
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RISE : REGRESSION IMBALANCE HANDLING USING
SWITCHING EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Imbalanced Regression (DIR) is challenging due to skewed label distributions
and the need to preserve target continuity. Existing DIR methods rely on a single,
monolithic model, yet empirical analysis shows that standard benchmarks exhibit
strong distributional heterogeneity, exposing a core limitation of such approaches.
We theoretically prove that this property creates an irreducible bias for any single
model, leading to poor performance in data-scarce regions. This creates a core chal-
lenge for algorithmic fairness, as these regions often correspond to marginalized
demographic groups. To address this, we propose RISE—Regression Imbalance
handling via Switching Experts—a modular Mixture-of-Experts–inspired frame-
work, theoretically motivated by our analysis. RISE employs a novel imbalance-
aware algorithm to identify underperforming regions via validation loss and trains
dedicated experts with targeted upsampling. As a complementary framework, RISE
achieves new state-of-the-art performance while improving fairness, highlighting a
principled new direction for imbalanced regression.

1 INTRODUCTION

Imbalanced data distributions—common in real-world settings—create severe challenges for regres-
sion models, producing high variance on minority labels and bias toward majority ones Wang et al.
(2020a); Gong et al. (2022). Unlike classification, where imbalance has been extensively studied,
Deep Imbalanced Regression (DIR) is more complex due to its continuous and unbounded label
space. This limitation has critical fairness implications: in healthcare, underestimating rapid disease
progression delays care for underrepresented patients Cross et al. (2024), while in environmental pol-
icy, smoothing over pollution spikes overlooks harms concentrated in marginalized communities Su
et al. (2024)—highlighting DIR as both a technical challenge and a fairness imperative in high-stakes
domains.
In Fig.1, we compare state-of-the-art (SOTA) methods for DIR, including LDS-FDSYang et al.
(2021b) and SRL Dong et al. (2025), on Dataset A Moschoglou et al. (2017). While these ap-
proaches reduce training error in tail (few-label) regions, their gains vanish at test time, revealing
overfitting and poor generalization on underrepresented labels. Standard remedies such as frequency-
based oversampling Steininger et al. (2021) partially close this gap in the tail but consistently
degrade performance on head (many-label) regions, exposing a persistent head–tail trade-off Xu
et al. (2021). A key observation is that performance across label bands is highly sensitive to the
specific sampling realization of the training data, suggesting that the observed dataset is but one
draw from a richer underlying distribution, and oversampling schemes represent alternative draws.

Table 1: Cosine similarities

Dataset A wfew wmed wmany

wfew 1.00 0.04 0.03
wmed 0.04 1.00 0.09
wmany 0.03 0.09 1.00
Dataset B wfew wmed wmany

wfew 1.00 0.02 0.03
wmed 0.02 1.00 0.18
wmany 0.03 0.18 1.00

We hypothesize that the persistent head–tail discrepancy in DIR
arises from two factors: (a) different label regions exhibit distinct,
and sometimes conflicting, conditional distributions P (y|x); and
(b) a single monolithic model lacks the capacity to jointly capture
these heterogeneous mappings Sattler et al. (2020). We empirically
validate distributional heterogeneity in standard DIR benchmarks,
providing the first direct evidence in this setting. First, independent
linear predictors trained on frozen ResNet-50 features for the many-,
medium-, and few-label bands of Dataset A and Dataset B Rothe
et al. (2018b) yield nearly orthogonal weight vectors, with cosine
similarities as low as 0.03 (Table 1), indicating fundamentally different predictive functions across
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Figure 1: Dataset A: SOTA DIR methods cut tail error but worsen
head, exposing a persistent head–tail trade-off.

Figure 2: Heteroscedas-
ticity in Model Error-
SRL Dong et al. (2025)

regions. Second, to demonstrate the consequences of this heterogeneity, we analyze the error profile
of a single global model SRL. We find pronounced heteroscedasticity in its prediction errors: on test
data, variance in the few-label band is up to 7× higher than in the many-label band, while the opposite
trend holds on training data—classic overfitting to scarce samples (Fig. 2). This instability arises
precisely because a monolithic model cannot simultaneously capture distinct conditional distributions
P (y|x) across regions. Together, these findings show that the core challenge in DIR is not merely
label imbalance but distributional heterogeneity, motivating architectures that explicitly specialize
across label regions.

This necessitates an architectural shift towards a multi-expert paradigm. We therefore propose RISE
(Regression Imbalance handling using Switching Experts), a framework that directly confronts this
challenge by learning specialized representations for different data regions. Crucially, RISE is not a
generic Mixture of Experts (MoE) Mu & Lin (2025). Its novelty lies in its imbalance-aware algorithm
that operationalizes the MoE specifically for DIR. Unlike generic MoEs that partition data by feature
similarity, RISE identifies expert domains by analyzing the failure modes of a global model revealed
through its validation loss. Each expert is then trained with targeted upsampling, ensuring it focuses
on the underrepresented data that challenges a single, monolithic network. This end-to-end approach
transforms the MoE from a general tool for heterogeneity into a targeted, principled solution for DIR.

Below we summarize our key contributions:

1. To the best of our knowledge, we are the first to identify and empirically validate that standard
DIR benchmarks exhibit distributional heterogeneity, reframing the core challenge from mere label
imbalance to representational imbalance.

2. We prove that any monolithic model in DIR suffers from an irreducible heterogeneity bias amplified
by imbalance (Theorem 1), and show that targeted expert specialization trades bias reduction against
estimation variance (Theorem 2).

3. Building on this, we propose RISE, a modular and model-agnostic framework that comple-
ments existing SOTA methods by explicitly addressing distributional heterogeneity, overcoming the
persistent head–tail trade-off, and improving performance across all regions (as shown in Fig. 1).

4. RISE sets new SOTA on multiple DIR benchmarks Moschoglou et al. (2017), Rothe et al. (2018b),
outperforming all baselines, highlighting its effectiveness and establishing a new direction for DIR.

2 IMBALANCED REGRESSION PROBLEM FORMULATION

In DIR, we are given a dataset D = {(xi, yi)}ni=1 with inputs xi ∈ X ⊂ Rp and continuous labels
yi ∈ Y ⊂ R. The label marginal p(y) is highly non-uniform (long-tailed), producing majority
and scarce (tail) regions where conventional models systematically fail. Motivated by empirical
evidence (Sec. 1), we argue that the core difficulty is not merely imbalance in p(y), but a deeper
distributional heterogeneity in the conditional P (y | x). We posit a latent partition of the problem
space into K regions, with region k comprising fraction ρk = nk/n of the data and governed by a
distinct conditional distribution Pk(y | x). Because the fractions {ρk} are highly non-uniform, a
single monolithic predictor trained on the pooled data is dominated by majority regions and induces a
persistent bias in scarce ones, a limitation we formalize in Theorem 1. This heterogeneity makes a
MoE architecture the natural modeling choice. We therefore model the global conditional distribution
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as a mixture of these latent, region-specific distributions:

P (y|x) =
K∑
k=1

πk(x)Pk(y|x), (1)

where each component Pk(y|x) is modeled by an expert network Ek and the mixing coefficients
πk(x) are determined by a gating network gϕ. The final prediction is the expectation under this
mixture: ŷ =

∑K
k=1 gϕ(x)k · Ek(x). The learning task is thus transformed from fitting a single

complex function into discovering this latent partition (the gate) and learning specialized solutions for
each sub-problem (the experts), even when data is sparse—the core challenge our RISE framework is
designed to solve.

2.1 RELATED WORK

Deep Imbalanced Regression: DIR is challenging as it must preserve label continuity under skewed
distributions. Prior methods modify loss functions or label densities: LDS-FDS Yang et al. (2021b)
and Balanced-MSE Ren et al. (2022) address global imbalance but ignore local heterogeneity;
RankSim Gong et al. (2022), ConR Keramati et al. (2024), and SRL Dong et al. (2025) add feature-
space regularization (ranking, contrastive, or latent uniformity) yet assume homogeneous features.
Regression-via-classification methods Pintea et al. (2023); Pu et al. (2025); Xiong & Yao (2024)
discretize labels into fixed bins—a key limitation in continuous regression, where naı̈ve binning often
yields scattered or incoherent groups.

Ensembling and Mixture of Experts: A common approach to imbalance is partitioning data by
class sizes and training separate experts. Ensemble-based methods Xiang et al. (2020); Cui et al.
(2023); Cai et al. (2021) follow this strategy in classification but do not extend naturally to regression,
where targets are continuous and lack softmax-style aggregation. In long-tailed recognition, multi-
expert models such as BBN Zhou et al. (2020) (two-branch fusion for head/tail) and RIDE Wang
et al. (2020a) (diversity-regularized experts) reduce bias, yet their applicability to DIR—where label
continuity and regional heterogeneity are central—remains unexplored.

3 THEORETICAL INSIGHTS: WHY MONOLITHIC MODELS FAIL ON DIR

We formalize the core difficulty we empirically observe in DIR: when data comes from a mixture of
region-specific mechanisms, a single global predictor suffers cross-region interference, amplified by
label imbalance. To study this, we adopt a simplified linear regression setting, a standard tool for
analyzing generalization in complex models Belkin et al. (2018); Lin et al. (2023).

Setup. We consider heterogeneous linear regression with K latent regions, each occurring with
probability ρk = nk/n (Sec. 2). For a sample (x, y) from region k, such that x ∼ N (0,Σ), and
y = w∗⊤

k x + ε, where w∗
k ∈ Rp is the region-specific parameter, ε ∼ N (0, σ2

k) is independent
noise, and Σ ≻ 0 is the common feature covariance matrix 1. Heterogeneity is captured entirely
by {w∗

k}, which define distinct Pk(y | x). Stacking all n =
∑K
k=1 nk samples gives the design

matrix X ∈ Rn×p and the label vector Y ∈ Rn. The pooled(or global) Ordinary Least Squares
(OLS) estimator is ŵ = (X⊤X)−1X⊤Y, trained on all n samples. We evaluate performance by the
region-weighted generalization error: Gρ(ŵ) =

∑K
k=1 ρk ∥ŵ − w∗

k∥2.

Theorem 1 (Generalization error under imbalance and heterogeneity). Let wavg =
∑K
k=1 ρkw

∗
k and

σ̄2 = maxk σ
2
k. Under Gaussian design with n > p+ 1, the expected region-weighted error of the

pooled OLS estimator decomposes as

E[Gρ(ŵ)] = σ̄2 tr(Σ−1)
n−p−1︸ ︷︷ ︸

Estimation Variance (shrinks with n)

+

K∑
k=1

ρk ∥w∗
k − wavg∥2︸ ︷︷ ︸

Heterogeneity Bias (persists)

, (2)

1In Appendix A we relax this assumption to region-dependent covariances Σk and noise σ2
k and show the

same qualitative conclusions hold.
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Proof sketch. The decomposition follows from Gρ(ŵ) = ∥ŵ−wavg∥2+
∑
k ρk∥w∗

k−wavg∥2, since∑
k ρk(w

∗
k − wavg) = 0. The first term is bounded using inverse-Wishart moments for Gaussian

design, yielding the variance term. The second term is deterministic and captures irreducible
heterogeneity. Full derivations, and generalizations to Σk, σ

2
k are provided in Appendix A.

