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ABSTRACT

Smart contracts are programs deployed on blockchains that manage digital assets
and enable decentralized applications. While their bytecode is always accessible
on-chain, more than 99% of Ethereum contracts lack verified source code, making
decompilation essential for transparency and security analysis.

Traditional decompilers rely on program analysis to produce structured but low-
level representations. Recent advances in large language models (LLMs) enable
source-like output with higher readability and even recompilability. Yet system-
atic evaluation is missing: existing tools use narrow datasets and inconsistent met-
rics, hindering fair comparison and reproducibility.

We present the first systematic benchmark for smart contract decompilation. Our
contributions are: (i) a diverse dataset of real-world contracts, filtered for redun-
dancy and stratified by difficulty; (ii) a staged evaluation framework with metrics
for format completeness, compilability, Application Binary Interface (ABI) re-
covery accuracy, and semantic equivalence; and (iii) baseline evaluations using a
fine-tuned reference model, establishing a strong foundation for future research.
Our benchmark establishes a common ground for rigorous, reproducible evalua-
tion and aims to accelerate the development of reliable smart contract decompilers
for blockchain security and transparency.

1 INTRODUCTION

Smart contracts|Wood et al.|(2014) are programs deployed on blockchains that manage digital assets,
enforce agreements, and underpin decentralized applications. They have transformed the blockchain
ecosystem from simple value transfer to a programmable financial and computational infrastructure.
Today, smart contracts secure over 160B USD across decentralized finance, non-fungible tokens,
and governance systems

While the bytecode of smart contracts is publicly accessible on-chain, their source code is not always
made available. Only a small fraction of contracts are voluntarily verified by developers and pub-
lished in high-level languages such as Solidity. At the time of writing, more than 99% of the smart
contracts on Ethereum, the largest smart contract-enabled blockchain, are unverified, leaving only
low-level bytecode accessible’| This opacity hinders transparency, auditability, and accountability,
as developers, users, and security researchers cannot easily understand or validate the behavior of
deployed contracts. Recovering high-level representations from bytecode, i.e., decompilation, is
therefore essential for security analysis and systematic understanding of the blockchain ecosystem.

Traditional smart contract decompilers [Zhou et al|(2018)); |Grech et al.|(2019; 2022); |[Lagouvardos
et al.| (2025) have relied on program analysis techniques, such as control-flow reconstruction and
type inference. These tools often stop at producing structured intermediate representations (e.g., an-
notated pseudo-code) that are easier to follow than raw bytecode, but still challenging for developers
to interpret. More recently, with the rise of large language models (LLMs), LLM-based decompil-
ers have emerged. LLMs can greatly enhance readability and even generate source-like output that
compiles back to bytecode, enabling correctness to be validated automatically. However, the field
lacks a standardized benchmark. Existing tools are typically evaluated on proprietary or narrowly
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scoped datasets, with inconsistent metrics, making it difficult to compare methods, reproduce re-
sults, or assess real-world effectiveness. As a result, there is no clear understanding of the relative
strengths and limitations of different approaches.

In this paper, we present the first systematic benchmark for smart contract decompilation. Our
contributions are threefold:

Dataset. We curate a dataset of contracts sampled from real-world deployments. To ensure diversity,
we apply code similarity analysis to remove near-duplicates and capture a wide range of contract
sizes and complexities. We further stratify contracts into subsets of varying difficulty levels, enabling
fine-grained evaluation of decompilers under easy, medium, and challenging scenarios.

Benchmarking methodology. We design a staged evaluation framework with metrics including
format completeness, compilability rate, Application Binary Interface (ABI) recovery accuracy, and
semantic equivalence. These metrics collectively assess different aspects of decompiler quality, from
structural validity to functional fidelity.

Baseline evaluations. We fine-tune a reference model and compare its performance against the
corresponding base model. This benchmarked comparison establishes a strong baseline for future
research. The results provide concrete insights into current limitations and offer valuable guidance
for advancing the next generation of smart contract decompilers.

Our benchmark ultimately consists of a dataset of 150 contracts, covering 2,735 unique functions
and corresponding to up to 27,350 differential fuzzing test cases. By establishing a common ground
for evaluation, our benchmark aims to accelerate progress in smart contract decompilation. We
believe it will foster reproducibility, enable fair comparison, and ultimately drive the development
of more reliable tools for blockchain security and transparency.

