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ABSTRACT

End-to-end differentiable learning has emerged as a prominent paradigm in au-
tonomous driving (AD). A significant bottleneck in this approach is its substantial
demand for high-quality labeled data, such as 3D bounding boxes and semantic
segmentation, which are especially expensive to annotate manually. This challenge
is exacerbated by the long tailed distribution in AD datasets, where a substantial
portion of the collected data might be trivial (e.g. simply driving straight on a
straight road) and only a minority of instances are critical to safety. In this paper,
we propose ActiveAD, a planning-oriented active learning strategy designed to
enhance sampling and labeling efficiency in end-to-end autonomous driving. Ac-
tiveAD progressively annotates parts of collected raw data based on our newly
developed metrics. We design innovative diversity metrics to enhance initial sample
selection, addressing the cold-start problem. Furthermore, we develop uncertainty
metrics to select valuable samples for the ultimate purpose of route planning during
subsequent batch selection. Empirical results demonstrate that our approach sig-
nificantly surpasses traditional active learning methods. Remarkably, our method
achieves comparable results to state-of-the-art end-to-end AD methods - by using
only 30% data in both open-loop nuScenes and closed-loop CARLA evaluation.

1 INTRODUCTION

Autonomous driving (AD), as one of the most exciting applications of AI, has drawn increasing
attention. Traditional AD systems are usually module-based which divide the driving task into
sub-tasks: perception (Li et al., 2022; Huang et al., 2021; Liu et al., 2023), prediction (Shi et al.,
2022; Jia et al., 2022b;a; 2023b), planning (Treiber et al., 2000; Dauner et al., 2023), etc. However,
modular systems suffer from error accumulations, less principled optimization, and redundant
computations due to the separate training objectives of each sub-task, which limit the performance
upper bound (Chen et al., 2023). On the other hand, the success of LLM (Brown et al., 2020; OpenAI,
2023) has demonstrated the power of the data-driven scalable paradigm (Wu et al., 2023; Yang et al.,
2023). Motivated by these insights, the shift towards end-to-end AD (E2E-AD) has recently emerged
as a promising area (Hu et al., 2023). These latest works take advantages of data-driven approaches,
as well as mitigate the limitations of modular frameworks.

A major factor behind the success of LLM is the abundance of almost free text data available
online. This is not the case in autonomous driving (AD), where state-of-the-art E2E-AD systems
such as UniAD (Hu et al., 2023) and VAD (Jiang et al., 2023) are still confined by supervised
learning. It requires fine-grained annotations including 3D bounding boxes of agents and semantic
segmentation for lanes and traffic signs, which are quite expensive. Therefore, labeling becomes one
significant bottleneck of the scaling up process of these end-to-end methods. Even worse, it is widely
acknowledged that the AD task has serious long-tailed issues (Jain et al., 2021), which means a large
part of collected data is trivial e.g. simply driving forward in a straight road, and only a few cases
are safety-critical. Such imbalances in data annotation further limit the application of data-driven
methods and significantly increase the cost of ineffective annotation. Thus, strategies to alleviate
data-related issues are of prime importance.

To address these issues, we first pose a fundamental question: Is it necessary to annotate all collected
raw data to achieve optimal performance? Through empirical studies, we demonstrate that the answer
is NO. Further, we explore the way to select the most useful samples to annotate for training, which
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Figure 1: Active Learning scheme for End-to-End Autonomous Driving. We formulate a compre-
hensive pipeline and meticulously design a task-specific active selection strategy for choosing initial
samples as well as incremental samples in subsequent iterations.

belongs to the active learning task (Zhan et al., 2022). Different from existing literature focusing on
the perception part (Luo et al., 2023b), inspired by the planning-oriented philosophy in UniAD (Hu
et al., 2023), we design an active learning method called ActiveAD, which leverages planning routes
and scores to directly optimize planning.

There are several major gaps in adopting existing active learning methods (Gal et al., 2017; Kirsch
et al., 2019; Ash et al., 2019; Yoo & Kweon, 2019; Sinha et al., 2019) to AD. Firstly, data in AD
often involves rich multi-modality information, such as video streams, driving trajectories, and
various meta-information like vehicle speed, whereas most existing active learning methods typically
consider only single-modal images as input. Secondly, AD tasks can be more complex than simple
classification, yet many existing methods are confined to this paradigm (Gal et al., 2017; Kirsch
et al., 2019; Ash et al., 2019). Therefore, it calls for adaption to better handle the diverse inputs and
optimization targets in AD.

Fig. 1 illustrates the designed scheme of the active learning paradigm for end-to-end autonomous
driving (AD), addressing the identified challenges and enhancing the utilization of task-relevant
information. In the initial sample selection stage, ActiveAD introduces Ego-Diversity, replacing the
commonly used random selection in traditional active learning paradigms (Sener & Savarese, 2018;
Sinha et al., 2019). Ego-Diversity effectively leverages nearly free information within raw AD data,
considering factors such as weather, lighting, and vehicle speed. During the iterative process of active
sample selection, we propose three intuitive and effective metrics: Displacement Error, Soft Collision,
and Agent Uncertainty. Displacement Error utilizes the recorded ego trajectory as a concise yet
essential metric. Soft Collision calculates the potential for collisions based on the predicted trajectory
of the ego vehicle and the trajectories of other objects, serving as a continuous version of the collision
rate. Agent Uncertainty assesses the uncertainty of other vehicles in complex road conditions.

Extensive experiments are conducted to validate the proposed ActiveAD. ActiveAD significantly
outperforms general active learning methods. Under a 30% annotation budget, ActiveAD achieves
comparable or even slightly better planning performance than state-of-the-art methods trained on
the complete dataset. In the ablation study, we provide a detailed analysis of the contribution and
effectiveness of the designed metrics, examining the robustness of performance across different
scenarios. Additionally, we provide visualizations and analyses of the results for different selection
choices. Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to delve into the data problems and address the
challenges in end-to-end autonomous driving (E2E-AD). We provide a simple yet effective
solution to identify and annotate valuable data for planning within a limited budget.

• Based on the planning-oriented philosophy of end-to-end methods, we design a novel task-specific
diversity and uncertainty measurement for the planning routes.

• Extensive experiments and ablation studies demonstrate the effectiveness of our approach. Using
only 30% training data, ActiveAD outperforms general peer methods by a large margin
and achieves comparable performance to the SOTA method training with the entire 100%
dataset in both open-loop nuScenes and closed-loop CARLA evaluation.
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2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING

The concept of end-to-end autonomous driving has roots dating back to the 1980s (Pomerleau, 1988).
In the era of deep learning, early efforts focused on the straightforward mapping (Muller et al., 2005).
Subsequently, (Zhang et al., 2021; Li et al., 2024) explored the application of reinforcement learning
to develop an end-to-end driving policy. Some state-of-the-art student models (Wu et al., 2022; Hu
et al., 2022a) are developed based on them while PlanT (Renz et al., 2022) suggested employing a
Transformer for the teacher model. LBC (Chen et al., 2020) and DriveAdapter (Jia et al., 2023a)
involved initially training a teacher model with privileged inputs. In later works, multiple sensors
are used. Transfuser (Prakash et al., 2021; Chitta et al., 2022) employed a Transformer for camera
and LiDAR fusion. LAV (Chen & Krähenbühl, 2022) adopted PointPainting (Vora et al., 2020).
Interfuser (Shao et al., 2022) injected safety-enhanced rules during the decision-making process.
ThinkTwice (Jia et al., 2023c) introduced a DETR-like scalable decoder paradigm for the student
model. ReasonNet proposed specific modules for student models to better exploit temporal and
global information. In (Jaeger et al., 2023), they suggested formulating the output of the student as
classification problems to avoid averaging. ST-P3 (Hu et al., 2022c) unified the detection, prediction,
and planning tasks into the form of BEV segmentation. UniAD (Hu et al., 2023) adopted Transformer
to connect different tasks. Further, VAD (Jiang et al., 2023) reduced some potential redundant
modules in UniAD while demonstrating better performance.

