Under review as a conference paper at ICLR 2026

MOE-PHDS: ONE MOE CHECKPOINT FOR FLEXIBLE
RUNTIME SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Mixtures of Experts (MoEs) are typically trained to operate at a fixed spar-
sity level, e.g. k in a top-k gating function. This global sparsity level determines
an operating point on the accuracy/latency curve; currently, meeting multiple ef-
ficiency targets means training and maintaining multiple models. This practice
complicates serving, increases training and maintenance costs, and limits flexi-
bility in meeting diverse latency, efficiency, and energy requirements. We show
that pretrained MoEs are more robust to runtime sparsity shifts than commonly
assumed, and introduce MoE-PHDS (Post Hoc Declared Sparsity), a lightweight
SFT method that turns a single checkpoint into a global sparsity control surface.
PHDS mixes training across sparsity levels and anchors with a short curriculum
at high sparsity, requiring no architectural changes. The result is predictable ac-
curacy/latency tradeoffs from one model: practitioners can “dial k£ at inference
time without swapping checkpoints, changing architecture, or relying on token-
level heuristics. Experiments on OLMoE-1B-7B-0125, Qwenl.5-MoE-A2.7B,
and proprietary models fit on multiple operating points show that PHDS matches
or exceeds well-specified oracle models, improves cross-sparsity agreement by up
to 22% vs. well-specified oracle models, and enables simplified, flexible runtime
MoE deployment by making global sparsity a first-class serving primitive.

1 INTRODUCTION

Mixture of Experts (MoEs) language models deliver state-of-the-art quality with lower active com-
pute by routing tokens through a subset of active experts per layer (Liu et al., 2024} Du et al., 2022]).
At deployment, sparsity level (e.g. k in top-k) is fixed, so supporting multiple operating points
has required multiple checkpoints. We argue this is not necessary. First, pretrained MoEs already
tolerate moderate runtime sparsity shifts. Second, with MoE-PHDS we make this tolerance more
predictable: a short SFT schedule across sparsity levels with curriculum anchoring produces a sin-
gle checkpoint reusable at different sparsity levels. This enables more predictable accuracy/latency
tradeoffs, SLA-aware serving, and energy-aware throttling from one model.

Prior work, like adaptive routing(Huang et al., 2024} Nishu et al., [2025} |Alizadeh- Vahid et al., [2024])
and null experts (Zeng et al. [2024} [Yan et al., 2025} [Team et al.l [2025)), focuses on token-level
choices. These can spend a fixed global budget more efficiently, but add variance (latency depends
on input) and policy complexity (extra knobs). In contrast, PHDS exposes one global knob: k,
which yields more predictable accuracy/latency tradeoffs. This simplicity is key for deployment.

Prior work in adaptive computation, such as slimmable networks (Yu et al.| [2019), Once-for-All
models (Cai et al., 2020), MatFormer (Devvrit et al.,[2024), and Flextron (Cai et al.,[2024), demon-
strates that dense networks can support multiple operating points from a single model. In contrast,
the prevailing approach is that each global MoE sparsity level needs its own checkpoint, often from
a separate pretraining run. This practice of supporting only well-specified models leads to training
and storing multiple models, and has stymied study about model behavior when inference spar-
sity is not well-specified. As such, fundamental questions remain unanswered: Can a single MoE
checkpoint generalize across multiple global levels of sparsity? What mechanisms block or enhance
model flexibility?

Our work challenges the fixed-sparsity assumption. We show that MoEs are robust to small-to-
moderate changes in the global sparsity parameter. Empirically, we show that flexibility can be

Under review as a conference paper at ICLR 2026

PHDS from OLMoE

Input: Runtime Conditions PHDS
Pretrained MoE & 070 | One checkpoint, many o k4
operating points °

MoE Input (=t
0E Inpu k=7 e

Checkpoint k=6

o
>
&

MoE-PHDS

SFT Pretrained MoE

Declare Model Sparsity
k=5

066 k=4

Select Checkpoint s

o
>
2

Less Sparse H More Sparse
eg. k=4 = ! e.g. k=2

Single MoE-PHDS Checkpoint 062

Average Multiple Choice Accuracy

Train and Deploy

MoE-PHDS
Checkpoint

jUBWILOIIAUT UORNOBXT

[Standard Load | | [HighLoad J

Method
® PHDS

Output: Y % Original OLMoE
Runtime Condition Aware Computation 05 110 115 120 125 1m0 1a5 110 145
FLOPs 1e9

Archive and Deploy
Checkpoint [

Keep Existing Architecture

MoE-PHDS
Checkpoint

Figure 1: Overview of our proposed framework, MoE-PHDS. The left represents how a robust,
sparsity-flexible single checkpoint is generated. The center shows how the model is called under
dynamic runtime conditions. The right panel shows average multiple choice task accuracy vs. flops
with 4096 context length using OLMoE-1B-7B-0125 as a base pretrain model, along with the a
well-specified model. There is little accuracy degradation as k is reduced from 8§ to 6.

PHDS from Intemal ke = 4 Model PHDS from Intemal ke = 6 Model
0725 [0.740 .
0720 x k=6
k=3 k=4 0.735
k=5
.. 0715 ° 5 x
8 k=2 8 b
§ 0710 Py é 0.730
< <
0.705
Method 0.725 Method
0700 ® PHDS K=d ® PHDS
® Current Practice ¥ Current Practice
x or20 %
4.4 46 48 50 52 54 56 58 6.0 6.2 6.4 6.6

FLOPs 168 FLOPs 168

Figure 2: FLOPs vs. average multiple choice accuracy for internal models trained at the current
practice (multiple checkpoints for each k) (crosses) and PHDS models (dots); all methods are SFTed
on CommonSensel70k. Left: two internal models trained at £ = 2 and k = 4 vs. a single PHDS
checkpoint, evaluated at & = {2,3,4}. Right: two internal models trained at k = 4 and k = 6 vs.
a single PHDS checkpoint, evaluated at k = {4, 5,6}. PHDS reduced training by 50% compared to
current practice and offered support on a wider range of k for each setting.

supported by a single checkpoint. For example, we show that for OLMoE-1B-7B-0125, reducing &
at runtime from 8 to 6 decreases multiple choice accuracy by 1.2% (relative) and increases wikitext
perplexity by 6.4%; likewise, for Qwenl.5-MoE-A2.7B, reducing k from 4 to 3 results in only a
0.43% accuracy reduction and 1.2% perplexity increase. These findings highlight an overlooked
generalization property, with direct implications for efficiency-constrained Al deployment.

Building on this observation, we introduce a lightweight supervised fine tuning (SFT) method to
reliably and stably produce models for cross-sparsity deployment. Rather than requiring different
checkpoints for different sparsity levels, our proposed method, a Mixture of Experts with Post Hoc
Declared Sparsity (MoE-PHDS), produces a single checkpoint for use across sparsity levels. See
figure [I] for an overview and figure [2]for a comparison with current practice. On public models, our
method matches or exceeds baselines, and shows benefits, such as higher accuracy and support for
extended sparsity ranges, on internal models.

Inference-time sparsity mis-specification can be viewed as a feature of MoE models rather than
a bug. Classical mis-specification is when a data-generating regime is not supported by a model
class, such as using a linear model for data with a non-linear relationship. Here we study an MoE
deployment variant: at inference time we intentionally restrict the model space (fewer experts than
used in pretraining), by declaring a smaller k affer training. PHDS makes this intentional restriction
better supported by introducing the model to various k levels during SFT, we keep predictions stable
when £ is set at runtime. Practically, this yields (i) controllability, since a single parameter governs

Under review as a conference paper at ICLR 2026

global sparsity, and (ii) predictability with respect to changes in FLOPS or accuracy. In short, we
turn “mis-specification” into a serving primitive to produce predictable resource-quality tradeoffs.