2 RELATED WORK

There has been a growing line of research on smart contract decompilation, aiming to lift low-level
Ethereum Virtual Machine (EVM) bytecode into more comprehensible high-level representations.
Zhou et al.| (2018) introduce Erays, which reconstructs control-flow graphs from EVM bytecode,
lifts stack operations into a register-based form, and applies compiler-style optimizations to generate
human-readable pseudocode. |Grech et al.| (2019) present Gigahorse, a declarative decompiler that
translates bytecode into a three-address intermediate representation using Datalog rules for stack
analysis, control-flow reconstruction, and function inference. Further advancing precision, |Grech
et al.| (2022) propose Elipmoc, which extends Gigahorse with transactional context sensitivity and
path-sensitive function reconstruction, enabling the recovery of private functions, arguments, and
return values. Alongside these academic efforts, industry tools have emerged, such as PanoramixE]
which relies on pattern matching, and Heimdall-rsﬂ which combines symbolic execution with de-
compilation. Complementing these decompiler designs, |[Liu et al.| (2023) conduct a large-scale
empirical study of five smart contract decompilers, systematically comparing their success rates,
performance, ABI recovery, and resilience against compiler optimizations. Moreover, |[Lagouvardos
et al.| (2025) propose Shrnkr, a static-analysis-based decompiler that introduces shrinking context
sensitivity and control-flow normalization, striking a balance between scalability and precision, and
outperforming both static (Elipmoc) and symbolic (Heimdall-rs) approaches.

The advancement of LLMs have also opened new directions for smart contract decompilation. |David
et al.| (2025) first fine-tune an LLM specifically for smart contract decompilation, using contracts
lifted into structured three-address code to enable source-like Solidity recovery with improved read-
ability. |Su et al.| (2025) present DiSCo, which forgoes additional model training and instead designs
a frozen-LLM pipeline. DiSCo introduces semantic-unit intermediate representations, a type-aware
graph neural network for variable name inference, and a prompt-synthesis framework that turns
bytecode into structured natural-language descriptions.

Despite these advances, there remains a significant gap in how smart contract decompilers are eval-
uated. Prior evaluations of smart contract decompilers have mainly emphasized syntactic and struc-
tural aspects such as pseudocode readability and control-flow reconstruction. While these met-
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rics provide valuable insights, they are largely syntactic or structural in nature, and the evaluation
datasets are often ad-hoc and not transparently documented. With the advent of LLM-based decom-
pilers, the research focus is shifting toward compilability and semantic fidelity, which demand more
rigorous and standardized evaluation. This motivates the need for a unified and transparent bench-
marking methodology that can fairly compare emerging approaches. Among prior efforts, DiSCo’s
evaluation is closest in spirit to this goal with its use of explicit metrics, but the lack of transparency
in dataset design and evaluation protocols prevents reproducibility and systematic comparison.

3 DATASET DETAILS

Although fewer than 1% of deployed smart contracts on Ethereum are source-verified, this still
amounts to more than 800,000 contracts with publicly available Solidity source code. These verified
contracts provide a unique opportunity: they cover a wide range of application domains, coding
styles, and levels of complexity, while also reflecting realistic distributions of compiler versions and
optimization settings. We leverage this rich corpus to construct a benchmark dataset that balances
realism, diversity, and analytical value.

3.1 DESIGN PRINCIPLES

Our dataset construction follows three complementary principles:

Control redundancy. Publicly verified contracts include large families of near-identical byte-
code, for example ERC20 tokens generated from common templates. If such contracts are over-
represented, they can artificially inflate evaluation metrics. To ensure fairness, we identify near-
duplicates and retain only representative instances.

Capture variety in difficulty. While avoiding redundancy, we aim to cover contracts of different
code lengths. Code size provides a practical proxy for decompilation difficulty: short contracts
often compile into straightforward bytecode with simple control flow, whereas long contracts tend
to encode multiple modules, libraries, or features, which are more challenging to decompile. By
selecting across size ranges, we ensure that the dataset tests both basic and advanced capabilities.

Ensure benchmark relevance. The dataset must serve as a meaningful testbed: it should reflect
realistic smart contract distributions while also containing challenging cases that stress-test decom-
pilers. Our construction therefore balances representativeness with diversity, avoiding trivial collec-
tions of template contracts while including contracts of sufficient complexity.

3.2 DATASET CONSTRUCTION PIPELINE

The dataset is constructed in three stages: similarity fingerprinting, clustering, and controlled sam-
pling. This pipeline consolidates near-duplicates into coherent families and then selects a represen-
tative yet diverse subset suitable for benchmarking decompilers.

