
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCDBENCH: A BENCHMARK FOR LLM-BASED
SMART CONTRACT DECOMPILERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Smart contracts are programs deployed on blockchains that manage digital assets
and enable decentralized applications. While their bytecode is always accessible
on-chain, more than 99% of Ethereum contracts lack verified source code, making
decompilation essential for transparency and security analysis.
Traditional decompilers rely on program analysis to produce structured but low-
level representations. Recent advances in large language models (LLMs) enable
source-like output with higher readability and even recompilability. Yet system-
atic evaluation is missing: existing tools use narrow datasets and inconsistent met-
rics, hindering fair comparison and reproducibility.
We present the first systematic benchmark for smart contract decompilation. Our
contributions are: (i) a diverse dataset of real-world contracts, filtered for redun-
dancy and stratified by difficulty; (ii) a staged evaluation framework with metrics
for format completeness, compilability, Application Binary Interface (ABI) re-
covery accuracy, and semantic equivalence; and (iii) baseline evaluations using a
fine-tuned reference model, establishing a strong foundation for future research.
Our benchmark establishes a common ground for rigorous, reproducible evalua-
tion and aims to accelerate the development of reliable smart contract decompilers
for blockchain security and transparency.

1 INTRODUCTION

Smart contracts Wood et al. (2014) are programs deployed on blockchains that manage digital assets,
enforce agreements, and underpin decentralized applications. They have transformed the blockchain
ecosystem from simple value transfer to a programmable financial and computational infrastructure.
Today, smart contracts secure over 160B USD across decentralized finance, non-fungible tokens,
and governance systems.1

While the bytecode of smart contracts is publicly accessible on-chain, their source code is not always
made available. Only a small fraction of contracts are voluntarily verified by developers and pub-
lished in high-level languages such as Solidity. At the time of writing, more than 99% of the smart
contracts on Ethereum, the largest smart contract-enabled blockchain, are unverified, leaving only
low-level bytecode accessible.2 This opacity hinders transparency, auditability, and accountability,
as developers, users, and security researchers cannot easily understand or validate the behavior of
deployed contracts. Recovering high-level representations from bytecode, i.e., decompilation, is
therefore essential for security analysis and systematic understanding of the blockchain ecosystem.

Traditional smart contract decompilers Zhou et al. (2018); Grech et al. (2019; 2022); Lagouvardos
et al. (2025) have relied on program analysis techniques, such as control-flow reconstruction and
type inference. These tools often stop at producing structured intermediate representations (e.g., an-
notated pseudo-code) that are easier to follow than raw bytecode, but still challenging for developers
to interpret. More recently, with the rise of large language models (LLMs), LLM-based decompil-
ers have emerged. LLMs can greatly enhance readability and even generate source-like output that
compiles back to bytecode, enabling correctness to be validated automatically. However, the field
lacks a standardized benchmark. Existing tools are typically evaluated on proprietary or narrowly

1https://defillama.com/
2https://etherscan.io/contractsverified

1

https://defillama.com/
https://etherscan.io/contractsverified


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

scoped datasets, with inconsistent metrics, making it difficult to compare methods, reproduce re-
sults, or assess real-world effectiveness. As a result, there is no clear understanding of the relative
strengths and limitations of different approaches.

In this paper, we present the first systematic benchmark for smart contract decompilation. Our
contributions are threefold:

Dataset. We curate a dataset of contracts sampled from real-world deployments. To ensure diversity,
we apply code similarity analysis to remove near-duplicates and capture a wide range of contract
sizes and complexities. We further stratify contracts into subsets of varying difficulty levels, enabling
fine-grained evaluation of decompilers under easy, medium, and challenging scenarios.

Benchmarking methodology. We design a staged evaluation framework with metrics including
format completeness, compilability rate, Application Binary Interface (ABI) recovery accuracy, and
semantic equivalence. These metrics collectively assess different aspects of decompiler quality, from
structural validity to functional fidelity.

Baseline evaluations. We fine-tune a reference model and compare its performance against the
corresponding base model. This benchmarked comparison establishes a strong baseline for future
research. The results provide concrete insights into current limitations and offer valuable guidance
for advancing the next generation of smart contract decompilers.

Our benchmark ultimately consists of a dataset of 150 contracts, covering 2,735 unique functions
and corresponding to up to 27,350 differential fuzzing test cases. By establishing a common ground
for evaluation, our benchmark aims to accelerate progress in smart contract decompilation. We
believe it will foster reproducibility, enable fair comparison, and ultimately drive the development
of more reliable tools for blockchain security and transparency.

