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ABSTRACT

Sparse Mixtures of Experts (MoEs) are typically trained to operate at a fixed spar-
sity level, e.g. k in a top-k gating function. This global sparsity level determines
an operating point on the accuracy/latency curve; currently, meeting multiple ef-
ficiency targets means training and maintaining multiple models. This practice
complicates serving, increases training and maintenance costs, and limits flexi-
bility in meeting diverse latency, efficiency, and energy requirements. We show
that pretrained MoEs are more robust to runtime sparsity shifts than commonly
assumed, and introduce MoE-PHDS (Post Hoc Declared Sparsity), a lightweight
SFT method that turns a single checkpoint into a global sparsity control surface.
PHDS mixes training across sparsity levels and anchors with a short curriculum
at high sparsity, requiring no architectural changes. The result is predictable ac-
curacy/latency tradeoffs from one model: practitioners can “dial k” at inference
time without swapping checkpoints, changing architecture, or relying on token-
level heuristics. Experiments on OLMoE-1B-7B-0125, Qwen1.5-MoE-A2.7B,
and proprietary models fit on multiple operating points show that PHDS matches
or exceeds well-specified oracle models, improves cross-sparsity agreement by up
to 22% vs. well-specified oracle models, and enables simplified, flexible runtime
MoE deployment by making global sparsity a first-class serving primitive.

1 INTRODUCTION

Mixture of Experts (MoEs) language models deliver state-of-the-art quality with lower active com-
pute by routing tokens through a subset of active experts per layer (Liu et al., 2024; Du et al., 2022).
At deployment, sparsity level (e.g. k in top-k) is fixed, so supporting multiple operating points
has required multiple checkpoints. We argue this is not necessary. First, pretrained MoEs already
tolerate moderate runtime sparsity shifts. Second, with MoE-PHDS we make this tolerance more
predictable: a short SFT schedule across sparsity levels with curriculum anchoring produces a sin-
gle checkpoint reusable at different sparsity levels. This enables more predictable accuracy/latency
tradeoffs, SLA-aware serving, and energy-aware throttling from one model.

Prior work, like adaptive routing(Huang et al., 2024; Nishu et al., 2025; Alizadeh-Vahid et al., 2024)
and null experts (Zeng et al., 2024; Yan et al., 2025; Team et al., 2025), focuses on token-level
choices. These can spend a fixed global budget more efficiently, but add variance (latency depends
on input) and policy complexity (extra knobs). In contrast, PHDS exposes one global knob: k,
which yields more predictable accuracy/latency tradeoffs. This simplicity is key for deployment.

Prior work in adaptive computation, such as slimmable networks (Yu et al., 2019), Once-for-All
models (Cai et al., 2020), MatFormer (Devvrit et al., 2024), and Flextron (Cai et al., 2024), demon-
strates that dense networks can support multiple operating points from a single model. In contrast,
the prevailing approach is that each global MoE sparsity level needs its own checkpoint, often from
a separate pretraining run. This practice of supporting only well-specified models leads to training
and storing multiple models, and has stymied study about model behavior when inference spar-
sity is not well-specified. As such, fundamental questions remain unanswered: Can a single MoE
checkpoint generalize across multiple global levels of sparsity? What mechanisms block or enhance
model flexibility?

Our work challenges the fixed-sparsity assumption. We show that MoEs are robust to small-to-
moderate changes in the global sparsity parameter. Empirically, we show that flexibility can be
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Figure 1: Overview of our proposed framework, MoE-PHDS. The left represents how a robust,
sparsity-flexible single checkpoint is generated. The center shows how the model is called under
dynamic runtime conditions. The right panel shows average multiple choice task accuracy vs. flops
with 4096 context length using OLMoE-1B-7B-0125 as a base pretrain model, along with the a
well-specified model. There is little accuracy degradation as k is reduced from 8 to 6.

Figure 2: FLOPs vs. average multiple choice accuracy for internal models trained at the current
practice (multiple checkpoints for each k) (crosses) and PHDS models (dots); all methods are SFTed
on CommonSense170k. Left: two internal models trained at k = 2 and k = 4 vs. a single PHDS
checkpoint, evaluated at k = {2, 3, 4}. Right: two internal models trained at k = 4 and k = 6 vs.
a single PHDS checkpoint, evaluated at k = {4, 5, 6}. PHDS reduced training by 50% compared to
current practice and offered support on a wider range of k for each setting.

supported by a single checkpoint. For example, we show that for OLMoE-1B-7B-0125, reducing k
at runtime from 8 to 6 decreases multiple choice accuracy by 1.2% (relative) and increases wikitext
perplexity by 6.4%; likewise, for Qwen1.5-MoE-A2.7B, reducing k from 4 to 3 results in only a
0.43% accuracy reduction and 1.2% perplexity increase. These findings highlight an overlooked
generalization property, with direct implications for efficiency-constrained AI deployment.

Building on this observation, we introduce a lightweight supervised fine tuning (SFT) method to
reliably and stably produce models for cross-sparsity deployment. Rather than requiring different
checkpoints for different sparsity levels, our proposed method, a Mixture of Experts with Post Hoc
Declared Sparsity (MoE-PHDS), produces a single checkpoint for use across sparsity levels. See
figure 1 for an overview and figure 2 for a comparison with current practice. On public models, our
method matches or exceeds baselines, and shows benefits, such as higher accuracy and support for
extended sparsity ranges, on internal models.

Inference-time sparsity mis-specification can be viewed as a feature of MoE models rather than
a bug. Classical mis-specification is when a data-generating regime is not supported by a model
class, such as using a linear model for data with a non-linear relationship. Here we study an MoE
deployment variant: at inference time we intentionally restrict the model space (fewer experts than
used in pretraining), by declaring a smaller k after training. PHDS makes this intentional restriction
better supported by introducing the model to various k levels during SFT, we keep predictions stable
when k is set at runtime. Practically, this yields (i) controllability, since a single parameter governs
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global sparsity, and (ii) predictability with respect to changes in FLOPS or accuracy. In short, we
turn “mis-specification” into a serving primitive to produce predictable resource-quality tradeoffs.