Implications. Theorem 1 shows that imbalance amplifies heterogeneity: wavg is dominated by head
regions, yielding persistent error on tails when w∗

t lies far away. Even with infinite data, a monolithic
model converges to this biased average. Since the Heterogeneity Bias cannot be reduced by more data
or reweighting, a natural remedy is architectural: partition the space and assign specialized predictors,
so each operates in a more homogeneous region and achieves better generalization.

4 PROPOSED METHOD: RISE

Our proposed method, RISE, as illustrated in Fig. 3, operates as a complementary framework
designed to systematically enhance any pre-trained DIR baseline. Its core architectural choice—
replacing a single monolithic model with a system of specialized experts—is a direct response to the
distributional heterogeneity we identified in Sec. 1. First, RISE-Identify takes the trained baseline
model (fθ) and analyzes its performance on a held-out validation set to discover its specific failure
modes. By using held-out data, we identify regions of true generalization error, not artifacts of
training set memorization. Second, RISE-Train creates a set of dedicated experts, each one targeting
a specific failure region identified in the first stage. These experts are trained on the train-dataset with
targeted upsampling, a strategy that encourages specialization while regularizing against overfitting.
Finally, RISE-Inference learns a gating mechanism, also on the held-out set, that dynamically routes
new inputs to the most appropriate expert at test time. Complete implementation details and pseudo
code are provided in Appendix D.1.

Figure 3: Overview of RISE framework.

4.1 RISE-IDENTIFY: DISCOVERING LATENT FAILURE REGIONS

Table 2: Frequency-Loss
Relationship Analysis for
Dataset A

Label Band Freq Held-out Loss

0-20 231 8.86
20-40 4,913 6.30
40-60 4,609 7.44
60-80 2,244 7.79
80-100 208 9.34

The first stage of RISE is to identify the latent regions where a baseline
model fails, corresponding to the distinct components of the hetero-
geneous data distribution we posited in our problem formulation. The
overall dataset D is first split into a training set Dtrain and a held-out
validation set Dval.A naive approach, implicitly used by frequency-
based methods Cui et al. (2023); Yang et al. (2021b), is to partition
data using label-density bins from Dtrain. Specifically, the continuous
label space is first discretized into bins, and the frequency of labels in
each bin is computed Yang et al. (2021b). A K ′-component Gaussian
Mixture Model (GMM) is then fitted to these frequencies:

p(ν) =
∑K′

j=1 π
′
jN (ν|µj , σ2

j ) where ν denotes the bin frequency. Component with the largest weight
π′
j corresponds to the majority region, while the remaining components capture minority regions.

However, this frequency-based approach is a flawed proxy for two key reasons. First, as our analysis
shows in Table 2, error (or held-out loss) and frequency are not perfectly correlated; a region can
have moderate data density yet still exhibit high generalization error. The 40–60 label band shows
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higher loss (7.44) than the 20–40 band (6.30), despite similar sample sizes, indicating that frequency
alone does not explain model error—performance is not strictly inversely proportional to frequency,
aligning with the observation of Yang et al. (2021b). Second, frequency-based partitioning often
creates non-contiguous regions in the label space as shown in Fig. 4a, which is problematic for
regression tasks where nearby labels are highly correlated and should be modeled coherently Yang
et al. (2021b); Gong et al. (2022).

a) b)

Figure 4: Comparison of minority region
identification approaches on Dataset A. a)
Frequency-based analysis leads to discon-
nected minority regions (red, yellow) sepa-
rated by majority regions (green). b) Loss-
Label Distribution analysis produces contigu-
ous minority regions

RISE adopts a more direct and principled strategy:
we identify regions based on the model’s generaliza-
tion error, a direct signal of where the single, mono-
lithic model is failing. First, we take a pre-trained
DIR baseline, fθ, trained on Dtrain. We then use this
model to make predictions on the disjoint Dval. For
each sample (xi, yi) ∈ Dval, we compute its point-
wise prediction error, ei = L(fθ(xi), yi), where L
is a loss function such as the absolute error (L1) or
squared error (L2). To identify contiguous regions
of high error, we model the joint distribution of these
errors and their corresponding labels. This joint mod-
eling ensures that identified regions are contiguous
in label space—nearby labels with similar error patterns are grouped together—which is crucial
for regression tasks where adjacent target values should be handled by similar predictive func-
tions. Following Yang et al. (2021b) we partition the continuous label range of Dval into B disjoint,
uniform-width bins, {B1, . . . , BB}. For each bin b, we define the set of sample indices it contains as
Ib = {i | yi ∈ Bb} and compute its average generalization error: ℓb = 1

|Ib|
∑
i∈Ib

ei. We model the
resulting distribution of (average error, label bin center) pairs, {(ℓb, yb)}Bb=1, using a K ′-component
GMM:

p(ℓ, y) =

K′∑
j=1

π′
jN ((ℓ, y)|µj ,Σj). (3)

The GMM naturally clusters the label bins into K ′ distinct and contiguous performance regions
R′
j . The component with the lowest mean error (along the error dimension of µj) is designated

the well-performing ”majority” region, while the remaining components correspond to distinct
failure modes requiring specialized experts. K ′ is a hyperparameter that needs to be tuned. Using a
held-out set ensures the identified regions correspond to true generalization failures, not training set
memorization—a phenomenon we explicitly observe (Fig. 1).As illustrated in Fig. 4b, this approach
produces continuous minority regions, aligning with the principle of region similarity and enabling
more homogeneous expert training. By defining regions based on error, we directly target the
heterogeneity bias identified as the key limitation in Theorem 1.

4.2 RISE-TRAIN: EXPERT TRAINING

Having identified the baseline model’s failure regions, the next stage is to train a dedicated expert for
each one. To maintain computational efficiency and leverage the powerful representations learned
by the baseline fθ, we adopt a parameter-efficient fine-tuning approach Kirichenko et al. (2023).
As shown in Fig. 3 each expert Ej shares the frozen backbone of the pre-trained model; only its
final layers are trained for specialization. For RISE-Train, we evaluate two strategies for expert
specialization. A naive strategy (T1: Subgroup-Specific Training) trains each expert exclusively on
its assigned data partition. This hard partitioning forces experts to learn from a severely restricted
support of the data distribution, inducing high estimation variance and overfitting. It also prevents
learning smooth functions across the label space in regression, leading to poor generalization and
discontinuities at region boundaries. We therefore propose a more robust and principled strategy: T2:
Cross-Group Training with Upsampling. For each expert Ej , we train on the full dataset Dtrain
with sample weights: target region samplesR′

j are upsampled by αj > 1, others by 1. This weighted
empirical risk minimization both regularizes and specializes: exposure to the full dataset prevents
high variance and discontinuities by constraining experts to remain well-behaved across the manifold,
while αj > 1 amplifies gradients fromR′

j , biasing the expert toward its designated failure regions.
Our ablations (Sec. 6.3) empirically confirm that T2 is a far superior strategy, and we adopt it for all
experiments.
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4.3 RISE-INFERENCE: EXPERT SWITCHING STRATEGY

The final stage of RISE is to dynamically route each new input to the most suitable expert at test
time. We compare three strategies: (I1) Expert Averaging, a simple ensemble baseline which
aggregates predictions from all experts via weighted averaging; (I2) Train-based Router, a gating
network gϕ trained on the training set Dtrain, our proposed (I3) Held-out-based Router; and (I4)
Train + Held-out based Router, a gating network gϕ trained on the held-out validation set Dval.
Our ablations (Sec. 6.4) show that the held-out router (I3) is decisively superior. A router trained
on Dtrain tends to select experts that best fit training artifacts, whereas training on Dval turns routing
into a meta-learning task: it learns to pick the expert that generalizes best. We therefore adopt I3
as our standard strategy. The router is implemented as a small multi-layer perceptron (MLP) that
takes the shared features from the baseline’s backbone as input and outputs a probability distribution
over the K ′ experts. The final prediction ŷ is the output of the single expert selected by the router:
ŷ = Ej∗(x), where j∗ = argmaxj gϕ(x)j .

5 THEORETICAL JUSTIFICATION FOR RISE

Having established in Theorem 1 that a global model suffers an irreducible heterogeneity bias,
the natural question is: under what conditions can a region-specialized architecture overcome this
limitation? We provide a formal result showing when RISE strictly outperforms the pooled model.
Theorem 2 (Generalization advantage of RISE). Building on the heterogeneous regression setup of
Theorem 1, let K ′ experts be trained with per-region upsampling factors αj and routing probabilities
qk(j) (the probability that a sample from region k is assigned to expert j). The effective sample
size for expert j is n

(j)
eff = (αj − 1)nj + n. From Theorem 1 we know the pooled/global model

incurs region-weighted risk (or generalisation error) Gpooled = Vglob + ∆glob, where ∆glob =∑K
k=1 ρk ∥w∗

k − wavg∥, and Vglob = O(p/n) is the estimation variance of the global model, while
generalisation error of RISE satisfies

GRISE = Bdet(α, q) + Vest(α, q) +Rcross(α, q),

where Bdet is deterministic bias from imperfect specialization (including possible K ′ ̸= K or
overlapping experts), Vest(α, q) = O(p/n

(j)
eff ) is expert estimation variance, and Rcross(α, q) =

O(

√
p/n

(j)
eff ) are vanishing cross-terms. RISE outperforms the pooled model whenever

∆glob −Bdet(α, q) > Vest(α, q)− Vglob +Rcross(α, q).

Proof Sketch and Implications. The pooled model converges to the data-weighted average wavg,
incurring a persistent heterogeneity bias ∆glob. RISE reduces this bias by upsampling scarce
regions and routing them to specialized experts, so their effective targets move closer to w∗

k. Any
mismatch between the number of experts and true regions (K ′ ̸= K or overlaps) is absorbed into
the deterministic bias term Bdet(α, q). The trade-off is increased finite-sample variance Vest(α, q) =

O(p/n
(j)
eff ) and negligible cross-terms Rcross(α, q) = O(

√
p/n

(j)
eff ), both of which decay with sample

size. Thus, whenever the bias reduction dominates these penalties, RISE achieves strictly better
generalization than the pooled model. Detailed proofs are in Appendix B. In practice, imbalance-
aware upsampling (RISE-Train T2) increases neff in scarce regions and the learned router (RISE-
Inference I3) keeps the maximum routing error ϵ = maxk(1− qk(k)) small, directly satisfying the
theorem’s condition GRISE < Gpooled. We provide empirical validation of this effect in Sec. 6.5.