Similarity fingerprinting. Each contract’s runtime bytecode is first disassembled and normalized.
Normalization masks immediates by collapsing all PUSHk opcodes into a single PUSH# token,
coarsens DUPk and SWAPk to DUP#/SWAP#, and compresses consecutive JUMPDEST markers.
From the resulting token stream, we extract opcode n-grams (default n = 3) and compute a 64-
bit SimHash over the multiset of n-grams. SimHash is a locality-sensitive hashing scheme widely
adopted in code similarity detection: contracts with similar features map to fingerprints within a
small Hamming radius, while dissimilar contracts are well separated. We note that SimHash is ap-
proximate: different contracts can occasionally collide, and small code variations may sometimes
lead to disproportionate distance changes. However, precise fingerprinting is not required for our
purpose. Our aim is not to capture fine-grained semantic equivalence, but to cluster families of
highly similar contracts (e.g., ERC20 templates, mass-deployed contracts) to prevent them from
overwhelming the benchmark. For this task, SimHash provides the right trade-off between scalabil-
ity and discriminatory power, while more exact methods (e.g., AST- or CFG-based similarity) would
be significantly more expensive without materially affecting dataset diversity.

Clustering. Exact duplicates are merged by collapsing items that share identical 64-bit fingerprints.
To detect near-duplicates, we apply a banded locality-sensitive hashing (LSH) scheme: each finger-
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print is partitioned into bands, and items matching in at least one band are considered candidates.
To avoid oversized buckets caused by mass reuse or bulk deployments, we deterministically parti-
tion large buckets into smaller sub-buckets using a fast mixer, and only compare items within each
sub-bucket. Candidate pairs are verified via exact Hamming distance on the fingerprints, retaining
edges at distance < r. The resulting similarity graph is partitioned into connected components (via
union—find), yielding clusters that represent families of near-duplicate contracts.

Controlled sampling. Sampling is stratified by bytecode length, used as a coarse proxy for decom-
pilation difficulty. We compute the empirical 33rd and 66th percentiles over all contracts, denoted
Qeasy and Gnara. Contracts with length L < e,y are assigned to the easy bin, those with L > gharg
to the hard bin, and the remainder to medium. Within each bin, we select k contracts using a size-
aware, diversity-seeking procedure. Let s. denote the size of cluster c. At each step, we choose a
cluster with probability proportional to s& (o = 0.5 by default), using a round-based rotation so
that a cluster is not revisited until all eligible clusters have had a chance. From the chosen cluster,
we select the contract whose 64-bit SimHash is farthest in Hamming distance from the set already
selected in that bin. This yields a breadth-first sample across clusters that reflects prevalence (via
5) while promoting dissimilarity among representatives, without explicit per-cluster caps.

This methodology efficiently consolidates near-duplicate families, reflects real-world prevalence
without allowing any single family to dominate, and promotes internal diversity among selected
representatives. The resulting dataset is balanced, diverse, and analytically meaningful—properties
critical for a transparent and robust decompiler benchmark.

3.3 DATASET STATISTICS

We begin by collecting all smart contracts deployed on Ethereum before June 30, 2025, total-
ing 78,440,377 contracts. For each contract, we query |[Etherscan to check whether it is verified, and
if so, fetch the corresponding source code. We restrict our dataset to Solidity contracts, discarding
those written in other languages such as Vyper. We then deduplicate contracts with identical byte-
code. This yields 749,870 unique pairs of bytecode and source code, which serve as the raw pool
for our benchmark. Note that comments are removed from source code to eliminate non-functional
text. For contract source code spanning multiple Solidity files, we flatten them into a single file.
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Figure 1: Cumulative distribution of bytecode
lengths for all contracts and for verified con-
tracts. The overall population is dominated by
short contracts, whereas verified contracts are
systematically larger and span a wide range of
code sizes.

Figure 2: Histogram of cluster sizes on a log—
log scale. Most clusters are very small, often
consisting of a single contract, while a few ex-
tremely large clusters reach up to 584,973 con-
tracts in the largest case, representing mass de-
ployments of near-identical bytecode.

Figure [T] shows the cumulative distribution of bytecode lengths for all contracts and for verified
contracts. A key reason for the sharp skew in the overall distribution is that more than 55% of all
deployed contracts are Minimal Proxy Contractsﬂ extremely short bytecode fragments constructed
directly without any associated source code. This explains why the majority of all contracts are
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Table 1: Statistics of sampled contracts across difficulty bins.