From an operational standpoint, global control of sparsity at runtime unlocks capabilities that fixed-
sparsity or token-level sparsity models do not have. First, it enables service level agreement (SLA)-
aware serving, where a model can adjust sparsity based on user tier, request type, latency budget, or
system load. This can mitigate latency spikes and promote tenant fairness without swapping models.
Additionally, explicit, discrete k selection per query allows predictable accuracy/latency tradeoffs
compared to token-level sparsity. Second, it enables energy-aware inference: sparser models can
be used during system wide energy constraints and scale to full model size when resources are not
constrained. Finally, it offers substantial operational simplicity: rather than managing a fleet of
sparsity-specific models with separate pipelines, drift risks and possibly architectures, practitioners
can deploy a single, flexible checkpoint. We focus on small to moderately size models (1B-14.3B),
where deployment memory and energy budgets are often the tightest. This paper makes the follow-
ing contributions:

• Sparsity level as a serving primitive. We show that pretrained MoEs tolerate moderate
runtime sparsity shifts with minimal loss, challenging the assumption that each sparsity
level requires its own checkpoint, allowing sparsity level to act as a serving primitive.

• MoE-PHDS method. We propose a lightweight SFT recipe—multi-k training with cur-
riculum anchoring—that enables a single checkpoint to operate flexibly across sparsity
levels.

• Deployment benefits. We demonstrate that PHDS improves cross-sparsity output agree-
ment (7–22%), yielding stable user-facing behavior while reducing operational complexity:
one checkpoint, one control surface, and predictable tradeoffs.

2 MOE-PHDS FRAMEWORK

We introduce an SFT method that allows a pretrained MoE model to support runtime-declared spar-
sity levels. MoE-PHDS consists of two phases: (1) Multi-k Training, in which the model is fine-
tuned by randomly varying the number of active experts k across forward passes, and (2) Curriculum
Anchoring, in which training is annealed to a lower k to stabilize expert routing. Once fine-tuned,
a single checkpoint can be deployed and reused across a range of sparsity levels. Let kpre be the
sparsity level from the pretrained model, ktrain, i the sparsity for forward pass iteration i, and kev
is the evaluation sparsity level. Since expert parameters are only pretrained up to kpre, we restrict
training and evaluation to ktrain,i, kev ≤ kpre.

2.1 MULTI-k TRAINING

The goal of Multi-k Training is to expose the model to a range of sparsity levels so that it can gener-
alize beyond fixed kpre. We define a set of candidate sparsity levels, Ktrain ⊂ N (e.g. {4, 5, 6, 7, 8}).
For each forward pass i, we uniformly sample ktrain, i from Ktrain and compute the language mod-
eling loss, such as cross-entropy, under this sparsity. Any auxiliary components (e.g., load-balancing
losses, layer norms) are stored and updated per k. In practice, we observe rapid convergence, espe-
cially when the fine-tuning dataset is distributionally aligned with pretraining data.

2.2 CURRICULUM ANCHORING

Although Multi-k Training improves robustness across multiple k, performance can degrade at very
low k due to interference from higher-k co-activation patterns. To address this, we introduce Cur-
riculum Anchoring: after an initial phase of Multi-k Training, we gradually anneal training toward
a fixed, lower ktrain (e.g., k = 2). This stabilizes expert dynamics at sparse settings and improves
reliability when kev ≪ kpre.

2.3 IMPLEMENTATION DETAILS

Pretrained MoE models are not typically designed for runtime sparsity variation. MoE-PHDS in-
troduces minimal modifications to support this flexibility. Let h ∈ Rd denote the hidden state,
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Wr ∈ Rd×E the router weights, and E the number of experts. Router logits are z = Wrh, with
p = softmax(z; kpre) the raw gating probabilities. We use a soft mask to adapt p to different ktrain:

pj =


pj if j ∈ top-ktrain,i(p),
ϵ if j ∈ top-kpre(p) \ top-ktrain,i(p),
0 otherwise,

(1)

ϵ is a tunable parameter, we use 1E-6. For unnormalized top-k-softmax routers, equation 1 remains
unnormalized; for normalized softmax-k routers, the masked probabilities are renormalized. Layer
norm parameters and load balancing loss, if applicable, need to be stored and activated by ktrain.

Checkpoint Selection. Multi-k Training with Curriculum Anchoring produces a family of candi-
date checkpoints. A single checkpoint is chosen after anchoring, either by best validation perfor-
mance at a target kev or by average performance across a range of kev. We use values at kpre since
we assume it is the default operating point. At runtime, operators declare the desired sparsity level,
and the same checkpoint can be reused without retraining.

3 EXPERIMENTS

Our experiments test whether one checkpoint can support multiple runtime sparsity levels and when
PHDS outperforms oracle or naive baselines. PHDS fine-tuning adds a fraction of pretraining cost,
since it is a short SFT pass reusing existing checkpoints. Broadly, public well-tuned models (OL-
MoE, Qwen) are already robust to modest sparsity shifts, while less tuned internal models show
consistent gains from PHDS. Across models, PHDS maintains ≤1–2% relative QA drop when k
is reduced by up to 25% (e.g., OLMoE: k =8→6, Qwen:k =4→3). Below kpre/2, degradation
becomes more pronounced.

3.1 EXPERIMENTAL SETUP

3.1.1 PRETRAINED MODELS AND FINE-TUNE DATA

Table 1: Summary of Pretrained Models

Model kpre Experts Active Params Total Params SFT

Internal-Baseline-2 2 16 240M 1.032B No
Internal-Baseline-4 4 16 353M 1.032B No
Internal-Baseline-6 6 16 466M 1.032B No
OLMoE-1B-7B-0125 8 64 1B 7B No
OLMoE-1B-7B-0125-Instruct 8 64 1B 7B Yes
Qwen1.5-MoE-A2.7B 4 60 2.7B 14.3B No
Qwen1.5-MoE-A2.7B-Chat 4 60 2.7B 14.3B Yes

Internal Baseline Model. We pretrain three MoEs (24 layers; model dim 1024; FFN dim 12,288;
16 experts/layer; 1.032B total params) with kpre ∈ {2, 4, 6} and softmax–top-k routers. See table 1
for pretrained model specifications.

OLMoE. We evaluate OLMoE-1B-7B-0125 and its instruction-tuned variant (Muennighoff et al.,
2024). Both use 8/64 experts per layer with a top-k–softmax router.

Qwen. We evaluate Qwen1.5-MoE-A2.7B and the chat-tuned variant (Qwen Team, 2024), which
use 4/60 experts per layer with a top-k–softmax router.