2.2 ACTIVE LEARNING

Active learning algorithms exploit the limited annotation budget by selecting the most informative
samples for labeling. They select data samples based on the criterion of either uncertainty or diversity.
Uncertainty-based algorithms prefer those difficult samples most confusing for the models. The
difficulty of each data sample may be measured by prediction entropy (Joshi et al., 2009; Luo et al.,
2013), prediction inconsistency (Gao et al., 2020), loss estimation (Yoo & Kweon, 2019) or its
potential influence for model training (Freytag et al., 2014; Liu et al., 2021). Alternatively, other
methods pay attention to the diversity of the selected subset. Some early works (Sener & Savarese,
2018; Sinha et al., 2019) mainly consider the representation diversity in the global image level,
while following papers (Agarwal et al., 2020; Liang et al., 2022) dig into the regional information
to deal with fine-grained detection or segmentation tasks. Furthermore, some recent works (Xie
et al., 2023a;b; Yi et al., 2022) utilize the strong representation ability of models pretrained on large
datasets to measure the image diversity of the target dataset more accurately. Recently, CRB (Luo
et al., 2023b) has pioneered active learning to LiDAR-based 3D object detection and KECOR (Luo
et al., 2023a) greedily select informative point clouds by maximizing the kernel coding rate in AD.

However, most prior works focus on the traditional tasks like classification, detection, or segmentation,
but the recently prominent planning-oriented end-to-end AD setting is hardly explored. Instead of just
simple prediction probability, The task model outputs the future ego-vehicle trajectory. Besides, this
task requires to reason from the interaction (Jia et al., 2021b) between ego-vehicle and surroundings,
which cannot be reflected from superficial visual patterns. To this end, we fill in this gap by devising
novel uncertainty and diversity metrics for active learning of end-to-end AD.

3 FORMULATION OF ACTIVE LEARNING FOR END-TO-END AD

State-of-the-art end-to-end autonomous driving (AD) methods (Hu et al., 2022b; Jiang et al., 2023)
typically take raw sensor data as inputs and generate planned trajectories for the ego vehicle. To
facilitate training and mitigate overfitting, additional annotations such as 3D bounding boxes of
agents and semantic segmentation of lanes (Caesar et al., 2020) are used. Since the collected raw
data is usually in the form of clips containing multiple temporal frames of surrounding images
and canbus information, organizing annotations at the clip level offers several benefits. Firstly, it
streamlines the annotation process by providing a coherent context for labeling. Secondly, it enables
the establishment of spatiotemporal connections between objects. Therefore, we choose to treat each
clip as a distinct unit rather than considering individual frames. This approach is also consistent with
current practices in AD research (Caesar et al., 2020).
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Formally, we define the active learning task for end-to-end AD as follows: denote It as the raw
sensor data in the frame t where t ∈ [T ] = {1, 2, ..., T} and T is the length of its corresponding
clip Si. Apart from the raw sensor data, the recorded trajectory τi and states ei (speed vi and
driving commands cmdi) of the ego vehicle, weather condition wi (Sunny or Rainy) and the lighting
condition li (Day or Night) are also annotation-free or extremely cheap to obtain. For simplicity, we
denote these easy-to-obtain labels as Oi = (ei, wi, li). For the scene that has not been meticulously
annotated (e.g., without annotations of 3D bounding boxes and semantic segmentation), we can
represent such information as Xi = (Si, τi,Oi) where i ∈ [N ] and N is the number of scenes.

For the labels that require meticulous annotation, we denote them as Yi. Yi = (Ai,Bi, Ci) where Ai

donates attributes (visibility, activity, and pose), Bi denotes the 3D bounding box and Ci donates the
semantic segmentation of lanes (Caesar et al., 2020).

Initially, we have the access to the unlabeled data pool Pu = {Xi}i∈[N ]. Under the given annotation
budget B where |B| < N , one should select the index set K = {ki ∈ [N ]}i∈[B] to obtain the subset
Pu
K = {Xki}i∈[B] ⊂ Pu from Pu and acquire the related labels {Yki}i∈[B]. Then the models are

trained on the labeled set P l
K = {(Xki

, Yki
)}i∈[B]. The objective is to choose the sampling strategy

to select the labeled set under the budget to minimize the expectation error of the model, which
usually refers to the L2 loss and collision ratio (Hu et al., 2022b; Jiang et al., 2023) in end-to-end AD.

The active selection process involves the following steps: 1) Select a subset of data as the initial set.
2) Train a model based on the current data. 3) Utilize the trained model’s features and outputs to
select a new subset of data based on a designed strategy. 4) Repeat steps 2 and 3 until the budget is
reached. Fig. 1 demonstrates the pipeline of our method and the details process is shown in Sec. 4.3.

4 ACTIVEAD METHOD

We provide a detailed description of our method ActiveAD, within the framework of end-to-end
autonomous driving (AD). Leveraging the characteristics of data specific to AD, we devise corre-
sponding metrics for diversity and uncertainty. Sec. 4.1 introduces the methodology for designing
diversity metrics, which are utilized as criteria for selecting the initial set. Sec. 4.2 presents the design
of uncertainty metrics to identify more challenging data samples. Sec. 4.3 summarizes the entire
ActiveAD process and provides a detailed algorithmic depiction.

4.1 INITIAL SAMPLE SELECTION FOR LABELING

For active learning in computer vision, the initial sample selection is often solely based on raw
images without extra information or learned features, leading to the common practice of Random
initialization (Sener & Savarese, 2018; Sinha et al., 2019; Yoo & Kweon, 2019; Kim et al., 2021;
Parvaneh et al., 2022). For AD, there is additional prior information to leverage. Specifically, when
collecting data from sensors, conventional information such as the speed and trajectory of the ego
vehicle can be simultaneously recorded. Additionally, weather and lighting conditions are generally
continuous and easy to annotate in the clip-level. The information can benefit making choices for the
initial set selection. Therefore, we design the Ego-Diversity metric for initial selection.

Ego-Diversity consists of three components: 1) weather-lighting 2) driving commands 3) average
speed. Inspired by the setting in (Liu et al., 2023; Zhu et al., 2023), we firstly divide the complete
dataset into four mutually exclusive subsets: Day-Sunny (DS), Day-Rainy (DR), Night-Sunny (NS),
Night-Rainy (NR), using the description in nuScenes (Caesar et al., 2020). Secondly, We categorize
each subset based on the number of left, right, and straight driving commands (Hu et al., 2022c;b;
Jiang et al., 2023) within a complete clip into four categories: Turn Left (L), Turn Right (R), Overtake
(O), Go Straight (S). We design a threshold τc, where if the numbers of left and right commands in a
clip are both greater than or equal to the threshold τc, we consider it as an overtaking behavior in this
clip. If only the number of left commands is greater than the threshold τc, it indicates a left turn. If
only the number of right commands is greater than the threshold τc, it indicates a right turn. All the
other cases are considered as going straight. Thirdly, we calculate the average speed in each scene
and sort them in ascending order in the related subset.