6 EXPERIMENTS AND RESULTS

We evaluate the utility of RISE through the following research questions-

• RQ1: How effective is RISE compared to SOTA baselines across different datasets?
• RQ2: How do expert training strategies and hyperparameters affect RISE performance?
• RQ3: How do different RISE-INFERENCE strategies affect overall performance?
• RQ4: How Practically Achievable are the Theoretical Conditions (Theorem 2) for RISE’s Success?
• RQ5: Do RISE’s performance gains stem from its specialized architecture or model capacity?

6
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6.1 EXPERIMENTAL SETUP

Algorithms: We compare RISE with four SOTA DIR methods and a Vanilla ResNet-50 backbone
He et al. (2016). Since RISE is a modular framework that complements existing approaches, we
evaluate it in combination with Vanilla, LDS+FDS Yang et al. (2021b), RankSIM Gong et al. (2022),
BalancedMSE Ren et al. (2022), and SRL Dong et al. (2025). For baselines we use released weights
or official implementations. All RISE experts are trained with MSE loss. We tune the number of
experts K ′, upsampling ratio α, selecting the best configuration by validation performance. Further
details are in Appendix D.2.

Datasets: We evaluate RISE on four DIR benchmarks across modalities: Dataset A Moschoglou et al.
(2017)(images, target values in range 0–101), Dataset B Rothe et al. (2018b) (images, range 0–186),
STS-B Cer et al. (2017a) from GLUE Wang et al. (2018) (text, similarity 0–5), and UCI-Abalone Nash
et al. (1994) (tabular, range 1–29). Following confidentiality requirements, we anonymize Dataset A
and Dataset B by omitting their names. Full details are in Appendix C.

Metrics: Following Yang et al. (2021b); Gong et al. (2022); Dong et al. (2025), we report performance
overall and across Many (>100 samples), Medium (20–100), and Few (<20) label bands. For
Dataset A and B, we use Mean Absolute Error (MAE)↓, Mean Squared Error (MSE)↓, and Geometric
Mean Error (GMEAN)↓. For STS-B, we additionally report Pearson↑ and Spearman↑ correlation. To
assess fairness — defined as minimizing performance disparities across these bands—we also report
balanced-MAE (bMAE)↓ Ren et al. (2022), which averages MAE over uniformly partitioned label
bins to capture regional performance gaps (see Appendix Section E.2).

6.2 RQ1: PERFORMANCE OF RISE ON PUBLIC BENCHMARK DATASETS

Table 3: Balanced-MAE
(bMAE) ↓ on Dataset A

bMAE ↓
Method All Many Med Few
SRL 8.32 6.64 8.34 11.74
SRL + RISE 7.39 6.00 7.25 10.33

Table 4 shows that RISE consistently improves strong baselines
(LDS+FDS, RankSIM, SRL) on Dataset A across all label bands (
similar results for other datasets are provided in Appendix Sec. E.1
). The largest relative gains occur in the Few and Medium regions,
where monolithic models suffer most. For example, SRL+RISE
reduces Few-MAE by 15% while simultaneously lowering Many-
MAE by 10%, thereby overcoming the common head-tail perfor-
mance trade-off. The performance gains from RISE scale directly
with the quality of the learned router. Weak backbones (e.g., Vanilla, with a router accuracy of
≈ 0.44) lead to unstable tail performance. In contrast, strong backbones (e.g., SRL, with a router
accuracy of≈ 0.87) enable RISE to fully realize the theoretical advantage of specialization (Theorem.
2). This confirms that the benefit from reducing heterogeneity bias dominates once the routing error
is sufficiently low, while the variance cost remains controlled. Additional results (Appendix E.4)
show that using an optimal router trained on the best feature representation yields significantly better
performance than the baseline router, due to higher routing accuracy.

We assess fairness via bMAE in Table 3 (full results in Appendix Sec. E.2). By significantly
improving Few and Medium-band performance while preserving Many-band accuracy, SRL+RISE
directly mitigates the bias towards head regions exhibited by the baseline. This reduces performance
disparities across label bands and demonstrably more equitable performance across all label bands.

6.3 RQ2: ABLATION ON EXPERT TRAINING AND HYPERPARAMETERS

We ablate RISE’s core design choices on Dataset A with SRL as backbone in Tables 5 and 6. Results
on Dataset B is in Appendix Sec. E.3. Our adopted expert training strategy, T2 (full-dataset training
with region specific upsampling), consistently outperforms T1 (region specific training). T1’s hard
partitioning causes severe overfitting, whereas T2’s full-dataset exposure acts as a powerful regularizer
that promotes smooth generalization while upsampling encourages specialization. Our analysis of the
number of experts (K ′) and upsampling ratio (α) reveals a clear U-shaped performance curve. This
empirically validates our theory’s cost-benefit trade-off (Theorem 2) and directly operationalizes
it: the upsampling factor α is a key lever to control the expert’s estimation variance (Vest) while still
achieving the primary goal of reducing heterogeneity bias (Bdet). Performance peaks at moderate
values (e.g., K ′ = 3, α = 3) before degrading as the costs of data fragmentation and overfitting
outweigh the benefits of heterogeneity reduction.
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Table 4: Results on Dataset AMoschoglou et al. (2017). For each baseline/RISE pair, the better score
is in bold; the best overall is underlined. Router accuracy of RISE is shown in parentheses.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

VANILLA 11.05 9.96 12.79 16.53 7.06 6.27 8.37 13.48 202.09 165.09 270.75 361.74
+RISE (0.44) 10.43 9.40 11.62 16.93 6.55 5.85 7.47 13.16 181.61 148.38 221.57 384.95

BalancedMSE 8.70 8.44 8.99 10.26 5.58 5.44 5.87 6.17 127.05 118.69 133.94 187.01
+RISE (0.47) 7.71 7.23 8.16 10.02 4.83 4.52 5.10 6.87 103.39 91.14 114.84 187.41

LDS+FDS 7.47 6.91 8.27 10.58 4.77 4.44 5.33 6.87 95.32 79.71 118.52 178.58
+RISE (0.53) 7.28 6.79 8.07 9.72 4.49 4.25 4.88 6.04 92.79 78.88 116.49 158.63

RankSIM 7.02 6.58 7.86 9.72 4.55 4.14 5.39 6.97 83.55 74.34 99.30 149.51
+RISE (0.54) 6.94 6.50 7.38 9.10 4.35 4.08 4.80 6.04 82.70 71.96 91.20 138.15

SRL 7.23 6.64 8.28 9.85 4.53 4.17 5.32 6.35 91.79 77.20 115.83 163.15
+RISE (0.87) 6.57 6.16 7.36 8.30 3.61 3.40 4.14 4.33 82.01 70.88 91.20 134.93

Table 5: Ablation on Dataset A: MAE for varying upsampling (with fixed K ′=3, left) and varying
experts (with fixed α=3, right). Best RISE configuration beating baseline SRL is in bold.

L1 (MAE) ↓

Config All Many Med Few

SRL 7.23 6.64 8.28 9.85

SRL+RISE
α=2 6.72 6.23 7.69 8.66
α=3 6.57 6.16 7.36 8.30
α=4 6.73 6.32 7.51 8.43
α=5 6.89 6.52 7.49 8.68

L1 (MAE) ↓

Config All Many Med Few

SRL 7.23 6.64 8.28 9.85

SRL+RISE
K′=2 6.88 6.41 7.70 9.06
K′=3 6.57 6.16 7.36 8.30
K′=4 6.89 6.48 7.38 9.29
K′=5 7.29 6.93 7.67 9.58

6.4 RQ3: ABLATION ON RISE-INFERENCE STRATEGIES

We compare four routing strategies as mentioned in Section 4.3 on Dataset A in Table 7 (full results
in Appendix Sec. E.3 and detailed ablation in Appendix Sec. I): I1 (expert averaging), I2 (router
trained on the training set), our proposed I3 (router trained on a held-out validation set) and I4
(router trained on train+held-out dataset). We observe that I3 is significantly superior. The reason
is fundamental—routers trained on the training set (I2 & I4) overfit to features already captured by
experts, whereas I3 learns which expert generalizes best, providing a robust signal for routing. This
confirms that RISE’s advantage stems from its effective use of held-out data for what is essentially a
meta-learning task—learning to select the best generalizing expert.

Table 6: Ablation of RISE-Expert training. Best
results in bold. Full results in Appendix Sec. E.3

L1 (MAE) ↓

Method All Many Med Few

RISE (T1) 7.23 6.77 7.95 9.61
RISE (T2) 6.57 6.16 7.36 8.30

Table 7: Ablation of RISE inference strategies.
Best results in bold. Full results in Appendix
Sec. E.3

L1 (MAE) ↓

Method All Many Med Few

Baseline SRL 7.23 6.64 8.28 9.85

Expert average (I1) 7.23 6.72 8.13 9.54
Train-based Router (I2) 7.26 6.61 8.34 10.33
Held-out-based Router (I3) 6.57 6.16 7.36 8.30
Train+Val based Router (I4) 7.24 6.65 8.31 9.98

6.5 RQ4: EMPIRICAL VALIDATION OF THEORETICAL TRADE-OFFS IN PRACTICE

Theorem 2 predicts that RISE outperforms a pooled (or monolithic) model whenever the bias reduction
from specialization outweighs the added estimation variance and routing cost. To empirically validate
this, we conduct controlled experiments on Dataset A with RISE using SRL as the backbone. We
simulate router behavior with accuracy p ∈ {0.01, . . . , 1.0}, where the correct expert is chosen
with probability p. We systematically vary (i) the upsampling factor α (Fig. 5) and (ii) the number
of experts K ′ (Fig. 6), averaging over 20 trials. Keeping fixed K ′ = 3, Fig. 5 shows that higher
upsampling reduces error under accurate routing but increases sensitivity to poor routing, consistent
with α reducing bias while amplifying variance. Keeping α = 3 fixed in Fig. 6 shows that larger
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Figure 5: MAE vs. router accuracy for differ-
ent upsampling factors (α) with fixed K ′ = 3

Figure 6: MAE vs. router accuracy for vary-
ing numbers of experts with fixed α = 3

K ′ improves accuracy when routing is reliable but offers diminishing returns and greater instability
when routing is noisy. In both cases, α = 1 or K ′ = 1 reduces RISE to the pooled baseline (or
standalone SRL model). Overall, the empirical gain, Gpooled − GRISE, becomes positive once router
accuracy exceeds ∼60% (with moderate α,K ′), confirming that RISE successfully operationalizes
the theoretical trade-off and remains robust to realistic routing imperfections.