Fine-Tuning Data. We use CommonSense170K from LLM-Adapters (Hu et al., 2023), the
tulu3-sft-olmo-2-mixture dataset (Lambert et al., 2024), and a high-quality internal mix-
ture (“Internal Baseline Data Set” comprised of licensed; curated public/open data; and a web
crawled subset) for additional SFT.
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Figure 3: (Left) Average accuracy vs. flops with 4096 context length for Internal Baseline Models.
Current practice (Oracle models operating at kpre; denoted by crosses) is compared with PHDS
(dots), which produces a range of operating points PHDS operating regions are based on pretrained
models, but show ability to meet or outperform baseline models with reduced training costs. (Right)
Average accuracy vs. kev, with answer agreement between checkpoints. Despite similar accuracy,
PHDS has increased agreement compared to current practice.

3.1.2 FINE-TUNING REGIMES

Prior work on MoE flexibility focuses on token-level adaptability given a fixed global sparsity
budget or uses architectural changes. We are interested in MoE robustness to train/inference mis-
specification for a fixed architecture. Hence, we use well-specified oracle models as a baseline and
compare a set of fine tuning regimes.

Oracle. Fine-tune at kpre; denoted Oracle kpre; evaluated at any kev. This is a well-specified
baseline when evaluated at kev = kpre.

Naive. Fine-tuned at a single, lower ktrain < kpre; denoted kpre→ktrain, e.g. 4→2.

MoE-PHDS. Sample k uniformly from Ktrain during SFT, optionally anneal to a low anchor
ktrain; denoted Ktrain→ ktrain, e.g., [2, 3, 4]→2 or [2, 3, 4] for a non-curriculum trained variant.

3.1.3 SELECTION AND EVALUATION PROTOCOL

Unless otherwise noted, we select the checkpoint with the best multiple-choice QA accuracy at
kev = kpre after a 5,000-step burn-in as pretrain model-task misalignment may cause accuracy de-
creases. Public models use tulu3-sft-olmo-2-mixture (Tülu-3) for SFT; internal models
use the Internal Baseline Data Set or CommonSense170K. All regimes are SFTed with the same
settings per ablation. We evaluate with lm-evaluation-harness for zero shot multiple choice
QA: ARC Challenge and Easy (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and Winogrande (Sakaguchi et al.,
2021); TriviaQA-fixed (Joshi et al., 2017) for generative QA; and WikiText (Merity et al., 2016) per-
plexity. For CommonSense170K on Internal Baseline Models, we follow LLM-Adapters’ stricter
matching protocol and evaluate on their multiple choice QA set: ARC-C/E, BoolQ, PIQA, Hel-
laSwag, Winogrande, SocialIQA (Sap et al., 2019), and Openbook QA (Mihaylov et al., 2018). All
methods are evaluated at a single checkpoint. For all tables, best results are in bold, second-best
underlined; well-specified models are in blue.

3.2 INTERNAL BASELINES: COMMONSENSE170K

We fine-tune untuned Internal Baseline Models on CommonSense170K to study (1) accuracy un-
der evaluation sparsity mis-specification, (2) sensitivity of MoE-PHDS to Ktrain and curricula, and
(3) cross-k agreement. We begin curriculum after 10,000 steps (≈93.9% of epoch 1). Evalua-
tion uses strict matching on 1,000 samples per task. Figure 3 highlights the difference between
PHDS and current methods: using Oracle models at kpre, forcing practitioners to maintain multiple
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models. In contrast, a single PHDS checkpoint spans multiple sparsity levels, while maintaining
accuracy close to or above Oracle at its kpre. Full results are in table 2. We find that all families (Or-
acle/Naive/PHDS) tolerate modest decreases in kev with limited accuracy loss; increasing beyond
kpre does not recover denser-oracle performance. Evaluating below kpre/2 produces poor results.
PHDS often matches or slightly exceeds the corresponding Oracle around kpre, while producing
superior results for mis-specified models.

Table 2: CommonSense170K SFT: overall accuracy (average across tasks).

Model kpre kev=2 kev=3 kev=4 kev=5 kev=6

Oracle 2 2 0.69638 0.66750 0.70025 0.05750 0.00013

Oracle 4 4 0.66113 0.70663 0.72013 0.72688 0.71025
PHDS k=[2, 3, 4]→3 4 0.70850 0.71400 0.72388 0.72288 0.71050
Naive 4→2 4 0.69850 0.71863 0.70488 0.56913 0.21150

Oracle 6 6 0.44350 0.66013 0.72200 0.73163 0.73388
PHDS k=[4, 5]→4 6 0.47800 0.68075 0.72063 0.73200 0.74025
Naive 6→4 6 0.48275 0.68175 0.72275 0.72788 0.73025

For operators to vary sparsity at runtime without altering user experience, outputs should remain
consistent across kev. We quantify agreement between two models M1,M2 by averaging discrete
answer, Mj,i, equality over items i: A(M1,M2) = 1

N

∑N
i=1 1{M1,i = M2,i}. We compare an-

swer agreement of two separate well-specified models with different checkpoints vs. a single PHDS
checkpoint evaluated at different sparsity levels in figure 3. Across both (2, 4) and (4, 6) compar-
isons, a single PHDS checkpoint yields 7%−22% higher cross-k agreement than using two separate
well-specified Oracle checkpoints, at similar accuracy levels.

3.2.1 INTERNAL BASELINE MODEL: INTERNAL DATA MIXTURE

Here we SFT the Internal Baseline models on a subset of the Internal Data Mixture to measure
responsiveness to fine-tuning under mis-specification. Oracle models change little from the pre-
trained models, while Naive and PHDS shift their performance profiles. Internal models use
kpre ∈ {2, 4, 6}. From kpre=4: PHDS [2, 3, 4] → 3 and Naive 4 → 2. From kpre=6: PHDS
[4, 5] → 4 and Naive 6 → 4. We report multiple-choice QA averages, TriviaQA-fixed (genera-
tive QA), and WikiText perplexity (table 3). We find that PHDS is broadly competitive. Across
kev ∈ {2, 3, 4, 5, 6}, PHDS is typically within 1∼2% of the best Oracle for well-specified kev, and
often second-best across settings. For generative QA and perplexity, trends mirror QA accuracy:
PHDS and Naive are competitive at their target k, with Oracle best at its native k; PHDS avoids
steep degradations when kev shifts.