Given the initial annotation budget n0, we should split the numbers to each subset. We define the
original number of each subset s as ns and the selected number to label as nl

s. The number of samples
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in different categories often varies, and samples from minority categories (such as Night-Rainy and
Overtake) are typically challenging and critical, requiring more attention. Therefore, we introduce a
parameter γ to control the proportions of each subset Ps. The proportion calculation of first-level
weather-lighting subset is specified as follows:

Px =
nγ
x∑

z∈{DS, DR, NS, NR} n
γ
z
, where x ∈ {DS, DR, NS, NR}. (1)

The number of annotations for each subset s is nl
s = n0Ps. By decreasing γ, we can increase focus

on minority classes. When γ = 1, it indicates an absolute uniform distribution, where each category
is chosen equally. If γ < 1, it signifies a bias towards categories with fewer total samples. For the
second-level subset consisting of four driving scenarios, the process is similar as follows:

Px,y = Px ×
nγ
x,y∑

z∈{L, R, O, S} n
γ
x,z

,where x ∈ {DS, DR, NS, NR} and y ∈ {L, R, O, S}. (2)

Initial Budge 𝒏𝟎

𝒏𝑫𝑺 = 𝒏𝟎 ⋅ 𝑷𝑫𝑺
Day-Sunny (DS)

Day-Rainy (DR)
𝒏𝑫𝑹 = 𝒏𝟎 ⋅ 𝑷𝑫𝑹

Night-Sunny (NS)
𝒏𝑵𝑺 = 𝒏𝟎 ⋅ 𝑷𝑵𝑺

Night-Rainy (NR)
𝒏𝑵𝑹 = 𝒏𝟎 ⋅ 𝑷𝑵𝑹

First-Level 

Weather-Lighting Subsets 

Turn Left (L)
𝒏𝑫𝑺−𝑳 = 𝒏𝟎 ⋅ 𝑷𝑫𝑺 ⋅ 𝑷𝑳

𝑫𝑺

𝒏𝑫𝑺−𝑹 = 𝒏𝟎 ⋅ 𝑷𝑫𝑺 ⋅ 𝑷𝑹
𝑫𝑺

𝒏𝑫𝑺−𝑶 = 𝒏𝟎 ⋅ 𝑷𝑫𝑺 ⋅ 𝑷𝑶
𝑫𝑺

𝒏𝑫𝑺−𝑺 = 𝒏𝟎 ⋅ 𝑷𝑫𝑺 ⋅ 𝑷𝑺
𝑫𝑺

Turn Right (R)

Overtake (O)

Go Straight (S)

Turn Left (L)
𝒏𝑵𝑹−𝑳 = 𝒏𝟎 ⋅ 𝑷𝑵𝑹 ⋅ 𝑷𝑳

𝑵𝑹

𝒏𝑵𝑹−𝑹 = 𝒏𝟎 ⋅ 𝑷𝑵𝑹 ⋅ 𝑷𝑹
𝑵𝑹

𝒏𝑵𝑹−𝑶 = 𝒏𝟎 ⋅ 𝑷𝑵𝑹 ⋅ 𝑷𝑶
𝑵𝑹

𝒏𝑵𝑹−𝑺 = 𝒏𝟎 ⋅ 𝑷𝑵𝑹 ⋅ 𝑷𝑺
𝑵𝑹

Turn Right (R)

Overtake (O)

Go Straight (S)

𝒏𝑫𝑹−𝑳, 𝒏𝑫𝑹−𝑹, 𝒏𝑫𝑹−𝑶, 𝒏𝑫𝑹−𝑺

𝒏𝑵𝑺−𝑳, 𝒏𝑵𝑺−𝑹, 𝒏𝑵𝑺−𝑶, 𝒏𝑵𝑺−𝑺

Second-Level 

Driving Command Subsets 

Figure 2: Ego-Diversity Initialization.

Fig. 2 illustrates the detailed and intuitive selection
process for the initial sample based on a multi-way
tree. First, the entire dataset is divided into four first-
level subsets: DS, DR, NS, and NR, according to
weather and lighting conditions. Second, within each
of these subsets, further divisions are made based on
driving commands, resulting in four second-level sub-
sets: L, R, O, and S, from each weather-lighting sub-
set. Finally, based on the available sample budget
nx,y = n0Px,y in each second-level subset, selections
are made at regular intervals within the sorted speeds.

4.2 CRITERION DESIGN FOR INCREMENTAL SELECTION

In this section, we describe how we incrementally annotate new clips based on a model trained with
previously annotated clips. We use the intermediate model to infer on the unannotated clips, and the
subsequent selection is based on these outputs. From a planning-oriented perspective, we introduce
three criteria for data selection: Displacement Error, Soft Collision, and Agent Uncertainty.

Criterion I: Displacement Error (DE). Denote LDE as the distance between the predicted planning
route τ of the model and the human trajectory τ∗ recorded in the dataset.

LDE =
1

T

T∑
t=1

∥τt − τ∗t ∥2, (3)

where T represents the frames in the scenes. Since Displacement Error is a performance metric
that does not require annotation which is inherently recorded during the data collection process in
autonomous driving, it naturally becomes the first and most crucial criterion in active selection.

Criterion II: Soft Collision (SC). Define LSC as the distance between the predicted ego-trajectory
and predicted agent-trajectory. Similar to (Jiang et al., 2023), we will filter out low-confidence agent
predictions by a threshold ϵa. In each scene, we select the shortest distance as a measure of the danger
coefficient. Simultaneously, we maintain a positive correlation between the term and the closest
distance:

LSC =

T∑
t=1

exp

(
− min

a∈agents
(τt,ego − τt,a)

)
. (4)

We use Soft Collision as one of the criteria for several reasons. Firstly, unlike Displacement Error,
calculating Collision Ratio depends on the annotation of 3D bounding boxes for objects, which are
not available in unlabeled data. Therefore, we need a criterion that can be calculated solely based
on the model’s inference results. Secondly, using a Hard Collision criterion—where a predicted
ego trajectory collides with other predicted agents’ trajectories (assigned as 1 for collision and 0
otherwise)—could result in too few positive samples, as the collision rate of state-of-the-art models
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in AD is usually very low (less than 1%). Thus, we use the closest distance from the ego vehicle to
other objects as a substitute for the Collision Rate metric. When the distance to other vehicles or
pedestrians is too close, the risk of collision is significantly higher. In summary, Soft Collision serves
as an effective indicator to measure the likelihood of a collision, providing dense supervision.

Criterion III: Agent Uncertainty (AU). The prediction of surrounding agents’ future trajectories
naturally has uncertainty (Jia et al., 2021a) and thus the motion prediction module usually generates
multiple modalities and corresponding confidence scores. We aim to select those data where nearby
agents has high uncertainties. Specifically, we filter out faraway agents by a distance threshold δd and
calculate the weighted entropy of the predict probabilities of multiple modalities of remaining agents.
Suppose the number of the modalities is Nm and the confidence scores of a agent under different
modalities are Pi(a) where i ∈ {1, ..., Nm}. Then, the Agent Uncertainty LAU can be defined as :

LAU =
∑

a∈agent

W(a)H(a) = −
∑

a∈agent

exp(δd − da)

(
Nm∑
i=1

Pi(a) logPi(a)

)
, (5)

where δd is the distance threshold, da is the predicted distance between the agent and the ego vehicle,
W represents the weight, and H represents the entropy.

Overall Loss. The loss of the samples in active selection is defined as:

L = LDE + αLSC + βLAU , (6)

where α, β are hyper-parameters. We select the top ni unannotated clips with the largest overall loss,
where ni denotes the number of clips that can be annotated in iteration i.