Difficulty Count Min Max Mean Stdev

Easy 50 209 5,028  2,088.42  1,394.50
Medium 50 5,072 9,801  7,128.96 1,366.59
Hard 50 9,955 24,468 15,072.78 4,381.66

very short, in contrast to verified contracts, which are systematically larger and exhibit a heavy tail.
On average, the bytecode length of all contracts is 648.73 £ 2,087.51, whereas verified contracts
average 8,618.68 + 6,244.50. The distribution of verified contracts spans a wide range of code
sizes, from compact utility libraries to complex protocols, providing a diverse basis for constructing
a benchmark across different difficulty levels.

To avoid overwhelming the dataset with trivial clones, we apply the clustering methodology de-
scribed in Section [3.2] Figure [2] presents the histogram of cluster sizes on a log—log scale. The
distribution is highly skewed with a pronounced heavy tail: in total we obtain 36,905 clusters, of
which 26,656 (72.23%) are singletons and 36,213 (98.12%) contain fewer than ten contracts. At the
other extreme, the largest cluster contains 584,973 contracts, accounting for 78.01% of the entire
corpus and reflecting mass deployments of ERC20-like templates. Between these extremes lies a
long tail of medium-sized families, each with dozens to hundreds of contracts. This imbalance un-
derscores the importance of redundancy control: without clustering, a handful of dominant templates
would overwhelm the dataset and obscure the diversity of real-world smart contracts.

We then sample from the clusters to construct our benchmark dataset. Contracts are stratified by
bytecode length into three difficulty levels: easy, medium, and hard. From each level, we select
k = 50 representative contracts using the controlled sampling procedure described in Section
with & = 0.7 to balance cluster prevalence against internal diversity. Table [I| summarizes the code
size statistics of the resulting subsets. As intended, the easy bin is dominated by short contracts with
simple control flow, whereas the hard bin contains substantially longer contracts that pose greater
challenges for decompilation.

4 BENCHMARKS AND EVALUATIONS

4.1 METRICS

Evaluating smart contract decompilers requires metrics that capture both syntactic correctness and
semantic fidelity. We define four progressive stages, ranging from basic format validity to full
behavioral equivalence.

Format completeness. As the first stage, we check whether the decompiler produces a complete,
self-contained output in the required format. This check is a necessary preparation for the second
stage, where we test whether the output can be successfully recompiled. Concretely, the output
must (i) specify the compiler version and settings, (ii) provide full Solidity code without ellipses,
placeholders, or omitted dependencies, and (iii) state an unambiguous contract name. The compiler
version and settings are required because Solidity syntax is incompatible across major versions (e.g.,
from v0.4 to v0.8), and successful recompilation depends on both the source code and the correct
toolchain configuration. The contract name is necessary because a single Solidity file may define
multiple contracts, for example through inheritance or libraries, each of which produces its own
bytecode. Without an explicit contract name, it would be ambiguous which contract the decompiled
output should correspond to when attempting recompilation.

Compilability rate. In the second stage, we evaluate whether the outputs that pass the format com-
pleteness check can be successfully recompiled. Using the declared compiler version and settings,
we attempt to compile each decompiled contract. A successful compilation requires that the Solidity
code is syntactically valid, consistent with the specified compiler configuration, and produces byte-
code without errors. The compilability rate is defined as the fraction of decompiled contracts that
compile successfully. This metric serves as a gateway check: only compilable outputs can proceed
to subsequent stages such as ABI recovery accuracy and semantic equivalence.
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ABI recovery accuracy. The third stage evaluates whether a decompiler can reconstruct the con-
tract’s external interface. We extract the ABI from the decompiled code and compare it against
the ground-truth ABI derived from the original source. At the function-signature level, we measure
precision, recall, and F1 score. This metric captures the decompiler’s ability to recover callable func-
tions and their prototypes, which are critical for interoperability, reverse engineering, and security
auditing. Accurate ABI recovery ensures that users of the decompiled code can correctly understand
and interact with the contract, even if deeper semantic fidelity is imperfect.

Semantic equivalence. The final stage evaluates whether the decompiled contract preserves the
behavior of the original bytecode. We apply differential fuzzing: the decompiled output is recom-
piled, and both binaries are executed under a suite of automatically generated test inputs. For each
input, we compare the returned outputs together with the resulting contract state changes, including
revert behavior. A function is deemed equivalent only if all test inputs produce identical behavior; a
single discrepancy marks it as non-equivalent. For each contract, we compute the ratio of equivalent
functions to the total number of matched functions in the ABI. This metric provides the strongest
validation: it goes beyond syntax and interface recovery to confirm that the decompiled contract
faithfully reproduces the original program logic.