3.3 OLMOE

We assess mis-specification on OLMoE-1B-7B-0125 with SFT on Tülu-3. We compare Oracle k=8,
PHDS [4, 5, 6, 7, 8]→ 5, PHDS [4, 5, 6, 7, 8], and Naive 8→ 4. Results for average multiple choice
(Avg), TriviaQA (triv), and wikitext perplexity (wiki) are in table 4; full results by task are in the
Appendix in section A.4. We find that: (i) all SFT methods are similar, and () robustness to sparsity.
At kev ∈ {8, 7, 6, 5, 4}, both accuracy and perplexity remain close across methods. For the base
OLMoE model, perplexity stays within ∼1.5–6.4% of the well-specified model for kev ∈ {6, 7, 8},
with overall relative accuracy differences ≤ 1.5%.

3.4 QWEN

We SFT Qwen1.5-MoE-A2.7B-Chat on Tülu-3, comparing Oracle k=4, PHDS [2, 3, 4] → 2,
PHDS [2, 3, 4] without curriculum, and Naive 4 → 2. Results from the chat-tuned model are in
table 5; results for Qwen1.5-MoE-A2.7B are in the Appendix in table 12. We find that all methods
remain strong under mis-specification. Accuracy deltas across kev ∈ {4, 3, 2} are small for both
chat and base models; relative accuracy and perplexity degradation from kev = 4 are between 0.2%
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Table 3: Internal Baselines fine-tuned on the Internal Baseline Data Set. Models are grouped by kpre
and kev.

Method ARC-C ARC-E boolq hella piqa sciq wino Avg triv wiki
kev = 2

Oracle 2 0.3242 0.6650 0.6291 0.4464 0.7323 0.899 0.5912 0.6125 0.0813 14.039

Oracle 4 0.2944 0.5867 0.5000 0.4235 0.7155 0.844 0.5406 0.5578 0.0243 20.800
[2,3,4]→3 0.2833 0.6284 0.5654 0.4302 0.7329 0.882 0.5533 0.5822 0.0351 16.274
4→2 0.2952 0.6402 0.5966 0.4379 0.7263 0.892 0.5943 0.5975 0.0480 15.088

kev = 3

Oracle 4 0.3250 0.6599 0.6174 0.4613 0.7459 0.901 0.5959 0.6157 0.0522 14.184
[2,3,4]→3 0.3251 0.6734 0.6302 0.4522 0.7448 0.914 0.6030 0.6204 0.0555 13.933
4→2 0.3174 0.6591 0.6398 0.4369 0.7285 0.906 0.5927 0.6115 0.0480 14.889

Oracle 6 0.2696 0.5749 0.5232 0.4226 0.6882 0.799 0.5351 0.5447 0.0269 26.144
[4,5]→4 0.2858 0.6141 0.5746 0.4376 0.7133 0.851 0.5525 0.5755 0.0366 16.848
6→4 0.2969 0.6178 0.5780 0.4408 0.7160 0.857 0.5446 0.5787 0.0442 16.762

kev = 4

Oracle 4 0.3430 0.6772 0.6388 0.4654 0.7465 0.910 0.6109 0.6274 0.0556 13.355
[2,3,4]→3 0.3353 0.6776 0.6440 0.4587 0.7443 0.910 0.6054 0.6250 0.0611 13.564
4→2 0.3038 0.6595 0.6514 0.4242 0.7171 0.909 0.5991 0.6091 0.0441 15.972

Oracle 6 0.3106 0.6460 0.5841 0.4633 0.7252 0.867 0.5951 0.5988 0.0617 15.688
[4,5]→4 0.3012 0.6670 0.6171 0.4609 0.7350 0.886 0.5967 0.6077 0.0591 14.024
6→4 0.3114 0.6557 0.6294 0.4587 0.7367 0.887 0.6101 0.6127 0.0636 13.955

kev = 5

Oracle 6 0.3379 0.6662 0.6205 0.4772 0.7432 0.892 0.6069 0.6206 0.0769 13.494
[4,5]→4 0.3328 0.6751 0.6443 0.4680 0.7405 0.893 0.6085 0.6232 0.0729 13.303
6→4 0.3234 0.6709 0.6443 0.4592 0.7345 0.898 0.6062 0.6195 0.0681 13.746

kev = 6

Oracle 6 0.3353 0.6793 0.6269 0.4761 0.7416 0.899 0.6148 0.6247 0.0751 13.092
[4,5]→4 0.3259 0.6806 0.6382 0.4665 0.7405 0.900 0.6062 0.6226 0.0673 13.224
6→4 0.3063 0.6667 0.6413 0.4508 0.7334 0.902 0.6046 0.6150 0.0605 14.219

to 0.8% and 1.5% to 1.6% for chat-tuned models on kev = 3; 2.3% to 2.6% and 6.1% to 7.2% for
kev = 2; for untuned models, 0.2% to 0.4% and 1.2% to 1.3% for kev = 3; 1.6% to 2.0% and
5.7% to 5.8% for kev = 2. PHDS often yields small perplexity gains on the chat-tuned variant while
matching QA accuracy. Interestingly, TriviaQA-fixed accuracy can increase at reduced kev.

3.5 FIT MECHANISMS AT INCREASED SPARSITY

To understand how and where SFT allows checkpoints to support multiple sparsity levels, we SFTed
OLMoE-1B-7B-0125 on CommonSense170k and evaluated on the multiple choice evaluation set.
This data is somewhat out of distribution; we varied free parameters during fit with models Base-
line, Gate, Expert, Attention, and Expert and Gate with Oracle and MoE-PHDS. As kev decreases,
attention carries more lift than expert-only refits; at kev = kpre, expert refits dominate. Results are
in figure 3.5. Full protocol and plots appear in Appendix A.6.

4 RELATED WORK

Many-in-One Models. Prior work enables a single network to run across compute budgets
via global, pretraining-time sparsity or nested subnetworks. Slimmable and Once-for-All train
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Table 4: OLMoE fine-tuned on Tülu-3.

