, in
order to introduce sparsity in the base-learners, with Y € R™** the one-hot encoding of y € R™:

Lin(W; fo(2)),y) := max (Wy,. = W) - fo(®) = Vo) + 2L [W|a,1 + 52(|[W2 (5)
In few-shot learning settings, the number of features m is usually much larger than the number of
samples n (in Lee et al. 2019, m = 1.6-10* and n < 25). In such scenarios, SVMs-like problems are

usually solved through their dual (Boyd et al., 2004, Chap. 5) problems, for computational (Hsieh
et al., 2008) and theoretical (Shalev-Shwartz & Zhang, 2012) benefits.

Proposition 3. (Dual Group Lasso Soft-Margin Multiclass SVM.) The dual of the inner problem
with Ly, as defined in (5) writes

m
. 1
min —

AZHR. 5, 2 IBST (Y =M)TF M) P+ (VA + 1 +D ) dauze, (6

R R

with BST the block soft-thresholding operator: BST : (a,7) = (1—17/[la|) a F € R™*™
the concatenation of { f()} (z,y)cprrain. In addition, the primal-dual link writes, for all j € [m],
W, = BST (Y — A)T Fy, A1) /o

Proof of Proposition 3 can be found in Appendix C.1. The objective of Problem (6) is composed of a
smooth term and block separable non-smooth term, hence it can be solved efficiently using proximal
block coordinate descent (Tseng, 2001). As stated in Section 2.2, argmin differentiation of the
solution of Problem (6) can be done using implicit differentiation (Bertrand et al., 2022). Although
Theorem 1 is not directly applicable to the meta-learning formulation proposed in this section, we
conjecture that similar techniques could be reused to prove an identifiability result in this setting.

3 RELATED WORK

Disentanglement. Since the work of Bengio et al. (2013), many methods have been proposed to
learn disentangled representations based on various heuristics (Higgins et al., 2017; Chen et al.,
2018; Kim & Mnih, 2018; Kumar et al., 2018; Bouchacourt et al., 2018). Following the work
of Locatello et al. (2019), which highlighted the lack of identifiability in modern deep generative
models, many works have proposed more or less weak forms of supervision motivated by identifia-
bility analyses (Locatello et al., 2020a; Klindt et al., 2021; Von Kiigelgen et al., 2021; Ahuja et al.,
2022a;c; Zheng et al., 2022). A similar line of work have adopted the causal representation learn-
ing perspective (Lachapelle et al., 2022; Lachapelle & Lacoste-Julien, 2022; Lippe et al., 2022b;a;
Ahuja et al., 2022b; Yao et al., 2022; Brehmer et al., 2022). The problem of identifiability was
well known among the independent component analysis (ICA) community (Hyvérinen et al., 2001;
Hyvirinen & Pajunen, 1999) which came up with solutions for general nonlinear mixing functions
by leveraging auxiliary information (Hyvirinen & Morioka, 2016; 2017; Hyvérinen et al., 2019;
Khemakhem et al., 2020a;b). Another approach is to consider restricted hypothesis classes of mix-
ing functions (Taleb & Jutten, 1999; Gresele et al., 2021). Contrarily to most of the above works, we
do not assume that the inputs x are generated by transforming a latent random variable z through
a bijective decoder g. Instead, we assume the existence of a not necessarily bijective ground-truth
feature extractor fg(a) from which the labels can be predicted using only a subset of its compo-
nents in every tasks (Assumption 2). Many of these works make assumptions about the distribution
of latent factors, e.g., (conditional) independence, exponential family or other parametric assump-
tions. In contrast, we make comparatively weaker assumptions on the support of the ground-truth
features (Assumption 4), which are allowed to present dependencies (Section 4). Locatello et al.
(2020b) proposed a semi-supervised learning approach to disentangle in cases where a few samples
are labelled with the factors of variations themselves. This is different from our approach as the la-
bels that we consider can be sampled from some p(y; W f4(x)), which is more general. Ahuja et al.
(2022c) consider a setting similar to ours, but they rely on the independence and non-gaussianity of
the latent factors for disentanglement using linear ICA.

Multi-task, transfer & invariant learning. The statistical advantages of multi-task representation
learning is well understood (Lounici et al., 201 1a;b; Maurer et al., 2016). However, apart from Zhang
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Figure 4: Disentanglement performance (MCC) for inner-Lasso, inner-Ridge and inner-Ridge com-
bined with ICA as a function of the regularization parameter (left and middle). Varying level of
correlation between latents (top) and of noise on the latents (bottom). The right columns shows
performance of the best hyperparameter for different values of correlation and noise.

et al. (2022), theoretical benefits of disentanglement for transfer learning are not clearly established.
Some works have investigated this question empirically and obtained both positive (van Steenkiste
et al., 2019; Miladinovi¢ et al., 2019; Dittadi et al., 2021) and negative results (Locatello et al.,
2019; Montero et al., 2021). Invariant risk minimization (Arjovsky et al., 2020; Ahuja et al., 2020;
Krueger et al., 2021; Lu et al., 2021) aims at learning a representation that elicits a task-invariant
base-predictor. This differs from our approach which learns base-predictors that are task-specific .