2 RELATED WORK

There has been a growing line of research on smart contract decompilation, aiming to lift low-level
Ethereum Virtual Machine (EVM) bytecode into more comprehensible high-level representations.
Zhou et al. (2018) introduce Erays, which reconstructs control-flow graphs from EVM bytecode,
lifts stack operations into a register-based form, and applies compiler-style optimizations to generate
human-readable pseudocode. Grech et al. (2019) present Gigahorse, a declarative decompiler that
translates bytecode into a three-address intermediate representation using Datalog rules for stack
analysis, control-flow reconstruction, and function inference. Further advancing precision, Grech
et al. (2022) propose Elipmoc, which extends Gigahorse with transactional context sensitivity and
path-sensitive function reconstruction, enabling the recovery of private functions, arguments, and
return values. Alongside these academic efforts, industry tools have emerged, such as Panoramix,3
which relies on pattern matching, and Heimdall-rs,4 which combines symbolic execution with de-
compilation. Complementing these decompiler designs, Liu et al. (2023) conduct a large-scale
empirical study of five smart contract decompilers, systematically comparing their success rates,
performance, ABI recovery, and resilience against compiler optimizations. Moreover, Lagouvardos
et al. (2025) propose Shrnkr, a static-analysis-based decompiler that introduces shrinking context
sensitivity and control-flow normalization, striking a balance between scalability and precision, and
outperforming both static (Elipmoc) and symbolic (Heimdall-rs) approaches.

The advancement of LLMs have also opened new directions for smart contract decompilation. David
et al. (2025) first fine-tune an LLM specifically for smart contract decompilation, using contracts
lifted into structured three-address code to enable source-like Solidity recovery with improved read-
ability. Su et al. (2025) present DiSCo, which forgoes additional model training and instead designs
a frozen-LLM pipeline. DiSCo introduces semantic-unit intermediate representations, a type-aware
graph neural network for variable name inference, and a prompt-synthesis framework that turns
bytecode into structured natural-language descriptions.

Despite these advances, there remains a significant gap in how smart contract decompilers are eval-
uated. Prior evaluations of smart contract decompilers have mainly emphasized syntactic and struc-
tural aspects such as pseudocode readability and control-flow reconstruction. While these met-

3https://github.com/eveem-org/panoramix
4https://github.com/Jon-Becker/heimdall-rs

2

https://github.com/eveem-org/panoramix
https://github.com/Jon-Becker/heimdall-rs


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

rics provide valuable insights, they are largely syntactic or structural in nature, and the evaluation
datasets are often ad-hoc and not transparently documented. With the advent of LLM-based decom-
pilers, the research focus is shifting toward compilability and semantic fidelity, which demand more
rigorous and standardized evaluation. This motivates the need for a unified and transparent bench-
marking methodology that can fairly compare emerging approaches. Among prior efforts, DiSCo’s
evaluation is closest in spirit to this goal with its use of explicit metrics, but the lack of transparency
in dataset design and evaluation protocols prevents reproducibility and systematic comparison.

3 DATASET DETAILS

Although fewer than 1% of deployed smart contracts on Ethereum are source-verified, this still
amounts to more than 800,000 contracts with publicly available Solidity source code. These verified
contracts provide a unique opportunity: they cover a wide range of application domains, coding
styles, and levels of complexity, while also reflecting realistic distributions of compiler versions and
optimization settings. We leverage this rich corpus to construct a benchmark dataset that balances
realism, diversity, and analytical value.

3.1 DESIGN PRINCIPLES

Our dataset construction follows three complementary principles:

Control redundancy. Publicly verified contracts include large families of near-identical byte-
code, for example ERC20 tokens generated from common templates. If such contracts are over-
represented, they can artificially inflate evaluation metrics. To ensure fairness, we identify near-
duplicates and retain only representative instances.

Capture variety in difficulty. While avoiding redundancy, we aim to cover contracts of different
code lengths. Code size provides a practical proxy for decompilation difficulty: short contracts
often compile into straightforward bytecode with simple control flow, whereas long contracts tend
to encode multiple modules, libraries, or features, which are more challenging to decompile. By
selecting across size ranges, we ensure that the dataset tests both basic and advanced capabilities.

Ensure benchmark relevance. The dataset must serve as a meaningful testbed: it should reflect
realistic smart contract distributions while also containing challenging cases that stress-test decom-
pilers. Our construction therefore balances representativeness with diversity, avoiding trivial collec-
tions of template contracts while including contracts of sufficient complexity.

3.2 DATASET CONSTRUCTION PIPELINE

The dataset is constructed in three stages: similarity fingerprinting, clustering, and controlled sam-
pling. This pipeline consolidates near-duplicates into coherent families and then selects a represen-
tative yet diverse subset suitable for benchmarking decompilers.

