
Under review as a conference paper at ICLR 2024

A NEURAL TANGENT KERNEL APPROACH FOR
CONSTRAINED POLICY GRADIENT REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a constrained policy gradient method where we introduce con-
straints for safe learning, augmenting the traditional REINFORCE algorithm by
taking the following steps. First, we analyze how the agent’s policy changes if
a new data batch is applied, leading to a nonlinear differential equation system
in continuous time (gradient flow). This description of learning dynamics is con-
nected to the neural tangent kernel (NTK) which enables us to evaluate the policy
change at arbitrary states. Next, we introduce constraints for action probabilities
based on the assumption that there are some environment states where we know
how the agent should behave, ensuring safety during learning. Then, we augment
the training batch with these states and compute fictitious rewards for them, mak-
ing the policy obey the constraints with the help of the NTK-based formulation.
More specifically, exogenous discounted sum of future rewards (returns) are com-
puted at these constrained state-action pairs such that the policy network satisfies
the constraints. Computing the constraining returns is based on solving a system
of linear equations (equality constraints) or a constrained quadratic program (in-
equality constraints). To tackle high-dimensional environments, a dynamic con-
straint selection methodology is proposed. Simulation results demonstrate that
adding constraints (external information) to the learning can improve learning in
terms of speed and transparency reasonably if they are selected appropriately.

1 INTRODUCTION

In reinforcement learning (RL), the agent learns through trial and error. If the agent is deployed to a
real-world setting while it has not yet explored the whole state space, unexpected situations may oc-
cur, resulting in damage or injury to the agent or the environment. In addition, the agent might waste
a significant amount of time exploring irrelevant regions of the state and action spaces. Constrained
learning is an intensively studied topic, having close ties to safe learning Garcia & Fernandez (2015);
Yang (2019); Berkenkamp et al. (2017); Fisac et al. (2018); Zimmer et al. (2018); Gros et al. (2020).
What all the methods mentioned above have in common is some knowledge of the environment. In
safety-critical settings, some actions must be constrained, and exploration cannot be done blindly.
Han et al. (2008) argues that constrained learning has better generalization performance and a faster
convergence rate compared to basic feedforward neural network architectures in supervised learn-
ing. Although many works focus on supervised learning, general conclusions are valid in the context
of reinforcement learning too, e.g., Ohnishi et al. (2019); Achiam et al. (2019); Tessler et al. (2018);
Uchibe & Doya (2007). Tessler et al. (2018) presents a constrained policy optimization, which uses
an alternative penalty signal to guide the policy. The above safe learning approaches use a model to
explicitly define constraints on it, while some (e.g., Berkenkamp et al. (2017); Cowen-Rivers et al.
(2022)) use the model to explore the constraints or modify the agent’s loss to penalize constraint
violation, e.g., Peng et al. (2021); Ren et al. (2022). Gu et al. (2022) reviews the progress of safe RL
from a real-world implementation point of view.

In this paper, we do not use mathematical models to mimic state transitions and evaluate the policy;
thus, our approach is not comparable to classical model-based techniques. However, we assume
some prior knowledge of the environment: the physical meaning of every element in the state-
vector must be known (thus, we take a grey-box approach). Then, based on our prior knowledge,

1

Under review as a conference paper at ICLR 2024

we can select some states where we impose constraints on the policy either to completely prohibit
taking some actions or to impose “soft” policy constraints that can guide learning. Our algorithm
computes artificial returns to enforce these constraints during learning. Thereby, according to the
proposed categorization in Garcia & Fernandez (2015), our proposed algorithm falls into constrained
optimization with external knowledge. We emphasize that our approach works best when there is
only partial information on the environment, not sufficient to build a proper model. Additionally,
constrained RL methods in the literature assume that constraints cannot be defined in a closed form.
Our contribution refutes this claim: we can define equality constraints in closed form with the help
of the Neural Tangent Kernel (NTK, Jacot et al. (2018)).

This paper demonstrates constrained learning by extending the REINFORCE algorithm. REIN-
FORCE is a model-free policy-based reinforcement learning algorithm. The output of the algorithm
is a probability distribution, which is defined by the function approximator’s θ parameters Williams
(1992); Sutton & Barto (2018). Policy-based methods have shown persuasive results in various do-
mains. Moreover, it is guaranteed that they converge at least to a local optimum Sutton et al. (1999).
Policy gradient methods have many variants and extensions to improve their learning performance
Zhang et al. (2021); Agarwal et al. (2020); Cheng et al. (2020). Our proposed approach can comple-
ment such variants too (see Remark 4). We develop a deterministic policy gradient algorithm (based
on REINFORCE Williams (1987); Szepesvári (2010)) augmented with different types of constraints
via shaping the rewards. Opposed to Altman et al. (2019), transition probabilities are not explicitly
replaced with taboo states, but constraints are imposed on the policy via dynamically computing
the right returns. Therefore, compared to Tessler et al. (2018), training does not rely on non-convex
optimization or additional heuristics. Safety in our approach can be achieved by the careful selection
of constraints (i.e., the expert knowledge).

The key element to our goals is the Neural Tangent Kernel (NTK, Jacot et al. (2018); Bietti et al.
(2019); Yang & Salman (2019)), which gives us insight into the training process of a learning agent.
The NTK is the scalar product of the gradients of a neural network w.r.t. its weights and biases
evaluated for different pairs of states. Thus, it is a kernel function over the input space. The NTK
describes how the output (in function space) of fully connected neural networks under gradient de-
scent changes. When computing the policy evolution for commonly used loss functions, it naturally
appears in the ordinary differential equation (ODE). Next, we formally define the NTK for an arbi-
trary neural network.
Definition 1. Neural Tangent Kernel Jacot et al. (2018). Given data xi, xj ∈ X ⊆ Rn, the NTK
of an n input one output artificial neural network f(x, θ) : Rn → R, parametrized with θ, is

Θ(xi, xj) =

(
∂f(xi, θ)

∂θ

)T
∂f(xj , θ)

∂θ
∈ R. (1)

Using the NTK for reinforcement learning has a rather limited history. Earlier, policy iteration
has been used in conjunction with NTK for learning the value function Goumiri et al. (2020). On
the other hand, it was used in its analytical form as the covariance kernel of a GP (Novak et al.
(2019); Rasmussen et al. (2003); Yang & Salman (2019)). The NTK-based formulation of learning
enables us to evaluate how the policy output would change for arbitrary training data without actually
updating the agent. This paves the way for influencing learning.

We use the NTK directly for our constrained approach. We deduce the differential equation system
(which includes the NTK) from the policy gradient theorem to describe the evolution of the pol-
icy during learning. Constraints are incorporated via additional rewards for one-step-ahead policy
changes. It is assumed that there are states where the agent’s desired behavior is known, i.e., there is
information on the environment regarding saturation, rate limits, and potential dangerous states. We
call these states “safe states” and define the desired behavior in these states, which we call “policy
constraints”. Simply put, we explicitly define desired action probabilities (equality constraints), or
prescribe a minimum action probabilities (inequality constraints) for these states. Finally, returns
are computed at these safe states via convex optimization so the agent learns policies that satisfy
these constraints. This method is developed for fully observable, continuous state spaces and dis-
crete action spaces. It can directly be translated into discrete state spaces too. On the other hand,
continuous action spaces would require a different approach.

The contribution of the paper is twofold. First, we analytically develop the policy evolution un-
der gradient flow using the NTK. Second, we extend the REINFORCE algorithm with constraints.

2

Under review as a conference paper at ICLR 2024

Our variant of the REINFORCE algorithm starts converging within a few episodes if appropriate
constraints are selected. The constrained extension relies on computing extra returns via convex
optimization. In summary, the paper provides a practical use of the neural tangent kernel in rein-
forcement learning.

The paper is structured as follows. First, we present the episode-by-episode policy change of the
REINFORCE algorithm (Section 2.1). Then, relying on the NTK, we deduce the policy change at
unvisited states, see Section 2.2. Using the results in Section 2.2, we compute returns at arbitrary
states in Section 3. We introduce equality constraints for the policy via computing safe returns by
solving a system of linear equations (Section 3.1). In the same context, we can enforce inequality
constraints by solving a constrained quadratic program, see Section 3.2. Additionally, we explore
various ways to dynamically inject these constraints, alleviating computational complexity in high-
dimensional state spaces (Section 3.3). In Section 4, we evaluate the proposed learning algorithm in
different environments. Finally, we summarize the findings of this paper in Section 5.

2 KERNEL-BASED ANALYSIS OF THE REINFORCE ALGORITHM

In this section, the episode-by-episode learning dynamics of a policy network is analyzed and con-
trolled in a constrained way. To this end, first we introduce the RL framework and the REINFORCE
algorithm. Then, the learning dynamics of a wide and shallow neural network is analytically given.
Finally, returns are calculated that force the policy to obey equality and inequality constraints at
specific states.