6.6 RQ5: ABLATION: RISE VS. HIGH-CAPACITY ENSEMBLES.

Table 8: Comparison of RISE vs. traditional ensembles
on Dataset A. Best results in bold

L1 (MAE) ↓

Experiment Additional
Parameters

All Many Median Few

SRL 0 7.23 6.64 8.28 9.85
SRL+ RISE (K’=3) +2,100,224 6.57 6.16 7.36 8.30
SRL: 3 ensemble +3,150,336 7.22 6.63 8.28 9.86
SRL: 5 ensemble +5,250,560 7.22 6.62 8.30 9.90

A critical question is whether RISE’s gains
stem from its principled architecture or
simply from an increased parameter count.
To isolate this, we compare RISE against
strong, high-capacity ensembles (Table 8,
complete results in Appendix Sec. E.3).
We train ensembles of 3 and 5 SRL models
resulting in significantly additional model
size than a RISE-augmented model, where
each member is trained on a random data
subset to induce diversity. We observe that RISE consistently and significantly outperforms these
ensembles, even with their much higher capacity. This highlights a fundamental architectural differ-
ence. Standard ensembles create diversity through unstructured, random data sampling. In contrast,
RISE employs a principled, structured specialization: it uses validation loss to deterministically
identify the model’s specific failure modes and trains experts to explicitly target those weaknesses.
This confirms that RISE’s performance gains are not a product of raw model capacity but are a direct
result of its intelligent, data-driven approach to resolving distributional heterogeneity.

7 CONCLUSION, BROADER IMPACT, AND LIMITATIONS

We presented RISE (Regression Imbalance handling via Switching Experts), a novel framework that
addresses the fundamental challenge of distributional heterogeneity in Deep Imbalanced Regression
(DIR). RISE employs a three-stage approach: identifying failure regions via validation loss analysis
rather than frequency-based heuristics, training experts with cross-group upsampling to encourage
specialization while maintaining smoothness, and learning a gating mechanism, that dynamically
routes new inputs to the most appropriate expert at test time. This approach consistently outperforms
existing methods, improving both predictive accuracy and fairness, especially for underrepresented
regions of the target distribution. RISE is broadly applicable to any regression problem with imbalance
issues, advancing the development of more reliable and fair AI systems for critical decision-making.

Limitations: RISE introduces additional computational overhead due to training multiple experts
and a router network; however, this is partially offset by training experts on last-layer features
only. The framework also depends on a high-quality, representative validation set for effective
minority subgroup identification and router training. The method’s performance and fairness gains
can degrade if the validation set is noisy or biased, potentially reinforcing existing biases through
expert specialization. Future work could explore adaptive validation strategies and more efficient
training schemes to further mitigate these limitations.
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APPENDIX

A PROOF OF THEOREM 1

We restate Theorem 1 from the main paper, together with its assumptions, before presenting a
complete proof and a refinement using matrix concentration to obtain a tighter bound. In addition,
we extend the analysis to region-dependent feature covariances, where feature distributions may
differ across regions, to make the theory more realistic. This extension leads to the same qualitative
conclusion as in the main paper.

A.1 ASSUMPTIONS AND NOTATION

We work in the classical fixed-p regime. Let p, n ∈ with n > p + 1. The condition n > p + 1
ensures that the expectation of the inverse-Wishart distribution exists, which is needed to evaluate the
estimation variance. For vectors and matrices we use the Euclidean norm ∥ · ∥ and the spectral norm
∥ · ∥op; (·) denotes the trace.

Assumption 1 (Gaussian design). Fix a positive definite covariance matrix Σ ∈ Rp×p with eigen-
values 0 < λmin(Σ) ≤ λmax(Σ) <∞. Let x1, . . . , xn

i.i.d.∼ N (0,Σ) be the design rows, stacked into
X ∈ Rn×p.

The label space is partitioned into K regions indexed by k = 1, . . . ,K. Each observation i has a
region label zi ∈ {1, . . . ,K}, drawn independently of X , with

P (zi = k) = ρk, ρk > 0,

K∑
k=1

ρk = 1.

Let nk =
∑n
i=1 1{zi = k} be the (random) region counts, with E[nk] = nρk.

Remark 1 (On independence of z and x). The assumption zi ⊥ xi is restrictive but crucial for
tractability. In practice (e.g., econometrics, biostatistics), features are often predictive of group
membership, in which case off-diagonal terms would appear in conditional covariances and the
analysis would require more advanced tools.
Assumption 2 (Linear region-specific models). For each region k there exists a parameter vector
w∗
k ∈ Rp. Observations in region k follow

yi = x⊤
i w

∗
zi + εi, εi

ind∼ N (0, σ2
zi),

with εi independent of xi and other noise variables. Label vector y ∈ Rn.

Define the population-weighted average parameter

wavg :=

K∑
k=1

ρkw
∗
k,

and the centered deviations

vk := w∗
k − wavg,

K∑
k=1

ρkvk = 0.

[Pooled OLS and risk] The pooled ordinary least squares estimator is

ŵ = (X⊤X)−1X⊤y,

which is well-defined almost surely for n > p.

We measure performance by the ρ-weighted mean squared error

Gρ(ŵ) =

K∑
k=1

ρk∥ŵ − w∗
k∥2.
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A.2 EXACT DECOMPOSITION OF EXPECTED ERROR

Theorem 1. Under Assumptions 1–2, for n > p+ 1,

E
[
Gρ(ŵ)

]
= E

[
∥(X⊤X)−1X⊤ε∥2

]︸ ︷︷ ︸
estimation variance

+E
[
∥(X⊤X)−1X⊤δ∥2

]︸ ︷︷ ︸
mismatch term

+ ∆︸︷︷︸
irreducible heterogeneity

, (4)

where δ ∈ Rn has entries δi = x⊤
i vzi , and

∆ :=

K∑
k=1

ρk∥w∗
k − wavg∥2 =

K∑
k=1

ρk∥vk∥2.

Moreover,

E
[
∥(X⊤X)−1X⊤ε∥2

]
=

(Σ−1)

n− p− 1

( K∑
k=1

ρkσ
2
k

)
. (5)

Proof. Expanding
∑
k ρk∥ŵ − w∗

k∥2 yields

Gρ(ŵ) = ∥ŵ − wavg∥2 +∆.

The response can be written as y = Xwavg + δ + ε, where δi = x⊤
i vzi . Therefore

ŵ − wavg = (X⊤X)−1X⊤(δ + ε).

Squaring gives

∥ŵ − wavg∥2 = ∥(X⊤X)−1X⊤ε∥2 + ∥(X⊤X)−1X⊤δ∥2

+ 2⟨(X⊤X)−1X⊤ε, (X⊤X)−1X⊤δ⟩.

Taking expectation: the cross-term vanishes because conditional on (X, z), δ is fixed and E[ε|X, z] =
0. This proves (4).

For (5), let A = (X⊤X)−1X⊤. Then

E∥Aε∥2 = E
(
AE[εε⊤|z]A⊤)

= EX,z

(
(X⊤X)−1X⊤(σ2

z1 , . . . , σ
2
zn)X(X⊤X)−1

)
.

Independence of z and X implies

Ez[(σ
2
z1 , . . . , σ

2
zn)] =

( K∑
k=1

ρkσ
2
k

)
In.

Thus
E∥Aε∥2 =

(∑
k

ρkσ
2
k

)
E((X⊤X)−1).

Since X⊤X ∼ Wp(Σ, n),

E[(X⊤X)−1] =
Σ−1

n− p− 1
, n > p+ 1,

hence the trace formula (5).

A.3 REMARKS

• The decomposition (4) provides a transparent separation of error sources: (i) variance due to
noise, (ii) a design-dependent mismatch term induced by parameter heterogeneity, and (iii)
the irreducible population heterogeneity ∆.

• The estimation variance admits an exact closed form (5), scaling as O(1/n) for fixed p.
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• The mismatch term is always nonnegative. Its precise asymptotics depend on higher-order
Wishart moment identities; deriving tight general rates is delicate and left for future work.

• As n→∞ with p fixed, the total expected error approaches ∆, which is the asymptotic bias
from heterogeneity.

• Ill-conditioning of Σ (large (Σ−1)) inflates the variance term and slows convergence to ∆.

• These conclusions hold in the fixed-p, large-n regime. In high-dimensional settings with
p/n ̸→ 0, ridge regularization and random matrix theory tools are needed.

Assumption 3 (Sub-Gaussian heterogeneous design). For each region k, the covariates xk,i are
independent mean-zero Kψ–sub-Gaussian vectors with covariance Σk ≻ 0, i.e. for every unit vector
u ∈ Rp and t ∈ R,

E exp
(
t u⊤xk,i

)
≤ exp

(
K2
ψt

2/2
)
.

Define the mixture covariance

Σmix :=

K∑
k=1

ρkΣk,

and assume λmin(Σmix) > 0.

Proposition 1 (Sample-covariance concentration). Under Assumption 3, there exist constants
c0, C0 > 0 depending only on Kψ such that if n ≥ C0

(
p + log(1/δ)

)
then with probability at

least 1− δ,

∥Σ̂− Σmix∥op ≤ c0 ∥Σmix∥op

√
p+ log(1/δ)

n
.

Consequently, on this event λmin(Σ̂) ≥ 1
2λmin(Σmix) and ∥Σ̂−1∥op ≤ 2/λmin(Σmix).

Theorem 1.1 (Finite-sample generalization under heterogeneous covariances). Suppose Assump-
tions 2 and 3 hold. Let σ2

avg :=
∑K
k=1 ρkσ

2
k and define ∆ :=

∑K
k=1 ρk∥vk∥2. There exist constants

C,C1, C2 > 0 depending only on Kψ and the spectral condition number κ(Σmix) such that if

n ≥ C
(
p+ log(1/δ)

)
,

then with probability at least 1− δ the pooled least-squares estimator ŵ = (X⊤X)−1X⊤y satisfies

Gρ(ŵ) ≤ C1

σ2
avg p

nλmin(Σmix)
+ C2

∥∥∥Σ−1
mix

K∑
k=1

ρkΣkvk

∥∥∥2 +∆+
C

n
. (6)

Moreover, in the fixed-p, n→∞ limit,

lim
n→∞

E
[
Gρ(ŵ)

]
= ∆+

∥∥∥Σ−1
mix

K∑
k=1

ρkΣkvk

∥∥∥2. (7)

Proof (proof sketch and main lemmas). The proof proceeds in six steps. Below we give the key ideas
and cite the concentration results used for brevity and readability.

Step 1: Decomposition. Write y = Xwavg + δ + ε where δi = x⊤
i vzi and ε = (εi)

n
i=1. Then

ŵ − wavg = Σ̂−1
( 1

n
X⊤δ

)
+ Σ̂−1

( 1

n
X⊤ε

)
.

Thus
Gρ(ŵ) =

∥∥∥Σ̂−1 1

n
X⊤ε

∥∥∥2 + ∥∥∥Σ̂−1 1

n
X⊤δ

∥∥∥2 + 2⟨·, ·⟩+∆.

The three display terms correspond to estimation variance, mismatch, and a cross-term.

Step 2: Control of Σ̂. Proposition 1 (matrix concentration for sub-Gaussian samples; see Vershynin
(2018); Tropp (2015)) implies that for n ≳ p + log(1/δ) the event in which ∥Σ̂ − Σmix∥op is
small holds with probability 1− δ. On this event one obtains the deterministic bound ∥Σ̂−1∥op ≲
1/λmin(Σmix).
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Step 3: Estimation variance term. Conditioning on X and z, X⊤ε is a mean-zero vector with
componentwise variances σ2

zi∥xi∥
2. Standard conditional-sub-Gaussian tail bounds together with

operator-norm control of Σ̂−1 yield the displayed O(p/n) bound in (6). One may make this fully
explicit by combining Hanson–Wright and matrix Bernstein inequalities (see Vershynin (2018);
Tropp (2015)).