Similarity fingerprinting. Each contract’s runtime bytecode is first disassembled and normalized.
Normalization masks immediates by collapsing all PUSHk opcodes into a single PUSH# token,
coarsens DUPk and SWAPk to DUP#/SWAP#, and compresses consecutive JUMPDEST markers.
From the resulting token stream, we extract opcode n-grams (default n = 3) and compute a 64-
bit SimHash over the multiset of n-grams. SimHash is a locality-sensitive hashing scheme widely
adopted in code similarity detection: contracts with similar features map to fingerprints within a
small Hamming radius, while dissimilar contracts are well separated. We note that SimHash is ap-
proximate: different contracts can occasionally collide, and small code variations may sometimes
lead to disproportionate distance changes. However, precise fingerprinting is not required for our
purpose. Our aim is not to capture fine-grained semantic equivalence, but to cluster families of
highly similar contracts (e.g., ERC20 templates, mass-deployed contracts) to prevent them from
overwhelming the benchmark. For this task, SimHash provides the right trade-off between scalabil-
ity and discriminatory power, while more exact methods (e.g., AST- or CFG-based similarity) would
be significantly more expensive without materially affecting dataset diversity.

Clustering. Exact duplicates are merged by collapsing items that share identical 64-bit fingerprints.
To detect near-duplicates, we apply a banded locality-sensitive hashing (LSH) scheme: each finger-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

print is partitioned into bands, and items matching in at least one band are considered candidates.
To avoid oversized buckets caused by mass reuse or bulk deployments, we deterministically parti-
tion large buckets into smaller sub-buckets using a fast mixer, and only compare items within each
sub-bucket. Candidate pairs are verified via exact Hamming distance on the fingerprints, retaining
edges at distance ≤ r. The resulting similarity graph is partitioned into connected components (via
union–find), yielding clusters that represent families of near-duplicate contracts.

Controlled sampling. Sampling is stratified by bytecode length, used as a coarse proxy for decom-
pilation difficulty. We compute the empirical 33rd and 66th percentiles over all contracts, denoted
qeasy and qhard. Contracts with length L ≤ qeasy are assigned to the easy bin, those with L ≥ qhard
to the hard bin, and the remainder to medium. Within each bin, we select k contracts using a size-
aware, diversity-seeking procedure. Let sc denote the size of cluster c. At each step, we choose a
cluster with probability proportional to sαc (α = 0.5 by default), using a round-based rotation so
that a cluster is not revisited until all eligible clusters have had a chance. From the chosen cluster,
we select the contract whose 64-bit SimHash is farthest in Hamming distance from the set already
selected in that bin. This yields a breadth-first sample across clusters that reflects prevalence (via
sαc ) while promoting dissimilarity among representatives, without explicit per-cluster caps.

This methodology efficiently consolidates near-duplicate families, reflects real-world prevalence
without allowing any single family to dominate, and promotes internal diversity among selected
representatives. The resulting dataset is balanced, diverse, and analytically meaningful—properties
critical for a transparent and robust decompiler benchmark.

3.3 DATASET STATISTICS

We begin by collecting all smart contracts deployed on Ethereum before June 30, 2025, total-
ing 78,440,377 contracts. For each contract, we query Etherscan to check whether it is verified, and
if so, fetch the corresponding source code. We restrict our dataset to Solidity contracts, discarding
those written in other languages such as Vyper. We then deduplicate contracts with identical byte-
code. This yields 749,870 unique pairs of bytecode and source code, which serve as the raw pool
for our benchmark. Note that comments are removed from source code to eliminate non-functional
text. For contract source code spanning multiple Solidity files, we flatten them into a single file.

0 5,000 10,000 15,000 20,000 25,000
Bytecode length

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

pe
rc

en
ta

ge

All contracts
Verified contracts

Figure 1: Cumulative distribution of bytecode
lengths for all contracts and for verified con-
tracts. The overall population is dominated by
short contracts, whereas verified contracts are
systematically larger and span a wide range of
code sizes.

1 10 100 1,000 10,000 100,000
Cluster size

1

10

100

1,000

10,000

Co
un

t

Figure 2: Histogram of cluster sizes on a log–
log scale. Most clusters are very small, often
consisting of a single contract, while a few ex-
tremely large clusters reach up to 584,973 con-
tracts in the largest case, representing mass de-
ployments of near-identical bytecode.

Figure 1 shows the cumulative distribution of bytecode lengths for all contracts and for verified
contracts. A key reason for the sharp skew in the overall distribution is that more than 55% of all
deployed contracts are Minimal Proxy Contracts,5 extremely short bytecode fragments constructed
directly without any associated source code. This explains why the majority of all contracts are

5https://eips.ethereum.org/EIPS/eip-1167

4

https://docs.etherscan.io/api-endpoints/contracts
https://eips.ethereum.org/EIPS/eip-1167


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Statistics of sampled contracts across difficulty bins.
Difficulty Count Min Max Mean Stdev

Easy 50 209 5,028 2,088.42 1,394.50
Medium 50 5,072 9,801 7,128.96 1,366.59
Hard 50 9,955 24,468 15,072.78 4,381.66

very short, in contrast to verified contracts, which are systematically larger and exhibit a heavy tail.
On average, the bytecode length of all contracts is 648.73 ± 2,087.51, whereas verified contracts
average 8,618.68 ± 6,244.50. The distribution of verified contracts spans a wide range of code
sizes, from compact utility libraries to complex protocols, providing a diverse basis for constructing
a benchmark across different difficulty levels.