2.1 REFORMULATING THE LEARNING DYNAMICS OF THE REINFORCE ALGORITHM

Reinforcement learning problems are commonly formulated via a Markov Decision Process (MDP)
Sutton & Barto (2018). Similarly, the most common way of tackling safe RL is through constrained
MDPs, i.e., safety is ensured via constraining the MDP: at given states, some actions that are deemed
unsafe are forbidden Altman (1999); Wachi & Sui (2020).

Let the 5-tuple (S,A, P ,R(s), γ) characterize an MDP. This tuple consists of the continuous state
space with nn dimensions S ⊆ Rnn , the discrete action space A ⊂ Zna , the transition probability
matrix P , the reward function R(s) ∈ R, and the discount factor γ ∈]0, 1]. The agent traverses
the MDP following the policy π(ai | s, θ). The policy network is parametrized with θ ∈ Rnθ

comprising of nθ weights and biases, ai ∈ Z is the ith action, i ∈ 1, 2, ..., nA, and s ∈ S is the
environment state. Throughout the paper, we denote vectors with single underline and matrices with
double underlines, unless stated otherwise. For the sake of brevity, two exceptions to this convention
are the parametrization of the neural network θ and the state vector s ∈ S. A nomenclature is given
in Appendix A.

Since policy gradient methods learn from data batches episode-by-episode, we index one episode
with subscript e. Assuming continuous environment space and discrete action space, one episode
batch (with length nB) comprises of {se, ae, re}. For convenience, the states, actions, and rewards
in batch e are organized into columns se ∈ RnB×nn , ae ∈ ZnB , re ∈ RnB , respectively. Note
that the length of batches is different for each episode. For the sake of brevity, we do not explicitly
indicate the episode dependency of nB . Within the batch, se(k) ∈ S is the nn dimensional state
vector in the kth step of the MC trajectory, k = 1, 2, ..., nB , ae(k) ∈ A is the action taken, and
re(k) ∈ R(s) is the reward obtained. In the reinforcement learning setup, the goal is maximizing
the expected (discounted sum of future) rewards,

Ge(k) =

nB∑
κ=k+1

γκ−kre(κ) ∈ R, (2)

(i.e., the return) in episode e, and time step k of episode e by iteratively updating the policy applying
the policy gradient theorem Sutton et al. (1999).

In REINFORCE, the agent learns the policy directly by updating its weights θe using Monte-Carlo
(MC) episode samples. The update rule is based on the policy gradient theorem Sutton et al. (1999)

3

Under review as a conference paper at ICLR 2024

and for the whole episode it can be written as the sum of gradients induced by the batch:

θe+1=θe + α

nB∑
k=1

(
Ge(k)

∂

∂θ
log π(ae(k) | se(k), θe)

)T

. (3)

In Eq. 3, α denotes the learning rate.

Next, we will use gradient flow (α → 0, Bertsekas (1997)) to analyze the policy update in a “contin-
uous” way. We will derive how a batch of data from episode e influences the policy change (i.e., the
gradient of the policy update). Denote the episodic change with ∂π(ae|se,θe)

∂e ∈ RnB where each row
stands for the policy shift at se(k) for action ae(k). Theorem 1 states that the policy evolution of
the REINFORCE algorithm under gradient flow can be written as a nonlinear differential equation
system with the help of the NTK.
Theorem 1. Given batch {se(k), ae(k), re(k)}nB

k=1, and assuming gradient flow, the episodic policy
change with the REINFORCE algorithm at the batch state-action pairs are

∂π(ae | se, θe)
∂e

= Θ
π,e

(se, se)Π
I

e
(se, ae, θe)Ge,

where Θ
π,e

(se, se) ∈ RnB×nB is the neural tangent kernel (NTK), ΠI

e
(se, ae, θe) ∈ RnB×nB is a

diagonal matrix containing the inverse policies (if they exist) at state-action pairs of batch e, and
Ge ∈ RnB is the vector of returns.

The proof of the theorem employs the chain-rule on the continuous form of Eq. 3 and some linear
algebra to reorganize matrix multiplications. The detailed proof of Theorem 1 alongside with some
properties of the NTK-based learning dynamics is reported in Appendix B.1.

2.2 EVALUATING THE POLICY CHANGE FOR ARBITRARY STATES AND ACTIONS

Building on Theorem 1, we can describe how the agent’s output would change at states not part
of se too. Theorem 1 gives us a way to do so without actually training the agent with data batch
e. Similarly, it is possible to evaluate the change of action probabilities for actions not taken. This
section introduces two theorems, formally describing how to evaluate latent changes to the policy
through the NTK. Theorem 2 extends Theorem 1 to multiple actions and Theorem 3 gives us the
formula to evaluate the policy change at any state.

In most cases, the learning agent can perform multiple actions. Assume the agent can take
a1, a2, ..., anA actions (the policy network has nA output channels). Previous works that deal with
NTK all consider one output channel in the examples (e.g., Bradbury et al. (2018); Jacot et al. (2018);
Yang & Salman (2019)) but Jacot et al. (2018) claim that a network with nA outputs can be handled
as nA independent neural networks. Thus it is possible to handle multiple outputs and fit every
output channel into one equation by generalizing Theorem 1. First, we introduce a new notation
Γe(ae, re) ∈ RnAnB for the multi-action return. This sparse vector consists of nA × 1 sized blocks
with nA−1 zeros at action indexes which are not taken at se(k), and the original return from Ge(k)
(Eq. 2) at the index of the taken action. Note that Γe(ae, re) implicitly depends on ae through the
indexing logic and on re through the definition of Ge. The structure of Γe(ae, re) is easier to grasp
through an example given in Remark 3 in Appendix B.2.
Theorem 2. Given batch {se(k), ae(k), re(k)}nB

k=1, and assuming gradient flow, the episodic policy
change with the REINFORCE algorithm at the batch states for an nA output policy network is

∂π(a | se, θe)
∂e

= Θ
π,e

(se, se)Π
I

e
(se, θe)Γe(ae, re),

where ∂π(a|se,θe)
∂e ∈ RnAnB and Θ

π,e
(se, se) ∈ RnAnB×nAnB .

With Theorem 2, it is possible to evaluate how the policy will change at states se for arbitrary
actions without actually updating the agent with batch data e. Note that the episode dependency
of the actions (the e subscript) has disappeared from π(a | se, θe). The reason is that this vector
contains the policy change for every possible action (regardless of whether or not taken) at states
se. We evaluate the log policy derivatives are for every possible action at the states in a batch.

4

Under review as a conference paper at ICLR 2024

For simplicity, we keep the previous notations, but the matrix and vector sizes are redefined for the
vector output case. Detailed proof of the theorem is given in Appendix B.2.

When an agent is updated with a batch of training data, it changes the action probabilities for every
state. Using the same NTK-based formulation, we derive how the policy would change at arbitrary
states (/∈ se) if data batch e was used for training.

Theorem 3. Given batch {se(k), ae(k), re(k)}nB

k=1, and assuming gradient flow, the episodic policy
change with the REINFORCE algorithm at any state s0 /∈ se is

∂π(a | s0, θe)
∂e

= ϑ(se, s0)Π
I

e
(se, θe)Γe(ae, re) ∈ RnA ,

where ϑ(se, s0) = [ϑ(s1, s0), ϑ(s2, s0), ..., ϑ(snB
, s0)] ∈ RnA×nAnB is the neural tangent kernel

evaluated for all se, s0 pairs.

The main idea behind the proof of this theorem is separating the policy change into two terms:
one related to the batch ϑ(se, s0)Π

I

e
(se, θe)Γe(ae, re) ∈ RnA and one that solely depends on the

arbitrary state s0: ϑ(s0, s0)ΠI

e
(s0, θe)Γ0. Since s0 is an unvisited state it does not affect the learning.

Therefore, the return associated to this state Γ0 is zero for every action, thus cancelled out. The full
proof of Theorem 3 is described in Appendix B.3.

Although, in Theorem 3 Γ0 = 0, it will play a central role in defining policy constraints. Values
in the place of Γ0 can be used to constrain the policy to obey constraints at some select states via
computing arbitrary returns.