Together, these four stages form a progressive evaluation pipeline. Format completeness verifies
that the output is well-formed and suitable for further testing; compilability checks basic syntactic
validity; ABI recovery measures how accurately external interfaces are reconstructed; and seman-
tic equivalence validates behavioral fidelity. We report all metrics across difficulty levels (easy,
medium, hard) to provide a comprehensive assessment of decompiler performance.

4.2 REFERENCE MODEL

A core requirement of our benchmark is recompilation: decompiled outputs must form complete
Solidity contracts that can be compiled back to bytecode. Traditional smart contract decompilers,
however, typically stop at producing pseudocode or intermediate representations that improve read-
ability but cannot be recompiled. David et al.|(2025) decompile only at the function level, which
rules out recompilation. DiSCo |Su et al.| (2025) does support compilability, but its implementation
is not open source, preventing independent benchmarking. To enable a fair and open evaluation, we
therefore decide to fine-tune a reference model that produces compilable Solidity contracts.

Our reference model takes inspiration from |David et al.| (2025), which fine-tunes language models
for decompilation at the function level. In contrast, we target full-contract decompilation. This
shift is made feasible by recent advances in LLM capacity, which allow us to bypass intermediate
representations, and by longer context windows, which make it possible to process an entire contract
at once. Specifically, we fine-tune Qwen3-4B-Instruct-2507 as the base model. Figure [3]
illustrates the prompt design. The model is instructed to decompile disassembled EVM bytecode
and produce an output in a fixed structure consisting of three blocks: (i) a <compiler> block that

= System:

You are a specialized engine for decompiling EVM assembly into Solidity. Your
entire response must consist of a <compiler> block, a <code> block, and a
<contract_name> block, in that exact order.

® .
e Human:
Decompile the following EVM assembly: PUSH1 0x80 PUSH1 0x40 MSTORE ...

.Q. AT:

<compiler>{\"compiler_version\": \"0.8.20\", \"settings\": ...} </compiler>
<code>pragma solidity ~0.8.20;\n abstract contract Context {\n function
-msgSender () internal view virtual returns (address) { . .</code>

<contract_name>UnibotLiquidityLocker</contract_name>

Figure 3: Prompts for the reference model.
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Table 2: Tokenized sequence length statistics across difficulty levels, computed using the tokenizer
of Qwen3-4B-Instruct-2507. The total sequence lengths are compared to the 32,000 token
cutoff used in fine-tuning the reference model.

Easy (50) Medium (50) Hard (50)
Input length
Mean 5,244.72 18,631.50 39,541.30
Stdev 3,365.67 3,644.42 12,506.08
Min 467 12,879 18,189
Max 13,525 27,458 67,371
Output length
Mean 2,740.02 4,599.08 12,633.86
Stdev 4,434.66 3,205.27 12,112.22
Min 84 1,170 1,885
Max 29,585 22,678 73,673
Total length
Mean 7,984.74 23,230.58 52,175.16
Stdev 6,230.59 4,891.09 19,526.95
Min 551 14,049 20,382
Max 36,443 36,450 109,120

< 32,000 49/50(98.00%) 47/50 (94.00%) 5/50 (10.00%)

specifies the compiler version and settings, (ii) a <code> block that contains the Solidity source
code, and (iii) a <contract_name> block that indicates the contract name.

Qwen3-4B-Instruct-2507 natively supports a context length of 256K tokens. For efficiency,
we cap the maximum sequence length at 32,000. We fine-tune the model on 498,257 contracts
from our verified corpus that fall within this length cap, explicitly excluding the 150 benchmark
contracts used for evaluation. In addition to the fine-tuned reference model, we also benchmark the
unmodified base model. This setup provides an open and reproducible baseline for our benchmark,
enabling direct comparison with LLM-based decompilers.

4.3 EVALUATION SETUP

We run our evaluation on an NVIDIA RTX PRO 6000. Each decompilation attempt is limited to a
timeout of five minutes. Due to the randomness of autoregressive generation, the model occasionally
produces excessively long outputs that cannot finish within the time limit. In such cases, we retry
the contract, for at most three attempts in total. If all attempts time out, we consider the model to
have failed the first-stage evaluation of format completeness, since no complete output is generated.