OLMoE-1B-7B-0125 OLMoE-0125-1B-7B-Instruct
Method kev Avg triv wiki Avg triv wiki
Oracle 8 0.7050 0.4889 9.407 0.7067 0.3977 15.810
[4,5,6,7,8]→5 8 0.6997 0.4585 8.923 0.7068 0.4131 15.742
[4,5,6,7,8] 8 0.7051 0.4901 8.903 0.7041 0.4119 15.484
8→4 8 0.7021 0.4794 9.485 0.7059 0.4174 15.488

Oracle 7 0.7017 0.4928 9.557 0.7022 0.3902 16.238
[4,5,6,7,8]→5 7 0.6939 0.4578 9.075 0.7006 0.3928 16.280
[4,5,6,7,8] 7 0.7001 0.4815 9.056 0.6999 0.3973 16.014
8→4 7 0.6966 0.4793 9.639 0.7008 0.4003 16.042

Oracle 6 0.6967 0.4817 9.985 0.6953 0.3756 17.372
[4,5,6,7,8]→5 6 0.6893 0.4667 9.496 0.6934 0.3842 17.426
[4,5,6,7,8] 6 0.6966 0.4767 9.474 0.6906 0.3862 17.148
8→4 6 0.6924 0.4737 10.091 0.6943 0.3909 17.188

Oracle 5 0.6849 0.4487 10.975 0.6837 0.3686 19.687
[4,5,6,7,8]→5 5 0.6742 0.4242 10.431 0.6831 0.3745 19.775
[4,5,6,7,8] 5 0.6822 0.4293 10.408 0.6793 0.3695 19.534
8→4 5 0.6806 0.4448 11.151 0.6847 0.3700 19.621

Oracle 4 0.6646 0.3787 13.032 0.6627 0.3304 24.574
[4,5,6,7,8]→5 4 0.6590 0.3605 12.357 0.6650 0.3339 24.921
[4,5,6,7,8] 4 0.6668 0.3775 12.304 0.6580 0.3305 24.640
8→4 4 0.6587 0.3886 13.424 0.6603 0.3316 24.965

Table 5: Qwen fine-tuned on Tülu-3.

Qwen1.5-MoE-A2.7B-Chat Qwen1.5-MoE-A2.7B
Method kev Avg triv wiki Avg triv wiki

Oracle 4 0.7001 0.0563 11.436 0.7069 0.0287 10.223
[2,3,4]→2 4 0.7005 0.0585 11.373 0.7073 0.0271 10.244
[2,3,4] 4 0.7022 0.0631 11.331 0.7059 0.0269 10.227
4→2 4 0.7007 0.0526 11.420 0.7072 0.0284 10.225

Oracle 3 0.6972 0.0633 11.608 0.7050 0.0337 10.355
[2,3,4]→2 3 0.6979 0.0642 11.549 0.7043 0.0329 10.367
[2,3,4] 3 0.6968 0.0664 11.502 0.7036 0.0317 10.364
4→2 3 0.6992 0.0661 11.605 0.7061 0.0342 10.353

Oracle 2 0.6821 0.0625 12.225 0.6952 0.0334 10.810
[2,3,4]→2 2 0.6845 0.0662 12.070 0.6929 0.0342 10.832
[2,3,4] 2 0.6854 0.0675 12.033 0.6928 0.0317 10.821
4→2 2 0.6835 0.0643 12.132 0.6931 0.0341 10.811

width/subnet sets for CNNs (Yu et al., 2019; Yu & Huang, 2019; Li et al., 2021; Cai et al., 2020; Lou
et al., 2021); transformer variants drop tokens or learn nested blocks (DynamicViT, ViT-Slimmable,
Matryoshka, MatFormer) (Rao et al., 2021; Yin et al., 2022; Kusupati et al., 2022; Devvrit et al.,
2024). For LLMs, Flextron fits routers post-training (Cai et al., 2024); pruning methods (e.g.,
retraining-free/Fisher) remove heads or filters (Kwon et al., 2022). These methods span multiple
operating points but typically require bespoke pretraining, architecture changes, or storing multiple
subnetworks.
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Figure 4: Average multiple choice QA accuracy vs. kev for parameter-subset refits for OLMoE-
1B-7B-0125 on CommonSense170k with Oracle (left: average accuracy; right: relative accuracy
reduction per parameter subset vs. kev = 8).

Sparse MoEs. Sparse MoEs are sparse models by design: a global sparsity parameter determines
how many experts are active per token (Fedus et al., 2022; Riquelme et al., 2021). Subsequent work
has explored richer forms of token-level sparsity. Token-aware schemes include probabilistic top-
k(P ) gating (Huang et al., 2024), dynamic routing (Alizadeh-Vahid et al., 2024), the addition of null
experts (Zeng et al., 2024; Team et al., 2025), and multiplier layers for experts in TC-Experts (Yan
et al., 2025). Posttraining methods such as DynaMoE (Nishu et al., 2025) convert dense LLMs into
token-sparse adaptive MoEs. Token-adaptive MoEs spend a fixed global budget more efficiently;
PHDS changes the global budget at runtime. These approaches compose.

5 DISCUSSION

In this paper, we (i) showed that pretrained sparse MoE models are more robust to runtime changes
in sparsity than commonly assumed, (ii) demonstrated that sparsity can be an MoE serving primitive
from a single checkpoint, and (iii) introduced MoE-PHDS, which allows practitioners to use SFT to
make their existing models more robust to sparsity mis-specification. While naive SFT often works,
MoE-PHDS provides added benefits for less tuned models and extends support across a slightly
larger range of kev. In practice, operators can often safely reduce k by 20–30% with minimal loss,
while larger reductions should be treated as best-effort. Although we evaluate moderate-scale MoEs,
PHDS is most valuable where latency, energy, or memory are tight. Our experiments span models
from 1B–14.3B parameters, a regime where memory and energy budgets are tightest. In these set-
tings, multiple checkpoints are impractical and token-level adaptivity introduces variance, whereas
a single global sparsity knob offers predictable accuracy–efficiency trade-offs without architectural
changes. Higher cross-k agreement further preserves the model’s “feel” as sparsity varies at runtime.

Limitations. Results are from smaller models; scalability to larger ones is unknown. We study
routed, equal-sized experts only; partial routing or heterogeneous expert sizes may behave differ-
ently. We also omit generation-heavy tasks (coding, summarization) and answer-style analyses, so
some gains may reflect stylistic shifts rather than ability. Reported safe ranges are model and task
dependent and need further study.

Reproducibility. When possible, we used public models; we trained and evaluated on public data
sets with standard harnesses. Diffs from OLMoE-1B-7B-0125 and Qwen1.5-MoE-A2.7B to support
PHDS will be available in a git repo pending institutional approval, along with a .json file with
experimental settings.

LLM Usage. LLMs were used in this work for outlining, text editing, and literature search.