3 THE NTK-BASED CONSTRAINED REINFORCE ALGORITHM

In every control task, the engineer knows the desired performance metrics beforehand (i.e., how
the controlled system should behave). In reinforcement learning, however, inherent dynamics of the
system are black box, and the performance metrics are hidden within the rewards. On the other hand,
the physical meaning of every (observable) environment state and action are most often known. With
these pieces of information, it is possible to pinpoint some parts of the environment space where the
desired behaviour can be described as policy constraints. That is to guide the learning of the agent
(sample efficiency) and avoid potentially dangerous states (safety). For example, in a path following
task Wurman et al. (2022); Szoke et al. (2022), the states are the relative position of the vehicle and
the action is the steering wheel angle. We know by intuition, if the car is about to leave the road,
the desired action is to steer towards the center of the road. This can be translated to constraints on
the policy by saying that at those critical states the probability of taking an action that drives the
vehicle towards the center of the road should be high. Similarly, we will describe the heuristics of
constraint selection through two example environments given in Section 4. Thus, we use our pieces
of knowledge about the environment and our intuitions to form reference policies (constraints). I.e.,
we specify which actions (with what probability) the agent shall take at certain states (or subsets
of the state space). Note that this approach can guarantee safety to the extent of our the available
information (locally) on the environment. In this section, we propose three types of constraints:

• equality constraints: the agent shall take a specific action with a fixed probability,

• inequality constraints: the agent shall take a defined action with at least a given probability,

• a methodology to dynamically prescribe constraints as learning progresses.

Enforcing these reference policies will be accomplished via computing fictitious returns. With this
approach, the policy is not entirely overridden; the agent still learns using the data batch while
obeying the constraints.

Denote the set of states where we have policy constraints with ss = [ss1, ss2, ..., ssnS
] ∈ SnS . Then,

we define equality and inequality constraints as πref,eq(as | ss) = ceq and πref,ineq(as | ss) ≥
cineq . The constraints ceq , cineq denote constant action probabilities. Additionally, these can be
extended to dynamic constraints. In the sequel, relying on Theorem 3, we provide the mathematical
deduction on how to enforce constraints during learning.

5

Under review as a conference paper at ICLR 2024

3.1 EQUALITY CONSTRAINTS

Let’s denote the desired policy change at the constrained states ss for the desired actions as as

∆π(as | ss, θe) = πref,eq(as | ss)− π(as | ss, θe), (4)

∆π(as | ss, θe) ∈ RnS . According to Theorem 3, the policy change can be computed anywhere.
Using Eq. 22 we can compute the unconstrained policy change at these state-action pairs. Recall,
in Section 2.2 we assumed these states do not affect the learning, so we previously set the returns
Γ0 = 0 ∈ RnA . Instead of setting these values to zero, constraints are enforced by computing
returns such that they scale this policy change to match the magnitude of the desired policy change
(Eq. 4). Now we intend to constrain one action at a constrained state, thus the mapping of Γ (Remark
3) is not needed. Define safe returns Gs = [Gs1, Gs2, ..., GsnS

] for the safe actions at the safe states
that will scale this policy change to match the magnitude of the desired policy change (Eq. 4). To
compute these safe returns, substitute Eq. 22 into Eq. 4, evaluated for the equality constrained states.
We get a system of linear equations

∆π(as | ss, θe)− ϑ(se, ss)Π
I

e
(se, θe)Ge = ϑ(ss, ss)Π

I

e
(ss, θe)Gs, (5)

that has to be solved for Gs. If the product ϑ(ss, ss)Π
I

e
(ss, θe) is invertible, Eq. 5 has a single unique

solution as there are nS unknown returns and nS equations (assuming nS equality constraints). The
matrix ϑ(ss, ss) (the NTK) is symmetric, non-negative, finite, and bounded Jacot et al. (2018), and
ΠI

e
(ss, θe) is a diagonal matrix with positive elements. Their product is most likely a non-singular

matrix, thus invertible, but if not, its pseudoinverse can still be computed Ben-Israel & Greville
(2003). Then, Gs can be found with different methods Haidar et al. (2018). This implies that the
constraints need to be feasible (non-conflicting) and realizeable by the NN.

In the initial stages of learning, the difference between the reference policy and the actual one at
the constrained states will be large. Therefore, high returns are needed to eliminate this difference.
This also implies that the contribution of the Monte-Carlo batch to the policy update will be minor
compared to the safe state-action-return tuples. In addition, large returns might cause loss of nu-
merical stability during the learning. The returns computed from the linearized policy change might
lead to policies differing from the desired one, especially if the learning rate α is large. When the
policy obeys the constraints, the computed returns will only compensate for the policy offset the
MC batch would impose at the constrainted states (see Remark 5). If there is only a minor deviation
from the desired policy, these returns will be small compared to Ge and will not significantly affect
the learning. In this case, the rewards from the Monte-Carlo data batch will dominate the learning.
In addition, if the policy is smooth, the agent’s action probabilities in the neighborhood of a con-
strained state will not be radically different from the constrained one if the constraints are satisfied.
This also depends on the approximation capabilities and the complexity of the policy. In a continu-
ous state space, defining constraints in a grid-based fashion is easy but computationally ineffective.
Additionally, the ”density” of constraints highly depends on the domain in which the agent learns.

In practice, constrained learning is implemented through augmented batches. We concatenate the
safe states, actions, and computed returns with the episode batch as: {(se, ss), (ae, as), (Ge, Gs)}.
Then, the agent’s weights are updated with the concatenated batch with gradient ascent, Eq. 3.
Therefore, the policy update is done in the same way as in the unconstrained REINFORCE algo-
rithm. Thus, convergence properties of the learning (excluding numerical stability) are not affected.

3.2 INEQUALITY CONSTRAINTS

Inequality constraints can be prescribed similar to the equality ones. Instead of defining the ac-
tion probabilities precisely at certain environment states, we can say an action shall be taken with
at least a prescribed probability. We can write these inequality constrained reference policies as:
πref,ineq(as | ss) ≥ cineq . Then, similar to Eq. 5, the inequality constraints can be written as

∆π(as | ss, θe)− ϑ(se, ss)Π
I

e
(se, θe)Ge ≤ ϑ(ss, ss)Π

I

e
(ss, θe)Gs. (6)

Solving this system of inequalities can be turned into a convex quadratic programming problem.
Since the original goal of reinforcement learning is learning from the collected episode batch data,

6

Under review as a conference paper at ICLR 2024

the influence of the constraints on the learning (i.e., the magnitude of Gs) should be as small as
possible. Therefore, the quadratic program can be formulated as:

min
Gsi

nS∑
i=1

G2
si (7)

s.t. Eq. 6

Note that the quadratic cost function is needed to penalize positive and negative returns similarly.
When the constraints are already satisfied in the inequality case (∆π(as | ss, θe) = 0), and given
batch e, an updated policy (without augmented constrained states) would still satisfy the constraints,
the optimal solution to the quadratic program would be Gs = 0. In conclusion, if the inequality con-
straints are satisfied, the computed returns will be zero, not affecting the learning at all. The learning,
in that case, follows the classical REINFORCE algorithm (opposed to Remark 5). Quadratic pro-
gramming with interior point methods has has the polynomial time complexity of O(n3

S), (Ye & Tse
(1989)) and has to be solved after every episode. Alternatively, it is possible to relax the constraints
via introducing slack variables Boyd & Vandenberghe (2004). This approach turns the optimization
with hard constraints into soft ones, which can be solved even with conflicting constraints.

3.3 DYNAMIC CONSTRAINT SELECTION TO TACKLE LARGE STATE SPACES

The proposed algorithm can only scale well computationally in large-scale environments with some
additional heuristics. Two main factors hinder scaling: i) computing the NTK for long episodes,
and ii) solving Eq. 5 and Eq. 7 for many unknowns, i.e., having too many constraints. The first
point can easily be resolved using mini-batches instead of full state trajectories Shen et al. (2019).
The mini-batch approach effectively reduces the size of the NTK (see Definition 1) and all the other
matrices used in Eq. 5 and Eq. 7. This not only means less computation but makes the optimization
easier to solve.

To address the issues related to a large number of constraints, we propose a dynamic constraining ap-
proach. If a high-dimensional environment has one (or a few) state dimensions that have undesirable
values, it is not only tedious to constrain every state combination but can also be computationally
impracticable (see Remark 8). For example, in a lane-keeping task, lane departure is only character-
ized by the vehicle’s lateral position, while its state vector can consist of several other components
(velocity, headways, etc.). The desired action in such a situation is also evident (steer back towards
the lane center). Thus, we create dynamical constraints that only use the constrained portion of the
state vector and a desired action. When the agent interacts with the environment during one Monte-
Carlo trajectory, it is checked in every step whether a dynamically constrained state is reached (e.g.,
the deviation from the lane center is higher than a threshold in the lane-keeping example). If so, that
state is saved alongside the desired action and appended to the safe state batch ss and safe action
batch as, respectively, for the current episode. Then, after the termination of the episode, the desired
returns Gs are computed the same way as for the equality or inequality constraints. Mathematically,
a dynamic constrained state sd has elements from S but dim{sd} ≤ dim{S}. If an environment
state se(k) has an undesirable value, a dynamic constraint can be set up (e.g., if sd is the lateral
position of the vehicle, and the vehicle at state se(k) is departing the lane, ∥se(k, λ)∥ > sd(λ), with
λ denoting the index of the lateral position in each vector). Finally, define this new class of desired
policy (dynamic constraint) as πref,d(as | sd), indicating that multiple constraints are handled as
vectors with an underscore.