4.3 OVERALL ACTIVE LEARNING PARADIGM Algorithm 1 Pseudo-code for ActiveAD
Input: Unlabeled pool Pu = {Xi}i∈[N ], labeled pool P l = ∅,

model f(·;w), annotation budget B.
Parameter: Initial number n0, active selection iterations M ,
selection number per iteration nitr, original numbers of each
subset nx and nx,y , hyper-parameters α, β, γ.

Initialize annotation dataset indices K = ∅.
if Using Ego-Diversity based initialization then

for First-level subset x in {DS, DR, NS, NR} do
Calculate first-level proportion Px = nγ

x/
∑

z n
γ
z

where z ∈ {DS, DR, NS, NR} by Eq. 1.
for Second-level subset y in {L, R, O, S} do

Calculate second-level proportion Px,y = Px ×
nγ
x,y/

∑
z n

γ
x,z where z ∈ {L, R, O, S} by Eq. 2.

Set the annotation number nl
x,y = n0Px,y .

Sort the subset x, y according to the speed in as-
cending order and select nl

x,y indices at regular
intervals, then add them to K.

else
Randomly select n0 samples K = {ki ∈ [N ]}i∈[n0].

for itr ∈ {1, 2, . . . ,M} do
Update Pu

K = Pu − {Xki
}ki∈K, P l

K = {Xki
, Yki

}ki∈K.
Train the model f(·;w) from scratch using P l

K.
Inference on unlabeled pool Pu

K to calculate Loss L =
LDE + αLSC + βLAU in Eq. 6 for each sample.

Sort the samples in the descending order of L.
Select the first nitr indices of the samples and add them to
K so that K = {ki ∈ [N ]}i∈[

∑itr
j=0 nj ]

.

Output: Return annotation indices K = {ki ∈ [N ]}i∈[B]

In summary, Alg. 1 presents the entire workflow
of our method. Given the available budget B,
the initial selection size n0, the number of ac-
tive selections made at each step ni, and M total
selection stages, we start by initializing the selec-
tion using randomization or the Ego-Diversity
method described in Sec. 4.1. Next, we train
the network using the currently annotated data.
Based on the trained network, we make predic-
tions on the unlabeled pool and calculate the
overall loss as described in Sec. 4.2. Finally, we
sort the samples based on the overall loss and
select the top ni samples to be annotated in the
current iteration. This process is repeated until
the iterations reach the upper bound M and the
annotated number reaches the upper limit B.

5 EXPERIMENTS

We conduct experiments on the widely used
nuScenes dataset (Caesar et al., 2020) in line
with the peer works (Hu et al., 2023). All ex-
periments are implemented using PyTorch and
run on RTX 3090 (24G) and A100 GPUs (40G).
Source code will be made publicly available.

5.1 EXPERIMENTAL SETUP

Dataset & Metrics. The nuScenes (Caesar et al., 2020) dataset consists of 1,000 scenes, each lasting
20 seconds. It provides comprehensive annotations, including 3D bounding boxes for 23 classes
and 8 attributes. The scenes are captured by 6 cameras, providing a 360 degree horizontal FOV, and
the keyframes are annotated at a frequency of 2Hz. It covers a wide range of locations, time, and
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Table 1: Planning Performance. ActiveAD outperforms general active learning baselines in all
annotation budget settings. Moreover, ActiveAD with 30% data achieves even slightly better planning
performance than using the entire dataset for training. VAD with ∗ indicates that we have updated the
results, which are better than those reported in the original works. UniAD with † indicates that we
have employed the metrics from VAD to update the results (Refer to Appendix B.2 for more details).

Base Model Percent Selection Method Average L2 (m) ↓ Average Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 (Hu et al., 2022c) 100% - 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD† (Hu et al., 2023) 100% - 0.42 0.64 0.91 0.67 - - - -
VAD-Base∗ (Jiang et al., 2023) 100% - 0.39 0.66 1.01 0.69 0.08 0.16 0.37 0.20
VAD-Tiny∗ (Jiang et al., 2023) 100% - 0.38 0.68 1.04 0.70 0.15 0.22 0.39 0.25

VAD-Tiny
10% Random 0.51 0.83 1.23 0.86 0.40 0.62 0.98 0.67
10% ActiveFT (Xie et al., 2023b) 0.54 0.88 1.29 0.90 0.20 0.41 0.81 0.47
10% ActiveAD(Ours) 0.47 0.80 1.21 0.83 0.13 0.35 0.80 0.43

VAD-Tiny

20% Random 0.49 0.80 1.17 0.82 0.36 0.49 0.77 0.54
20% Coreset (Sener & Savarese, 2018) 0.48 0.78 1.16 0.81 0.20 0.40 0.69 0.43
20% VAAL (Sinha et al., 2019) 0.54 0.89 1.31 0.91 0.17 0.38 0.66 0.40
20% KECOR (Luo et al., 2023a) 0.47 0.82 1.23 0.84 0.23 0.41 0.69 0.44
20% ActiveFT (Xie et al., 2023b) 0.50 0.82 1.21 0.84 0.27 0.42 0.63 0.44
20% ActiveAD(Ours) 0.44 0.73 1.10 0.76 0.18 0.36 0.62 0.39

VAD-Tiny

30% Random 0.45 0.76 1.12 0.78 0.17 0.30 0.63 0.37
30% Coreset (Sener & Savarese, 2018) 0.43 0.71 1.06 0.73 0.43 0.51 0.68 0.54
30% VAAL (Sinha et al., 2019) 0.46 0.79 1.19 0.81 0.18 0.33 0.54 0.35
30% KECOR (Luo et al., 2023a) 0.46 0.78 1.22 0.82 0.22 0.43 0.70 0.45
30% ActiveFT (Xie et al., 2023b) 0.46 0.76 1.13 0.78 0.18 0.35 0.63 0.39
30% ActiveAD(Ours) 0.41 0.66 0.97 0.68 0.10 0.18 0.36 0.21

weather conditions. In line with previous works (Hu et al., 2022b;c; Jiang et al., 2023), we evaluate
the planning performance using the Displacement Error (L2 loss) and Collision Rate metrics.

End-to-end AD Models. We selected latest works ST-P3 (Hu et al., 2022c), UniAD (Hu et al., 2022b)
and VAD (Jiang et al., 2023) as our baseline models. Among them, the latest VAD demonstrates
superior planning performance. Moreover, it achieves substantial reductions in computational
overhead, and accelerates the training. Therefore, we adopt the lightweight version, VAD-Tiny, as the
base model for subsequent experiments. We also include VAD-Based results in Appendix B.3.

Active Learning Baselines. As mentioned in Sec. 2.2, end-to-end autonomous driving is a novel
and under-explored task for active learning. Directly transferring existing active learning methods,
which are typically based on predictive probability analysis, is nontrivial. In particular, we select four
methods as baselines that are relatively more transferable and relevant to this task: Coreset (Sener
& Savarese, 2018): a feature selection-based approach; VAAL (Sinha et al., 2019): a task-agnostic
method; KECOR (Luo et al., 2023a): a 3D Object Detection active learning method; ActiveFT (Xie
et al., 2023b), which utilizes pre-trained features. Coreset utilizes the embeddings prior to the
trajectory planning head (Jiang et al., 2023) as the input features. KECOR (Luo et al., 2023a) uses
the public implementation to select proportional data for training. VAAL and ActiveFT take the raw
images as inputs. The former employs an adversarial learning paradigm to discriminate unlabeled
samples, while the latter uses ResNet50 (He et al., 2016) as the pretrained model for feature extraction,
which is also adopted as the default backbone network in VAD (Jiang et al., 2023). ActiveFT selects
all data within the budget at once, with no need for iterative selection.