Step 4: Population limit and asymptotic bias. Note

1

n
X⊤y =

1

n

n∑
i=1

xix
⊤
i w

∗
zi +

1

n
X⊤ε.

By the law of large numbers and multinomial concentration of region counts, 1
n

∑
i xix

⊤
i w

∗
zi →∑

k ρkΣkw
∗
k and Σ̂ → Σmix. Hence ŵ → w∞ where w∞ = Σ−1

mix

∑
k ρkΣkw

∗
k. Using vk =

w∗
k − wavg yields the asymptotic mismatch bias in (7).

Step 5: Finite-sample mismatch fluctuation. The deviation 1
nX

⊤δ −
∑
k ρkΣkvk is a mean-zero

sum of sub-Gaussian terms and therefore has Euclidean norm Op(1/
√
n). Multiplication by Σ̂−1,

which is O(1) in operator norm on the concentration event, yields an Op(1/
√
n) deviation of the

centered estimator; squaring gives the Op(1/n) remainder in (6).

Step 6: Cross-term. The cross-term is bounded in absolute value via Cauchy–Schwarz and is of
smaller order (absorbed into the displayed C/n remainder) under the same sample-size regime.

Combining the bounds in Steps 3–6 yields (6) and the limit (7).

Remark 2. (References)

• The matrix-concentration proposition can be proved by applying matrix Bernstein / non-
commutative Bernstein inequalities as in Tropp (2015) or via Vershynin’s sub-Gaussian
covariance concentration (see Vershynin (2018)).

• All big-O and constants can be made explicit by tracking constants in Hanson–Wright and
matrix Bernstein inequalities; we omitted explicit numerical constants for readability.

Remark 3 (Interpretation). Unlike the homogeneous-covariance case, pooled OLS error converges
not only to the irreducible heterogeneity ∆ but also to a persistent asymptotic mismatch bias
(cf. Eq. (7)). This bias vanishes only under special conditions such as Σk ≡ Σ for all k or∑

k ρkΣkvk = 0. Finite-sample fluctuations of the mismatch term decay at rate O(1/n), while the
estimation variance scales as O(p/n). Both contributions are magnified when Σmix is ill-conditioned.

B THEORETICAL GUARANTEES FOR RISE WITH UPSAMPLING AND ROUTING

We present a rigorous finite-sample analysis of RISE. We first state assumptions, then supporting
lemmas, and finally the main theorem with proof. We also derive the exact pooled decomposition,
and conclude with a corollary giving explicit sufficient conditions under which RISE improves over
pooled OLS.

B.1 ASSUMPTIONS

Assumption 4 (Sub-Gaussian design and bounded covariance). For each region k ∈ [K], covariates
xk,i ∈ Rp are i.i.d. mean-zero Kψ-sub-Gaussian vectors with covariance Σk = E[xk,ix

⊤
k,i] ≻ 0.

Eigenvalues are uniformly bounded:

0 < λ ≤ λmin(Σk) ≤ λmax(Σk) ≤ λ <∞.

Assumption 5 (Noise tails). For each region k, labels satisfy y = x⊤w∗
k + ε with E[ε | x] = 0,

(ε | x) = σ2
k, and σ2

k ≤ σ2
max <∞. Moreover, the noise satisfies a uniform tail condition: either (i)

ε is sub-Gaussian, or (ii) ε2 is sub-exponential (uniform constants). These tail assumptions are used
to obtain operator-norm concentration for heteroskedastic noise matrices; if only finite variance is
available, replace sample moments by robust estimators (truncation / median-of-means).
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Assumption 6 (Routing). Each population sample is drawn from region k with probability ρk.
Conditional on region k, the sample is routed to expert j with fixed probability qk(j), independent of
features x and noise ε. Each expert j may upweight its own region by a factor αj ≥ 1 (we explain
below how this affects the training mixture and the realized counts). All routing probabilities {qk(j)}
are fixed (non-adaptive).

B.2 EFFECTIVE DISTRIBUTIONS AND A CLARIFYING REMARK ON UPSAMPLING

We use two distinct population-level quantities; reviewers should not conflate them.

(i) Marginal routing probability (controls realized counts). The marginal probability that a
random population sample is routed to expert j (before any upsampling normalization) is

proutej :=

K∑
k=1

ρk qk(j).

The realized number Nj of training samples routed to expert j is multinomial/binomial with mean
nproutej . Lemma 1 below gives precise concentration for Nj .

(ii) Unnormalized upweight mass and training mixture (controls bias). To describe how upsam-
pling changes the training mixture used to estimate each expert, define unnormalized weights

ωk→j :=

{
αjρjqj(j), k = j,

ρkqk(j), k ̸= j,
Ωj :=

K∑
k=1

ωk→j , πk→j :=
ωk→j

Ωj
.

Here πk→j defines the population-level training mixture for expert j: when estimating expert j we
(conceptually) mix regions k with proportions πk→j . These πk→j enter the deterministic bias Bdet

via

Σj,train :=

K∑
k=1

πk→jΣk, weff
j := Σ−1

j,train

( K∑
k=1

πk→jΣkw
∗
k

)
.

Remark: ωk→j (and hence πk→j) involve αj and ρk and are not probabilities over experts; they
describe the training mixture used to form population-level bias terms. The realized counts Nj

(used for variance bounds) are governed by proutej , which depends only on ρk, qk(j) and not on αj .
In practice, upsampling can be implemented either by (A) re-sampling from the modified mixture
induced by πk→j (sampling interpretation), or (B) by attaching per-sample weights in the loss
(weighting interpretation). The analysis below treats the bias via πk→j and controls variance via the
realized counts Nj ; if you implement upsampling by weighting, replace Nj in variance rates by the
appropriate ESS (effective sample size) — see Practical Considerations.

Define the population-level weighted noise and effective-sample-size

σ2
j,eff =

K∑
k=1

πk→jσ
2
k, n

(j)
eff = n · Ωj .

B.3 PRELIMINARY LEMMAS

Lemma 1 (Routing counts concentration). Let proutej =
∑K
k=1 ρkqk(j). Then (N1, . . . , NJ) ∼

Multinomial(n; proute1 , . . . , prouteJ ). Fix δ ∈ (0, 1). There exist constants c1, c2 > 0 such that for
each j and any t > 0,

Pr
(
|Nj − nproutej | ≥ t

)
≤ 2 exp

(
− t2

2nproutej + (2/3)t

)
.

Choosing tj = c1
√

nproutej log(J/δ) + c2 log(J/δ) and applying a union bound yields that with
probability at least 1− δ,

|Nj − nproutej | ≤ tj for all j ∈ [J ].

Consequently, if nproutej ≳ C(p+ log(J/δ)) for all j, then with probability at least 1− δ we have
Nj ≥ 1

2np
route
j for every j.
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Lemma 2 (Design and noise concentration). Assume rows of Xj are independent Kψ-sub-Gaussian
vectors with covariance Σj,train, and assume the noise satisfies the tail condition in Assumption 5
(sub-Gaussian or sub-exponential so that ε2ixix

⊤
i has controlled sub-exponential operator-norm).

Fix δ ∈ (0, 1). There exist constants C0, C1, C2 > 0 (depending on Kψ and the noise-tail constants)
such that, provided Nj ≳ p+ log(J/δ) for all j, the following holds with probability at least 1− δ
simultaneously over j ∈ [J ]:∥∥∥ 1

Nj
X⊤
j Xj − Σj,train

∥∥∥ ≤ C0

(√p+ log(J/δ)

Nj
+

p+ log(J/δ)

Nj

)
, (8)

∥∥∥ 1

Nj

∑
i∈trainj

ε2ixix
⊤
i − σ2

j,effΣj,train

∥∥∥ ≤ C1 σ
2
max

√
p+ log(J/δ)

Nj
+ C2 σ

2
max

p+ log(J/δ)

Nj
. (9)

In the usual regime Nj ≳ p+ log(J/δ) the square-root term dominates and the simpler form with
only the

√
· term is valid.

Remarks on the lemmas. - Lemma 1 is a standard Bernstein/Hoeffding tail for binomial/multinomial
counts. - Lemma 2 follows from applying matrix Bernstein / Vershynin concentration to sub-Gaussian
rows, and to the heteroskedastic weighted noise matrices ε2ixix

⊤
i using the noise-tail assumption. If

the noise has only finite variance, replace empirical moments by robust estimators (truncation, MOM)
to retain high-probability control.

B.4 MAIN THEOREM FOR RISE

Intuition. The decomposition below separates prediction risk into: irreducible noise σ2
avg; deter-

ministic bias Bdet due to training-mixture mismatch; estimation variance Vest governed by realized
counts Nj ; and a cross-term Rcross of smaller order.
Theorem 2 (Generalization error of RISE). Suppose Assumptions 4–6 and the noise-tail condition
in Assumption 5 hold. Suppose further that the marginal routing masses satisfy nproutej ≳ C(p +
log(J/δ)) for all j (so Lemma 1 implies Nj ≳ p w.h.p.). Then, conditioning on the joint high-
probability event from Lemmas 1–2, with probability at least 1− δ,

GRISE(α, q) = σ2
avg + Bdet(α, q) + Vest(α, q) + Rcross(α, q), (10)

Bdet(α, q) =

K∑
k=1

ρk

J∑
j=1

qk(j) ∥weff
j − w∗

k∥2Σk
,

Vest(α, q) ≤ C1

K∑
k=1

J∑
j=1

ρkqk(j)
σ2
j,eff

Nj

(
ΣkΣ

−1
j,train

)
+ C ′

1

∑
k,j

ρkqk(j)
σ2
maxp

Nj

√
p+ log(J/δ)

Nj
,

|Rcross(α, q)| ≤ C2

(
max
j,k
∥weff

j − w∗
k∥Σk

)√
λmax(ΣkΣ

−1
j,train)

√
p+ log(J/δ)

Nmin
.

Here Nmin = minj Nj , and constants C1, C
′
1, C2 depend only on Kψ and the noise-tail parameters.

Proof sketch. All concentration statements below are applied on the joint high-probability event from
Lemmas 1 and 2.

Step 1 (decomposition). For a test point (x, y) ∼ Rk routed to expert j,

E[(x⊤ŵj − y)2 | x] = ∥weff
j − w∗

k∥2Σk
+ (Σk(ŵj)) + (weff

j − w∗
k)

⊤Σk(ŵj − weff
j ) + σ2

k.

Averaging over (k, j) with weights ρkqk(j) yields (10) and the definition of σ2
avg.

Step 2 (bias). The first term is exactly Bdet.
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Step 3 (variance). By Lemma 2 the sandwich covariance satisfies

(ŵj) =
σ2
j,eff

Nj
Σ−1
j,train + Ej , ∥Ej∥ ≤ C

σ2
max

Nj

√
p+ log(J/δ)

Nj
.