For compilation and execution, we rely on the foundry toolkitE] All eligible outputs are recom-
piled with the compiler settings specified by the decompiler. For differential fuzzing, we generate 10
random test inputs for each recovered function. All executions are performed on a forked Ethereum
mainnet state at block 22820673, so that contracts run against the real on-chain environment.

4.4 BENCHMARK DATASET CHARACTERISTICS

To better characterize our benchmark dataset, we analyze the tokenized sequence lengths of con-
tracts across the three difficulty levels. Table 2| summarizes the tokenized input, output, and total
sequence lengths across the three difficulty levels, where tokenization is performed using the to-
kenizer of Qwen3-4B-Instruct-2507. We report mean, standard deviation, minimum, and
maximum values, as well as the fraction of contracts whose total sequence length falls below
the 32,000 token cap used during fine-tuning. We notice that nearly all contracts in the easy
and medium bins fit within this limit, whereas only a small fraction of hard contracts fall be-
low it. Importantly, all contracts in our dataset remain within the 256K-token context window

®https://github.com/foundry-rs/foundry
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Table 3: Format completeness results across difficulty levels.

Reference model Base model
Difficulty | Timeouts Wrong format  Eligible | Timeouts Wrong format  Eligible
Easy 6 (12%) 0 (0%) 44 (88%) | 2 (4%) 22 (44%) 26 (52%)
Medium 8 (16%) 0 (0%) 42 (84%) 1 (2%) 25 (50%) 24 (48%)
Hard 29 (58%) 0 (0%) 21 (42%) | 3 (6%) 15 (30%) 32 (64%)

supported by Qwen3-4B-Instruct-2507. Nevertheless, the statistics show that contracts
in the hard bin pose a significant challenge for models with shorter context windows, such as
Meta-Llama-3-8B-Instruct with an 8K-token limit, underscoring the need for larger context
capacity in practical decompilation tasks.

4.5 EVALUATION RESULTS

Format completeness. Table [3| summarizes the outcomes of the format completeness check across
the three difficulty levels. For each contract, we record whether the model output times out, produces
an invalid format, or generates a complete decompilation eligible for recompilation.

The reference model shows markedly different behavior from the base model. After fine-tuning,
it tends to generate longer (and probably more complete) outputs, with an average output length
of 7,823.52 characters compared to 3,964.21 for the base model. These outputs are almost always
structurally valid but more prone to exceeding the five-minute timeout. In contrast, the base model
rarely times out but often produces incomplete or malformed outputs (e.g., invalid <compiler>
blocks). Consequently, while the reference model suffers higher timeout rates, it achieves a 100%
success rate on format validity whenever an output is produced, whereas the base model shows high
rates of formatting errors, particularly in the easy and medium bins.

Table 4: Compilability results across difficulty levels. Numbers are successes and failures relative
to the eligible set (from Table [3).

Reference model Base model
Difficulty Compiled Failed | Compiled Failed
Easy 28/44 (63.64%) 16/44 (36.36%) | 1/26 (3.85%) | 25/26 (96.15%)
Medium 11/42(26.19%) 31/42 (73.81%) | 2/24 (8.33%) = 22/24 (91.67%)
Hard 3/21 (14.29%)  18/21 (85.71%) | 1/32 (3.13%) | 31/32 (96.88%)

Compilability rate. Compilability is evaluated only on outputs that pass the format completeness
check. Table |4] reports the number of contracts that successfully compile back to bytecode versus
those that fail.

The reference model achieves substantially higher compilability rates than the base model in all diffi-
culty levels, though absolute success rates decline sharply with contract size. In the easy bin, 63.64%
of eligible outputs recompile successfully, while in the medium and hard bins the rates fall to 26.19%
and 14.29%, respectively. By contrast, the base model rarely produces compilable outputs, succeed-
ing on only a handful of cases across all bins. The weak performance of the reference model in the
hard bin is likely explained by a training—evaluation mismatch: contracts exceeding 32,000 tokens
were excluded from fine-tuning but remain present in the benchmark dataset.

A detailed breakdown of compilation errors is provided in Appendix [A] The analysis shows that
failures are dominated by declaration-related issues (e.g., redeclared or undeclared identifiers) and
parser-level mistakes, while more complex semantic inconsistencies such as function signature col-
lisions and inheritance errors occur less frequently. We also experiment with GPT-5 as a post-
processing assistant: given the decompiled code and compiler error messages, GPT-5 repairs 61.54%
of reference-model failures and 56.41% of base-model failures in a single zero-shot attempt, indi-
cating the strong potential of LLM-assisted repair for improving compilability.
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Table 5: ABI recovery results. Both macro- and micro-averaged precision, recall, and F1 are re-
ported. Reference model substantially outperforms the base model across all bins.