Implementation Details. We set the annotation budget B as 30% of the data volume: initially
selecting 10% in the data pool, followed by an additional 10% in each subsequent selection round,
for a total of two selection rounds. In each round, the model is retrained and used for the next round
selection. We apply VAD-Tiny as the base model using the default hyper-parameter configuration.
The confidence threshold ϵa and distance threshold δd is set to 0.5 and 3.0m respectively. For the
initial selection, we set driving scenario threshold τc = 4 and diversity partitioning parameter γ = 0.5.
For the overall loss in Eq. 6, we normalize the criteria LDE ,LSC ,LAU to [0, 1] according to all
scenes value respectively and set hyper-parameters α = 1 and β = 1. We use AdamW (Loshchilov
& Hutter, 2017) optimizer and Cosine Annealing (Loshchilov & Hutter, 2016) scheduler to train
VAD-Tiny 20 epochs with weight decay of 0.01 and initial learning rate of 2× 10−4.

5.2 PERFORMANCE BY PLANNING METRICS

In Tab. 1 , we present the performance of all active learning models when choosing 10%, 20%, 30%
of training samples. In Appendix B, we further give results of 40%, 50% and we observe that the
performance is saturated at 30%, which again demonstrates the long-tail nature of AD data. We

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation for Designs. “RA" and “ED" indicate the Random and Ego-Diversity based initial
selection. “DE", “SC" and “AU" indicates Displacement Error, Soft Collision and Agent Uncertainty,
respectively. All combinations with “ED" utilize the same 10% of data for initialization. The criteria
LDE ,LSC ,LAU are normalized to [0, 1] respectively and we set hyperparameters α and β as 1.

ID Initiation Active Selection Average L2 (m) Average Collision (%)
RA ED DE SC AU 10% 20% 30% 10% 20% 30%

1 ✓ - - - - 0.86 0.82 0.78 0.67 0.54 0.37
2 - ✓ - - - 0.83 (−0.03) 0.78 (−0.04) 0.74 (−0.04) 0.41 (−0.26) 0.40 (−0.14) 0.34 (−0.03)
3 - ✓ ✓ - - 0.83 (−0.03) 0.68 (−0.14) 0.70 (−0.08) 0.41 (−0.26) 0.39 (−0.15) 0.35 (−0.02)
4 - ✓ ✓ ✓ - 0.83 (−0.03) 0.81 (−0.01) 0.73 (−0.05) 0.41 (−0.26) 0.35 (−0.19) 0.26 (−0.11)
5 ✓ - ✓ ✓ ✓ 0.86 (−0.00) 0.80 (−0.02) 0.71 (−0.07) 0.67 (−0.00) 0.38 (−0.16) 0.26 (−0.11)
6 - ✓ ✓ ✓ ✓ 0.83 (−0.03) 0.76 (−0.06) 0.68 (−0.10) 0.41 (−0.26) 0.39 (−0.15) 0.21 (−0.16)

Table 3: Performance under Various Scenarios. Average L2 (m) / Average Collision Rate (%) are
reported under various weather / lighting and driving-command conditions, using 30% data selected
by various active learning methods. The smaller value represents the better performance.

Method Weather / Lighting Driving-Command
Day Night Sunny Rainy Go Straight Turn Left Turn Right Overtake All

Complete Data 0.67 / 0.27 1.01 / 0.14 0.70 / 0.32 0.72 / 0.04 0.69 / 0.32 0.74 / 0.13 0.67 / 0.20 0.84 / 0.13 0.70 / 0.25

Random 0.72 / 0.26 1.29 / 1.25 0.78 / 0.39 0.79 / 0.26 0.70 / 0.22 0.89 / 1.03 0.86 / 0.32 1.05 / 0.22 0.78 / 0.37
Coreset (Sener & Savarese, 2018) 0.71 / 0.57 0.97 / 0.27 0.72 / 0.65 0.78 / 0.06 0.69 / 0.67 0.78 / 0.31 0.78 / 0.38 0.96 / 0.14 0.73 / 0.54
VAAL (Sinha et al., 2019) 0.78 / 0.34 1.09 / 0.34 0.80 / 0.40 0.89 / 0.12 0.79 / 0.38 0.86 / 0.34 0.82 / 0.20 0.96 / 0.18 0.81 / 0.35
ActiveFT (Xie et al., 2023b) 0.76 / 0.37 1.08 / 0.43 0.79 / 0.40 0.78 / 0.28 0.70 / 0.35 0.88 / 0.62 0.91 / 0.20 1.18 / 0.44 0.79 / 0.38
ActiveAD(Ours) 0.64 / 0.20 1.03 / 0.31 0.68 / 0.24 0.68 / 0.07 0.62 / 0.21 0.74 / 0.25 0.80 / 0.20 0.85 / 0.13 0.68 / 0.21

observe that traditional Active Learning methods perform poorly, lacking any significant advantage
over random selection. In contrast, ActiveAD demonstrates significant advantages across the three
different granularity ratios for data selection, highlighting the effectiveness of our method. This de-
sign enables improved sample selection and annotation for end-to-end planning-oriented autonomous
driving. This is particularly relevant because manual annotation of samples for autonomous driving is
resource-intensive and time-consuming. An astonishing finding is that ActiveAD achieves compara-
ble or even better performance by utilizing a carefully selected 30% of the data compared to
training with the entire 100% dataset. We believe that this finding is both intriguing and significant
as it challenges the notion that more data necessarily leads to better performance. Current methods
often focus on refining model structures while overlooking the importance of judicious data utiliza-
tion. We argue that the data we select is more representative and informative, enabling to eliminate
unnecessary noise and trivial samples that may cause adverse effects.

5.3 ABLATION STUDY

Effectiveness of Designs. Tab. 2 shows the contributions of all the proposed components described in
Sec. 4 to the final planning performance, including Displacement Error (L2) and Collision Rate. Our
proposed Ego-Diversity based method exhibits superior performance in the initial 10% data selection,
particularly in reducing the collision rate from 0.67% to 0.41%, thus providing a better initialization
for subsequent model training.

During the subsequent active selection process, different metrics focus on various aspects. For
instance, Displacement Error emphasizes the disparity between predicted and ground truth trajectories,
effectively reducing the L2 loss of driving when used exclusively. However, the performance of
Collision Rate remains unsatisfactory. Additionally, even with an increase in data volume, the results
obtained using 30% of the data can be worse than those achieved with 20% of the data in terms of
L2 performance. Indeed, focusing solely on a single metric can lead to overlooking other valuable
information, potentially resulting in overfitting.

Moreover, we believe that avoiding collisions requires considering information from surrounding
vehicles. Relying solely on Displacement Error makes it challenging to optimize the selection
process. Therefore, the inclusion of the Soft Collision metric can improve performance in this aspect.
When selecting 30% of the data, the collision rate decreased significantly from 0.35% to 0.26%,
demonstrating a notable reduction. Additionally, considering the various possibilities of different
objects in different environments, leveraging Agent Uncertainty can enhance the selection of complex
scenarios. Agent Uncertainty assists in better optimizing both two planning metrics when the data
volume increases. By incorporating these designs, ActiveAD has achieved outstanding performance.
We also demonstrate that utilizing our incremental selection based on random initialization results in
significant performance improvements, proving the effectiveness of each component individually.
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Figure 3: Selected Scenes Visualization. Front camera images selected according to the criterion
of Displacement Error (col 1), Soft Collision (col 2), Agent Uncertainty (col 3) and Mixture (col 4)
based on the model trained on 10% data. ‘Mixture’ represents our final selection strategy ActiveAD,
with considerations for the previous three scenarios.