From an operational standpoint, global control of sparsity at runtime unlocks capabilities that fixed-
sparsity or token-level sparsity models do not have. First, it enables service level agreement (SLA)-
aware serving, where a model can adjust sparsity based on user tier, request type, latency budget, or
system load. This can mitigate latency spikes and promote tenant fairness without swapping models.
Additionally, explicit, discrete k selection per query allows predictable accuracy/latency tradeoffs
compared to token-level sparsity. Second, it enables energy-aware inference: sparser models can
be used during system wide energy constraints and scale to full model size when resources are not
constrained. Finally, it offers substantial operational simplicity: rather than managing a fleet of
sparsity-specific models with separate pipelines, drift risks and possibly architectures, practitioners
can deploy a single, flexible checkpoint. We focus on small to moderately size models (1B-14.3B),
where deployment memory and energy budgets are often the tightest. This paper makes the follow-
ing contributions:

* Sparsity level as a serving primitive. We show that pretrained MoEs tolerate moderate
runtime sparsity shifts with minimal loss, challenging the assumption that each sparsity
level requires its own checkpoint, allowing sparsity level to act as a serving primitive.

* MoE-PHDS method. We propose a lightweight SFT recipe—multi-% training with cur-
riculum anchoring—that enables a single checkpoint to operate flexibly across sparsity
levels.

* Deployment benefits. We demonstrate that PHDS improves cross-sparsity output agree-
ment (7-22%), yielding stable user-facing behavior while reducing operational complexity:
one checkpoint, one control surface, and predictable tradeoffs.

2 MOE-PHDS FRAMEWORK

We introduce an SFT method that allows a pretrained MoE model to support runtime-declared spar-
sity levels. MoE-PHDS consists of two phases: (1) Multi-k Training, in which the model is fine-
tuned by randomly varying the number of active experts &k across forward passes, and (2) Curriculum
Anchoring, in which training is annealed to a lower k to stabilize expert routing. Once fine-tuned,
a single checkpoint can be deployed and reused across a range of sparsity levels. Let kp,. be the
sparsity level from the pretrained model, Krain, ; the sparsity for forward pass iteration 4, and ke
is the evaluation sparsity level. Since expert parameters are only pretrained up to kp., we restrict
training and evaluation to Kirain,i; Kev < Kpre-

2.1 MULTI-k TRAINING

The goal of Multi-k Training is to expose the model to a range of sparsity levels so that it can gener-
alize beyond fixed k... We define a set of candidate sparsity levels, Kiain C N (e.g. {4,5,6,7,8}).
For each forward pass ¢, we uniformly sample k¢;qip,; from Ki,ain and compute the language mod-
eling loss, such as cross-entropy, under this sparsity. Any auxiliary components (e.g., load-balancing
losses, layer norms) are stored and updated per k. In practice, we observe rapid convergence, espe-
cially when the fine-tuning dataset is distributionally aligned with pretraining data.

2.2 CURRICULUM ANCHORING

Although Multi-£ Training improves robustness across multiple %, performance can degrade at very
low k due to interference from higher-k co-activation patterns. To address this, we introduce Cur-
riculum Anchoring: after an initial phase of Multi-k Training, we gradually anneal training toward
a fixed, lower ki ain (e.g., & = 2). This stabilizes expert dynamics at sparse settings and improves
reliability when ke, < Kpre.

2.3 IMPLEMENTATION DETAILS

Pretrained MoE models are not typically designed for runtime sparsity variation. MoE-PHDS in-
troduces minimal modifications to support this flexibility. Let A € R? denote the hidden state,

Under review as a conference paper at ICLR 2026

W, € RI*F the router weights, and E the number of experts. Router logits are z = W,.h, with
p = softmax(z; kpre) the raw gating probabilities. We use a soft mask to adapt p to different kyyain:

p;j if j € top-Kiraini(p),
pj =< e ifj € top-kpre(p) \ top-Kerain,i(p), (D
0 otherwise,

€ is a tunable parameter, we use 1E-6. For unnormalized top-k-softmax routers, equation [[|remains
unnormalized; for normalized softmax-k routers, the masked probabilities are renormalized. Layer
norm parameters and load balancing loss, if applicable, need to be stored and activated by Ei;ain -

Checkpoint Selection. Multi-k Training with Curriculum Anchoring produces a family of candi-
date checkpoints. A single checkpoint is chosen after anchoring, either by best validation perfor-
mance at a target ke, or by average performance across a range of k.,. We use values at k. since
we assume it is the default operating point. At runtime, operators declare the desired sparsity level,
and the same checkpoint can be reused without retraining.

3 EXPERIMENTS

Our experiments test whether one checkpoint can support multiple runtime sparsity levels and when
PHDS outperforms oracle or naive baselines. PHDS fine-tuning adds a fraction of pretraining cost,
since it is a short SFT pass reusing existing checkpoints. Broadly, public well-tuned models (OL-
MoE, Qwen) are already robust to modest sparsity shifts, while less tuned internal models show
consistent gains from PHDS. Across models, PHDS maintains <1-2% relative QA drop when k
is reduced by up to 25% (e.g., OLMOoE: k =8—6, Qwen:k =4—3). Below kp.e/2, degradation
becomes more pronounced.

3.1 EXPERIMENTAL SETUP

3.1.1 PRETRAINED MODELS AND FINE-TUNE DATA

Table 1: Summary of Pretrained Models

Model | kpre Experts | Active Params Total Params SFT
Internal-Baseline-2 2 16 240M 1.032B No
Internal-Baseline-4 4 16 353M 1.032B No
Internal-Baseline-6 6 16 466M 1.032B No
OLMOoE-1B-7B-0125 8 64 1B 7B No
OLMOoE-1B-7B-0125-Instruct 8 64 1B 7B Yes
Qwenl.5-MoE-A2.7B 4 60 2.7B 14.3B No
Qwenl.5-MoE-A2.7B-Chat 4 60 2.7B 14.3B Yes

Internal Baseline Model. We pretrain three MoEs (24 layers; model dim 1024; FFN dim 12,288;
16 experts/layer; 1.032B total params) with kp. € {2, 4,6} and softmax—top-k routers. See table
for pretrained model specifications.

OLMoE. We evaluate OLMoE-1B-7B-0125 and its instruction-tuned variant (Muennighoff et al.,
2024). Both use 8/64 experts per layer with a top-k—softmax router.

Qwen. We evaluate Qwenl.5-MoE-A2.7B and the chat-tuned variant (Qwen Team), [2024), which
use 4/60 experts per layer with a top-k—softmax router.

Fine-Tuning Data. We use CommonSensel70K from LLM-Adapters (Hu et al., [2023), the
tulu3d-sft-olmo-2-mixture dataset (Lambert et al.,[2024), and a high-quality internal mix-
ture (“Internal Baseline Data Set” comprised of licensed; curated public/open data; and a web
crawled subset) for additional SFT.