Macro average Micro average
Difficulty Precision Recall Fl1 Precision Recall F1

Reference model

Easy 0.873 0.845 0.854 0.915 0.932 0.923
Medium 0.991 0.987 0.989 0.992 0.989 0.991
Hard 0.987 0.987 0.987 0.988 0.988 0.988
Base model

Easy 0.417 0.714 0.526 0.417 0.714 0.526
Medium 0.306 0.588 0.401 0.259 0.538 0.350
Hard 0.455 0.625 0.526 0.455 0.625 0.526

ABIl recovery accuracy. We compare recovered ABIs against ground truth at the function-signature
level and report macro- and micro-averaged precision, recall, and F1 scores (cf. Table[5) The ref-
erence model achieves consistently high ABI recovery accuracy across all bins, with macro- and
micro-F1 scores exceeding 0.85 on the easy set and reaching near-perfect levels on medium and
hard contracts. The base model, however, struggles: although it occasionally recovers partial in-
terfaces, its F1 scores remain around 0.35-0.53, reflecting both missing functions (low recall) and
spurious predictions (low precision).

Semantic equivalence. Table [6] reports the ratio of equivalent functions per contract. Note that
a function is deemed equivalent only if all test inputs produce identical behavior with the original
bytecode (cf. Section @ The reference model achieves mean ratios of 0.84, 0.92, and 0.92 in the
easy, medium, and hard bins, respectively. In the easy bin, 69% of contracts reach perfect equiva-
lence, while in the medium and hard bins this fraction drops to 18% and 0%, despite higher mean
ratios. By contrast, the base model shows consistently poor results, with mean ratios of 0.67, 0.33,
and 0.08 across the three bins and no contract achieving full equivalence. These results highlight the
difficulty of attaining behavioral fidelity, while fine-tuning substantially improves equivalence rates,
perfect preservation of logic remains rare, especially for more complex contracts.

Table 6: Semantic equivalence results across difficulty levels. Values report the ratio of equivalent
functions per contract, averaged over contracts.

Reference model Base model
Difficulty Mean Median Stdev % Perfect | Mean Median Stdev % Perfect
Easy 0.84 1.00 0.31 69% 0.67 0.67 0.00 0%
Medium 0.92 0.90 0.05 18% 0.33 0.33 0.33 0%
Hard 0.92 0.96 0.06 0% 0.08 0.08 0.00 0%

5 CONCLUSION

We present the first systematic benchmark for smart contract decompilation, combining a curated
dataset of 150 contracts, a staged evaluation framework, and baseline evaluations with a fine-tuned
reference model. The dataset balances redundancy control with diversity, spans multiple difficulty
levels, and enables rigorous testing under realistic conditions. Our metrics, format completeness,
compilability, ABI recovery accuracy, and semantic equivalence, form a progressive pipeline that
reveals both syntactic and semantic strengths and weaknesses. Results show that fine-tuning greatly
improves structural validity and interface recovery, but perfect semantic fidelity remains rare, espe-
cially for complex contracts. Post-processing with GPT-5 highlights the promise of LLM-assisted
repair and suggests future multi-stage or agentic approaches.

This benchmark establishes a common ground for reproducible evaluation and aims to catalyze
the development of more reliable smart contract decompilers, supporting greater transparency and
security in blockchain ecosystems.
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REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide an anonymous repository (https://anonymous.
4dopen.science/r/SCDBench-5BD7/) containing our benchmark dataset, together with the
decompiled outputs of both the reference and base models. The repository further includes all
scripts and instructions needed to reproduce our results on format completeness, compilability, ABI
recovery, and differential fuzzing.