Table 4: Ablation for Ego-Diversity Hyperparameter.
We enumerated the distributions obtained by selecting
10% data under various γ and compared their perfor-
mance. # represents the numbers of scene occurrence.

Diversity Weather-Lighting Driving-Command Evaluation Metric
Parameter #DS #DR #NS #NR #S #R #L #O L2 (m) ↓ CR (%) ↓

Complete 491 125 71 13 423 132 112 33 0.70 0.25

γ = 1 49 12 7 2 40 13 11 6 0.90 0.46
γ = 0.8 43 14 10 3 35 14 14 7 0.88 0.41
γ = 0.5 34 17 13 6 27 17 16 10 0.83 0.43

Ego-Diversity Hyperparameter Analy-
sis. We introduce the hyperparameter γ
in Sec. 4.1 to adjust the proportion of the
initial selection based on the number of
samples. In both real scenarios and model
training, corner cases with fewer samples
are often challenging and require special
attention. Therefore, we choose to increase
the focus on minority classes for γ ≤ 1.
Tab. 4 displays the results of our prelimi-
nary experiments with different parameter values. We observe that when γ = 1, it ensures the stability
of the selection process and provides velocity-based uniform selection compared to random selection.
γ = 0.8 exhibits better performance in Collision Rate, while γ = 0.5 shows a clear advantage in
Displacement Error (L2). Considering that the impact of Collision Rate diminishes when L2 is large,
we select γ = 0.5 as the fixed parameter for subsequent model training and selection. Additionally,
we did not extensively tune other parameters, such as α, β, ϵa, τc, as their default values described in
Sec. 5.1 already yielded satisfactory results.

Various Scenarios Analysis. We study the performance of active methods under diverse scenarios.
Tab. 3 demonstrates that our method, ActiveAD, outperforms competitors in all cases, highlighting its
superiority. ActiveAD exhibits strong robustness and excels in challenging situations, including rainy
or nighttime conditions, as well as during overtaking maneuvers known for their higher difficulty.
Furthermore, we achieve comparable performance using only 30% of the available data, compared to
utilizing the entire dataset.

DE SC AU MX

DE
SC

AU
M

X

100.0% 8.6% 7.1% 27.1%

8.6% 100.0% 55.7% 51.4%

7.1% 55.7% 100.0% 74.3%

27.1% 51.4% 74.3% 100.0%

DE SC AU MX

DE
SC

AU
M

X

100.0% 20.7% 20.7% 31.4%

20.7% 100.0% 71.4% 77.9%

20.7% 71.4% 100.0% 77.1%

31.4% 77.9% 77.1% 100.0%

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Similarity between multiple criteria. It
shows the repetition rate of the 10% (Left) and 20%
(Right) new sampled scenes selected by four criteria:
Displacement Error (DE), Soft Collision (SC), Agent
Uncertainty (AU) and Mixture (MX).

Selected Scenes Visualization. Based on the
model trained on 10% of the data, Fig. 3 il-
lustrates the selection of representative sce-
narios using different metrics. The scenarios
selected based on Displacement Error include
complex maneuver trajectories such as lane
changes and pedestrian avoidance. The sce-
narios selected based on Soft Collision often
involve situations where the ego vehicle is in
close proximity to other vehicles or obstacles,
posing a risk. Examples include waiting at
intersections for other vehicles to make turns,
dense traffic in adjacent lanes, or situations
with a high concentration of surrounding ob-
stacles. Agent Uncertainty focuses on chal-

lenging road conditions, such as flickering lights, overtaking behaviors, vehicle reversing, and
pedestrians crossing. ActiveAD combines considerations from all three criteria to select compre-
hensive samples across various scenarios. The top image shows an overtaking scenario, while the
bottom image shows a nighttime following scenario. Fig. 4 illustrates the overlap rate among the
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scenes selected based on these different criteria. In comparison, ActiveAD with mixture criterion
demonstrates a better coverage of scenarios considered by individual criteria and emphasizes more
on truly complex situations to enhance data quality for achieving excellent model performance.

5.4 CLOSED-LOOP EVALUATION

We implement ActiveAD in CARLA Town05 Short and Town05 Long similar to the protocol in
ST-P3 (Hu et al., 2022c) and VAD (Jiang et al., 2023), and report the the Drive Score (DS) and Route
Completion (RC) under different budgets as in Tab. 5. We could observe that the performance gets
saturated after 20% with ActiveAD for the easier Town05 Short, possible due to the simpler driving
logs in CARLA (simulation) than in nuScenes (real world). For Town05 Long, ActiveAD with
30% data achieves almost comparable performance compared to full data while random selection,
the active learning baselines Coreset and ActiveFT perform consistently worse than ActiveAD,
demonstrating the importance of planning-oriented data selection.

Table 5: Closed-Loop Experiments in CARLA. We chose 10% as the number of samples selected
per round. ActiveAD achieves excellent results on both the Drive Score (DS) and Route Completion
(RC) metrics. In contrast, the competitors do not demonstrate a significant advantage over Random.

Method Percent Town05 Short Town05 Long
DS↑ RC ↑ DS↑ RC ↑

Full 100% 63.11 88.90 33.24 76.33

Random 10% 38.44 68.56 15.10 30.22
ActiveFT (Xie et al., 2023b) 10% 39.15 68.01 15.22 31.48
ActiveAD 10% 58.27 82.23 21.39 65.12

Random 20% 47.46 77.20 20.01 55.99
Coreset (Sener & Savarese, 2018) 20% 45.21 74.93 22.33 60.82
ActiveFT (Xie et al., 2023b) 20% 48.63 78.71 21.37 58.22
ActiveAD 20% 63.21 88.92 27.22 71.86

Random 30% 55.81 81.04 23.25 60.44
Coreset (Sener & Savarese, 2018) 30% 58.87 84.78 22.19 61.22
ActiveFT (Xie et al., 2023b) 30% 56.54 82.11 24.62 63.34
ActiveAD 30% 63.24 88.04 31.77 76.44

Notably, in the recently finished CVPR 2024 CARLA Leaderboard challenge, the winner solutions of
both tracks (Renz et al., 2024; Jaeger & Chitta, 2024) use filtering techniques to reduce the number
of simple training samples and achieve performance gains, which supports the claim that using all
data for training in E2E-AD could be harmful for the planning performance.

6 CONCLUSION

In addressing the high cost and long-tail issues of data annotation for end-to-end autonomous driving,
we are the first to develop a tailored active learning scheme ActiveAD. ActiveAD introduces novel
task-specific diversity and uncertainty metrics based on a planning-oriented philosophy. Extensive
experiments demonstrate the effectiveness of our approach, surpassing general peer methods by a
significant margin and achieving comparable performance to the state-of-the-art model using only
30% of the data. This represents a meaningful exploration of end-to-end autonomous driving from a
data-centric perspective, and we hope our work can inspire future research and discoveries.

Limitations & Discussion. In Appendix C, experiments demonstrate that model perception and
prediction gradually strengthen with an increase in data volume. This is typical in similar fields,
such as active learning for segmentation, and our method has not overcome this bottleneck. The
first reason could be the inherent phenomenon in the ‘predict-then-optimize’ domain, where better
predictions do not necessarily lead to better decisions. Thus, avoiding data redundancy and long-tail
overfitting in E2E-AD becomes even more critical. Secondly, compared to the long-tailed distribution
in planning, the repetition across different visual scenarios for vehicles can be relatively low.
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A MORE DISCUSSION ABOUT ACTIVEAD

We believe that contributing to the community extends beyond proposing novel neural networks.
Identifying key issues and conducting preliminary explorations are equally vital. True innova-
tion emerges from uncovering and understanding challenges, setting the stage for meaningful
progress. In this work, (1) We take the initial step to point out and analyze the data problem for
E2E-AD. (2) Based on the characteristics of AD tasks, we design specific metrics to select samples
which could optimize the planning performance by active learning, which fits planning-oriented
spirits of E2E-AD. (3) The strong performance of the proposed method and the comprehensive
ablation studies verify our claims.