This way, the agent will only learn from its actual state trajectory and the constrained states it
encountered during that episode. Thus, we do not constrain the whole, large dimensional state
space, trading off safe-learning performance with computational performance.

We summarize the NTK-based constrained REINFORCE algorithm in Algorithm 1. Note that this
algorithm explains the mega-batch (full Monte-Carlo trajectory) approach.

4 EXPERIMENTAL STUDIES

We investigate the proposed constrainted learning algorithm in three environments: Cartpole Barto
et al. (1983) and Lunar lander, Brockman et al. (2016), and a highway pilot environment Bécsi

7

Under review as a conference paper at ICLR 2024

et al. (2018). The simplicity of the Cartpole environment enables us to perform an in depth analysis
of the proposed algorithm. The Lunar Lander demonstrates its efficiency in higher-dimensional
environment. Additionally, the highway environment is used to demonstrate dynamic constraining
in a higher dimensional state space. Through these environments, it is also explained what external
knowledge is needed when formulating the constraints.

Algorithm 1 The NTK-based constrained REINFORCE al-
gorithm

1: Define equality constraints πref,eq(as | ss) = ceq .
2: Define ineq. constraints πref,ineq(as | ss) ≥ cineq .
3: Define rules for dynamic constraints πref,d(as | sd).
4: Initialize e = 1.
5: Initialize the policy network with random θ weights.
6: while not converged do
7: Generate a MC trajectory {se(k), ae(k), re(k)}, with

the current policy π(ae(k) | se(k), θe).
8: for the trajectory (k = 1, 2, ..., nB) do
9: if se(k) violates a dynamic constraint sd then

10: Append se(k) to ss
11: Append the desired action to as
12: end if
13: Compute the returns Ge(k) with Eq. 2.
14: end for
15: Construct ϑ(se, ss), ϑ(ss, ss), Π

I

e
(se, θe), Π

I

e
(ss, θe).

16: Compute Gs with Eq. 5 and Eq. 7.
17: Concatenate the MC batch and the constraints:

{(se, ss), (ae, as), (Ge, Gs)}.
18: for the augmented MC trajectory (k = 1, 2, ..., nB +

nS) do
19: Update policy parameters with gradient ascent

(Eq. 3).
20: end for
21: Increment e.
22: end while

The learning agent is a 2-layer deep
fully-connected neural network with
ReLU activations and softmax output
nonlinearity and appropriate input-
output sizes (i.e., 4 inputs and 2 out-
puts for Cartpole, 8 inputs and 6 out-
puts for Lunar lander, and 17 inputs
and 25 outputs for the highway en-
vironment). The width of the hid-
den layer is 5000 neurons with bias
terms. That is to comply with the as-
sumptions in Jacot et al. (2018), i.e., a
shallow and wide neural network. On
the other hand, the NTK can be com-
puted for more complex NN struc-
tures too e.g., Yang & Salman (2019).
Note that the primary purpose is not
finding the best function approxima-
tor, merely demonstrating the effi-
ciency of the constrained learning.
To achieve lazy learning, the learning
rate is set to α = 0.0001. The small
learning rate ensures that the approx-
imation of the policy change remains
accurate.

In each environment, the constrained
learning is benchmarked against a
deep double Q-network (DDQN,
Van Hasselt et al. (2016)), actor-critic
(AC Grondman et al. (2012)), and

proximal policy optimization (PPO, Schulman et al. (2017)).

Simulation results are summarized in Figure 1. In the Cartpole environment, with proper selection of
the constraints, it is possible to train the agent in 5 steps, with orders of magnitude less environment
interactions than for the unconstrained agents. Nevertheless, it can be attributed to the simplicity of
the problem and the choice of constraints. For this environment, the constraints are chosen based on
what the agent should do intuitively. The agent can only learn new policies at states which are not
constrained. Thus, the final policy will be sub-optimal (if the constraints are sub-optimal). This is a
trade-off between sample efficiency and optimality. The constraining makes learning much faster as
it eliminates the need to explore states known to be unsafe.

In Lunar lander, the two most common reasons observed for episode failures are the lander crashing
too fast into the ground and tilting over mid-flight. To this end, constraints are imposed on the
lander’s vertical velocity and angle (see Table 4). The agent can find a good policy within a few
episodes if the constraints are set up well. On the other hand, a poor selection of constraints can
harm the performance in the long run. In this environment, an on par final policy can be achieved,
compared to the benchmarks in one order of magnitude less episodes.

The highway pilot environment is a higher dimensional environment, where static constraints would
impose too much computational burden. On the other hand, some undesirable environment states
can be isolated (e.g., driving towards the curb or towards a potential rear-end collision). If such
an undesired event happens, we dynamically append a constraint featuring that specific state and
a desired safety action to the learning batch. Compared to the other agents, our constrained agent
starts converging faster, however, not orders of magnitude faster than in the other two environments.

8

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Episodes

50

100

150

200

A
ve

ra
ge

sc
or

e

AC

DDQN
PPO

C-PG

(a) Cartpole

0 100 200 300 400 500
Episodes

−100

0

100

200

A
ve

ra
ge

sc
or

e

C-PG
DDQN
PPO
AC

(b) Lunar lander

0 100 200 300 400 500
Episodes

50

100

150

200

A
ve

ra
ge

sc
or

e

AC

DDQN
PPO

C-PG

(c) Highway pilot

Figure 1: Average score in the benchmark environments for 5 different random seeds.

That is because the constraints cover a much smaller portion of the environment space compared
to the previously discussed environments, so the constrained agent has to explore more. For the
benchmark agents, the most common early termination cause was leaving the highway, followed
by colliding with other vehicles. For the constrained agent, collision was the most common cause.
That is because road departure was covered by a constraint, but collision was only constrained for
rear-end crashes and not for colliding into vehicles on adjacent lanes.

In-depth conclusions of the results are provided in Appendix C.

5 CONCLUSIONS

We proposed a solution to augment the REINFORCE algorithm with equality, inequality, and dy-
namically changing constraints for the policy. The key to constraining is the neural tangent kernel.
It enables the evaluation of the policy change without actually training the agent at arbitrary states
and actions, as described by the theorems in the paper. Constrained arbitrary environment states
are states with desired action probabilities based on expert knowledge of the environment. Through
the NTK, desired returns are computed that approximately satisfy the prescribed constraints under
gradient ascent. The actual learning is done on augmented batches, where the Monte-Carlo samples
are concatenated with the constrained state-actions pairs with the precomputed returns. Simulation
results suggest that constraints are satisfied after 2-3 episodes. If they are set up correctly, learning
becomes extremely fast (episode-wise) while satisfying safety constraints, thus ensuring some trans-
parency of the policy too. If the constraints are satisfied, the constrained returns become small, only
slightly influencing learning from the Monte-Carlo trajectory episode batch. On the other hand,
selecting suitable constraints requires expert knowledge of the environment. Therefore, the pro-
posed algorithm is best suited for controlled physical systems where saturations and unsafe states
can be pinpointed and countermeasures can be explicitly defined. However, the learning algorithm
may suffer from the curse of dimensionality: in high-dimensional state spaces setting up constraints
manually is tedious. To solve the optimization for large environments with the proposed polynomial
time complexity algorithm, dynamically selected constraints are proposed.

As a future line of research, other variants of policy gradient methods will be analyzed. We hypoth-
esize that more complex policy-based approaches can also be augmented with constraints using the
NTK. Furthermore, feasibility analysis of constrained policies and learning constraints pose inter-
esting lines of research.

REFERENCES

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep q-
learning. arXiv preprint arXiv:1903.08894, 2019.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed explo-
ration for provable policy gradient learning. Advances in Neural Information Processing Systems,
33:13399–13412, 2020.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, Florida, USA, 1999.

9

Under review as a conference paper at ICLR 2024

Eitan Altman, Said Boularouk, and Didier Josselin. Constrained markov decision processes with
total expected cost criteria. In Proceedings of the 12th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools, pp. 191–192, March 13-15, 2019, Palma de Mal-
lorca, Spain, 2019. doi: 10.1007/s001860050035.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
1(5):834–846, 1983. doi: 10.1109/TSMC.1983.6313077.

Tamás Bécsi, Szilárd Aradi, Árpád Fehér, János Szalay, and Péter Gáspár. Highway environment
model for reinforcement learning. IFAC-PapersOnLine, 51(22):429–434, 2018.

Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applications, volume 15.
Springer Science & Business Media, 2003.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In 31st Conference on Neural Information Pro-
cessing Systems (NIPS), pp. 908–918, 4-9 December 2017, Long Beach, CA, US, 2017.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspective for regu-
larizing deep neural networks. In International Conference on Machine Learning, pp. 664–674.
PMLR, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, Cam-
bridge, United Kingdom, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake Van der Plas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Ching-An Cheng, Xinyan Yan, and Byron Boots. Trajectory-wise control variates for variance
reduction in policy gradient methods. In Proceedings of the Conference on Robot Learning, pp.
1379–1394, 16 - 18, November, 2020, Virtually, 2020. PMLR.

Alexander I Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Amin Abdullah, Aivar
Sootla, Jun Wang, and Haitham Bou-Ammar. Samba: Safe model-based & active reinforcement
learning. Machine Learning, 111(1):173–203, 2022. doi: 10.1007/s10994-021-06103-6.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018. doi: 10.1109/TAC.
2018.2876389.

Soham Gadgil, Yunfeng Xin, and Chengzhe Xu. Solving the lunar lander problem under uncertainty
using reinforcement learning. arXiv preprint arXiv:2011.11850, 2020.

Javier Garcia and Fernando Fernandez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(42):1437–1480, 2015.

Imene R Goumiri, Benjamin W Priest, and Michael D Schneider. Reinforcement learning via gaus-
sian processes with neural network dual kernels. In 2020 IEEE Conference on Games (CoG), pp.
1–8, 24-27 August 2020, Osaka, Japan, 2020. IEEE. doi: 10.1109/CoG47356.2020.9231744.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(6):1291–1307, 2012.

10

http://github.com/google/jax

Under review as a conference paper at ICLR 2024

Sebastien Gros, Mario Zanon, and Alberto Bemporad. Safe reinforcement learning via projection
on a safe set: How to achieve optimality? IFAC-PapersOnLine, 53(2):8076–8081, 2020.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022. doi: 10.48550/arXiv.2205.10330.

Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J Higham. Harnessing gpu tensor
cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In SC18:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 603–613, 11-16 November 2018, Dallas, TX, US, 2018. IEEE. doi: 10.1109/SC.2018.00050.

Fei Han, Qing-Hua Ling, and De-Shuang Huang. Modified constrained learning algorithms incor-
porating additional functional constraints into neural networks. Information Sciences, 178(3):
907–919, 2008. doi: 10.1016/j.ins.2007.09.008.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Hassan K Khalil. Nonlinear systems third edition. Patience Hall, 115, 2002.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python.
arXiv preprint arXiv:1912.02803, 2019.

Shota Ohnishi, Eiji Uchibe, Yotaro Yamaguchi, Kosuke Nakanishi, Yuji Yasui, and Shin Ishii. Con-
strained deep q-learning gradually approaching ordinary q-learning. Frontiers in neurorobotics,
13:103, 2019.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):
127–239, 2014. doi: 10.1561/2400000003.

Baiyu Peng, Yao Mu, Yang Guan, Shengbo Eben Li, Yuming Yin, and Jianyu Chen. Model-based
actor-critic with chance constraint for stochastic system. In 2021 60th IEEE Conference on Deci-
sion and Control (CDC), pp. 4694–4700. IEEE, 2021.

Carl Edward Rasmussen, Malte Kuss, et al. Gaussian processes in reinforcement learning. In
Advances in neural information processing systems (NIPS), volume 4, pp. 751––758, 2003.

Yangang Ren, Guojian Zhan, Liye Tang, Shengbo Eben Li, Jianhua Jiang, and Jingliang Duan. Im-
prove generalization of driving policy at signalized intersections with adversarial learning. arXiv
preprint arXiv:2204.04403, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. doi: 10.48550/arXiv.1707.
06347.

Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy
gradient. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 5729–5738. PMLR, 09–15 Jun 2019.

Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control: analysis and design, vol-
ume 2. Wiley, New York, 2007.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
Cambridge, Massachusetts, United States, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial intelli-
gence and machine learning, 4(1):1–103, 2010.

11

Under review as a conference paper at ICLR 2024

Laszlo Szoke, Szilárd Aradi, Tamás Bécsi, and Péter Gáspár. Skills to drive: Successor features for
autonomous highway pilot. IEEE Transactions on Intelligent Transportation Systems, 2022.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Eiji Uchibe and Kenji Doya. Constrained reinforcement learning from intrinsic and extrinsic re-
wards. In IEEE 6th International Conference on Development and Learning, pp. 163–168, 11-13
July 2007, London, UK, 2007. IEEE. doi: 10.1109/DEVLRN.2007.4354030.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision pro-
cesses. In International Conference on Machine Learning, pp. 9797–9806. PMLR, 2020.

R Williams. A class of gradient-estimation algorithms for reinforcement learning in neural networks.
In Proceedings of the International Conference on Neural Networks, pp. 591–601, 1987.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022. doi: 10.1038/s41586-021-04357-7.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

Tianbao Yang. Advancing non-convex and constrained learning: Challenges and opportunities. AI
Matters, 5(3):29–39, 2019. doi: 10.1145/3362077.3362085.

Yinyu Ye and Edison Tse. An extension of Karmarkar’s projective algorithm for convex quadratic
programming. Mathematical programming, 44(1):157–179, 1989. doi: 10.1007/BF01587086.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021. doi: 10.1007/978-3-030-60990-0 12.

Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. Safe active learning for time-series
modeling with gaussian processes. In Advances in Neural Information Processing Systems
(NIPS), pp. 2730–2739, 2018.

A NOMENCLATURE

θ parametrization of the function approximator
(policy network), weights and biases

Θ(xi, xj) Neural Tangent Kernel (NTK) evaluated at two
data points xi and xj

S environment state space
A action space
P transition probability matrix
R(s) reward function
γ discount factor
nn dimension of the environment space
na dimension of the action space
π(ae(k) | se(k), θe) policy in episode e, step k

12

Under review as a conference paper at ICLR 2024

nθ number of weights and biases
ai the ith discrete action
s environment state
e episode index
nB data batch length (for one episode)
se vector of visited states in episode e
ae vector of actions taken in episode e
re rewards gained in episode e
k step index in one episode, e.g., se(k) denotes the

kth visited state in episode e
Ge vector of returns (expected discounted sum of fu-

ture rewards) in episode e
π(ae | se, θe) policy vector in episode e
Θ

π,e
(se, se) Neural Tangent Kernel (NTK) for state vector se

with the current policy
ΠI

e
(se, ae, θe) diagonal matrix of inverse policies in episode e

Π̇
log,e

(se, ae, θe) matrix of partial log policy derivatives (w.r.t. θe)
in episode e

Π̇
e
(se, ae, θe) Jacobian matrix ∇T

θ π(ae | se, θe)
β coefficient matrix
V (π(ae | se, θe)) Lyapunov function
Γe(ae, re) vector of returns considering actions not taken

(with zero returns) too
ΠI

e
(se, θe) diagonal matrix of inverse policies in episode e,

for every action
Π̇

log,e
(se, θe) matrix of partial log policy derivatives (w.r.t. θe)

in episode e, for every action
Π̇

e
(se, θe) Jacobian matrix considering every possible action

from visited states se
E identity matrix
πB(a | se, θe) averaged policy change for episode e
s0 arbitrary environment state
ϑ(se, s0) NTK evaluated for the episode states and an arbi-

trary state
Γ0 returns for the unvisited state, for any action (ze-

ros)
ss constrained states
nS number of constraints
sd dynamic constraint
ceq equality constraints (action probabilities)
cineq inequality constraints (action probabilities)
as desired action (by the constraint)
Gs calculated returns for constraint satisfaction
∆π(as | ss, θe) desired policy change for constraint satisfaction
πref,eq(as | ss) desired policy for equality constrained states
πref,ineq(as | ss) desired policy for inequality constrained states
ϑ(se, ss) NTK evaluated for the episode states and the con-

strained states
ΠI

e
(ss, θe) diagonal matrix of inverse policies evaluated at the

constrained states ss
L Lipschitz constant

13

Under review as a conference paper at ICLR 2024

B PROOFS AND REMARKS

B.1 PROOF OF THEOREM 1

Proof. Assuming very small learning rate α, the policy update of the REINFORCE algorithm (gra-
dient ascent) can be written in continuous form (gradient flow) Parikh & Boyd (2014):

dθe
de

=

nB∑
k=1

(
Ge(k)

∂

∂θ
logπ(ae(k) | se(k), θe)

)T

. (8)

Furthermore, to avoid undefined logarithm, it is assumed that the evaluated policy is strictly positive.
The derivative on the left hand side is a column vector with size nθ. Rewrite the differential equation
in vector form as

dθe
de

= Π̇
log,e

(se, ae, θe)Ge, (9)

where Ge is evaluated for every element of re based on Eq. 2. The matrix Π̇
log,e

(se, ae, θe) ∈
Rnθ×nB comprises of partial log policy derivatives w.r.t. the parameters (weights and biases) of the
policy network. Then, ∀θe(p), p ∈ 1, 2, ...nθ:

Π̇
log,e

(se, ae, θe) =
∂logπ(ae(1)|se(1),θe)

∂θe(1)
. . .