9
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A APPENDIX

A.1 LITERATURE COMPARISON

Positioning. Literature is summarized in table 6. Prior work demonstrates that both dense and
sparse models can be adapted to multiple computational settings, but with important limitations:
dense models typically rely on pretraining across subnetworks or block structures, while MoEs fix
a global sparsity parameter in advance. Token- or layer-level dynamic gating can be a powerful way
to optimize how computational budget is spent for a fixed global sparsity level, but it injects variance
(latency fluctuates with content) and adds policy complexity with additional tunable parameters. In
contrast, to our knowledge, MoE-PHDS is the first method to enable global runtime sparsity control
from a single checkpoint. Our approach only requires lightweight supervised fine tuning, avoids
maintaining multiple subnetworks, and directly supports deployment across a set of operating points

12

https://arxiv.org/abs/2509.01322


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

due to predictability, simplicity, and composability. Therefore this method complements, rather than
competes with, finer-grained adaptivity.

Table 6: Comparison of methods enabling multiple operating points from a single model. MoE-
PHDS uniquely supports global runtime sparsity control from a single checkpoint.

Method Train Runtime Sparsity Family
MoE (ours)

MoE-PHDS SFT Yes (1 checkpoint) Global (k) MoE

Dense Networks / FFNs

Slimmable (Yu et al., 2019) Pre Yes (width) Global CNN/FFN
US-Net (Yu & Huang, 2019) Pre Yes (width) Global CNN/FFN
OFA (Cai et al., 2020) Pre No Global FFN
Dyn-OFA (Cai et al., 2020) Pre Yes (stored nets) Global FFN
DS-Net (Lou et al., 2021) Pre Yes (stored filt.) Global FFN
MatFormer (Devvrit et al., 2024) Pre Yes (blocks) Block Trans.
Matryoshka (Kusupati et al., 2022) Pre Yes (nested) Block Trans.
Flextron (Cai et al., 2024) Post Yes (router) Layer LLM
RF-Pruning (Kwon et al., 2022) Post No Head/Fil. Trans.

Sparse MoEs

top-k(P ) (Huang et al., 2024) Pre No Token MoE
AdaMoE (Zeng et al., 2024) Pre No Token MoE
TC-MoE (Yan et al., 2025) Pre No Token MoE
DynaMoE (Nishu et al., 2025) Post No Token MoE/LLM
LongCat (Team et al., 2025) Pre No Token MoE

A.2 EXPERIMENTAL SETTINGS

We used the settings summarized in table 7 for experiments. We run one seed for SFT (budget-
constrained) and reuse that checkpoint across kev; evaluation uses fixed harness seeds. For each
we experiment, we ran a set of longer SFT trials to determine the number of tokens seen for mass
ablations. Initial experiments were run for Oracle and PHDS settings, with a shortened schedule
applied to all other ablations. Truncated schedule size was determined by where best checkpoints
were selected in the initial run phases.

PHDS has three main tunble parameters: ϵ, Ktrain, and Curriculum value. We chose ϵ by running
ablations from 1E-1 to 1E-8; no material difference was seen below 1E-4, so we selected 1E-6 for
all experiments. This value is large enough that there is some gradient flow and back propagation
does not collapse, but small enough that changes when these values are included only have minor
effects. The inclusion of a soft mask is also done for deployment ease, as methods like jax work
best without changes to array sizes. In general, based on general performance across ablations, we
use Ktrain = {kpre/2, . . . , kpre − 1, kpre}.

Table 7: Experimental settings. LB is load balancing value.

Experiment Initial Tokens Ablation Tokens GPUs LB
Internal Baseline: CS170k 491M 246M 2xA100-40GB 0.01
Internal Baseline: Internal Data 393M 393M 8xA100-40GB 0.01
OLMoE: Tülu-3 39B 7.8B 8xA100-40GB 0.0
OLMoE: CS170k 327M 327M 8xA100-40GB 0.0
Qwen: Tülu-3 39B 7.8B 8xA100-40GB 0.0
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A.3 INTERNAL BASELINE MODELS: COMMONSENSE170K

Ablations on MoE-PHDS Parameters. MoE-PHDS has two main tunable parameters: the sam-
pling set, Ktrain, and the curriculum training values. In table 8, we train across sampling sets. In
table 9, we fix a subset of sampling sets and train across curriculum values.

Table 8: Internal Baseline Models: CommonSense170k SFT, ablations across Ktrain sets. Overall
accuracy on CommonSense multiple choice. Best values are bold and second best underlined,
grouped by kpre and kev. Untargeted kev are denoted by −−.

Model kpre kev = 2 kev = 3 kev = 4 kev = 5 kev = 6

PHDS k=[2,3] 4 0.677000 0.708500 0.715625 – –
PHDS k=[2,3] → 2 4 0.682875 0.713875 0.720500 – –
PHDS k=[2,3,4] 4 0.678750 0.712000 0.718000 – –
PHDS k=[2,3,4] → 2 4 0.695000 0.716500 0.717375 – –
PHDS k=[2,4] 4 0.666625 0.698375 0.708750 – –
PHDS k=[2,4] → 2 4 0.686625 0.716125 0.718875 – –

PHDS k=[4,5] 6 – 0.683250 0.718875 0.729500 0.733250
PHDS k=[4,5] → 4 6 – 0.680750 0.720625 0.732000 0.740250
PHDS k=[4,5,6] 6 – 0.670250 0.706750 0.725000 0.730125
PHDS k=[4,5,6] → 4 6 – 0.692500 0.718250 0.731750 0.733625
PHDS k=[3,4,5,6] 6 – 0.694125 0.720250 0.728625 0.729375
PHDS k=[3,4,5,6] → 4 6 – 0.689875 0.723750 0.731375 0.734250

In experiments for table 8, we found that using all values between kpre/2 and kpre produces con-
sistently solid results. For higher kpre values, non-inclusive subsets between kpre/2 and kpre work
well, and curriculum training consistently increases accuracy. In the experiments for table 9, we
found that the best results are consistently from k just above kpre/2, and that results are consistent
across Ktrain groups based given kpre.