Taking trace against Σk and averaging with ρkqk(j) yields the bound on Vest.

Step 4 (cross-term). By Cauchy–Schwarz,

|Rk,j | ≤ ∥weff
j − w∗

k∥Σk
∥ŵj − weff

j ∥Σk
.

Using operator-norm change of metric and the concentration bound for ∥ŵj − weff
j ∥Σj,train (of order√

(p+ log)/Nj) gives the stated bound on Rcross.

B.5 POOLED MODEL AND COMPARISON

For the pooled estimator ŵpool = (X⊤X)−1X⊤y, the same decomposition (conditioning on the
same high-probability event) yields

Gpooled = σ2
avg + Bpooled + Vpooled,

where

Bpooled =

K∑
k=1

ρk∥weff
pool − w∗

k∥2Σk
, weff

pool =
(∑

k

ρkΣk

)−1(∑
k

ρkΣkw
∗
k

)
,

and Vpooled is the pooled estimation variance (bounded by O(p/n) under our assumptions). Subtract-
ing gives the exact comparison

GRISE − Gpooled = (Bdet −Bpooled) + (Vest − Vpooled) +Rcross,

since the common σ2
avg cancels.

B.6 ILLUSTRATIVE COROLLARY: SUFFICIENT CONDITIONS FOR IMPROVEMENT

Corollary 1 (When RISE improves pooled). Under the conditions of Theorem 2, suppose further
that

(i) (Bias reduction) Bpooled −Bdet ≥ c0
∑
k ρk∥w∗

k − wavg∥2Σk
for some c0 > 0;

(ii) (Sufficient counts) minj Nj ≳ C(p+ log(J/δ)) so that the variance and cross-term remain-
ders are small.

Then with probability at least 1− δ,

GRISE < Gpooled.

Proof sketch. Under (ii) the variance and cross-term penalties scale as O(p/Nj) and O(
√
p/Nj)

and can be made small; under (i) the deterministic bias reduction is order ∆glob. Hence the total
difference is negative with high probability.

PRACTICAL CONSIDERATIONS AND LIMITATIONS

The quantities appearing in Theorem 2 (such as w∗
k, Σk, σ2

k, and the induced effective parameters
weff
j ) are population-level objects and unknown in practice. In experiments we approximate them

with plug-in estimates from held-out validation data; standard perturbation bounds for covariance
estimation (Stewart & Sun, 1990; Vershynin, 2018) imply that population inequalities carry over to
plug-in versions with sufficient validation sample size (scaling as O(p/γ2) for margin γ).

Important limitations and practical conditions:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Routing independence assumption. We assume qk(j) are fixed and independent of x. If
routing depends on features (learned gating that uses x), conditional covariances and bias
expressions change; the analysis must be adapted to conditional mixtures.

• Implementation of upsampling. Our statements separate the population-level training-
mixture πk→j (used to define deterministic bias) from the realized counts Nj (used for
variance). In practice upsampling can be implemented either by (A) re-sampling from a
modified mixture (sampling) or (B) by attaching weights in the loss (weighting). If weighting
is used replace all Nj-based rates by the appropriate effective sample size (ESS) and analyze
weighted-OLS (sandwich) covariance (we provide that variant in the appendix on request).

• Noise tails / robustness. We assume sub-Gaussian or sub-exponential noise. If only finite
variance is available, robust estimators (truncation or median-of-means) are required to
obtain comparable high-probability bounds.

• Minimum routing mass required. The bounds require non-negligible routing mass for
each expert: nproutej ≳ C(p + log(J/δ)). If some expert is assigned vanishing mass,
concentration and OLS asymptotics break down and regularization or enforced minimum
routing mass is necessary.

C DATASET DETAILS

We evaluate our RISE framework on the benchmark datasets on four diverse regression datasets:
two datasets from the computer vision domain (Dataset A (Moschoglou et al. (2017)) and Dataset
B (Rothe et al. (2018b)), one from the natural language processing domain (STS-B Cer et al. (2017a))
and one standard tabular regression dataset- UCI Abalone Nash et al. (1994).

• Dataset A (Moschoglou et al. (2017)): An image regression dataset with 12,208 training
samples, 2,140 validation samples, and 2,140 test samples. The target range spans from 0 to
101.

• Dataset B (Rothe et al. (2018b)): A large-scale image regression dataset containing 191,509
training samples, 11,022 validation samples, and 11,022 test samples. The target range
spans from 0 to 186.

• STS-B: A text similarity dataset containing 5,249 training sentence pairs, 1,000 validation
pairs, and 1,000 test pairs, with similarity scores ranging from 0 to 5.

• UCI Abalone: A standard tabular benchmark predicting shellfish ring from 9 different
physical measurements, the dataset consists of of 3155 training, 511 test and 511 validation
samples with the target column shellfish ring ranging from 1 to 29.

We follow the train/val/test split provided in Yang et al. (2021b)

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

Figure 3 illustrates the RISE architecture and its key components. Let the full dataset be denoted by
D = Dtrain ∪Dval ∪Dtest. The RISE framework begins by employing a baseline Deep Imbalanced
Regression (DIR) model fθ for both feature extraction and minority subgroup identification. Input
data—whether image, text, or tabular—is first passed through the feature extractor hθ, a component
of the baseline model fθ. This model is pre-trained on Dtrain using existing DIR methods such
as LDS-FDS (Yang et al. (2021b)), RankSim (Gong et al. (2022)), and SRL (Dong et al. (2025)).
The architecture of the baseline can be expressed as fθ(x) = E1(hθ(x)), where hθ(x) denotes the
backbone feature extractor, typically instantiated as ResNet-50 for images and BiLSTM for text.
RISE is agnostic to the specific DIR method and can integrate any baseline model fθ built on these
backbone architectures.

RISE-Identify: To address underperformance in imbalanced regression, we propose RISE-Identify
for identifying minority or poorly modeled regions by analyzing the joint distribution of validation
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loss and target labels. Specifically, we fit a Gaussian Mixture Model (GMM) to validation data to
uncover latent structure in model error patterns, enabling targeted expert specialization.

In regression tasks with heterogeneous label distributions, performance typically degrades in minority
subregions of the label space. A key observation is that these regions often exhibit higher and more
variable validation losses. By analyzing the joint distribution of validation loss and target values, we
can detect structured error patterns that are not captured by traditional frequency-based binning.

Following (Yang et al. (2021b)), we partition the continuous label space into disjoint intervals Bi and
compute the average loss in each bin:

ℓi =
1

|Bi|
∑
j∈Bi

L(fθ(xj), yj) (11)

Here, Bi is the set of samples whose continuous labels fall within the boundaries of bin i, L is
typically Mean Squared Error (MSE) or Mean Absolute Error (MAE), fθ denotes the baseline model,
and |Bi| is the number of samples in bin i. Importantly, the model is trained and evaluated end-to-
end in continuous space—binning is used only for region-level loss estimation, not for converting
regression into classification.

Next, we fit a K ′-component Gaussian Mixture Model (GMM) over the joint distribution of loss-label
pairs:

p(ℓ, y) =

K′∑
j=1

π′
jN ((ℓ, y)|µj ,Σj) (12)

where µj and Σj denote the mean vector and covariance matrix of the j-th component, respectively.
The component with the lowest mean loss (along the loss dimension of µj) is treated as the majority
group, while the remaining components define minority subgroups requiring dedicated experts.

Unlike frequency-based approaches that often result in non-contiguous minority regions, our loss-
label distribution analysis produces continuous minority regions, aligning with the principle of region
similarity and enabling more homogeneous expert training. We observe a memorization effect where
the baseline model achieves the lowest training loss in few-shot regions despite higher test errors. To
address this, we use held-out set loss as a more reliable signal for minority subgroup identification, as
it better reflects true generalization behavior and mitigates misleading effects of memorization.

Unlike methods based on label frequency or manual binning, our loss-aware formulation is adaptive
and reflects the true generalization profile of the baseline model. The identified regions are continuous,
semantically meaningful, and sensitive to the model’s inductive biases. By relying on the valida-
tion–training loss gap, our method is capable of detecting overfitting and memorization—particularly
in underrepresented areas. The resulting expert assignments are thus aligned with true generalization
performance, enabling smooth transitions between expert domains. This leads to coherent regional
specialization and improved overall generalization, especially in long-tailed or imbalanced regression
settings.

The RISE-Identify component leverages a held-out validation set (80% of Dval) to conduct this
loss-label distribution analysis, with cross-validation on the remaining 20% to determine GMM
hyperparameters like the number of components K ′. As illustrated in Fig.4, this approach successfully
identifies continuous minority regions requiring specialized experts - one towards the lower end of
the label distribution and another in the higher range.

RISE-Train: RISE-Train trains K ′ − 1 additional expert networks E2, E3, . . . , EK′ for the identi-
fied minority regions, while the baseline model E1 (extracted from fθ) serves as the expert for the
majority region. Each expert Ej operates on shared features produced by the frozen backbone hθ,
and produces predictions as:

ŷj = Ej(hθ(x)) (13)

To address data imbalance, we adopt a Cross-Group Training with Upsampling strategy. This
approach (T2) is particularly effective for regression tasks where adjacent labels exhibit strong
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Algorithm 1 RISE Training

Require: Dataset D = {Dtrain, Dval}, model fθ = {hθ, E1}, experts K ′, upsampling α
Ensure: Experts {Ej}j=1..K′ , router R

1: // Phase 1: RISE-Identify
2: F ← ∅
3: for (x, y) in Dval do
4: ŷ ← E1(hθ(x)) {Baseline model prediction}
5: ℓ← L(fθ(x), y) {Compute validation loss per Eq. 11}
6: F ← F ∪ {(ℓ, y)}
7: end for
8: gmm← FitGaussianMixture(F,K ′) {Fit GMM using Eq. 12}
9: {R′

j}j=1..K′ ← GetMinorityRegions(gmm) {Identify expert regions}
10: // Phase 2: RISE-Train
11: Initialize experts E2 through EK′

12: for i = 2 to K ′ do
13: for epoch = 1 to T do
14: for (Xb, Yb) in Dtrain do
15: F ← hθ(Xb) {Extract shared features}
16: for j = 1 to |Xb| do
17: if yj ∈ R′

i then
18: wj ← α {Upsample minority region samples}
19: else
20: wj ← 1 {Normal weight for other samples}
21: end if
22: end for
23: Ŷ ← Ei(F ) {Get predictions from Eq. 13}
24: L← 1

|Xb|
∑|Xb|
j=1 wj(Ŷj − Yj)

2 {Weighted loss from Eq. 14}
25: Update Ei using gradient∇L
26: end for
27: end for
28: end for
29: Initialize router R
30: for epoch = 1 to T ′ do
31: for (Xb, Yb) in Dval do
32: F ← hθ(Xb)
33: for j = 1 to |Xb| do
34: tj ← find i such that yj ∈ R′

i {Assign ground truth expert labels}
35: end for
36: r ← R(F ) {Get router probabilities}
37: Lrouter ← CrossEntropy(r, Tb) using Eq. 17
38: Update R using gradient ∇Lrouter
39: end for
40: end for
41: return {Ej}j=1..K′ , R

correlations, enabling smooth transitions between expert domains while preserving specialization, as
confirmed by our empirical analysis. For each identified region R′

j , we upsample the samples in R′
j

by assigning a higher weight α > 1, while keeping the sample weights unchanged elsewhere. We
train each expert using Dtrain where loss for each expert Ej is given by:

Ljexpert =
1

N

N∑
i=1

wi(yi − ŷi)
2 (14)

with sample weights wi defined as:

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2 RISE-Inference

Require: Sample x, backbone hθ, router R, experts {Ej}j=1..K′

Ensure: Prediction ŷ
1: F ← hθ(x) {Extract features using frozen backbone}
2: r ← R(F ) {Get router probabilities}
3: j∗ ← Select expert using Eq. 16
4: ŷ ← Ej∗(F ) {Get final prediction using Eq. 18}
5: return ŷ

wi =

{
α if xi ∈ R′

j

1 otherwise
(15)

Here, α is an upsampling hyperparameter that emphasizes minority-region samples, and N is the
total number of samples in Dtrain. Importantly, only the final layer of each new expert Ej (for
j = 2, ...,K ′) is trained, while the shared backbone hθ and the baseline expert E1 remain frozen.
This facilitates efficient parameter sharing and reduces computational overhead.