∂logπ(ae(nB)|se(nB),θe)
∂θe(1)

∂logπ(ae(1)|se(1),θe)
∂θe(2)

. . .
∂logπ(ae(nB)|se(nB),θe)

∂θe(2)

...
. . .

...
∂logπ(ae(1)|se(1),θe)

∂θe(nθ)
. . .

∂logπ(ae(nB)|se(nB),θe)
∂θe(nθ)

 . (10)

Using the logarithmic derivative formula logf(t)
dx = f ′(t)

f(t) on every element of Π̇
log,e

(se, ae, θe), the
following matrix product is obtained:

Π̇
log,e

(se, ae, θe) =
∂π(ae(1)|se(1),θe)

∂θe(1)
. . .

∂π(ae(nB)|se(nB),θe)
∂θe(1)

∂π(ae(1)|se(1),θe)
∂θe(2)

. . .
∂π(ae(nB)|se(nB),θe)

∂θe(2)

...
. . .

...
∂π(ae(1)|se(1),θe)

∂θe(nθ)
. . .

∂π(ae(nB)|se(nB),θe)
∂θe(nθ)

 ·

·

1

π(ae(1)|se(1),θe)
. . . 0

...
. . .

...
0 . . . 1

π(ae(nB)|se(nB),θe)

 , (11)

where the first matrix on the right hand side of Eq. 11 is a transposed Jacobian, i.e,(
∂
∂θπ(ae | se, θe)

)T
. Let’s denote it with Π̇

e
(se, ae, θe). Introduce the notation ΠI

e
(se, ae, θe) ∈

RnB×nB for the diagonal matrix of inverse policies (the second matrix on the right hand side of
Eq. 11).

Substituting the introduced notations into Eq. 9, the change of the agent’s weights training with the
eth data batch is

dθe
de

= Π̇
e
(se, ae, θe)Π

I

e
(se, ae, θe)Ge. (12)

Next, we use the chain rule to describe the learning dynamics of the policy:
∂π(ae | se, θe)

∂e
=

∂

∂θ
π(ae | se, θe)

dθe
de

. (13)

First, we extract dθe
de as in Eq. 12 and use the notation

(
Π̇

e
(se, ae, θe)

)T

= ∂
∂θπ(ae | se, θe):

∂π(ae | se, θe)
∂e

=

Π̇
e
(se, ae, θe)

T Π̇
e
(se, ae, θe)Π

I

e
(se, ae, θe)Ge. (14)

14

Under review as a conference paper at ICLR 2024

Note that
(
Π̇

e
(se, ae, θe)

)T

Π̇
e
(se, ae, θe) = ∂

∂θπ(ae | se, θe)
(

∂
∂θπ(ae | se, θe)

)T
is the NTK

evaluated for every pair of states in se, see Definition 1. Denote it with Θ
π,e

(se, se) ∈ RnB×nB .
Finally, the policy update due to episode batch e at states se(k) for actions ae(k) becomes:

∂π(ae | se, θe)
∂e

= Θ
π,e

(se, se)Π
I

e
(se, ae, θe)Ge (15)

Remark 1. Learning dynamics. Based on Eq. 15, the learning dynamics of the REINFORCE
algorithm is a nonlinear differential equation system. If the same data batch e1 = e2 = ... = eN
is used for training the neural network over and over again, the policy evolves as ∂π(ae|se,θe)

∂e =

β 1
π(ae|se,θe)

(with coefficient matrix β).

Remark 2. Stability analysis through the NTK. The linearity in NTK and policy dependency hints
to use Lyapunov functions (of quadratic form) to check the convergence-stability of the nonlinear
differential equation system Khalil (2002).

First, note that the system is stable if it converges to an equilibrium point (∂π(ae|se,θe)
∂e = 0. Since

the inverse policies cannot be zero, we only have a trivial solution if the returns are zero. The NTK
can only be a zero matrix if the gradients are zero in every state. Apart from the trivial solution,
there can be infinitely many equilibrium points. We seek a Lyapunov function V (π(ae | se, θe)) >
0 : RnB → R, V (π(ae | se, θe)) = 0 iff π(ae | se, θe) = 0, and dV (π(ae|se,θe))

de ≤ 0.

Consider V (π(ae | se, θe)) = 1
2π(ae | se, θe)Tπ(ae | se, θe) as a suitable Lyapunov function. Then

dV (π(ae | se, θe))
de

= (π(ae | se, θe))T Θ
π,e

(se, se)Π
I

e
(se, ae, θe)Ge. (16)

Then, via evaluating dV (π(ae|se,θe))
de ≤ 0, we can decide whether data batch e results in a locally

stable training step or not.

Although, this remark cannot validate the convergence proof in Sutton et al. (1999), it provides an
alternative way to look at the training dynamics.

B.2 PROOF OF THEOREM 2

Proof. We deduce the multi-output case by rewriting Eq. 9 and evaluate the log policy derivatives
are for every possible action at the states in a batch:

Π̇
log,e

(se, θe) =

∂logπ(a1|se(1),θe)

∂θe(1)
. . .

∂logπ(anA |se(nB),θe)
∂θe(1)

∂logπ(a1|se(1),θe)
∂θe(2)

. . .
∂logπ(anA |se(nB),θe)

∂θe(2)

...
. . .

...
∂logπ(a1|se(1),θe)

∂θe(nθ)
. . .

∂logπ(anA |se(nB),θe)
∂θe(nθ)

 , (17)

Π̇
log,e

(se, θe) ∈ Rnθ×nAnB . The zero elements in Γe(ae, re) will cancel out log probabilities of

actions that are not taken in episode e, see Remark 3. Therefore, the final output ∂π(ae|se,θe)
∂e does

not change. Note that, the action dependency is moved from Π̇
log,e

(se, θe) to Γe(ae, re). That
is, because the policy is evaluated for every output channel of the policy network, but nonzero
reward is given only if an action is actually taken in the MC trajectory. We continue by separating

15

Under review as a conference paper at ICLR 2024

Π̇
log,e

(se, θe) into two matrices, in the same way as in Eq. 11.

Π̇
log,e

(se, θe) = Π̇
e
(se, θe)Π

I

e
(se, θe) =

∂π(a1|se(1),θe)
∂θe(1)

∂π(a2|se(1),θe)
∂θe(1)

. . .
∂π(anA |se(nB),θe)

∂θe(1)
∂π(a1|se(1),θe)

∂θe(2)
∂π(a2|se(1),θe)

∂θe(2)
. . .

∂π(anA |se(nB),θe)
∂θe(2)

...
...

. . .
...

∂π(a1|se(1),θe)
∂θe(nθ)

∂π(a2|se(1),θe)
∂θe(nθ)

. . .
∂π(anA |se(nB),θe)

∂θe(nθ)

·

·

1

π(a1|se(1),θe)
1

π(a2|se(1)θe)
. . .

1
π(anA |se(nB),θe)

, (18)

where the diagonalized inverse policies are denoted with ΠI

e
(se, θe). The weight change can be

written as
dθe
de

= Π̇
e
(se, θe)Π

I

e
(se, θe)Γe(ae, re). (19)

Following the same steps as for the proof of Theorem 1, the policy change for every output channel
is

∂π(a | se, θe)
∂e

= Θ
π,e

(se, se)Π
I

e
(se, θe)Γe(ae, re). (20)

Remark 3. The structure of Γe(ae, re) is easier demonstrated through an example. As-
suming a data batch of nB = 4 samples and an agent with nA = 3 possible dis-
crete actions ae = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 0)], and corresponding returns Ge =
[Ge(1), Ge(2), Ge(3), Ge(4)],

Γe(ae, re) = [Ge(1), 0, 0, 0, Ge(2), 0, 0, 0, Ge(3), 0, Ge(4), 0]
T . (21)

B.3 PROOF OF THEOREM 3

Proof. Since s0 is not included in the learning, it does not affect the policy change. Therefore,
the return associated to this state is zero for every action, Γ0 = 0 ∈ RnA . The NTK is based on
the partial derivatives of the policy network and can be evaluated anywhere. Therefore, ϑ(se, s0) =
[ϑ(s1, s0), ϑ(s2, s0), ..., ϑ(snB

, s0)] ∈ RnA×nAnB can be computed for any state. ϑ(se, s0) consists
of symmetric nA × nA blocks. Then the policy change at s0 induced by data batch e is

∂π(a | s0, θe)
∂e

= ϑ(se, s0)Π
I

e
(se, θe)Γe(ae, re)+

+ ϑ(s0, s0)Π
I

e
(s0, θe)Γ0. (22)

Since Γ0 = 0 ∈ RnA it cancels out the term ϑ(s0, s0)Π
I

e
(s0, θe)Γ0 ∈ RnA . Therefore,

∂π(a | s0, θe)
∂e

= ϑ(se, s0)Π
I

e
(se, θe)Γe(ae, re) ∈ RnA . (23)

B.4 FURTHER REMARKS

Remark 4. Relation to other policy gradient methods. One extension of REINFORCE is policy
gradient with baseline. A baseline (typically the value function) is subtracted from the returns to
reduce variance. The policy is then updated with these modified returns using the policy gradient
theorem Sutton & Barto (2018). Constraints can be adapted to the policy gradient with baseline
too. Since the returns at the constrained states are shaped to satisfy specific action probabilities,
baselines should not be subtracted from the safe returns. Therefore, in a constrained REINFORCE
with baseline, batch returns are offset by the baseline while the safe returns are not.