Under review as a conference paper at ICLR 2026

=)
=
o
o
=
a

PHDS [4,5]->4 N
Operating Region Agreement: ~Ye

. 074 =
/ 0.8925 _ =
>

L -

PHDS [2,3,4]->3 _ 073 . =

*+ ~Operating Region _’! Ag;e;zr:gnt. = rea Agreement
/ a 072 8210 - = 0.7304
L
Vodel Agreement:

—— PHDS [2,34}>3 0.70 0.7559

x —— PHDS [4.5]>4 x
— Oracle 2

- — —

=)
=
N

=)
=
)

Accuracy
o ©
300N
N

Accuracy
o
Iy
L}

=)
=
=]

=
@
©

=
@
@

9.

=3
@
=
o
=)
~

45 50 55 60 65 2 4 6
FLOPs 18 Eval k

Figure 3: (Left) Average accuracy vs. flops with 4096 context length for Internal Baseline Models.
Current practice (Oracle models operating at k,,; denoted by crosses) is compared with PHDS
(dots), which produces a range of operating points PHDS operating regions are based on pretrained
models, but show ability to meet or outperform baseline models with reduced training costs. (Right)
Average accuracy vs. ke, with answer agreement between checkpoints. Despite similar accuracy,
PHDS has increased agreement compared to current practice.

3.1.2 FINE-TUNING REGIMES

Prior work on MoE flexibility focuses on token-level adaptability given a fixed global sparsity
budget or uses architectural changes. We are interested in MoE robustness to train/inference mis-
specification for a fixed architecture. Hence, we use well-specified oracle models as a baseline and
compare a set of fine tuning regimes.

Oracle. Fine-tune at kp,.; denoted Oracle ky,,¢; evaluated at any k.. This is a well-specified
baseline when evaluated at ke, = kpre.

Naive. Fine-tuned at a single, lower ktrain < Kpre; denoted kpre — Kirain, €.8. 4—2.

MOoE-PHDS. Sample & uniformly from Kiain during SFT, optionally anneal to a low anchor
Ktrain; denoted Kirain — Ktrain, €85 [2, 3, 4] = 2 or [2, 3, 4] for a non-curriculum trained variant.

3.1.3 SELECTION AND EVALUATION PROTOCOL

Unless otherwise noted, we select the checkpoint with the best multiple-choice QA accuracy at
kev = kpre after a 5,000-step burn-in as pretrain model-task misalignment may cause accuracy de-
creases. Public models use tulu3-sft-olmo-2-mixture (Tiilu-3) for SFT; internal models
use the Internal Baseline Data Set or CommonSensel70K. All regimes are SFTed with the same
settings per ablation. We evaluate with Im-evaluation-harness for zero shot multiple choice
QA: ARC Challenge and Easy (Clark et al., 2018), BoolQ (Clark et al., [2019), HellaSwag (Zellers
et al.,[2019), PIQA (Bisk et al.}[2020), SciQ (Welbl et al.,[2017)), and Winogrande (Sakaguchi et al.,
2021)); TriviaQA-fixed (Joshi et al., [2017) for generative QA; and WikiText (Merity et al.,[2016)) per-
plexity. For CommonSensel70K on Internal Baseline Models, we follow LLM-Adapters’ stricter
matching protocol and evaluate on their multiple choice QA set: ARC-C/E, BoolQ, PIQA, Hel-
laSwag, Winogrande, SociallQA (Sap et al.,|2019), and Openbook QA (Mihaylov et al., 2018). All
methods are evaluated at a single checkpoint. For all tables, best results are in bold, second-best
underlined; well-specified models are in blue.

3.2 INTERNAL BASELINES: COMMONSENSE170K

We fine-tune untuned Internal Baseline Models on CommonSensel70K to study (1) accuracy un-
der evaluation sparsity mis-specification, (2) sensitivity of MoE-PHDS to ,,i, and curricula, and
(3) cross-k agreement. We begin curriculum after 10,000 steps (=93.9% of epoch 1). Evalua-
tion uses strict matching on 1,000 samples per task. Figure [3] highlights the difference between
PHDS and current methods: using Oracle models at k.., forcing practitioners to maintain multiple

Under review as a conference paper at ICLR 2026

models. In contrast, a single PHDS checkpoint spans multiple sparsity levels, while maintaining
accuracy close to or above Oracle at its k.. Full results are in table 2| We find that all families (Or-
acle/Naive/PHDS) tolerate modest decreases in k., with limited accuracy loss; increasing beyond
Epre does not recover denser-oracle performance. Evaluating below kpye/2 produces poor results.
PHDS often matches or slightly exceeds the corresponding Oracle around ki, While producing
superior results for mis-specified models.

Table 2: CommonSensel70K SFT: overall accuracy (average across tasks).

Model | kpre | kev=2 key=3 koy=4 key=5 key=0
Oracle 2 |2 | 069638 066750 0.70025 0.05750 0.00013
Oracle 4 4 066113 070663 072013 0.72688 0.71025
PHDS k=[2,3,4]—3 | 4 | 070850 0.71400 0.72388 0.72288 0.71050
Naive 42 4 | 069850 0.71863 070488 0.56913 0.21150
Oracle 6 6 | 044350 0.66013 072200 0.73163 0.73388
PHDS k=[4,5]—4 | 6 | 047800 0.68075 0.72063 0.73200 0.74025
Naive 6—4 6 | 048275 0.68175 072275 072788 0.73025

For operators to vary sparsity at runtime without altering user experience, outputs should remain
consistent across k.,. We quantify agreement between two models M7, My by averaging discrete
answer, M; ;, equality over items i: A(M7, M) = % Zivzl 1{M;; = M ;}. We compare an-
swer agreement of two separate well-specified models with different checkpoints vs. a single PHDS
checkpoint evaluated at different sparsity levels in figure 3] Across both (2,4) and (4, 6) compar-
isons, a single PHDS checkpoint yields 7%—22% higher cross-k agreement than using two separate
well-specified Oracle checkpoints, at similar accuracy levels.

3.2.1 INTERNAL BASELINE MODEL: INTERNAL DATA MIXTURE

Here we SFT the Internal Baseline models on a subset of the Internal Data Mixture to measure
responsiveness to fine-tuning under mis-specification. Oracle models change little from the pre-
trained models, while Naive and PHDS shift their performance profiles. Internal models use
kpre € {2,4,6}. From kp..=4: PHDS [2,3,4] — 3 and Naive 4 — 2. From k,,e=6: PHDS
[4,5] — 4 and Naive 6 — 4. We report multiple-choice QA averages, TriviaQA-fixed (genera-
tive QA), and WikiText perplexity (table [3). We find that PHDS is broadly competitive. Across
kev € {2,3,4,5,6}, PHDS is typically within 1~ 2% of the best Oracle for well-specified ke, and
often second-best across settings. For generative QA and perplexity, trends mirror QA accuracy:
PHDS and Naive are competitive at their target &k, with Oracle best at its native k; PHDS avoids
steep degradations when k., shifts.

3.3 OLMOE

We assess mis-specification on OLMoE-1B-7B-0125 with SFT on Tiilu-3. We compare Oracle k=8,
PHDS [4,5,6,7,8] — 5, PHDS [4, 5, 6,7, 8], and Naive 8 — 4. Results for average multiple choice
(Avg), TriviaQA (triv), and wikitext perplexity (wiki) are in table 4} full results by task are in the
Appendix in section[A.4] We find that: (/) all SFT methods are similar, and () robustness to sparsity.
At key € {8,7,6,5,4}, both accuracy and perplexity remain close across methods. For the base
OLMOoE model, perplexity stays within ~1.5-6.4% of the well-specified model for k., € {6,7,8},
with overall relative accuracy differences < 1.5%.