To avoid overwhelming the dataset with trivial clones, we apply the clustering methodology de-
scribed in Section 3.2. Figure 2 presents the histogram of cluster sizes on a log–log scale. The
distribution is highly skewed with a pronounced heavy tail: in total we obtain 36,905 clusters, of
which 26,656 (72.23%) are singletons and 36,213 (98.12%) contain fewer than ten contracts. At the
other extreme, the largest cluster contains 584,973 contracts, accounting for 78.01% of the entire
corpus and reflecting mass deployments of ERC20-like templates. Between these extremes lies a
long tail of medium-sized families, each with dozens to hundreds of contracts. This imbalance un-
derscores the importance of redundancy control: without clustering, a handful of dominant templates
would overwhelm the dataset and obscure the diversity of real-world smart contracts.

We then sample from the clusters to construct our benchmark dataset. Contracts are stratified by
bytecode length into three difficulty levels: easy, medium, and hard. From each level, we select
k = 50 representative contracts using the controlled sampling procedure described in Section 3.2,
with α = 0.7 to balance cluster prevalence against internal diversity. Table 1 summarizes the code
size statistics of the resulting subsets. As intended, the easy bin is dominated by short contracts with
simple control flow, whereas the hard bin contains substantially longer contracts that pose greater
challenges for decompilation.

4 BENCHMARKS AND EVALUATIONS

4.1 METRICS

Evaluating smart contract decompilers requires metrics that capture both syntactic correctness and
semantic fidelity. We define four progressive stages, ranging from basic format validity to full
behavioral equivalence.

Format completeness. As the first stage, we check whether the decompiler produces a complete,
self-contained output in the required format. This check is a necessary preparation for the second
stage, where we test whether the output can be successfully recompiled. Concretely, the output
must (i) specify the compiler version and settings, (ii) provide full Solidity code without ellipses,
placeholders, or omitted dependencies, and (iii) state an unambiguous contract name. The compiler
version and settings are required because Solidity syntax is incompatible across major versions (e.g.,
from v0.4 to v0.8), and successful recompilation depends on both the source code and the correct
toolchain configuration. The contract name is necessary because a single Solidity file may define
multiple contracts, for example through inheritance or libraries, each of which produces its own
bytecode. Without an explicit contract name, it would be ambiguous which contract the decompiled
output should correspond to when attempting recompilation.

Compilability rate. In the second stage, we evaluate whether the outputs that pass the format com-
pleteness check can be successfully recompiled. Using the declared compiler version and settings,
we attempt to compile each decompiled contract. A successful compilation requires that the Solidity
code is syntactically valid, consistent with the specified compiler configuration, and produces byte-
code without errors. The compilability rate is defined as the fraction of decompiled contracts that
compile successfully. This metric serves as a gateway check: only compilable outputs can proceed
to subsequent stages such as ABI recovery accuracy and semantic equivalence.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ABI recovery accuracy. The third stage evaluates whether a decompiler can reconstruct the con-
tract’s external interface. We extract the ABI from the decompiled code and compare it against
the ground-truth ABI derived from the original source. At the function-signature level, we measure
precision, recall, and F1 score. This metric captures the decompiler’s ability to recover callable func-
tions and their prototypes, which are critical for interoperability, reverse engineering, and security
auditing. Accurate ABI recovery ensures that users of the decompiled code can correctly understand
and interact with the contract, even if deeper semantic fidelity is imperfect.

Semantic equivalence. The final stage evaluates whether the decompiled contract preserves the
behavior of the original bytecode. We apply differential fuzzing: the decompiled output is recom-
piled, and both binaries are executed under a suite of automatically generated test inputs. For each
input, we compare the returned outputs together with the resulting contract state changes, including
revert behavior. A function is deemed equivalent only if all test inputs produce identical behavior; a
single discrepancy marks it as non-equivalent. For each contract, we compute the ratio of equivalent
functions to the total number of matched functions in the ABI. This metric provides the strongest
validation: it goes beyond syntax and interface recovery to confirm that the decompiled contract
faithfully reproduces the original program logic.

Together, these four stages form a progressive evaluation pipeline. Format completeness verifies
that the output is well-formed and suitable for further testing; compilability checks basic syntactic
validity; ABI recovery measures how accurately external interfaces are reconstructed; and seman-
tic equivalence validates behavioral fidelity. We report all metrics across difficulty levels (easy,
medium, hard) to provide a comprehensive assessment of decompiler performance.

4.2 REFERENCE MODEL

A core requirement of our benchmark is recompilation: decompiled outputs must form complete
Solidity contracts that can be compiled back to bytecode. Traditional smart contract decompilers,
however, typically stop at producing pseudocode or intermediate representations that improve read-
ability but cannot be recompiled. David et al. (2025) decompile only at the function level, which
rules out recompilation. DiSCo Su et al. (2025) does support compilability, but its implementation
is not open source, preventing independent benchmarking. To enable a fair and open evaluation, we
therefore decide to fine-tune a reference model that produces compilable Solidity contracts.