Table 9: CommonSense 170k Fine-tuning: overall accuracy by Ktrain and curriculum.

v Model kpre kev = 2 kev = 3 kev = 4 kev = 5 kev = 6

PHDS k=[2,3,4] 4 0.678750 0.712000 0.718000 – –
PHDS k=[2,3,4] → 1 4 0.675125 0.700375 0.708375 – –
PHDS k=[2,3,4] → 2 4 0.695000 0.716500 0.717375 – –
PHDS k=[2,3,4] → 3 4 0.708500 0.714000 0.723875 – –
PHDS k=[2,3,4] → 4 4 0.666250 0.706750 0.714625 – –

PHDS k=[4,5] 6 – 0.683250 0.718875 0.729500 0.733250
PHDS k=[4,5] → 2 6 – 0.679500 0.713750 0.717875 0.723125
PHDS k=[4,5] → 3 6 – 0.668750 0.704250 0.713875 0.715625
PHDS k=[4,5] → 4 6 – 0.680750 0.720625 0.732000 0.740250
PHDS k=[4,5] → 5 6 – 0.676875 0.716250 0.728875 0.733375
PHDS k=[4,5] → 6 6 – 0.574500 0.622750 0.729000 0.733250

PHDS k=[3,4,5,6] 6 – 0.694125 0.720250 0.728625 0.729375
PHDS k=[3,4,5,6] → 2 6 – 0.677500 0.706750 0.718375 0.721125
PHDS k=[3,4,5,6] → 3 6 – 0.695125 0.704250 0.724625 0.722500
PHDS k=[3,4,5,6] → 4 6 – 0.689875 0.723750 0.731375 0.734250
PHDS k=[3,4,5,6] → 5 6 – 0.680750 0.711875 0.723000 0.725125
PHDS k=[3,4,5,6] → 6 6 – 0.574500 0.719875 0.728875 0.732875

A.4 OLMOE EXPERIMENTS

Full results from OLMoE on Tülu-3 is given in tables 10 and 11.
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Table 10: OLMoE fine-tuned on Tülu-3. Best per block in bold, second-best underlined. Well-
specified methods are in blue.

OLMoE-1B-7B-0125-Instruct
Model ARC-C ARC-E boolq hella piqa sciq wino Avg triv wiki

kev = 8

Oracle 0.4642 0.7412 0.7563 0.5977 0.7622 0.949 0.6764 0.7067 0.3977 15.810
[4,...,8]→5 0.4701 0.7336 0.7615 0.5950 0.7590 0.956 0.6725 0.7068 0.4131 15.742
[4,5,6,7,8] 0.4642 0.7340 0.7596 0.5932 0.7644 0.948 0.6654 0.7041 0.4119 15.484
8→4 0.4701 0.7370 0.7599 0.5941 0.7617 0.949 0.6693 0.7059 0.4174 15.488

kev = 7

Oracle 0.4582 0.7391 0.7563 0.5922 0.7601 0.950 0.6598 0.7022 0.3902 16.238
[4,...,8]→5 0.4582 0.7294 0.7563 0.5945 0.7606 0.948 0.6575 0.7006 0.3928 16.280
[4,5,6,7,8] 0.4608 0.7231 0.7575 0.5928 0.7552 0.951 0.6590 0.6999 0.3973 16.014
8→4 0.4633 0.7298 0.7575 0.5909 0.7617 0.949 0.6535 0.7008 0.4003 16.042

kev = 6

Oracle 0.4471 0.7201 0.7609 0.5895 0.7590 0.947 0.6433 0.6953 0.3756 17.372
[4,...,8]→5 0.4437 0.7142 0.7667 0.5884 0.7514 0.951 0.6385 0.6934 0.3842 17.426
[4,5,6,7,8] 0.4352 0.7130 0.7590 0.5878 0.7503 0.951 0.6377 0.6906 0.3862 17.148
8→4 0.4428 0.7205 0.7606 0.5871 0.7563 0.947 0.6464 0.6943 0.3909 17.188

kev = 5

Oracle 0.4334 0.7029 0.7413 0.5774 0.7443 0.947 0.6393 0.6837 0.3686 19.687
[4,...,8]→5 0.4300 0.7054 0.7468 0.5742 0.7437 0.943 0.6385 0.6831 0.3745 19.775
[4,5,6,7,8] 0.4232 0.6944 0.7419 0.5743 0.7508 0.946 0.6243 0.6793 0.3695 19.534
8→4 0.4377 0.7050 0.7419 0.5721 0.7481 0.948 0.6401 0.6847 0.3700 19.621

kev = 4

Oracle 0.3805 0.6894 0.7287 0.5543 0.7296 0.942 0.6140 0.6627 0.3304 24.574
[4,...,8]→5 0.3899 0.6814 0.7278 0.5509 0.7394 0.939 0.6267 0.6650 0.3339 24.921
[4,5,6,7,8] 0.3823 0.6692 0.7242 0.5472 0.7329 0.937 0.6133 0.6580 0.3305 24.640
8→4 0.3874 0.6768 0.7196 0.5490 0.7301 0.938 0.6212 0.6603 0.3316 24.965

A.5 QWEN

Full results for Qwen on Tülu-3 are given in table 12.

A.6 MECHANISMS OF ROBUSTNESS AT REDUCED k

Setup. On OLMoE-1B-7B-0125, we SFT on CommonSense170K with subset refits: Baseline,
Gate, Expert, Attention, Expert and Gate, under Oracle and PHDS [4,5,6,7,8]→5 regimes. Curricu-
lum scheduling is introduced to PHDS after 93.9% of epoch 1; all runs are done through two full
epochs. Checkpoints are selected by best MC-QA accuracy at kev=8.

Metrics. Overall MC-QA accuracy and relative drop vs. accuracy for kev = 8 by parameter
subset. Metrics are reported by parameter subset to understand which subsets have less relative
degradation at low kev, even if they have poorer fits at kev = 8.

Findings. Our results with MoE-PHDS are similar to those for Oracle, with Expert adding the
majority of fit value at kev = 8, but with Attention contributing significant value at kev = 4.
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Table 11: OLMoE fine-tuned on Tülu-3. Best per block in bold, second-best underlined. Well-
specified methods are in blue.