3.4 QWEN

We SFT Qwenl.5-MoE-A2.7B-Chat on Tiilu-3, comparing Oracle k=4, PHDS [2,3,4] — 2,
PHDS [2, 3, 4] without curriculum, and Naive 4 — 2. Results from the chat-tuned model are in
table [3} results for Qwen1.5-MoE-A2.7B are in the Appendix in table[I2] We find that all methods
remain strong under mis-specification. Accuracy deltas across ke, € {4, 3,2} are small for both
chat and base models; relative accuracy and perplexity degradation from k., = 4 are between 0.2%

Under review as a conference paper at ICLR 2026

Table 3: Internal Baselines fine-tuned on the Internal Baseline Data Set. Models are grouped by ke
and ke, .

Method | ARC-C ARC-E boolq hella piga sciq wino | Avg | triv | wiki
key =2
Oracle2 | 0.3242 0.6650 0.6291 0.4464 0.7323 0.899 0.5912 | 0.6125 | 0.0813 | 14.039

Oracle 4 0.2944 0.5867 0.5000 0.4235 0.7155 0.844 0.5406 | 0.5578 | 0.0243 | 20.800
[2,3,4]—=3 | 02833 0.6284 0.5654 0.4302 0.7329 0.882 0.5533 | 0.5822 | 0.0351 | 16.274
42 0.2952 0.6402 0.5966 0.4379 0.7263 0.892 0.5943 | 0.5975 | 0.0480 | 15.088

key =3

Oracle 4 0.3250 0.6599 0.6174 0.4613 0.7459 0.901 0.5959 | 0.6157 | 0.0522 | 14.184
[2,3,4]—=3 | 0.3251 0.6734 0.6302 0.4522 0.7448 0.914 0.6030 | 0.6204 | 0.0555 | 13.933
42 0.3174 0.6591 0.6398 0.4369 0.7285 0.906 0.5927 | 0.6115 | 0.0480 | 14.889

Oracle 6 0.2696 0.5749 0.5232 0.4226 0.6882 0.799 0.5351 | 0.5447 | 0.0269 | 26.144
[4,5]—4 0.2858 0.6141 0.5746 0.4376 0.7133 0.851 0.5525 | 0.5755 | 0.0366 | 16.848
6—4 0.2969 0.6178 0.5780 0.4408 0.7160 0.857 0.5446 | 0.5787 | 0.0442 | 16.762

key =4

Oracle 4 0.3430 0.6772 0.6388 0.4654 0.7465 0.910 0.6109 | 0.6274 | 0.0556 | 13.355
[2,3,4]—=3 | 0.3353 0.6776 0.6440 0.4587 0.7443 0.910 0.6054 | 0.6250 | 0.0611 | 13.564
42 0.3038 0.6595 0.6514 0.4242 0.7171 0.909 0.5991 | 0.6091 | 0.0441 | 15.972

Oracle 6 0.3106 0.6460 0.5841 0.4633 0.7252 0.867 0.5951 | 0.5988 | 0.0617 | 15.688
[4,5]—4 0.3012 0.6670 0.6171 0.4609 0.7350 0.886 0.5967 | 0.6077 | 0.0591 | 14.024
6—4 0.3114 0.6557 0.6294 0.4587 0.7367 0.887 0.6101 | 0.6127 | 0.0636 | 13.955

key =5

Oracle 6 0.3379 0.6662 0.6205 0.4772 0.7432 0.892 0.6069 | 0.6206 | 0.0769 | 13.494
[4,5]—4 0.3328 0.6751 0.6443 0.4680 0.7405 0.893 0.6085 | 0.6232 | 0.0729 | 13.303
6—4 0.3234 0.6709 0.6443 0.4592 0.7345 0.898 0.6062 | 0.6195 | 0.0681 | 13.746

key =6

Oracle 6 0.3353 0.6793 0.6269 0.4761 0.7416 0.899 0.6148 | 0.6247 | 0.0751 | 13.092
[4,5]—4 0.3259 0.6806 0.6382 0.4665 0.7405 0.900 0.6062 | 0.6226 | 0.0673 | 13.224
6—4 0.3063 0.6667 0.6413 0.4508 0.7334 0.902 0.6046 | 0.6150 | 0.0605 | 14.219

to 0.8% and 1.5% to 1.6% for chat-tuned models on k., = 3; 2.3% to 2.6% and 6.1% to 7.2% for
key = 2; for untuned models, 0.2% to 0.4% and 1.2% to 1.3% for k., = 3; 1.6% to 2.0% and
5.7% to 5.8% for k., = 2. PHDS often yields small perplexity gains on the chat-tuned variant while
matching QA accuracy. Interestingly, TriviaQA-fixed accuracy can increase at reduced ke, .

3.5 FIT MECHANISMS AT INCREASED SPARSITY

To understand how and where SFT allows checkpoints to support multiple sparsity levels, we SFTed
OLMOoE-1B-7B-0125 on CommonSensel 70k and evaluated on the multiple choice evaluation set.
This data is somewhat out of distribution; we varied free parameters during fit with models Base-
line, Gate, Expert, Attention, and Expert and Gate with Oracle and MoE-PHDS. As k., decreases,
attention carries more lift than expert-only refits; at key = kpre, €xpert refits dominate. Results are
in figure[3.3] Full protocol and plots appear in Appendix [A-6]

4 RELATED WORK

Many-in-One Models. Prior work enables a single network to run across compute budgets
via global, pretraining-time sparsity or nested subnetworks. Slimmable and Once-for-All train

Under review as a conference paper at ICLR 2026

Table 4: OLMOoE fine-tuned on Tiilu-3.
OLMOoE-1B-7B-0125 H OLMOoE-0125-1B-7B-Instruct

Method | kev | Avg triv wiki || Avg triv wiki

Oracle 8 0.7050 0.4889 9.407 0.7067 0.3977 15.810
[4,5,6,7,8]1 =5 | 8 0.6997 0.4585 8.923 0.7068 0.4131 15.742
[4,5,6,7,8] 8 0.7051 0.4901 8.903 0.7041 04119 15.484
8—4 8 0.7021 0.4794 9.485 0.7059 0.4174 15.488
Oracle 7 0.7017 0.4928 9.557 0.7022 0.3902 16.238
[4,5,6,7,8]1—=5 | 7 0.6939 0.4578 9.075 0.7006 0.3928 16.280
[4,5,6,7,8] 7 0.7001 0.4815 9.056 0.6999 0.3973 16.014
8—4 7 0.6966 0.4793 9.639 0.7008 0.4003 16.042
Oracle 6 0.6967 0.4817 9.985 0.6953 0.3756 17.372
[4,5,6,7,81 =5 | 6 0.6893 0.4667 9.496 0.6934 0.3842 17.426
[4,5,6,7,8] 6 0.6966 0.4767 9.474 0.6906 0.3862 17.148
8—4 6 0.6924 0.4737 10.091 0.6943 03909 17.188
Oracle 5 0.6849 0.4487 10.975 0.6837 0.3686 19.687
[4,5,6,7,81 -5 | 5 0.6742 04242 10.431 0.6831 0.3745 19.775
14,5,6,7,8] 5 0.6822 0.4293 10.408 || 0.6793 0.3695 19.534
8—4 5 0.6806 0.4448 11.151 0.6847 0.3700 19.621
Oracle 4 0.6646 0.3787 13.032 0.6627 0.3304 24.574
[4,5,6,7,8]1 =5 | 4 0.6590 0.3605 12.357 || 0.6650 0.3339 24921
[4,5,6,7,8] 4 0.6668 0.3775 12.304 || 0.6580 0.3305 24.640
8—4 4 0.6587 0.3886 13.424 || 0.6603 0.3316 24.965