16

Under review as a conference paper at ICLR 2024

Remark 5. Corner cases
Learning with satisfied equality constraints: Assuming the constraints are already satisfied,
∆π(as | ss, θe) = 0, ∀πref,eq(as(κ) | ss(κ)), κ = 1, 2, ..., snS , Eq. 5 simplifies to

ϑ(se, ss)Π
I

e
(se, θe)Ge = ϑ(ss, ss)Π

I

e
(ss, θe)Gs. (24)

This means, the policy change imposed by batch the MC batch {se, ae, re} shall be compensated
by the computed returns Gs. Constraint invariance (Gs = 0) can only be achieved, if the policy
update with the MC batch makes the policy satisfy the constraints, i.e, πref,eq(as | ss) = π(as |
ss, θe) + ϑ(se, ss)Π

I

e
(se, θe)Ge, ∀ss(κ), κ = 1, 2, ..., nS .

No constraints: If no constraints are prescribed (nS = 0), we get the classic REINFORCE algo-
rithm.

Fully constrainted policy: If every state of the environment space is constrained, (nS = ∞), the
agent will learn this fully constrained policy in one step (assuming no conflicting constraints). How-
ever, if a full desired policy is given via the constraints, employing a learning algorithm is pointless.

Remark 6. Smoothness of the policy: By smoothness of the policy we mean that there are no abrupt
changes when looking at policies at two states close to each other. Smoothness can be defined in a
Lipschitz sense for action a ∈ A at episode e as

∥ ∂

∂s
π(a | si, θe)−

∂

∂s
π(a | sj , θe)∥2 ≤ L∥si − sj∥2, ∀si, sj ∈ S, (25)

with Lipschitz constant L. With the method proposed in Virmaux & Scaman (2018), L can quickly
be evaluated for deep NNs.

Remark 7. Time complexity: The critical operations are kernel evaluations and solving the linear
equation system. Solving the linear equation system has the time complexity of O(n3

S) Haidar et al.
(2018). The time complexity of kernel evaluations is O((nB +nS)nS). If the kernel is computed for
every output channel at the batch states, time complexity would then increase to O((nAnB+nS)nS).

Remark 8. Regional constraints The equality and inequality constraints define a desired policy at
specific points of the state space. However, it can be desirable to prescribe constraints to larger
subsets (regions) of the state space. Constraining regions in a grid-based fashion could lead to lots
of constraints that are tedious to define one by one and compute the returns (with Eq. 5 or Eq. 7).
Alternatively, one can use some heuristics to limit the number of constraints defined per region. For
example, in each episode, search for states within a region that have the most deviation from the
desired policy and prescribe constraints to those.

C DETAILED EXPERIMENTS

C.1 CARTPOLE

The Cartpole problem is a common benchmark in control theory as it can be easily modeled as a
linear time-invariant system Skogestad & Postlethwaite (2007). The goal is to balance a pole to stay
upright by horizontally moving the cart. The Cartpole has four states: the position of the cart (x),
its velocity (ẋ), the pole angle (φ), and the pole angular velocity (φ̇). The agent in this environment
can take two actions: accelerating the cart left (a0) or right (a1). In this task, the agent’s goal is to
balance the pole as long as possible. Reward is given for every discrete step if the pole is in vertical
direction, and the episode ends if the pole falls or successfully balances for 200 steps. The pass
criteria for this gym environment is reaching an average reward of 195 for 100 episodes.

For this task, we consider the constraints intuitively. If the pole is tilted too much right, the cart must
move right to balance it, and vice versa. Therefore, we impose inequality constraints on the pole
angle and angular velocity in a grid-based fashion. We assume the pole is tilted right if φ = 0.25,
φ̇ = 0.05 and we must take action a1 with probability ≥ 0.95. Similarly, if φ = −0.25, φ̇ = −0.05
(the pole is tilted left), we must take action a0 with probability ≥ 0.95. To be invariant of the
cart’s position, constraints are repeated for discrete x values. Inequality constraints are imposed
on 18 states, see Table 3 in Appendix D. Selecting too many states to constrain slows down the
computation significantly, while defining conflicting constraints can make Eq. 7 unsolvable.

17

Under review as a conference paper at ICLR 2024

With proper selection of the constraints, it is possible to train the agent in 5 steps, with orders of
magnitude less environment interactions than for the unconstrained agents. Figure 2 summarizes the
learning of the constrained agent compared to the other benchmarks. The agent learns the problem
within a few episodes. Nevertheless, it can be attributed to the simplicity of the problem and the
choice of constraints. For this environment, the constraints are chosen based on what the agent
should do intuitively. Thus, once the constraints are fulfilled, the agent will be able to balance the
pole. The agent can only learn new policies at states which are not constrained. Thus, the final policy
will be sub-optimal (if the constraints are sub-optimal). This is a trade-off between sample efficiency
and safe learning (optimality). Figure 3 depicts the section of the learned policy with the constrained
states. The resulting policy is very smooth, and the constraints are fulfilled. The constraining makes
learning much faster as it eliminates the need to explore states known to be unsafe.

0 100 200 300 400 500
Episodes

50

100

150

200

A
ve

ra
ge

sc
or

e

AC

DDQN
PPO

C-PG

Figure 2: Average score in the Cartpole environment for 5 different random seeds.

C.2 DEMONSTRATION OF REGIONAL CONSTRAINTS IN CARTPOLE

We further investigate the possibility of applying regional constraints (see Remark 8 to in a grid-
based fashion. To this end, the Cartpole environment is used with the agent introduced in Section
4. For visualization purposes, we only consider the last two states of the environment: the pole
angle φ, and its angular velocity φ̇ at the x = 0, ẋ = 0 slice of the state space. First, we introduce
four circular 2D disks as regional constraints, see Table 2. Next, we discretize each disk into 30
points (xi). Then, the constrained learning and select the state where the policy deviation from the

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3: Probability of taking a0 (push the cart left) in the Cartpole environment at x = 0, ẋ = 0.
Dots represents the constrained states ss5, ss14 (Table 3)

18

Under review as a conference paper at ICLR 2024

Table 2: Constrained regions

Center Radius (on φ-φ̇) πref,reg(a
0 | fs(x))

fs1(x) [0, 0, −0.2 − 0.2] 0.05 ≥ 0.95
fs2(x) [0, 0, −0.2 0.2] 0.05 ≤ 0.05
fs3(x) [0, 0, 0.2 − 0.2] 0.05 ≤ 0.05
fs4(x) [0, 0, 0.2 0.2] 0.05 ≥ 0.95

reference is maximal. Figure 4 summarizes the learning with constrained regions in the state space.
The figure shows four episodes with the constrained regions (gray areas), and the corresponding
constrained states (stars within the areas). In addition, the trajectory the agent traversed in that
episode is shown too (black line). In constrained REINFORCE, this trajectory and the constrained
states are concatenated. Thus, both the constrained states and the actual MC trajectory contribute
to the learning. However, as long as the constraints are not satisfied, the rewards from the MC
batch are suppressed by the large returns on the constrained states. Therefore, the two constraint
selection strategies yield policies that are only slightly different from each other after learning from
9 episodes.

Note that the prescribed regional constraints in this example are arbitrary and only for demonstration
purposes. In the Cartpole environment, they yield a poor policy.

C.3 LUNAR LANDER

The goal in this 2D environment is to land a rocket on a landing pad without crashing. The agent in
this environment has eight states: its horizontal and vertical coordinates (x, y) and velocities (ẋ, ẏ),
its angle φ, its angular velocity φ̇ and the logical states whether the left and right legs are in contact
with the ground (lleft and lright). The agent can choose from four actions: 0: do nothing, 1: fire the
left thruster, 2: fire the main engine, and 3: fire the right thruster. The episode finishes if the lander
crashes or comes to rest. Reward is given for landing successfully close to the landing pad. Crashing
the rocket results in a penalty. Firing the engines (burning fuel) also results in small penalties. The
pass threshold for solving this environment is an average reward of 200 for 100 episodes.