Our reference model takes inspiration from David et al. (2025), which fine-tunes language models
for decompilation at the function level. In contrast, we target full-contract decompilation. This
shift is made feasible by recent advances in LLM capacity, which allow us to bypass intermediate
representations, and by longer context windows, which make it possible to process an entire contract
at once. Specifically, we fine-tune Qwen3-4B-Instruct-2507 as the base model. Figure 3
illustrates the prompt design. The model is instructed to decompile disassembled EVM bytecode
and produce an output in a fixed structure consisting of three blocks: (i) a <compiler> block that

á System:
You are a specialized engine for decompiling EVM assembly into Solidity. Your
entire response must consist of a <compiler> block, a <code> block, and a
<contract name> block, in that exact order.

  Human:
Decompile the following EVM assembly: PUSH1 0x80 PUSH1 0x40 MSTORE ...

Æ AI:
<compiler>{\"compiler version\": \"0.8.20\", \"settings\": ...} </compiler>
<code>pragma solidity ˆ0.8.20;\n abstract contract Context {\n function
msgSender() internal view virtual returns(address) {...</code>
<contract name>UnibotLiquidityLocker</contract name>

Figure 3: Prompts for the reference model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Tokenized sequence length statistics across difficulty levels, computed using the tokenizer
of Qwen3-4B-Instruct-2507. The total sequence lengths are compared to the 32,000 token
cutoff used in fine-tuning the reference model.

Easy (50) Medium (50) Hard (50)

Input length
Mean 5,244.72 18,631.50 39,541.30
Stdev 3,365.67 3,644.42 12,506.08
Min 467 12,879 18,189
Max 13,525 27,458 67,371

Output length
Mean 2,740.02 4,599.08 12,633.86
Stdev 4,434.66 3,205.27 12,112.22
Min 84 1,170 1,885
Max 29,585 22,678 73,673

Total length
Mean 7,984.74 23,230.58 52,175.16
Stdev 6,230.59 4,891.09 19,526.95
Min 551 14,049 20,382
Max 36,443 36,450 109,120
< 32,000 49/50 (98.00%) 47/50 (94.00%) 5/50 (10.00%)

specifies the compiler version and settings, (ii) a <code> block that contains the Solidity source
code, and (iii) a <contract name> block that indicates the contract name.

Qwen3-4B-Instruct-2507 natively supports a context length of 256K tokens. For efficiency,
we cap the maximum sequence length at 32,000. We fine-tune the model on 498,257 contracts
from our verified corpus that fall within this length cap, explicitly excluding the 150 benchmark
contracts used for evaluation. In addition to the fine-tuned reference model, we also benchmark the
unmodified base model. This setup provides an open and reproducible baseline for our benchmark,
enabling direct comparison with LLM-based decompilers.

4.3 EVALUATION SETUP

We run our evaluation on an NVIDIA RTX PRO 6000. Each decompilation attempt is limited to a
timeout of five minutes. Due to the randomness of autoregressive generation, the model occasionally
produces excessively long outputs that cannot finish within the time limit. In such cases, we retry
the contract, for at most three attempts in total. If all attempts time out, we consider the model to
have failed the first-stage evaluation of format completeness, since no complete output is generated.

For compilation and execution, we rely on the foundry toolkit.6 All eligible outputs are recom-
piled with the compiler settings specified by the decompiler. For differential fuzzing, we generate 10
random test inputs for each recovered function. All executions are performed on a forked Ethereum
mainnet state at block 22820673, so that contracts run against the real on-chain environment.

4.4 BENCHMARK DATASET CHARACTERISTICS

To better characterize our benchmark dataset, we analyze the tokenized sequence lengths of con-
tracts across the three difficulty levels. Table 2 summarizes the tokenized input, output, and total
sequence lengths across the three difficulty levels, where tokenization is performed using the to-
kenizer of Qwen3-4B-Instruct-2507. We report mean, standard deviation, minimum, and
maximum values, as well as the fraction of contracts whose total sequence length falls below
the 32,000 token cap used during fine-tuning. We notice that nearly all contracts in the easy
and medium bins fit within this limit, whereas only a small fraction of hard contracts fall be-
low it. Importantly, all contracts in our dataset remain within the 256K-token context window

6https://github.com/foundry-rs/foundry

7

https://github.com/foundry-rs/foundry


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Format completeness results across difficulty levels.
Reference model Base model

Difficulty Timeouts Wrong format Eligible Timeouts Wrong format Eligible

Easy 6 (12%) 0 (0%) 44 (88%) 2 (4%) 22 (44%) 26 (52%)
Medium 8 (16%) 0 (0%) 42 (84%) 1 (2%) 25 (50%) 24 (48%)
Hard 29 (58%) 0 (0%) 21 (42%) 3 (6%) 15 (30%) 32 (64%)

supported by Qwen3-4B-Instruct-2507. Nevertheless, the statistics show that contracts
in the hard bin pose a significant challenge for models with shorter context windows, such as
Meta-Llama-3-8B-Instructwith an 8K-token limit, underscoring the need for larger context
capacity in practical decompilation tasks.