Table 5: Qwen fine-tuned on Tiilu-3.
| Qwenl.5-MoE-A2.7B-Chat | Qwenl.5-MoE-A2.7B

Method | key | Avg triv wiki | Avg triv wiki

Oracle 4107001 00563 11436 0.7069 0.0287 10.223
[234]-2 | 4 | 07005 00585 11.373 07073 0.0271 10.244
[2,3:4] 4 107022 0.0631 11331 07059 0.0269 10.227
42 4 107007 00526 11.420 07072 0.0284 10.225
Oracle 306972 00633 11.608 0.7050 0.0337 10.355
[234]1=2 | 3 | 0.6979 0.0642 11.549 0.7043 0.0329 10.367
[2.3.4] 306968 0.0664 11.502 0.7036 0.0317 10.364
4-2 306992 00661 11.605 0.7061 0.0342 10.353
Oracle 2 | 06821 00625 12225 0.6952 0.0334 10.810
234152 | 2 | 0.6845 0.0662 12.070 0.6929 0.0342 10.832
[2.3.4] 2 | 0.6854 0.0675 12.033 0.6928 0.0317 10.821
42 2 | 06835 00643 12132 0.6931 0.0341 10811

width/subnet sets for CNNs (Yu et al., 2019; |Yu & Huang, 2019; |Li et al., 2021} Cai et al.; 2020; |Lou
et al.| [2021)); transformer variants drop tokens or learn nested blocks (DynamicViT, ViT-Slimmable,
Matryoshka, MatFormer) (Rao et al., [2021} |Yin et al., 2022} Kusupati et al.| [2022; [Devvrit et al.,
2024). For LLMs, Flextron fits routers post-training (Cai et al.l |2024); pruning methods (e.g.,
retraining-free/Fisher) remove heads or filters (Kwon et al., [2022). These methods span multiple
operating points but typically require bespoke pretraining, architecture changes, or storing multiple
subnetworks.

Under review as a conference paper at ICLR 2026

o
~
(=2}

o
~
ol

o
~
N

=8

oy
S o073 = -2
:
< 072 E
3 E-3
S o7 3 Modules
% g . —e— Baseline
- Gate
0.70
weme Attention
069 -5 -+~ Expert

0.68

6
Eval k

—#-- Gate and Expert

6 7 8
Eval k

Figure 4: Average multiple choice QA accuracy vs. k., for parameter-subset refits for OLMOoE-
1B-7B-0125 on CommonSensel70k with Oracle (left: average accuracy; right: relative accuracy
reduction per parameter subset vs. ko, = 8).

Sparse MoEs. Sparse MoEs are sparse models by design: a global sparsity parameter determines
how many experts are active per token (Fedus et al.||2022; Riquelme et al.|[2021). Subsequent work
has explored richer forms of token-level sparsity. Token-aware schemes include probabilistic top-
k(P) gating (Huang et al., 2024)), dynamic routing (Alizadeh-Vahid et al., 2024), the addition of null
experts (Zeng et al. [2024; [Team et al.,[2025), and multiplier layers for experts in TC-Experts (Yan
et al.,[2025)). Posttraining methods such as DynaMoE (Nishu et al., [2025)) convert dense LLMs into
token-sparse adaptive MoEs. Token-adaptive MoEs spend a fixed global budget more efficiently;
PHDS changes the global budget at runtime. These approaches compose.

5 DISCUSSION

In this paper, we (i) showed that pretrained sparse MoE models are more robust to runtime changes
in sparsity than commonly assumed, (ii) demonstrated that sparsity can be an MoE serving primitive
from a single checkpoint, and (iii) introduced MoE-PHDS, which allows practitioners to use SFT to
make their existing models more robust to sparsity mis-specification. While naive SFT often works,
MoE-PHDS provides added benefits for less tuned models and extends support across a slightly
larger range of k.. In practice, operators can often safely reduce k by 20-30% with minimal loss,
while larger reductions should be treated as best-effort. Although we evaluate moderate-scale MoEs,
PHDS is most valuable where latency, energy, or memory are tight. Our experiments span models
from 1B-14.3B parameters, a regime where memory and energy budgets are tightest. In these set-
tings, multiple checkpoints are impractical and token-level adaptivity introduces variance, whereas
a single global sparsity knob offers predictable accuracy—efficiency trade-offs without architectural
changes. Higher cross-k agreement further preserves the model’s “feel” as sparsity varies at runtime.

Limitations. Results are from smaller models; scalability to larger ones is unknown. We study
routed, equal-sized experts only; partial routing or heterogeneous expert sizes may behave differ-
ently. We also omit generation-heavy tasks (coding, summarization) and answer-style analyses, so
some gains may reflect stylistic shifts rather than ability. Reported safe ranges are model and task
dependent and need further study.

Reproducibility. When possible, we used public models; we trained and evaluated on public data
sets with standard harnesses. Diffs from OLMoE-1B-7B-0125 and Qwen1.5-MoE-A2.7B to support
PHDS will be available in a git repo pending institutional approval, along with a . json file with
experimental settings.

LLM Usage. LLMs were used in this work for outlining, text editing, and literature search.

Under review as a conference paper at ICLR 2026

REFERENCES

Keivan Alizadeh-Vahid, Seyed Iman Mirzadeh, Hooman Shahrkokhi, Dmitry Belenko, Frank Sun,
Minsik Cho, Mohammad Hossein Sekhavat, Moin Nabi, and Mehrdad Farajtabar. Duo-llm: A
framework for studying adaptive computation in large language models. In NeurlPS Efficient
Natural Language and Speech Processing Workshop, pp. 443—455. PMLR, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. In International Con-
ference on Machine Learning, pp. 5298-5311. PMLR, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning chal-
lenge. arXiv preprint arXiv:1803.05457, 2018.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yu-
lia Tsvetkov, Hanna Hajishirzi, Sham Kakade, Ali Farhadi, et al. Matformer: Nested transformer
for elastic inference. Advances in Neural Information Processing Systems, 37:140535-140564,
2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547-5569. PMLR, 17-23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.htmll

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Zhiqgiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933,2023.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei
Chen, Songfang Huang, and Yansong Feng. Harder task needs more experts: Dynamic routing in
moe models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12883—12895, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233-30249,
2022.

10

https://proceedings.mlr.press/v162/du22c.html

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101-24116, 2022.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tiilu
3: Pushing frontiers in open language model post-training. 2024.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8607-8617, June 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437,2024.

Wei Lou, Lei Xun, Amin Sabet, Jia Bi, Jonathon Hare, and Geoff V Merrett. Dynamic-ofa: Run-
time dnn architecture switching for performance scaling on heterogeneous embedded platforms.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3110-3118, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.
02060.

Kumari Nishu, Sachin Mehta, Samira Abnar, Mehrdad Farajtabar, Maxwell Horton, Mahyar Najibi,
Moin Nabi, Minsik Cho, and Devang Naik. From dense to dynamic: Token-difficulty driven
moefication of pre-trained llms. arXiv preprint arXiv:2502.12325, 2025.