LARGE LANGUAGE MODELS

We used GPT-5 to assist with editing and polishing of the manuscript text, including improving
clarity, conciseness, and grammar. All research ideas, dataset construction, benchmark design, ex-
periments, analyses, and conclusions were developed by the authors.
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A COMPILATION ERROR ANALYSIS AND LLM-ASSISTED REPAIR

A.1 COMPILATION ERRORS

To better understand why outputs fail to compile, we analyze the detailed error logs from the com-
pilability evaluation. Table [/| summarizes the distribution of error types across difficulty levels.
The majority of failures fall into a small set of recurring categories. Declaration errors are the
most common, including redeclared or undeclared identifiers and name-resolution conflicts. Parser
errors also occur frequently, such as “Expected primary expression” or “Expected type name,” re-
flecting structural inconsistencies in the generated code. Less frequent but notable issues include
type errors, invalid address literals, and inheritance-related conflicts. These results indicate that
while many outputs are syntactically well-formed, a significant portion still encounter semantic or
structural mismatches that prevent successful compilation.
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Table 7: Breakdown of compilation errors across difficulty levels, with GPT-5 zero-shot post-repair
outcomes. Each cell shows the number of compilation failures, with the number successfully re-
paired in parentheses.

Reference model Base model
Error type Easy Medium Hard | Easy Medium  Hard
DeclarationError: Identifier already declared 3(0 5(3) 2(1) | 4(2) 13(9) 17(10)
DeclarationError: Undeclared identifier 5 3(2) 1(0) 2)

ParserError: Expected primary expression

TypeError: Member not found / not visible

DeclarationError: Identifier not found or not unique

Error 8936: Identifier-start is not allowed at end of a number
ParserError: Expected type name

ParserError: Expected token

TypeError: Not implicitly convertible

SyntaxError: Invalid address literal checksum

Error 1860: Function signature hash collision

DeclarationError: Duplicate function signature

Error 2915: Expected a state variable declaration

TypeError: Free functions cannot have visibility

TypeError: Invalid type for argument (implicit conversion)
TypeError: Explicit type conversion not allowed

Error: Linearization of inheritance graph impossible

Error 4957: This type is only supported in ABI coder v2

TypeError: Operator assignment type mismatch

Error 6480: Must override function

Error 8015: Invalid type for argument in the bytes

Error 1856: Literal or identifier expected

Error 7139

Error 5883: Event with same name and parameter types defined twice
Error 1227: Index range access is only supported for dynamic calldata arrays
TypeError: Operator not compatible with types

Error 2973: Wrong argument count for modifier invocation

Error: Visibility already specified as “public”

DeclarationError: Contract should be abstract (missing implementation)
Error 2614: Indexed expression must be a type, mapping, or array
Others
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A.2 LLM-ASSISTED REPAIR WITH GPT-5

We further experiment with using GPT-5 as a post-processing assistant to repair compilation failures.
In this setup, GPT-5 receives both the decompiled Solidity code and the compiler error message, and
is asked to return a corrected version. Table[/|summarizes the outcomes, showing for each error type
the number of failing cases and, in parentheses, the number that compile successfully after a single
zero-shot repair attempt.

For the reference model, there are 65 compilation failures in total, of which GPT-5 repairs 40
(61.54%). For the base model, there are 78 failures, of which 44 (56.41%) are repaired. The re-
paired cases include a large fraction of declaration errors and parser errors, such as undeclared
identifiers or “Expected primary expression,” which are often resolved with small edits. By con-
trast, repair rates are much lower for semantic inconsistencies, including function signature hash
collisions, inheritance linearization errors, and missing function overrides, which require deeper
reasoning about program structure.

It is important to note that this experiment is conducted in a zero-shot setting: GPT-5 is invoked
once with the error message and produces a single revised program. A failure to repair therefore
does not necessarily mean the model is incapable of fixing the reported error, as contracts may
contain multiple simultaneous issues and resolving one may expose another. Nevertheless, these
results indicate that even a single-pass LLM repair step substantially improves compilability, and
highlight the potential of iterative repair strategies.

A.3 DISCUSSION AND FUTURE DIRECTIONS

These experiments demonstrate that LLM-assisted repair can significantly improve compilability,
even in a zero-shot setting. We believe that additional interaction rounds, where the model incre-
mentally refines its output based on new diagnostics, would resolve an even greater share of errors.
The same principle extends naturally to the later evaluation stages: differential fuzzing could gener-
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ate counterexamples, which in turn can be fed back to an LLM to iteratively revise the decompiled
output.

This suggests an important future research direction: agentic pipelines for decompilation. One agent
produces the initial decompilation, a second agent repairs compilation issues, and a third agent uses
differential fuzzing feedback to refine functional correctness. Such multi-agent, feedback-driven
workflows could dramatically improve the reliability of smart contract decompilation. Developing
these systems lies beyond the scope of this paper, but our results indicate their promise as a com-
pelling direction for future work.
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