4.5 EVALUATION RESULTS

Format completeness. Table 3 summarizes the outcomes of the format completeness check across
the three difficulty levels. For each contract, we record whether the model output times out, produces
an invalid format, or generates a complete decompilation eligible for recompilation.

The reference model shows markedly different behavior from the base model. After fine-tuning,
it tends to generate longer (and probably more complete) outputs, with an average output length
of 7,823.52 characters compared to 3,964.21 for the base model. These outputs are almost always
structurally valid but more prone to exceeding the five-minute timeout. In contrast, the base model
rarely times out but often produces incomplete or malformed outputs (e.g., invalid <compiler>
blocks). Consequently, while the reference model suffers higher timeout rates, it achieves a 100%
success rate on format validity whenever an output is produced, whereas the base model shows high
rates of formatting errors, particularly in the easy and medium bins.

Table 4: Compilability results across difficulty levels. Numbers are successes and failures relative
to the eligible set (from Table 3).

Reference model Base model
Difficulty Compiled Failed Compiled Failed

Easy 28/44 (63.64%) 16/44 (36.36%) 1/26 (3.85%) 25/26 (96.15%)
Medium 11/42 (26.19%) 31/42 (73.81%) 2/24 (8.33%) 22/24 (91.67%)
Hard 3/21 (14.29%) 18/21 (85.71%) 1/32 (3.13%) 31/32 (96.88%)

Compilability rate. Compilability is evaluated only on outputs that pass the format completeness
check. Table 4 reports the number of contracts that successfully compile back to bytecode versus
those that fail.

The reference model achieves substantially higher compilability rates than the base model in all diffi-
culty levels, though absolute success rates decline sharply with contract size. In the easy bin, 63.64%
of eligible outputs recompile successfully, while in the medium and hard bins the rates fall to 26.19%
and 14.29%, respectively. By contrast, the base model rarely produces compilable outputs, succeed-
ing on only a handful of cases across all bins. The weak performance of the reference model in the
hard bin is likely explained by a training–evaluation mismatch: contracts exceeding 32,000 tokens
were excluded from fine-tuning but remain present in the benchmark dataset.

A detailed breakdown of compilation errors is provided in Appendix A. The analysis shows that
failures are dominated by declaration-related issues (e.g., redeclared or undeclared identifiers) and
parser-level mistakes, while more complex semantic inconsistencies such as function signature col-
lisions and inheritance errors occur less frequently. We also experiment with GPT-5 as a post-
processing assistant: given the decompiled code and compiler error messages, GPT-5 repairs 61.54%
of reference-model failures and 56.41% of base-model failures in a single zero-shot attempt, indi-
cating the strong potential of LLM-assisted repair for improving compilability.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: ABI recovery results. Both macro- and micro-averaged precision, recall, and F1 are re-
ported. Reference model substantially outperforms the base model across all bins.

Macro average Micro average
Difficulty Precision Recall F1 Precision Recall F1

Reference model
Easy 0.873 0.845 0.854 0.915 0.932 0.923
Medium 0.991 0.987 0.989 0.992 0.989 0.991
Hard 0.987 0.987 0.987 0.988 0.988 0.988

Base model
Easy 0.417 0.714 0.526 0.417 0.714 0.526
Medium 0.306 0.588 0.401 0.259 0.538 0.350
Hard 0.455 0.625 0.526 0.455 0.625 0.526

ABI recovery accuracy. We compare recovered ABIs against ground truth at the function-signature
level and report macro- and micro-averaged precision, recall, and F1 scores (cf. Table 5) The ref-
erence model achieves consistently high ABI recovery accuracy across all bins, with macro- and
micro-F1 scores exceeding 0.85 on the easy set and reaching near-perfect levels on medium and
hard contracts. The base model, however, struggles: although it occasionally recovers partial in-
terfaces, its F1 scores remain around 0.35–0.53, reflecting both missing functions (low recall) and
spurious predictions (low precision).

Semantic equivalence. Table 6 reports the ratio of equivalent functions per contract. Note that
a function is deemed equivalent only if all test inputs produce identical behavior with the original
bytecode (cf. Section 4.1). The reference model achieves mean ratios of 0.84, 0.92, and 0.92 in the
easy, medium, and hard bins, respectively. In the easy bin, 69% of contracts reach perfect equiva-
lence, while in the medium and hard bins this fraction drops to 18% and 0%, despite higher mean
ratios. By contrast, the base model shows consistently poor results, with mean ratios of 0.67, 0.33,
and 0.08 across the three bins and no contract achieving full equivalence. These results highlight the
difficulty of attaining behavioral fidelity, while fine-tuning substantially improves equivalence rates,
perfect preservation of logic remains rare, especially for more complex contracts.