Qwen Team. Qwenl.5-moe: Matching 7b model performance with 1/3 activated parameters”,
February 2024. URL https://gwenlm.github.io/blog/gwen-moe/.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937-13949, 2021.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583-8595, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao
Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong
Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu,
Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong,
Gang Liu, Gang Xu, Ge Li, Guogiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan,

11

https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://qwenlm.github.io/blog/qwen-moe/

Under review as a conference paper at ICLR 2026

Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian
Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jian-
chao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang,
Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He,
Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen
Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen,
Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun,
Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng,
Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao
Li, Tefeng Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei
Shi, Wei Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xi-
ang Mei, Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao
Wei, Xiaodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili
Wang, Xin Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi
Cao, Xunliang Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui
Sun, Yifan Lu, Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lyv,
Yongwei Zhou, Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhua Wei, Yulei Qian, Yun-
fan Liang, Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang,
Zhikang Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang,
Zixu Jiang, Zizhe Zhao, Zongyu Wang, and Zunhai Su. Longcat-flash technical report, 2025.
URL https://arxiv.org/abs/2509.01322.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Shen Yan, Xingyan Bin, Sijun Zhang, Yisen Wang, and Zhouchen Lin. TC-MoE: Augmenting
Mixture of Experts with Ternary Expert Choice. In The Thirteenth International Conference on
Learning Representations, 2025.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10809-10818, 2022.

Jiahui Yu and Thomas S. Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
In 7th International Conference on Learning Representations, ICLR 2019, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. Adamoe: Token-adaptive
routing with null experts for mixture-of-experts language models. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 6223-6235, 2024.

A APPENDIX

A.1 LITERATURE COMPARISON

Positioning. Literature is summarized in table [§] Prior work demonstrates that both dense and
sparse models can be adapted to multiple computational settings, but with important limitations:
dense models typically rely on pretraining across subnetworks or block structures, while MoEs fix
a global sparsity parameter in advance. Token- or layer-level dynamic gating can be a powerful way
to optimize how computational budget is spent for a fixed global sparsity level, but it injects variance
(latency fluctuates with content) and adds policy complexity with additional tunable parameters. In
contrast, to our knowledge, MoE-PHDS is the first method to enable global runtime sparsity control
from a single checkpoint. Our approach only requires lightweight supervised fine tuning, avoids
maintaining multiple subnetworks, and directly supports deployment across a set of operating points

12

https://arxiv.org/abs/2509.01322

Under review as a conference paper at ICLR 2026

due to predictability, simplicity, and composability. Therefore this method complements, rather than
competes with, finer-grained adaptivity.

Table 6: Comparison of methods enabling multiple operating points from a single model. MoE-
PHDS uniquely supports global runtime sparsity control from a single checkpoint.

Method \ Train Runtime Sparsity Family
MOoE (ours)
MOoE-PHDS \ SFT Yes (1 checkpoint) Global (k) MoE
Dense Networks / FFNs
Slimmable (Yu et al.,[2019) Pre Yes (width) Global CNN/FFN
US-Net (Yu & Huang| [2019) Pre Yes (width) Global CNN/FFN
OFA (Cazi et al.| 2020) Pre No Global FFN
Dyn-OFA (Cati et al.,[2020) Pre Yes (stored nets) Global FFN
DS-Net (Lou et al.,[2021])) Pre Yes (stored filt.) Global FFN
MatFormer (Devvrit et al., 2024) Pre Yes (blocks) Block Trans.
Matryoshka (Kusupati et al.;[2022) | Pre Yes (nested) Block Trans.
Flextron (Cai et al.,[2024) Post Yes (router) Layer LLM
RF-Pruning (Kwon et al.| 2022) Post No Head/Fil. Trans.
Sparse MoEs
top-k(P) (Huang et al.,[2024) Pre No Token MoE
AdaMoE (Zeng et al., [2024) Pre No Token MoE
TC-MOoE (Yan et al., [2025)) Pre No Token MoE
DynaMoE (Nishu et al.,[2025) Post No Token MoE/LLM
LongCat (Team et al.| 2025)) Pre No Token MoE

A.2 EXPERIMENTAL SETTINGS

We used the settings summarized in table [/| for experiments. We run one seed for SFT (budget-
constrained) and reuse that checkpoint across k.. ; evaluation uses fixed harness seeds. For each
we experiment, we ran a set of longer SFT trials to determine the number of tokens seen for mass
ablations. Initial experiments were run for Oracle and PHDS settings, with a shortened schedule
applied to all other ablations. Truncated schedule size was determined by where best checkpoints
were selected in the initial run phases.

PHDS has three main tunble parameters: ¢, Kt;ain, and Curriculum value. We chose € by running
ablations from 1E-1 to 1E-8; no material difference was seen below 1E-4, so we selected 1E-6 for
all experiments. This value is large enough that there is some gradient flow and back propagation
does not collapse, but small enough that changes when these values are included only have minor
effects. The inclusion of a soft mask is also done for deployment ease, as methods like jax work
best without changes to array sizes. In general, based on general performance across ablations, we

use Ktrain = {kpre/2; ey kpre - 17 kpre}-

Table 7: Experimental settings. LB is load balancing value.

Experiment \ Initial Tokens Ablation Tokens GPUs LB
Internal Baseline: CS170k 491M 246M 2xA100-40GB 0.01
Internal Baseline: Internal Data | 393M 393M 8xA100-40GB 0.01
OLMOoE: Tiilu-3 39B 7.8B 8xA100-40GB 0.0
OLMOE: CS170k 327TM 327M 8xA100-40GB 0.0
Qwen: Tiilu-3 39B 7.8B 8xA100-40GB 0.0

13

Under review as a conference paper at ICLR 2026

A.3 INTERNAL BASELINE MODELS: COMMONSENSE170K

Ablations on MoE-PHDS Parameters. MoE-PHDS has two main tunable parameters: the sam-
pling set, Kyrain, and the curriculum training values. In table 8] we train across sampling sets. In
table 0] we fix a subset of sampling sets and train across curriculum values.

Table 8: Internal Baseline Models: CommonSensel70k SFT, ablations across KCiyain sets. Overall
accuracy on CommonSense multiple choice. Best values are bold and second best underlined,
grouped by k. and k... Untargeted k., are denoted by ——.

Model | kpre | kev =2 ke =3 key =4 key =5 key =6
PHDS k=[2,3] 4 0.677000 0.708500 0.715625 - -

PHDS k=[2,3] — 2 0.682875 0.713875 0.720500 - -
PHDS k=[2,3,4] 0.678750 0.712000 0.718000 - -
PHDS k=[2,34] — 2 0.695000 0.716500 0.717375 - -
PHDS k=[2,4] 0.666625 0.698375 0.708750 - -
PHDS k=[2,4] — 2 0.686625 0.716125 0.718875 - -
PHDS k=[4,5] 0.683250 0.718875 0.729500 0.733250

PHDS k=[4,5] — 4
PHDS k=[4.5,6]
PHDS k=[4,5,6] — 4
PHDS k=[3.4,5,6]
PHDS k=[3.4,5,6] — 4

- 0.680750 0.720625 0.732000 0.740250
- 0.670250 0.706750 0.725000 0.730125
- 0.692500 0.718250 0.731750 0.733625
- 0.694125 0.720250 0.728625 0.729375
- 0.689875 0.723750 0.731375 0.734250

[o)We) e Ne e e N B N
|

In experiments for table 8] we found that using all values between kpre/2 and kpre produces con-
sistently solid results. For higher k.. values, non-inclusive subsets between kpye/2 and kpye Work
well, and curriculum training consistently increases accuracy. In the experiments for table 0] we
found that the best results are consistently from k just above kpye /2, and that results are consistent
across Kirain groups based given kpye.