RISE-Inference: We train a router network (implementing the gating network gϕ from Eq. 1)
using a held-out validation set (80% of Dval) to perform dynamic expert selection, with the remaining
20% used for hyperparameter validation. We motivate the choice of using held-out data in Sec. 6.4.
Unlike soft routing strategies that blend predictions from multiple experts, we adopt a hard routing
approach, where exactly one expert is selected per input. This decision is motivated by Theorem 1,
which demonstrates that mixing predictions from heterogeneous regions can lead to interference and
degraded performance due to distributional mismatch.

The router is trained as a classification task to predict which expert should handle each input. For
each validation sample (x, y), we first determine the ground truth expert assignment by checking
which region R′

j the label y belongs to. The router then learns to map input features to these expert
assignments.

Given input x, the router processes shared features hθ(x) and outputs mixing coefficients πk(x) over
the K ′ experts, implementing the gating mechanism from Eq. (1). A hard assignment is then made as
follows:

j∗ = arg max
j∈{1,...,K′}

gϕ(hθ(x))j (16)

where j∗ denotes the index of the selected expert, consistent with the final prediction ŷ = Ej∗(x)
described in Section 4.3. The router is trained using an inverse-frequency weighted cross-entropy
loss to mitigate expert imbalance:

Lrouter = −
K′∑
j=1

wjtj log(pj) (17)

Here, pj is the predicted probability for expert j, tj is the ground truth expert label from the RISE-
Identify stage, and wj =

1
fj

is the inverse frequency of expert j’s assigned region, where fj is the
fraction of samples assigned to expert j in Dval.

At inference time, the router selects a single expert Ej∗ based on the hard assignment, and the final
prediction is:

ŷ = Ej∗(hθ(x)) (18)

This hard routing strategy offers several advantages: it prevents distribution mixing that could degrade
expert specialization, reduces computation by evaluating only one expert at inference, provides
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interpretable routing decisions, and maintains clear accountability for predictions. The complete
RISE framework is summarized in Algorithm 1 for training and Algorithm 2 for inference.

D.2 TRAINING DETAILS

Experiments were run on an AWS ml.g6.24xlarge instance equipped with 4 NVIDIA GPUs. For all
baseline DIR models, we use official released model weights or reproduce their best configuration
using the official implementations. For the model architecture, we froze the backbone network
(ResNet-50 for images, pretrained on ImageNet; BiLSTM with GloVe embeddings for text) and
implemented expert networks with two fully connected layers (dimensions: 2048,512,1) with ReLU
activation and dropout (0.2) for ResNet-50. The router network consists of three linear layers
with ReLU activation and a final softmax layer. Expert training was conducted for 50 epochs
using the Adam optimizer with a learning rate of 3e-5, utilizing a batch size of 64. For image
datasets, we applied standard augmentations including random horizontal flips, crops, rotations, affine
transformations, and color jittering, followed by normalization. Text data was processed using SpaCy
tokenization with a maximum sequence length of 40.

Hyperparameters were tuned through grid search, exploring different numbers of experts (K ′ ∈ 2, 5]),
upsampling ratios (Upsample (α) ∈[1, 5]) based primarily on validation’s overall MAE. For Dataset
A (Moschoglou et al. (2017)) and Dataset B (Rothe et al. (2018b)) datasets, we set K ′ = 3 experts,
with one expert assigned to the left tail, one to the right tail, and one for the majority region. The
upsampling ratio was set to 3 for Dataset A (Moschoglou et al. (2017)) and 2 for Dataset B (Rothe
et al. (2018b)). For the STS dataset using the RankSim baseline, we used K ′ = 2 experts, identifying
a one-sided under-performing region with an upsampling ratio of 3, while K ′ = 3 experts with
upsampling ratio of 3 were chosen for LDS+FDS and SRL baselines. The number of experts (K ′)
and their assignments were determined based on the baseline model’s loss-label distribution and can
vary depending on model performance. This approach ensures we only train additional experts for
regions where the baseline model underperforms. Further, identified minority regions for experts
may differ across baseline models due to variations in their learned representations and performance
characteristics.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RISE PERFORMANCE ON ADDITIONAL DATASETS

To further demonstrate the effectiveness of RISE, we evaluate our method on additional datasets
beyond Dataset A (Moschoglou et al. (2017)). Table 9 presents results on Dataset B Rothe et al.
(2018b) (evaluated using MAE, GMEAN, and MSE) and STS-B (evaluated using MAE, Pearson
Correlation, and Spearman Correlation). Additionally, Table 10 shows the MAE and bMAE metrics
the UCI-Abalone dataset.

E.2 BALANCED METRICS FOR RISE

To address the challenges of evaluating models on imbalanced data distributions, particularly for tail
labels, we employ three balanced metrics as defined in Ren et al. (2022). These metrics are designed
to provide a more equitable assessment across all data regions by dividing the label space into even
sub-regions, enabling a fairer evaluation.

The balanced Mean Squared Error (bMSE) is formulated as:

bMSE = − log ptrain(y|x; θ) = − log pbal(y|x; θ) ·
ptrain(y)∫

Y
pbal(y′|x; θ) · ptrain(y′)dy′

(19)

This formulation comprises two components: the standard MSE loss and a balancing term to mitigate
distribution mismatch between training and testing. Balanced metrics such as balanced Mean Absolute
Error (bMAE) and balanced Geometric Mean Error (bGMEAN) are used to fairly assess performance
across regions. bMAE averages errors within each sub-region or bins before computing the overall
mean; formally for B bins with jth bin containing Nj datapoints with y being the golden label and ŷ
being the prediction, eq. 20 describes the formula for bMAE computation.
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Table 9: Results on Dataset B (Rothe et al. (2018b)) and STS-B dataset. The best baseline result for
each metric and data subset is in red, best RISE version in blue, and the overall best result is in bold.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

Dataset B
Baseline Methods
VANILLA 8.04 7.21 15.18 25.89 4.53 4.13 10.77 18.80 137.82 108.62 365.43 954.03
BalancedMSE 8.10 7.57 12.27 22.98 4.68 4.46 7.05 13.17 139.70 117.19 305.12 848.52
LDS+FDS 7.68 7.07 12.78 21.87 4.33 4.07 7.48 12.72 129.18 105.55 313.90 785.49
RankSIM 7.68 7.12 12.30 21.46 4.33 4.12 6.61 12.47 129.12 106.19 304.08 799.94
SRL 7.71 7.10 12.81 21.52 4.32 4.09 7.01 13.58 133.16 107.77 339.95 771.71
RISE Methods
VANILLA+RISE 8.11 7.24 14.98 25.00 4.73 4.17 11.68 17.67 136.60 110.18 319.45 934.62
BalancedMSE+RISE 8.25 7.56 12.87 22.08 4.90 4.58 7.43 13.03 137.13 111.55 309.90 704.25
LDS+FDS+RISE 7.71 7.09 12.94 21.60 4.35 4.08 7.68 13.31 129.84 105.13 316.23 779.27
RankSIM+RISE 7.67 7.07 12.29 21.46 4.32 4.11 6.63 12.53 129.11 106.23 303.55 799.58
SRL +RISE 7.70 7.18 11.92 20.92 4.34 4.15 6.41 11.74 129.20 107.31 294.51 783.00

L1 (MAE) ↓ Pearson Correlation (%) ↑ Spearman correlation (%) ↑

Method All Many Med Few All Many Med Few All Many Med Few

STS-B
Baseline Methods
LDS+FDS 0.77 0.72 0.98 0.75 76.27 74.08 66.07 76.60 76.27 70.75 54.95 74.88
RankSIM 0.75 0.75 0.77 0.67 77.28 72.15 69.32 86.84 77.39 69.57 48.05 89.34
SRL 0.89 0.85 1.07 0.95 68.83 62.98 63.96 73.65 68.92 59.72 51.07 82.14
RISE Methods
LDS+FDS+RISE 0.75 0.73 0.86 0.68 76.38 72.05 68.81 80.92 75.26 69.31 54.09 79.68
RankSIM+RISE 0.74 0.73 0.75 0.67 77.50 72.16 72.06 86.91 77.41 69.54 45.70 90.15
SRL+RISE 0.84 0.83 0.91 0.81 70.14 64.33 64.83 74.58 69.87 61.26 47.66 76.61

Table 10: Mean Absolute Error (MAE) results on UCI-Abalone dataset. Lower values indicate better
performance. The best of the baseline and baseline+RISE pair is in bold and the best overall metric
is underlined.

MAE ↓
Method Many Medium Few All

VANILLA 1.77 5.46 9.98 2.56
VANILLA + RISE 1.59 5.19 9.75 2.34
BalancedMSE 2.50 5.41 4.61 3.43
BalancedMSE + RISE 1.30 2.35 4.53 1.53
LDS+FDS 2.80 4.44 7.64 3.18
LDS+FDS + RISE 2.07 2.91 7.16 2.30

bMAE =
1

B

B∑
j=1

1

Nj

Nj∑
i=1

∥y − ŷ∥ (20)

bGMEAN is formulated similarly but uses the geometric mean instead of MAE to highlight disparities
across regions. These metrics are especially important for long-tailed distributions, where standard
metrics may disproportionately reflect majority class performance. For our purposes, we chose
to use bMAE to compare different RISE configurations. Due to space limitations for Dataset A
(Moschoglou et al. (2017)), we had only reported the SRL result in the main paper. Therefore, we
present the bMAE metric across different baselines in Table 11. Similarly we provide bMAE metrics
for Dataset B (Rothe et al. (2018b)) and STS-B in 12, and the balanced metrics for UCI-Abalone in
13.
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Table 11: bMAE Results: Baseline vs RISE Methods on Dataset A (Moschoglou et al. (2017)). The
best of the baseline and baseline+RISE pair is in bold and the best overall metric is underlined.