Table 6: Semantic equivalence results across difficulty levels. Values report the ratio of equivalent
functions per contract, averaged over contracts.

Reference model Base model
Difficulty Mean Median Stdev % Perfect Mean Median Stdev % Perfect

Easy 0.84 1.00 0.31 69% 0.67 0.67 0.00 0%
Medium 0.92 0.90 0.05 18% 0.33 0.33 0.33 0%
Hard 0.92 0.96 0.06 0% 0.08 0.08 0.00 0%

5 CONCLUSION

We present the first systematic benchmark for smart contract decompilation, combining a curated
dataset of 150 contracts, a staged evaluation framework, and baseline evaluations with a fine-tuned
reference model. The dataset balances redundancy control with diversity, spans multiple difficulty
levels, and enables rigorous testing under realistic conditions. Our metrics, format completeness,
compilability, ABI recovery accuracy, and semantic equivalence, form a progressive pipeline that
reveals both syntactic and semantic strengths and weaknesses. Results show that fine-tuning greatly
improves structural validity and interface recovery, but perfect semantic fidelity remains rare, espe-
cially for complex contracts. Post-processing with GPT-5 highlights the promise of LLM-assisted
repair and suggests future multi-stage or agentic approaches.

This benchmark establishes a common ground for reproducible evaluation and aims to catalyze
the development of more reliable smart contract decompilers, supporting greater transparency and
security in blockchain ecosystems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide an anonymous repository (https://anonymous.
4open.science/r/SCDBench-5BD7/) containing our benchmark dataset, together with the
decompiled outputs of both the reference and base models. The repository further includes all
scripts and instructions needed to reproduce our results on format completeness, compilability, ABI
recovery, and differential fuzzing.

LARGE LANGUAGE MODELS

We used GPT-5 to assist with editing and polishing of the manuscript text, including improving
clarity, conciseness, and grammar. All research ideas, dataset construction, benchmark design, ex-
periments, analyses, and conclusions were developed by the authors.

REFERENCES

Isaac David, Liyi Zhou, Dawn Song, Arthur Gervais, and Kaihua Qin. Decompiling smart contracts
with a large language model. arXiv preprint arXiv:2506.19624, 2025.

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. Gigahorse: thorough, declar-
ative decompilation of smart contracts. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pp. 1176–1186. IEEE, 2019.

Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. Elipmoc: Advanced
decompilation of ethereum smart contracts. Proceedings of the ACM on Programming Languages,
6(OOPSLA1):1–27, 2022.

Sifis Lagouvardos, Yannis Bollanos, Neville Grech, and Yannis Smaragdakis. The incredible shrink-
ing context... in a decompiler near you. Proceedings of the ACM on Software Engineering, 2
(ISSTA):1350–1373, 2025.

Xia Liu, Baojian Hua, Yang Wang, and Zhizhong Pan. An empirical study of smart contract decom-
pilers. In 2023 IEEE international conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 1–12. IEEE, 2023.

Xing Su, Hanzhong Liang, Hao Wu, Ben Niu, Fengyuan Xu, and Sheng Zhong. Disco: Towards
decompiling evm bytecode to source code using large language models. Proceedings of the ACM
on Software Engineering, 2(FSE):2311–2334, 2025.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey. Erays:
reverse engineering ethereum’s opaque smart contracts. In 27th USENIX security symposium
(USENIX Security 18), pp. 1371–1385, 2018.

A COMPILATION ERROR ANALYSIS AND LLM-ASSISTED REPAIR

A.1 COMPILATION ERRORS

To better understand why outputs fail to compile, we analyze the detailed error logs from the com-
pilability evaluation. Table 7 summarizes the distribution of error types across difficulty levels.
The majority of failures fall into a small set of recurring categories. Declaration errors are the
most common, including redeclared or undeclared identifiers and name-resolution conflicts. Parser
errors also occur frequently, such as “Expected primary expression” or “Expected type name,” re-
flecting structural inconsistencies in the generated code. Less frequent but notable issues include
type errors, invalid address literals, and inheritance-related conflicts. These results indicate that
while many outputs are syntactically well-formed, a significant portion still encounter semantic or
structural mismatches that prevent successful compilation.

10

https://anonymous.4open.science/r/SCDBench-5BD7/
https://anonymous.4open.science/r/SCDBench-5BD7/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Table 7: Breakdown of compilation errors across difficulty levels, with GPT-5 zero-shot post-repair
outcomes. Each cell shows the number of compilation failures, with the number successfully re-
paired in parentheses.