Table 9: CommonSense 170k Fine-tuning: overall accuracy by Ky, ai, and curriculum.

v Model | kpre | kv =2 kv =3 kev=4 keov=5 ke =6

- 0.694125 0.720250 0.728625 0.729375
- 0.677500 0.706750 0.718375 0.721125
- 0.695125 0.704250 0.724625 0.722500
- 0.689875 0.723750 0.731375 0.734250
- 0.680750 0.711875 0.723000 0.725125
- 0.574500 0.719875 0.728875 0.732875

PHDS k=[3.4,5,6]

PHDS k=[3,4,5,6] — 2
PHDS k=[3,4,5,6] — 3
PHDS k=[3.4,5,6] — 4
PHDS k=[3,4,5,6] — 5
PHDS k=[3.4,5,6] — 6

PHDS k=[2,3,4] 4 0.678750 0.712000 0.718000 - -
PHDS k=[2,3,4] — 1 4 0.675125 0.700375 0.708375 - -
PHDS k=[2,3,4] — 2 4 0.695000 0.716500 0.717375 - -
PHDS k=[2,3,4] — 3 4 0.708500 0.714000 0.723875 - -
PHDS k=[2,34] — 4 4 0.666250 0.706750 0.714625 - -
PHDS k=[4,5] 6 - 0.683250 0.718875 0.729500 0.733250
PHDS k=[4,5] — 2 6 - 0.679500 0.713750 0.717875 0.723125
PHDS k=[4,5] — 3 6 - 0.668750 0.704250 0.713875 0.715625
PHDS k=[4,5] — 4 6 - 0.680750 0.720625 0.732000 0.740250
PHDS k=[4,5] — 5 6 - 0.676875 0.716250 0.728875 0.733375
PHDS k=[4,5] = 6 6 - 0.574500 0.622750 0.729000 0.733250
6
6
6
6
6
6

A.4 OLMOE EXPERIMENTS

Full results from OLMOoE on Tiilu-3 is given in tables[10]and

14

Under review as a conference paper at ICLR 2026

Table 10: OLMOoE fine-tuned on Tiilu-3. Best per block in bold, second-best underlined. Well-
specified methods are in blue.

OLMOoE-1B-7B-0125-Instruct
Model | ARC-C ARC-E boolq hella piga sciq wino | Avg | triv | wiki
kewv =8

Oracle 0.4642 0.7412 0.7563 0.5977 0.7622 0.949 0.6764 | 0.7067 | 0.3977 | 15.810
[4,...8]—=5 | 04701 0.7336 0.7615 0.5950 0.7590 0.956 0.6725 | 0.7068 | 0.4131 | 15.742
[4,5,6,7,8] | 0.4642 0.7340 0.7596 0.5932 0.7644 0.948 0.6654 | 0.7041 | 0.4119 | 15.484

8—4 04701 0.7370 0.7599 0.5941 0.7617 0.949 0.6693 | 0.7059 | 0.4174 | 15.488
key =17
Oracle 0.4582 0.7391 0.7563 0.5922 0.7601 0.950 0.6598 | 0.7022 | 0.3902 | 16.238

[4,...8]—=5 | 0.4582 0.7294 0.7563 0.5945 0.7606 0.948 0.6575 | 0.7006 | 0.3928 | 16.280
[4,5,6,7,8] | 04608 0.7231 0.7575 0.5928 0.7552 0.951 0.6590 | 0.6999 | 0.3973 | 16.014

8—4 0.4633 0.7298 0.7575 0.5909 0.7617 0.949 0.6535 | 0.7008 | 0.4003 | 16.042
key =6
Oracle 04471 0.7201 0.7609 0.5895 0.7590 0.947 0.6433 | 0.6953 | 0.3756 | 17.372

[4,...8]1=5 | 04437 0.7142 0.7667 0.5884 0.7514 0.951 0.6385 | 0.6934 | 0.3842 | 17.426
[4,5,6,7,8] | 0.4352 0.7130 0.7590 0.5878 0.7503 0.951 0.6377 | 0.6906 | 0.3862 | 17.148

8—4 0.4428 0.7205 0.7606 0.5871 0.7563 0.947 0.6464 | 0.6943 | 0.3909 | 17.188
key =5
Oracle 0.4334 0.7029 0.7413 0.5774 0.7443 0.947 0.6393 | 0.6837 | 0.3686 | 19.687

[4,...8]—=5 | 0.4300 0.7054 0.7468 0.5742 0.7437 0.943 0.6385 | 0.6831 | 0.3745 | 19.775
[4,5,6,7,8] | 0.4232 0.6944 0.7419 0.5743 0.7508 0.946 0.6243 | 0.6793 | 0.3695 | 19.534

8—4 04377 0.7050 0.7419 0.5721 0.7481 0.948 0.6401 | 0.6847 | 0.3700 | 19.621
kewy =4
Oracle 0.3805 0.6894 0.7287 0.5543 0.7296 0.942 0.6140 | 0.6627 | 0.3304 | 24.574

[4,...8]1—=5 | 0.3899 0.6814 0.7278 0.5509 0.7394 0.939 0.6267 | 0.6650 | 0.3339 | 24.921
[4,5,6,7,8] | 03823 0.6692 0.7242 0.5472 0.7329 0.937 0.6133 | 0.6580 | 0.3305 | 24.640
8—4 0.3874 0.6768 0.7196 0.5490 0.7301 0.938 0.6212 | 0.6603 | 0.3316 | 24.965

A.5 QWEN

Full results for Qwen on Tiilu-3 are given in table[T2]

A.6 MECHANISMS OF ROBUSTNESS AT REDUCED &

Setup. On OLMOoE-1B-7B-0125, we SFT on CommonSensel70K with subset refits: Baseline,
Gate, Expert, Attention, Expert and Gate, under Oracle and PHDS [4,5,6,7,8]—5 regimes. Curricu-
lum scheduling is introduced to PHDS after 93.9% of epoch 1; all runs are done through two full
epochs. Checkpoints are selected by best MC-QA accuracy at ke, =8.

Metrics. Overall MC-QA accuracy and relative drop vs. accuracy for k., = 8 by parameter
subset. Metrics are reported by parameter subset to understand which subsets have less relative
degradation at low k.., even if they have poorer fits at ke, = 8.

Findings. Our results with MoE-PHDS are similar to those for Oracle, with Expert adding the
majority of fit value at k., = 8, but with Attention contributing significant value at k., = 4.

15

Under review as a conference paper at ICLR 2026

Table 11: OLMOoE fine-tuned on Tiilu-3. Best per block in bold, second-best underlined. Well-
specified methods are in blue.