What’s more, we notice that recent events in the E2E-AD community further validate the major
claims of our work:

1. In the recently finished CVPR 2024 CARLA challenge (June 2024) 1 , the winner solutions of both
sensor and map tracks mention that they filter those less valuable frames during training. As a result,
one winner state that by reducing the dataset size by 49%, with slightly improved performance. Their
heuristic effectively removes redundant frames without losing information (Jaeger & Chitta, 2024).

2. Tesla, one of the world’s leading autonomous driving technology company, claims that only about
1/10,000 of distance driven is useful for training, by their CEO Elon Musk in May, 20242.

We could observe that practioners in both academia and industry have both discovered the importance
of data filtering. As the first work to study the data issue and active learning for E2E-AD, we believe
the discoveies and insights of this work are worth sharing in the community.

B EXPERIMENTS DETAILS

B.1 EXPERIMENTS SETUP

End-to-end Autonomous Driving Models. ST-P3 (Hu et al., 2022c) is an interpretable end-to-end
vision-based network for autonomous driving that achieves better spatial-temporal feature learning.
UniAD (Hu et al., 2022b) leverages information from multiple preceding tasks to enhance goal-
oriented planning and demonstrates outstanding performance in all aspects, including perception,
prediction, and planning. VAD (Jiang et al., 2023) introduces a vectorized paradigm as a substitute
for the dense rasterized scene representation used in previous studies. This approach facilitates
a more focused analysis of instance-level structural information, leading to excellent end-to-end
planning performance. Moreover, it achieves substantial reductions in computational requirements,
decreases the reliance on training devices, and accelerates training speed. Consequently, we adopt
the lightweight version, VAD-Tiny, as the starting point for our experiments.

Active Learning Baselines. As mentioned in Sec. 2.2, end-to-end autonomous driving is a novel
and underexplored task for active learning. It is difficult to directly transfer existing active learning
approaches, which are usually based on predictive probability analysis, to this task. Therefore,
we choose three classic methods that are more transferable and relevant as baselines: Coreset, a
feature selection-based approach; VAAL, a task-agnostic method; KECOR (Luo et al., 2023a):
a 3D Object Detection active learning method; ActiveFT, which utilizes pre-trained features. 1)
Coreset (Sener & Savarese, 2018) formulates the data selection process as a k-Center problem on
the learned embeddings of both labeled and unlabeled data. We utilize the features prior to the
trajectory planning head (Jiang et al., 2023) as the embeddings. 2) VAAL (Sinha et al., 2019) employs
the adversarial learning paradigm, utilizing a variational autoencoder (VAE)(Kingma & Welling,
2013) to extract image features from the nuscenes dataset, along with a discriminator network that
distinguishes between labeled and unlabeled images. The VAE aims to deceive the discriminator by
making it classify all samples as labeled data, while the discriminator strives to accurately identify
the unlabeled samples in the data pool. Based on this approach, the selected unlabeled samples are
then annotated. 3) KECOR (Luo et al., 2023a) identifies the most informative point clouds to acquire
labels for 3D annotations through the lens of information theory. Samples selected based on this
criterion are used for our end-to-end training. 4) ActiveFT (Xie et al., 2023b) uses pretrained features

1https://opendrivelab.com/challenge2024/#carla
2https://x.com/elonmusk/status/1787768103449010597
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to optimize the distance between the distributions of labeled and unlabeled sets. In state-of-the-art
autonomous driving methods, BEV features (Li et al., 2023a) are the commonly used representation.
We adopt ActiveFT to use BEV features for data selection, and its strength lies in the ability to select
all data under the budget at once, without the need for iterative selection.

Annotation Budget. In the scenario of active learning, the annotation budget is typically predeter-
mined. Considering the complexity of end-to-end autonomous driving models and the diversity of
tasks (including the final planning task as well as auxiliary perception and prediction tasks), we have
set the annotation budget as 30%. Meanwhile, We further report the performance of ActiveAD with
the budget from 10% to 50% of the data in Tab. 6. We observe that the planning performance is
saturated around 30 % and thus we choose 30% as the stop threshold in the main paper.

Table 6: All tasks’ performance under different selection ratio.

Ratio Planning Perception Prediction
Avg. L2 ↓ Avg. Col. ↓ NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ minADE ↓ minFDE ↓ MR ↓ EPA ↑

10% 0.83 0.43 16.56 9.80 0.95 0.43 0.98 1.31 0.47 1.28 1.89 0.195 0.230
20% 0.76 0.39 21.46 14.77 0.83 0.45 0.84 0.99 0.49 1.10 1.59 0.161 0.373
30% 0.68 0.21 25.60 15.85 0.84 0.39 0.78 0.83 0.40 1.01 1.43 0.147 0.402
40% 0.66 0.24 27.12 18.20 0.81 0.36 0.83 0.79 0.35 0.96 1.36 0.145 0.414
50% 0.68 0.23 29.29 19.72 0.85 0.34 0.80 0.76 0.31 0.93 1.28 0.142 0.430

100% 0.70 0.25 36.11 26.65 0.74 0.31 0.76 0.67 0.23 0.84 1.16 0.134 0.534

B.2 METRICS EXPLANATION

In this paper, we utilize the evaluation metrics from VAD (Jiang et al., 2023), which is consistent
with ST-P3 (Hu et al., 2022c). Therefore, the results from these two papers can be directly applied.
Recently, inconsistencies in the UniAD metrics (Hu et al., 2023) have been identified within the
community (Mao et al., 2023; Li et al., 2023b). We reference the content in (Mao et al., 2023) to
provide more details about the evaluation metrics. The output trajectory τ is formatted as 6 waypoints
in a 3-second horizon, i.e., τ = [(x1, y1) , (x2, y2) , ..., (x6, y6)]. Then, the L2 loss is computed as:

l2 =
√
(τ − τ̂)2 =

[√
(xi − x̂i)

2
+ (yi − ŷi)

2

]6
i=1

, (7)

where l2 ∈ R6×1 and τ̂ denotes ground truth trajectory. Then, the average L2 loss l̄2 ∈ R6×1 can be
computed by averaging l2 for each sample in the test set.

UniAD (Hu et al., 2023) uses the value in the exact timestep as the L2 loss at the k-th second
(k = 1, 2, 3) :

LUniAD
2,k = l̄2[2k]. (8)

ST-P3 (Hu et al., 2022c) and VAD (Jiang et al., 2023) use the the average error from 0 to k second as
L2 loss at the k-th second:

LVAD
2,k =

∑2k
t=1 l̄2[t]

2k
. (9)

Given the collision times C ∈ N6×1 at each timestep. Similarly, UniAD reports the collision Cuniad
k at

the k-th second (k = 1, 2, 3) as C[2k], while VAD reports CVAD
k as the average from 0 to k second.