During unconstrained learning, the two most common reasons observed for episode failures are the
lander crashing too fast into the ground and tilting over mid-flight. To this end, constraints are
imposed on the lander’s vertical velocity and angle. Based on these empirical observations, we
propose inequality constraints.

Constraints are imposed to keep the lander on an ideal trajectory: as the lander comes closer to the
ground, it should decelerate by firing the main engine (simulating hover slam). Intuitively, if the
rocket has a too large horizontal velocity or is tilted, the side engines should be used. The proposed
constraints are summarized in Table 4 (Appendix D).

With the above setup, the agent can land successfully after a few episodes. However, after 500
episodes of training, the 100 runs average reward is just below 200, see Figure 5. The results in
this environment shed light on some important features of the proposed algorithm. The agent can
find a good policy within a few episodes if the constraints are set up well. On the other hand, a
poor selection of constraints can harm the performance in the long run. The algorithm can achieve
similar performance in significantly fewer steps compared to other benchmarks, e.g., Van Hasselt
et al. (2016); Gadgil et al. (2020). The unconstrained DDQN learns one order of magnitude slower.
However, it can reach slightly higher average scores by the end of the training. Therefore, there is
a trade-off between speeding up learning via constraining and reaching the highest possible average
score. On the other hand, enforcing constraints during learning reduces oscillations and the variance
from different random seeds, which is a common issue for typical benchmarks. Therefore, it is
easier to know when to stop learning. With a more careful selection of constraint states (more
information about the environment), the final average score of the agent could be improved, i.e., the
constraints would not hamper reaching the optimal policy. This highlights one more drawback of
the constrained approach: if the dimension of the environment space is large, the number of required
constraints in a grid-based fashion increases significantly (i.e., the curse of dimensionality applies).
Therefore, a lot more manual tuning effort is required to achieve safe and fast learning. In the next
subsection, we explore the effect of dynamic constraining.

19

Under review as a conference paper at ICLR 2024

Figure 4: Probability of taking a0 in the Cartpole environment at x = 0, ẋ = 0 under regional
constraints fs1(t), ..., fs4(t). Constrained regions are denoted with gray circles, and the actual con-
strained state fs(to) within each region by a ⋆. Black lines denote the agent’s trajectory in the state
space in the given episode. Plots in the left column show policy evolution with ”Maximum return”,
plots on the right depict the ”Maximum policy deviation” constraining strategy.

C.4 HIGHWAY PILOT

This environment features a microscopic highway simulation model Bécsi et al. (2018) where a car
has to navigate through dense traffic. The model features a detailed lateral motion model (based on
the bicycle model). The environment has 17 continuous states, including relative distance and rela-
tive speed of the surrounding vehicles, occupancies, and vehicle states. The action space consists of
25 elements with every combination of 5 steering angle and 5 acceleration/deceleration values. The
reward function consists of multiple terms such as keeping right, keeping a safe headway, and trav-

20

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Episodes

−100

0

100

200

A
ve

ra
ge

sc
or

e
C-PG
DDQN
PPO
AC

Figure 5: Average score in the Lunar lander environment for 5 different random seeds.

eling with a desired speed. The episode terminates if the vehicle travels a defined distance (success),
or if it leaves the road, collides with other vehicles, or slows down too much (early termination).

The size and complexity of the environment make it hard to define full state constraints a priori. On
the other hand, we can isolate some undesirable environment states derived from the early termina-
tion conditions:

• if the vehicle is approaching the (lateral) boundaries of the highway, it shall steer towards
its center. Thus, sd1 : y < 0.05d, πref,j=2 ≥ 0.95, and sd2 : y > 0.95d, πref,j=22 ≥ 0.95,
where sd1, sd2 are constraints for highway departure, y is the lateral position of the vehicle
and d is the width of the highway (in meters, assuming three lanes). In the desired policy,
the subscript j = 2 denotes the action with no acceleration and moderately steering left,
and j = 22 is moderately steering right.

• If the vehicle has too small headway h from the vehicle in front, it shall slow down (action
j = 11) to avoid rear-end collision. Thus, sd3 : h < 10 m, πref,j=11 ≥ 0.95.

• If the vehicle travels too slowly, it shall accelerate: sd4 : v < 15 m/s, πref,j=13 ≥
0.95. Similarly, v is the longitudinal vehicle speed, and j = 13 is the action index for
accelerating.

Constraints are also summarized in Table 5 in Appendix D. If any of these conditions are fulfilled
during the episode, the actual state will be appended to the constrained state batch. See Section
3.3. We hypothesize that these constraints will significantly boost learning in the exploration phase,
helping to avoid states that will certainly lead to early episode termination. Additionally, since one
episode can be very long, training is done on 32-step long mini-batches.

Compared to the other agents, our constrained agent starts converging faster (Figure 6), however, not
orders of magnitude faster than in the other two environments. That is because the constraints cover
a much smaller portion of the environment space compared to the previously discussed environ-
ments, so the constrained agent has to explore more. For the benchmark agents, the most common
early termination cause was leaving the highway, followed by colliding with other vehicles. For
the constrained agent, collision was the most common cause. That is because road departure was
covered by a constraint, but collision was only constrained for rear-end crashes and not for colliding
into vehicles on adjacent lanes.

21

Under review as a conference paper at ICLR 2024

0 50000 100000 150000
Episodes

0

200

400

A
ve

ra
ge

sc
or

e

C-PG
DDQN
PPO
AC

Figure 6: Average score in the Highway environment for 5 different random seeds.

D CONSTRAINTS IN THE SIMULATIONS

x ẋ φ φ̇ πref (a
0 | ssi)

ss1 −2 0 0.25 0.05 ≤ 0.05
ss2 −1.5 0 0.25 0.05 ≤ 0.05
ss3 −1 0 0.25 0.05 ≤ 0.05
ss4 −0.5 0 0.25 0.05 ≤ 0.05
ss5 0 0 0.25 0.05 ≤ 0.05
ss6 0.5 0 0.25 0.05 ≤ 0.05
ss7 1 0 0.25 0.05 ≤ 0.05
ss8 1.5 0 0.25 0.05 ≤ 0.05
ss9 2 0 0.25 0.05 ≤ 0.05
ss10 −2 0 −0.25 −0.05 ≤ 0.95
ss11 −1.5 0 −0.25 −0.05 ≥ 0.95
ss12 −1 0 −0.25 −0.05 ≥ 0.95
ss13 −0.5 0 −0.25 −0.05 ≥ 0.95
ss14 0 0 −0.25 −0.05 ≥ 0.95
ss15 0.5 0 −0.25 −0.05 ≥ 0.95
ss16 1 0 −0.25 −0.05 ≥ 0.95
ss17 1.5 0 −0.25 −0.05 ≥ 0.95
ss18 2 0 −0.25 −0.05 ≥ 0.95

Table 3: Constrained states in Cartpole

22

Under review as a conference paper at ICLR 2024

x y ẏ φ l πref ≥ 0.95
ss1 0 0 0 0 1 j = 0
ss2 0 0.9 −1 0 0 j = 2
ss3 0 0.5 −0.75 0 0 j = 2
ss4 0 0.2 −0.5 0 0 j = 2
ss5 0 0.1 −0.5 0 0 j = 2
ss6 0 1 0 −0.25 0 j = 1
ss7 0 1 0 0.25 0 j = 3
ss8 0 0.5 0 −0.25 0 j = 1
ss9 0 0.5 0 0.25 0 j = 3
ss10 0.3 1.3 0.1 0 0 j = 1
ss11 −0.3 1.3 −0.1 0 0 j = 3

Table 4: Constrained states in Lunar lander

State Threshold πref ≥ 0.95
sd1 y (lateral position) < 0.05d j = 2 (steer left)
sd2 y (lateral position) < 0.95d j = 22 (steer right)
sd3 h (headway) < 10 m j = 11 (decelerate)
sd4 v (vehicle speed) < 15 m/s j = 13 (accelerate)

Table 5: Constrained states in the Highway environment

23

	Introduction
	Kernel-based analysis of the REINFORCE algorithm
	Reformulating the learning dynamics of the REINFORCE algorithm
	Evaluating the policy change for arbitrary states and actions

	The NTK-based constrained REINFORCE algorithm
	Equality constraints
	Inequality constraints
	Dynamic constraint selection to tackle large state spaces

	Experimental studies
	Conclusions
	Nomenclature
	Proofs and remarks
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Further remarks

	Detailed experiments
	Cartpole
	Demonstration of regional constraints in Cartpole
	Lunar lander
	Highway pilot

	Constraints in the simulations