Reference model Base model
Error type Easy Medium Hard Easy Medium Hard

DeclarationError: Identifier already declared 3 (0) 5 (3) 2 (1) 4 (2) 13 (9) 17 (10)
DeclarationError: Undeclared identifier 5 (4) 9 (7) 2 (1) 3 (2) 1 (0) 2 (2)
ParserError: Expected primary expression 0 (0) 0 (0) 1 (1) 10 (6) 2 (1) 0 (0)
TypeError: Member not found / not visible 0 (0) 4 (4) 1 (0) 0 (0) 1 (0) 0 (0)
DeclarationError: Identifier not found or not unique 1 (1) 2 (0) 2 (2) 0 (0) 0 (0) 0 (0)
Error 8936: Identifier-start is not allowed at end of a number 2 (2) 2 (1) 1 (0) 0 (0) 0 (0) 0 (0)
ParserError: Expected type name 0 (0) 0 (0) 0 (0) 0 (0) 2 (0) 3 (1)
ParserError: Expected token 0 (0) 1 (0) 2 (0) 1 (0) 1 (0) 0 (0)
TypeError: Not implicitly convertible 1 (1) 0 (0) 1 (0) 0 (0) 0 (0) 1 (1)
SyntaxError: Invalid address literal checksum 0 (0) 1 (0) 1 (1) 1 (0) 0 (0) 0 (0)
Error 1860: Function signature hash collision 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 2 (0)
DeclarationError: Duplicate function signature 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 1 (1)
Error 2915: Expected a state variable declaration 0 (0) 0 (0) 0 (0) 2 (2) 0 (0) 0 (0)
TypeError: Free functions cannot have visibility 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1)
TypeError: Invalid type for argument (implicit conversion) 0 (0) 2 (1) 0 (0) 0 (0) 0 (0) 0 (0)
TypeError: Explicit type conversion not allowed 0 (0) 0 (0) 1 (1) 1 (1) 0 (0) 0 (0)
Error: Linearization of inheritance graph impossible 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Error 4957: This type is only supported in ABI coder v2 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)
TypeError: Operator assignment type mismatch 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
Error 6480: Must override function 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)
Error 8015: Invalid type for argument in the bytes 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Error 1856: Literal or identifier expected 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)
Error 7139 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)
Error 5883: Event with same name and parameter types defined twice 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Error 1227: Index range access is only supported for dynamic calldata arrays 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)
TypeError: Operator not compatible with types 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
Error 2973: Wrong argument count for modifier invocation 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)
Error: Visibility already specified as “public” 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
DeclarationError: Contract should be abstract (missing implementation) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Error 2614: Indexed expression must be a type, mapping, or array 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1)
Others 1 (0) 1 (1) 1 (0) 0 (0) 0 (0) 2 (2)

A.2 LLM-ASSISTED REPAIR WITH GPT-5

We further experiment with using GPT-5 as a post-processing assistant to repair compilation failures.
In this setup, GPT-5 receives both the decompiled Solidity code and the compiler error message, and
is asked to return a corrected version. Table 7 summarizes the outcomes, showing for each error type
the number of failing cases and, in parentheses, the number that compile successfully after a single
zero-shot repair attempt.

For the reference model, there are 65 compilation failures in total, of which GPT-5 repairs 40
(61.54%). For the base model, there are 78 failures, of which 44 (56.41%) are repaired. The re-
paired cases include a large fraction of declaration errors and parser errors, such as undeclared
identifiers or “Expected primary expression,” which are often resolved with small edits. By con-
trast, repair rates are much lower for semantic inconsistencies, including function signature hash
collisions, inheritance linearization errors, and missing function overrides, which require deeper
reasoning about program structure.

It is important to note that this experiment is conducted in a zero-shot setting: GPT-5 is invoked
once with the error message and produces a single revised program. A failure to repair therefore
does not necessarily mean the model is incapable of fixing the reported error, as contracts may
contain multiple simultaneous issues and resolving one may expose another. Nevertheless, these
results indicate that even a single-pass LLM repair step substantially improves compilability, and
highlight the potential of iterative repair strategies.

A.3 DISCUSSION AND FUTURE DIRECTIONS

These experiments demonstrate that LLM-assisted repair can significantly improve compilability,
even in a zero-shot setting. We believe that additional interaction rounds, where the model incre-
mentally refines its output based on new diagnostics, would resolve an even greater share of errors.
The same principle extends naturally to the later evaluation stages: differential fuzzing could gener-

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

ate counterexamples, which in turn can be fed back to an LLM to iteratively revise the decompiled
output.

This suggests an important future research direction: agentic pipelines for decompilation. One agent
produces the initial decompilation, a second agent repairs compilation issues, and a third agent uses
differential fuzzing feedback to refine functional correctness. Such multi-agent, feedback-driven
workflows could dramatically improve the reliability of smart contract decompilation. Developing
these systems lies beyond the scope of this paper, but our results indicate their promise as a com-
pelling direction for future work.

12


	Introduction
	Related Work
	Dataset Details
	Design Principles
	Dataset Construction Pipeline
	Dataset Statistics

	Benchmarks and Evaluations
	Metrics
	Reference Model
	Evaluation Setup
	Benchmark Dataset Characteristics
	Evaluation Results

	Conclusion
	Compilation Error Analysis and LLM-Assisted Repair
	Compilation Errors
	LLM-Assisted Repair with GPT-5
	Discussion and Future Directions