Besides the variations in calculation methodologies, there is a distinction in the generation of ground
truth occupancy maps between the two metrics. UniAD exclusively accounts for the vehicle category
in creating ground truth occupancy maps, whereas ST-P3 and VAD incorporates both vehicle and
pedestrian categories. This discrepancy results in different collision rates for the same planned
trajectories when evaluated by these metrics, although it has no effect on the L2 error measurement.
As a result, the collision rate in UniAD may be higher than reported, and this has been confirmed
in (Li et al., 2023b) where VAD demonstrates superior performance in terms of collision rates.
Consequently, we use a ’-’ in Tab. 1 instead of displaying specific values.

Taking into account the advantages of VAD in terms of model lightweighting (for instance, the
ability to train using a 3090 GPU) as well as its leading position in comprehensive performance, we
explore active learning based on the VAD model in this paper. This exploration is conducted from the
perspective of data, aiming to provide insightful analysis.
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Table 7: Planning Performance with VAD-Base. ActiveAD (w/o incremental) refers to the selection
of all data solely based on diversity selection. ActiveAD (w/ incremental) indicates performing
incremental selection based on an initial set.

Base Model Percent Selection Method Average L2 (m) ↓ Average Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 (Hu et al., 2022c) 100% - 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD† (Hu et al., 2023) 100% - 0.42 0.64 0.91 0.67 - - - -
VAD-Base∗ (Jiang et al., 2023) 100% - 0.39 0.66 1.01 0.69 0.08 0.16 0.37 0.20
VAD-Tiny∗ (Jiang et al., 2023) 100% - 0.38 0.68 1.04 0.70 0.15 0.22 0.39 0.25

VAD-Base 10% Random 0.49 0.81 1.20 0.83 0.38 0.57 0.91 0.62
10% ActiveAD(w/o incremental) 0.48 0.76 1.14 0.79 0.24 0.43 0.68 0.45

VAD-Base
20% Random 0.47 0.78 1.15 0.80 0.32 0.47 0.75 0.51
20% ActiveAD(w/o incremental) 0.44 0.75 1.10 0.76 0.25 0.34 0.61 0.40
20% ActiveAD(w/ incremental) 0.42 0.70 1.08 0.73 0.16 0.35 0.64 0.38

VAD-Base
30% Random 0.44 0.74 1.08 0.75 0.16 0.34 0.54 0.35
30% ActiveAD(w/o incremental) 0.42 0.71 1.05 0.73 0.14 0.29 0.49 0.31
30% ActiveAD(w/ incremental) 0.40 0.67 0.93 0.67 0.09 0.21 0.35 0.22

Table 8: Planning Performance with 5% Annotation Budget Per Selection Round on VAD-Tiny.

Selection Method Percent Average L2 (m) ↓ Average Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Random 5% 0.66 1.10 1.60 1.12 0.21 0.52 1.18 0.64
ActiveAD 5% 0.63 1.04 1.51 1.06 0.15 0.49 1.02 0.55

Random 10% 0.51 0.83 1.23 0.86 0.40 0.62 0.98 0.67
ActiveAD 10% 0.45 0.81 1.17 0.81 0.17 0.38 0.76 0.44

Random 15% 0.49 0.81 1.21 0.84 0.27 0.54 0.84 0.55
ActiveAD 15% 0.47 0.76 1.15 0.79 0.24 0.37 0.63 0.41

Random 20% 0.49 0.80 1.17 0.82 0.36 0.49 0.77 0.54
ActiveAD 20% 0.43 0.77 1.11 0.77 0.19 0.35 0.66 0.40

Random 25% 0.47 0.77 1.13 0.79 0.23 0.37 0.59 0.40
ActiveAD 25% 0.41 0.69 1.05 0.72 0.16 0.29 0.54 0.33

Random 30% 0.45 0.76 1.12 0.78 0.17 0.30 0.63 0.37
ActiveAD 30% 0.42 0.67 1.00 0.70 0.08 0.19 0.41 0.23

B.3 EXPERIMENT RESULTS FOR VAD-BASE

Tab. 7 presents the experimental results of our method based on the VAD-Base model. Compared to
the baseline of random selection, our method—whether it be the one-time sample selection based on
Ego-Diversity or the complete method that performs Incremental Selection starting from an initial
dataset—has shown significant advantages. Consistent with the conclusions in the main paper, using
30% of the data, our approach achieves performance on par with using the entire dataset, validating
the effectiveness and universality of our method.

B.4 EXPERIMENT RESULTS FOR DIFFERENT ANNOTATION INCREMENT.

In active learning, the sample selection ratio in each round plays a crucial role in determining
performance. In our main experiments, we chose 10% as the number of samples selected per round.
Here, we set the interval to 5%, resulting in training data proportions of 5%, 10%, 15%, ..., up to
30%. Since other active learning methods do not show a significant advantage over random selection,
we present a comparison of our method ActiveAD, with Random in the Tab. 8. Our findings reveal
that, across different initialization ratios and selection intervals, ActiveAD consistently demonstrates
robust performance advantages, underscoring its versatility across various labeling scenarios.
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C PERCEPTION AND PREDICTION PERFORMANCE.

Existing end-to-end training models (Hu et al., 2022b; Jiang et al., 2023) often utilize visual infor-
mation as auxiliary tasks to assist core objective planning. The main experiment shown in Tab. 1,
demonstrates our advantage in planning metrics, while we are also curious about perception and pre-
diction task performance. Tab. 6 displays the performance after training with different proportions of
data. The perception metrics include NDS(nuScenes detection score), mAP(mean Average Precision),
mATE(mean Average Translation Error), mASE(mean Average Scale Error), mAOE(mean Average
Orientation Error), mAVE(mean Average Velocity Error), mAAE(mean Average Attribute Error)
which are sourced from the nuScenes dataset setting (Caesar et al., 2020). The prediction metrics
include minADE (minimum Average Displacement Error), minFDE (minimum Final Displacement
Error) and MR (Miss Rate) and EPA (End-to-end Prediction Accuracy) (Hu et al., 2023).

It can be clearly observed that there still exists a significant performance gap in these metrics between
utilizing a small amount of data and using complete data. This observation aligns with common
sense in active learning tasks (Sener & Savarese, 2018; Sinha et al., 2019; Xie et al., 2023b; Zhan
et al., 2022), where a small sample size can not outperform the entire dataset in traditional image
classification and segmentation tasks. We would like to offer some thoughts on this phenomenon.

• In the field of optimization with uncertain coefficients, recent studies (Elmachtoub & Grigas,
2022; Cameron et al., 2022; Mandi et al., 2020) have also found that when a task involves both
prediction and decision-making, with the prediction output serving as the input for the decision
task, there can be a misalignment between the optimization objective of the prediction and the
overall decision objective. In other words, better predictions do not necessarily lead to better
decisions. For example, in the shortest path problem on a graph with unknown paths mentioned
in Elmachtoub & Grigas (2022), when the path costs are predicted using a dataset during the
prediction phase and directly used for downstream solving, the solution obtained is not optimal.

• The enhanced visual perception capabilities afforded by larger datasets can be expected and
align with common sense within the Active Learning community. A plausible explanation is
that while driving trajectories might show a long-tail distribution, the repetition across different
visual scenarios for vehicles is relatively low. Different environments, road sections, and lighting
conditions inevitably lead to varied scenarios, making saturated training valuable. However,
in end-to-end AD tasks, where these serve as auxiliary losses, our primary goal is decision-
making, specifically trajectory planning. Thus, avoiding data redundancy and long-tail overfitting
becomes even more critical.

It also raises the question of how to balance other losses in E2E-AD, considering planning as the
ultimate objective, and whether there are better training paradigms. Our active learning approach
provides a means to optimize training data while reducing costs. We believe that future work on
multitask learning or hard case mining holds promise for enhancing planning performance.
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