Dictionary learning and sparse coding. We contrast our approach, which jointly learns a dense
representation and sparse base-predictors (Problem (4)), with the line of work which consists in
learning sparse representations (Chen et al., 1998; Gribonval & Lesage, 2006). For instance, sparse
dictionary learning (Mairal et al., 2009; 2011; Maurer et al., 2013) is an unsupervised technique
which aims at learning sparse representations that refer to atoms of a learned dictionary. Contrar-
ily to our method which computes the representation of a single input x by evaluating a function
approximator f4, in sparse dictionary learning, the representation of a single input is computed by
minimizing a reconstruction loss. In the case of supervised dictionary learning (Mairal et al., 2008),
an additional (potentially expressive) classifier is learned. This large literature has lead to a wide
variety of estimators: for instance, Mairal et al. (2008, Eq. 4), which minimizes the sum of the
classification error and the approximation error of the code, or Mairal et al. (2011); Malézieux et al.
(2022), which introduce bi-level formulations which shares similarities with our formulations.

4 EXPERIMENTS

Semi-real experiments on 3D Shapes. We now illustrate Theorem 1 by applying Problem (4) to
tasks generated using the 3D Shapes dataset (Burgess & Kim, 2018).

Data generation. For all tasks ¢, the labelled dataset D; = {(x®*?),y(:))}7_, is generated by first
sampling the ground-truth latent variables z(*%) := fo(2(*")) i.i.d. according to some distribution
p(2), while the corresponding input is obtained doing (*%) := f, ! (25 (fg is invertible in 3D
Shapes). Then, a sparse weight vector w® is sampled randomly to compute the labels of each
example as 3yt = w® . £t 4 89 where €(t?) is independent Gaussian noise. Figure 4
explores various choice of p(z), i.e. by varying the level of correlation between the latent variables
and by varying the level of noise on the ground-truth latents. See Appendix D.2 for more details
about the data generating process.

Algorithms. 1In this setting where p(y;n) is a Gaussian with fixed variance, the inner problem
of Problem (4) amounts to Lasso regression, we thus refer to this approach as inner-Lasso. We
also evaluate a simple variation of Problem (4) in which the L; norm is replaced by an Ly norm, and
refer to it as inner-Ridge. In addition we evaluate the representation obtained by performing linear
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Figure 5: Effect of sparsity on the percentage of tasks using specific features, with our meta-learning
objective, on minilmageNet (left). The accuracy of the meta-learning algorithm and the average level
of sparsity in the base-learners, as A varies (right).

ICA (Comon, 1992) on the representation learned by inner-Ridge: the case A = 0 corresponds to
the approach of Ahuja et al. (2022c).

Discussion. Figure 4 reports disentanglement performance of the three methods, as measured by the
mean correlation coefficient, or MCC (Hyvirinen & Morioka, 2016; Khemakhem et al., 2020a) (Ap-
pendix D.2). In all settings, inner-Lasso obtains high MCC for some values of A, being on par or
surpassing the baselines. As the theory suggests, it is robust to high levels of correlations between
the latents, as opposed to inner-Ridge with ICA which is very much affected by strong correlations
(since ICA assumes independence). We can also see how additional noise on the latent variables
hurts inner-Ridge with ICA while leaving inner-Lasso unaffected. Figure 6 in Appendix D.2 shows
that all methods find a representation which is linearly equivalent to the ground-truth representa-
tion, except for very large values of A\. Refer to Appendix D.2 for more details. Appendix D.2.4
presents experiments showing to what extent inner-Lasso is robust to violations of Assumption 7.
Appendix D.2.5 presents a visual evaluation of disentanglement. Appendix D.2.6 shows results for
the same experiments with the DCI metric (Eastwood & Williams, 2018).

Few-shot learning experiments. Despite the lack of ground-truth latent factors in standard few-shot
learning benchmarks, we also evaluate our meta-learning objective introduced in Section 2.3, using
the dual formulation of the group Lasso penalized SVM as our base-learner, on the minilmageNet
dataset (Vinyals et al., 2016). The objective of this experiment is to show that the sparse formulation
of the meta-learning objective is capable of reaching similar levels of performance, while using a
fraction of the features. Details about the experimental settings are provided in Appendix D.3.

Discussion. In Figure 5 (left), we report how frequently the learned features are used by the base-
learner on meta-training tasks; the gradual decrease in usage suggests that the features are reused in
different contexts, across different tasks. We also observe (Figure 5, right) that adding sparsity to the
base learner may also improve performance on meta-training tasks, while only using a fraction of
all the features available in the learned representation, supporting our observations in Section 2.1 on
the effect of sparsity on generalization on natural images (see Appendix D.3 for further discussion
about how this still tests generalization). We also observe that some level of sparsity improves the
performance on novel meta-test tasks, albeit to a smaller extent.

5 CONCLUSION

In this work, we investigated the synergies between sparsity, disentanglement and generalization.
We showed that when the downstream task can be solved using only a fraction of the factors of
variations, disentangled representations combined with sparse base-predictors can improve general-
ization (Section 2.1). Our novel identifiability result (Theorem 1) sheds light on how, in a multi-task
setting, sparsity regularization on the task-specific predictors can induce disentanglement. This led
to a practical bi-level optimization problem that was shown to yield disentangled representations on
regression tasks based on the 3D Shapes dataset. Finally, we explored a meta-learning formulation
extending this approach, and showed how sparse base-learners can help with generalization, while
only using a small fraction of the features.
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