OLMoE-1B-7B-0125
Model ARC-C ARC-E boolq hella piqa sciq wino Avg triv wiki

kev = 8

Oracle 0.4582 0.7757 0.7040 0.5673 0.7797 0.955 0.6953 0.7050 0.4889 9.407
[4,...,8]→5 0.4471 0.7605 0.6997 0.5742 0.7856 0.932 0.6985 0.6997 0.4585 8.923
[4,5,6,7,8] 0.4659 0.7694 0.7070 0.5764 0.7856 0.937 0.6946 0.7051 0.4901 8.903
8→4 0.4573 0.7668 0.7043 0.5635 0.7862 0.943 0.6938 0.7021 0.4794 9.485

kev = 7

Oracle 0.4497 0.7723 0.7018 0.5680 0.7835 0.951 0.6859 0.7017 0.4928 9.557
[4,...,8]→5 0.4428 0.7508 0.6899 0.5747 0.7835 0.932 0.6835 0.6939 0.4578 9.075
[4,5,6,7,8] 0.4531 0.7626 0.7061 0.5757 0.7835 0.934 0.6859 0.7001 0.4815 9.056
8→4 0.4565 0.7597 0.6896 0.5666 0.7786 0.944 0.6811 0.6966 0.4793 9.639

kev = 6

Oracle 0.4403 0.7677 0.7009 0.5665 0.7780 0.952 0.6717 0.6967 0.4817 9.985
[4,...,8]→5 0.4471 0.7479 0.6865 0.5703 0.7780 0.928 0.6669 0.6893 0.4667 9.496
[4,5,6,7,8] 0.4565 0.7534 0.6994 0.5726 0.7840 0.934 0.6764 0.6966 0.4767 9.474
8→4 0.4445 0.7500 0.6884 0.5637 0.7856 0.938 0.6764 0.6924 0.4737 10.091

kev = 5

Oracle 0.4206 0.7370 0.6957 0.5559 0.7704 0.942 0.6725 0.6849 0.4487 10.975
[4,...,8]→5 0.4078 0.7151 0.6841 0.5619 0.7629 0.934 0.6535 0.6742 0.4242 10.431
[4,5,6,7,8] 0.4206 0.7311 0.7028 0.5630 0.7720 0.933 0.6527 0.6822 0.4293 10.408
8→4 0.4232 0.7323 0.6865 0.5540 0.7709 0.934 0.6630 0.6806 0.4448 11.151

kev = 4

Oracle 0.4053 0.7109 0.6706 0.5386 0.7628 0.930 0.6338 0.6646 0.3787 13.032
[4,...,8]→5 0.3984 0.6949 0.6722 0.5443 0.7584 0.920 0.6251 0.6590 0.3605 12.357
[4,5,6,7,8] 0.4138 0.7024 0.6798 0.5471 0.7661 0.927 0.6314 0.6668 0.3775 12.304
8→4 0.3993 0.7020 0.6648 0.5369 0.7633 0.909 0.6354 0.6587 0.3886 13.424

Figure 5: Average multiple choice QA accuracy vs. kev for parameter-subset refits for OLMoE-1B-
7B-0125 on CommonSense170kwith PHDS [4,5,6,7,8]→5 (left: average accuracy; right: relative
drop per parameter subset vs. kev = 8).
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Table 12: Qwen: fine-tuned on Tülu-3 for the untuned model. Best per block in bold, second-best
underlined. Well-specified methods are in blue.

Qwen1.5-MoE-A2.7B
Model ARC-C ARC-E boolq hella piqa sciq wino Avg triv wiki

kev = 4

Oracle 0.4104 0.7302 0.7911 0.5806 0.7982 0.945 0.6906 0.7069 0.0287 10.223
[2,3,4]→2 0.4172 0.7273 0.7884 0.5798 0.8020 0.942 0.6946 0.7073 0.0271 10.244
[2,3,4] 0.4121 0.7290 0.7859 0.5805 0.7987 0.942 0.6930 0.7059 0.0269 10.227
4→2 0.4172 0.7298 0.7920 0.5813 0.7987 0.944 0.6875 0.7072 0.0284 10.225

kev = 3

Oracle 0.4002 0.7281 0.7872 0.5781 0.7976 0.949 0.6946 0.7050 0.0337 10.355
[2,3,4]→2 0.4044 0.7252 0.7887 0.5759 0.7965 0.948 0.6914 0.7043 0.0329 10.367
[2,3,4] 0.3985 0.7302 0.7905 0.5766 0.7976 0.947 0.6851 0.7036 0.0317 10.364
4→2 0.4019 0.7319 0.7893 0.5775 0.7992 0.949 0.6938 0.7061 0.0342 10.353

kev = 2

Oracle 0.4027 0.7146 0.7789 0.5680 0.7938 0.946 0.6622 0.6952 0.0334 10.810
[2,3,4]→2 0.4019 0.7092 0.7746 0.5658 0.7884 0.946 0.6646 0.6929 0.0342 10.832
[2,3,4] 0.3959 0.7075 0.7774 0.5673 0.7884 0.946 0.6669 0.6928 0.0317 10.821
4→2 0.4002 0.7113 0.7786 0.5680 0.7938 0.946 0.6535 0.6931 0.0341 10.811

Qwen1.5-MoE-A2.7B-Chat
Model ARC-C ARC-E boolq hella piqa sciq wino Avg triv wiki

kev = 4

Oracle 0.3985 0.7012 0.8089 0.5936 0.7894 0.947 0.6622 0.7001 0.0563 11.436
[2,3,4]→2 0.4002 0.7029 0.8080 0.5950 0.7861 0.946 0.6653 0.7005 0.0585 11.373
[2,3,4] 0.3985 0.7029 0.8061 0.5943 0.7927 0.949 0.6717 0.7022 0.0631 11.331
4→2 0.3951 0.7045 0.8076 0.5936 0.7900 0.948 0.6661 0.7007 0.0526 11.420

kev = 3

Oracle 0.3951 0.7003 0.8037 0.5914 0.7840 0.949 0.6567 0.6972 0.0633 11.608
[2,3,4]→2 0.3959 0.7033 0.8082 0.5928 0.7845 0.947 0.6535 0.6979 0.0642 11.549
[2,3,4] 0.3908 0.7029 0.8046 0.5921 0.7845 0.949 0.6535 0.6968 0.0664 11.502
4→2 0.4027 0.7037 0.8058 0.5908 0.7872 0.943 0.6614 0.6992 0.0661 11.605

kev = 2

Oracle 0.3831 0.6848 0.7758 0.5802 0.7726 0.945 0.6330 0.6821 0.0625 12.225
[2,3,4]→2 0.3865 0.6827 0.7728 0.5821 0.7726 0.944 0.6511 0.6845 0.0662 12.070
[2,3,4] 0.3968 0.6835 0.7729 0.5813 0.7780 0.943 0.6425 0.6854 0.0675 12.033
4→2 0.3959 0.6789 0.7716 0.5797 0.7742 0.946 0.6385 0.6835 0.0643 12.132
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