OLMOoE-1B-7B-0125

Model | ARC-C ARC-E boolq hella piga sciq wino | Avg | triv | wiki
kev =8
Oracle 0.4582 0.7757 0.7040 0.5673 0.7797 0.955 0.6953 | 0.7050 | 0.4889 | 9.407
[4,....8]—=5 | 04471 0.7605 0.6997 0.5742 0.7856 0.932 0.6985 | 0.6997 | 0.4585 | 8.923
[4,5,6,7,8] | 0.4659 0.7694 0.7070 0.5764 0.7856 0.937 0.6946 | 0.7051 | 0.4901 | 8.903
8—4 0.4573 0.7668 0.7043 0.5635 0.7862 0.943 0.6938 | 0.7021 | 0.4794 | 9.485
kew =7
Oracle 0.4497 0.7723 0.7018 0.5680 0.7835 0.951 0.6859 | 0.7017 | 0.4928 | 9.557
[4,...8]—=5 | 0.4428 0.7508 0.6899 0.5747 0.7835 0.932 0.6835 | 0.6939 | 0.4578 | 9.075
[4,5,6,7,8] | 04531 0.7626 0.7061 0.5757 0.7835 0.934 0.6859 | 0.7001 | 0.4815 | 9.056
8—4 0.4565 0.7597 0.6896 0.5666 0.7786 0.944 0.6811 | 0.6966 | 0.4793 | 9.639
kev =6
Oracle 0.4403 0.7677 0.7009 0.5665 0.7780 0.952 0.6717 | 0.6967 | 0.4817 | 9.985
[4,...8]=5 | 04471 0.7479 0.6865 0.5703 0.7780 0.928 0.6669 | 0.6893 | 0.4667 | 9.496
[4,5,6,7,8] | 0.4565 0.7534 0.6994 0.5726 0.7840 0.934 0.6764 | 0.6966 | 0.4767 | 9.474
8—4 0.4445 0.7500 0.6884 0.5637 0.7856 0.938 0.6764 | 0.6924 | 0.4737 | 10.091
kev =5
Oracle 0.4206 0.7370 0.6957 0.5559 0.7704 0.942 0.6725 | 0.6849 | 0.4487 | 10.975
[4,...8]—5 | 0.4078 0.7151 0.6841 0.5619 0.7629 0.934 0.6535 | 0.6742 | 0.4242 | 10.431
[4,5,6,7,8] | 04206 0.7311 0.7028 0.5630 0.7720 0.933 0.6527 | 0.6822 | 0.4293 | 10.408
8—4 0.4232 0.7323 0.6865 0.5540 0.7709 0.934 0.6630 | 0.6806 | 0.4448 | 11.151
key =4
Oracle 0.4053 0.7109 0.6706 0.5386 0.7628 0.930 0.6338 | 0.6646 | 0.3787 | 13.032
[4,....8]—=5 | 0.3984 0.6949 0.6722 0.5443 0.7584 0.920 0.6251 | 0.6590 | 0.3605 | 12.357
[4,5,6,7,8] | 0.4138 0.7024 0.6798 0.5471 0.7661 0.927 0.6314 | 0.6668 | 0.3775 | 12.304
8—4 0.3993 0.7020 0.6648 0.5369 0.7633 0.909 0.6354 | 0.6587 | 0.3886 | 13.424

0.76

075

0.74

073

072

0.71

Average Accuracy

0.70

0.69

0.68

6
Eval k

=8

Percent from k
&

Modules
Baseline
Gate
Aftention

-+~ Expert

—-

6
Eval k

7

Gate and Expert

8

Figure 5: Average multiple choice QA accuracy vs. ke, for parameter-subset refits for OLMoE-1B-
7B-0125 on CommonSensel70k with PHDS [4,5,6,7,8]—5 (left: average accuracy; right: relative
drop per parameter subset vs. ko, = 8).

16

Under review as a conference paper at ICLR 2026

Table 12: Qwen: fine-tuned on Tiilu-3 for the untuned model. Best per block in bold, second-best
underlined. Well-specified methods are in blue.

Qwenl.5-MoE-A2.7B

Model | ARC-C ARC-E boolq hella piga sciq wino | Avg | triv wiki
key =4
Oracle 04104 07302 0.7911 0.5806 0.7982 0.945 0.6906 | 0.7069 | 0.0287 | 10.223
[2.3.4]-2 | 04172 0.7273 0.7884 0.5798 0.8020 0.942 0.6946 | 0.7073 | 0.0271 | 10.244
[2.3.4] 04121 0.7290 0.7859 0.5805 0.7987 0.942 0.6930 | 0.7059 | 0.0269 | 10.227
42 04172 0.7298 0.7920 0.5813 0.7987 0.944 0.6875 | 0.7072 | 0.0284 | 10.225
key = 3
Oracle 04002 0.7281 0.7872 0.5781 0.7976 0.949 0.6946 | 0.7050 | 0.0337 | 10.355
[2.3.4]-2 | 0.4044 07252 0.7887 0.5759 0.7965 0.948 0.6914 | 0.7043 | 0.0329 | 10.367
[2.3.4] 0.3985 0.7302 0.7905 0.5766 0.7976 0.947 0.6851 | 0.7036 | 0.0317 | 10.364
42 04019 07319 07893 0.5775 0.7992 0.949 0.6938 | 0.7061 | 0.0342 | 10.353
key =2
Oracle 0.4027 0.7146 0.7789 0.5680 0.7938 0.946 0.6622 | 0.6952 | 0.0334 | 10.810
[2.3.41=2 | 04019 0.7092 0.7746 0.5658 0.7884 0.946 0.6646 | 0.6929 | 0.0342 | 10.832
[2.3.4] 0.3959 0.7075 0.7774 0.5673 0.7884 0.946 0.6669 | 0.6928 | 0.0317 | 10.821
42 04002 0.7113 0.7786 0.5680 0.7938 0.946 0.6535 | 0.6931 | 0.0341 | 10.811

Qwenl.5-MoE-A2.7B-Chat

Model | ARC-C ARC-E boolq hella piga sciq wino | Avg triv wiki
key =4
Oracle 0.3985 0.7012 0.8089 0.5936 0.7894 0.947 0.6622 | 0.7001 | 0.0563 | 11.436
[2.3.4]-2 | 0.4002 0.7029 0.8080 0.5950 0.7861 0.946 0.6653 | 0.7005 | 0.0585 | 11.373
[2.3.4] 0.3985 0.7029 0.8061 0.5943 0.7927 0.949 0.6717 | 0.7022 | 0.0631 | 11.331
42 0.3951 0.7045 0.8076 0.5936 0.7900 0.948 0.6661 | 0.7007 | 0.0526 | 11.420
key = 3
Oracle 0.3951 0.7003 0.8037 0.5914 0.7840 0.949 0.6567 | 0.6972 | 0.0633 | 11.608
[2.3.41-2 | 0.3959 0.7033 0.8082 0.5928 0.7845 0.947 0.6535 | 0.6979 | 0.0642 | 11.549
[2.3.4] 0.3908 0.7029 0.8046 0.5921 0.7845 0.949 0.6535 | 0.6968 | 0.0664 | 11.502
42 0.4027 0.7037 0.8058 0.5908 0.7872 0.943 0.6614 | 0.6992 | 0.066/ | 11.605
kev =2
Oracle 0.3831 0.6848 0.7758 0.5802 0.7726 0.945 0.6330 | 0.6821 | 0.0625 | 12.225
[2.34]-2 | 0.3865 0.6827 0.7728 0.5821 0.7726 0.944 0.6511 | 0.6845 | 0.0662 | 12.070
[2.3.4] 0.3968 0.6835 0.7729 0.5813 0.7780 0.943 0.6425 | 0.6854 | 0.0675 | 12.033
42 0.3959 0.6789 0.7716 0.5797 0.7742 0.946 0.6385 | 0.6835 | 0.0643 | 12.132

17

	Introduction
	MoE-PHDS Framework
	Multi-k Training
	Curriculum Anchoring
	Implementation Details

	Experiments
	Experimental Setup
	Pretrained Models and Fine-tune Data
	Fine-tuning Regimes
	Selection and Evaluation Protocol

	Internal Baselines: CommonSense170K
	Internal Baseline Model: Internal Data Mixture

	OLMoE
	Qwen
	Fit Mechanisms at Increased Sparsity

	Related Work
	Discussion
	Appendix
	Literature Comparison
	Experimental Settings
	Internal Baseline Models: CommonSense170K
	OLMoE Experiments
	Qwen
	Mechanisms of Robustness at Reduced k