Baseline Methods Baseline + RISE Methods

Method All Many Med Few All Many Med Few

VANILLA 13.14 9.96 12.85 19.81 12.84 9.40 11.66 20.62
BalancedMSE 8.70 8.44 8.96 11.43 8.98 7.23 8.16 13.06
LDS+FDS 8.79 6.91 8.28 12.94 8.40 6.79 8.09 11.87
RankSIM 8.06 6.49 7.85 11.40 7.92 6.58 7.36 11.01
SRL 8.32 6.64 8.34 11.74 7.39 6.00 7.25 10.33

Table 12: Balanced Mean Absolute Error (bMAE) results on Dataset B (Rothe et al. (2018b)) and
STS-B dataset. Lower values indicate better performance. The best of the baseline and baseline+RISE
pair is in bold and the best overall metric is underlined.

Baseline Baseline + RISE

Method All Many Med Few All Many Med Few

Dataset B (Rothe et al. (2018b))

VANILLA 13.93 7.32 15.92 32.80 13.21 7.38 14.97 30.90
BalancedMSE (Ren et al. (2022)) 12.65 7.64 12.69 28.10 12.54 7.62 12.47 28.10
LDS+FDS (Yang et al. (2021b)) 12.53 7.14 13.25 28.65 12.42 7.17 13.21 27.95
RankSIM (Gong et al. (2022)) 12.56 7.19 12.80 28.95 12.56 7.18 12.79 27.97
SRL (Dong et al. (2025)) 12.30 7.18 13.09 27.54 12.28 7.14 12.32 26.27

STS-B

LDS+FDS (Yang et al. (2021b)) 0.77 0.73 0.84 0.79 0.73 0.74 0.77 0.70
RankSIM (Gong et al. (2022)) 0.72 0.76 0.72 0.66 0.71 0.74 0.71 0.65
SRL (Dong et al. (2025)) 0.87 0.85 0.88 0.88 0.80 0.84 0.76 0.66

Table 13: Balanced Mean Absolute Error (bMAE) results on UCI-Abalone dataset. Lower values
indicate better performance. The best of the baseline and baseline+RISE pair is in bold and the best
overall metric is underlined.

bMAE ↓
Method Many Medium Few All

VANILLA 1.68 5.42 9.75 4.44
VANILLA + RISE 1.58 5.20 9.74 4.32
BalancedMSE 1.43 2.26 4.86 2.28
BalancedMSE + RISE 1.31 2.23 4.86 2.21
LDS+FDS 2.64 4.66 7.64 4.22
LDS+FDS + RISE 2.00 4.18 7.64 3.74

E.3 COMPLETE ABLATION RESULTS

For brevity, the main paper only presented the L1 (MAE) metric for various ablations on Dataset A.
In this section, we present the results across multiple metrics. Table 14 shows the complete ablation
for different RISE-Train Strategies, Table 15 shows the ablation for different RISE-Infer strategies,
and lastly, Table 16 provides complete results comparing RISE with ensembles with similar and
increased capacity.

To strengthen our findings and validate the optimal RISE strategy beyond the Dataset A (Moschoglou
et al. (2017)) dataset, we present comprehensive ablation studies on the Dataset B (Rothe et al.
(2018b)) dataset. Table 17 demonstrates that RISE (T2) consistently outperforms RISE (T1) across
all metrics (MAE, GMEAN, and MSE) and data subsets, confirming the superiority of the T2 training
configuration observed on Dataset A (Moschoglou et al. (2017)). Furthermore, Table 18 provides
detailed architectural ablation results, showing that the optimal configuration uses K=2 experts
with an upsampling ratio of 3, which achieves the best overall performance with an MAE of 7.67.
Additionally, Table 19 examines different inference strategies, revealing that the held-out-based router
(I3) consistently outperforms both expert averaging (I1) and train-based routing (I2), achieving the
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best results across all metrics and data subsets with significant improvements in the Few subset.
These results on Dataset B (Rothe et al. (2018b)) corroborate our Dataset A (Moschoglou et al.
(2017)) findings and demonstrate the robustness of our proposed RISE methodology across different
long-tailed regression datasets.

Table 14: Complete ablation of RISE-Train on Dataset A (Moschoglou et al. (2017)) with SRL
(Dong et al. (2025)) backbone, across multiple metrics. Best results in bold.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

RISE (T1) 7.23 6.77 7.95 9.61 4.44 4.15 4.94 6.19 92.54 80.12 110.96 158.86
RISE (T2) 6.57 6.16 7.36 8.30 3.61 3.40 4.14 4.33 82.01 70.88 100.90 134.93

Table 15: Complete ablation of RISE inference strategies with SRL backbone on Dataset A, across
multiple metrics. Best results in bold

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

Baseline SRL 7.23 6.64 8.28 9.85 4.53 4.17 5.32 6.35 91.79 77.20 115.83 163.15

Expert average (I1) 7.23 6.72 8.13 9.54 4.51 4.20 5.16 6.16 91.73 78.85 112.50 156.00
Train-based Router (I2) 7.26 6.61 8.34 10.33 4.56 4.15 5.48 6.76 92.11 76.48 116.26 173.01
Held-out-based Router (I3) 6.57 6.16 7.36 8.30 3.61 3.40 4.14 4.33 82.01 70.88 100.90 134.93
Train+Held-out Router (I4) 7.24 6.65 8.31 9.98 4.55 4.19 5.34 6.37 92.25 75.37 116.51 165.69
Train+Held-out Baseline 7.18 6.62 8.15 9.84 4.42 4.11 5.09 5.92 90.79 76.68 112.53 163.86

Table 16: Complete comparison of RISE vs. traditional ensembles on Dataset A, across multiple
metrics. Best results in bold

MSE ↓ L1 (MAE) ↓

Experiment Additional Parameters All Many Median Few All Many Median Few

SRL 0 91.79 77.20 115.83 163.15 7.23 6.64 8.28 9.85
SRL+ RISE (K=3) 2,100,224 80.72 69.06 99.88 137.95 6.45 6.00 7.22 8.49
SRL: 3 ensemble 3,150,336 91.66 77.04 115.65 163.43 7.22 6.63 8.28 9.86
SRL: 5 ensemble 5,250,560 91.56 76.75 115.83 164.31 7.22 6.62 8.30 9.90

Table 17: Ablation results for Dataset B Rothe et al. (2018b) comparing different RISE-TRAIN
configurations. The overall best result is in bold.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Median Few All Many Median Few All Many Median Few

RISE (T1) 7.94 7.46 12.66 22.75 4.50 4.33 6.89 14.66 139.69 118.35 339.35 829.19
RISE (T2) 7.67 7.11 12.29 21.46 4.32 4.11 6.63 12.53 129.11 106.23 303.55 799.58

Table 18: Ablation results for K=2 with varying upsampling rates (left) and for α=3 with varying
expert numbers (K) (right) on Dataset B( Rothe et al. (2018b)). L1 (MAE) metric is shown. The
overall best result is in bold.

L1 (MAE) ↓

Config All Many Median Few

α=1 7.86 7.17 13.67 23.15
α=2 7.81 7.15 13.35 22.71
α=3 7.67 7.11 12.29 21.46
α=4 7.70 7.12 12.48 21.64
α=5 7.68 7.12 12.55 21.79

L1 (MAE) ↓

Config All Many Median Few

K=2 7.67 7.11 12.29 21.46
K=3 7.69 7.17 11.89 20.90
K=4 7.78 7.20 12.61 22.27
K=5 8.28 7.43 15.67 25.46
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Table 19: Ablation results comparing different RISE-INFERENCE configurations on Dataset
B (Rothe et al. (2018b)). The best baseline result for each metric and data subset is in red, and the
overall best result is in bold.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Median Few All Many Median Few All Many Median Few

Baseline Methods
RankSIM 7.68 7.12 12.30 21.46 4.33 4.12 6.61 12.47 129.12 106.19 304.08 799.94

RISE Inference Strategies
Expert average (I1) 8.32 7.62 14.22 17.33 4.79 4.47 8.91 17.33 143.35 117.02 351.47 855.11
Train-based Route (I2) 8.00 7.37 13.37 14.28 4.57 4.30 7.97 14.28 135.82 111.01 329.48 826.43
Held-out-based router (I3) 7.67 7.11 12.29 12.53 4.32 4.11 6.63 12.53 129.11 106.23 303.55 799.58

E.4 RISE PERFORMANCE WITH BEST-PERFORMING ROUTER CONFIGURATION

To assess the robustness of our approach, we perform five independent experimental runs and report
the mean and standard deviation for Dataset A, B & STS-B on each performance metric in Table 20
and the balanced metrics with error bars for Dataset A are reported in Table 21. This evaluation
provides statistical insight into the consistency and reliability of the results. For each run, the router
is trained and the backbone model achieving the highest routing accuracy on the validation set Dval is
selected for reporting. Router with the SRL backbone is picked for the the Dataset A (Moschoglou
et al. (2017)) dataset, while RankSim backbone is utilized for both IMDB and STS datasets.

Our proposed RISE paradigm consistently outperforms its corresponding baseline methods across
multiple metrics, with particularly notable gains in medium- and few-shot regions—where im-
balanced regression models typically underperform. These improvements are statistically signif-
icant, often exceeding standard error margins. For instance, on the Dataset A (Moschoglou et al.
(2017)) dataset, SRL+RISE achieves a 13.7% reduction in Few-shot MAE (9.85 → 8.50) and a
12.6% reduction in Medium-shot MAE (8.35 → 7.30), alongside a 28.4% improvement in Few-
shot GMEAN (6.34 → 4.54). Similar trends are observed in Dataset B (Rothe et al. (2018b)),
where BalancedMSE+RISE lowers Few-shot MAE by 9.8% (23.24→ 20.97), and in STS, where
LDS+FDS+RISE improves Medium-shot MAE by 11.2% (0.98→ 0.87).

While RISE generally maintains or improves performance in majority (Many-shot) regions, there
are isolated instances where baseline models marginally outperform RISE. For example, in Dataset
A (Moschoglou et al. (2017)), RankSIM achieves a slightly lower Many-shot MAE (6.48 vs. 6.56),
and in Dataset B (Rothe et al. (2018b)), LDS+FDS reports a marginally better Many-shot MSE
(106.61 vs. 107.06). However, these differences are minor and fall within overlapping standard
deviation intervals.

Importantly, RISE demonstrates strong generalization by significantly improving performance
in minority regions while preserving accuracy on majority classes. This balance highlights the
effectiveness of RISE in addressing the fundamental challenge of imbalanced regression, offering a
scalable and principled solution for real-world settings.

F BROADER IMPACT

RISE offers a practical and efficient alternative to end-to-end training by leveraging pre-trained
models. Unlike typical deep learning approaches, it requires training only the expert heads and router
network while keeping the backbone frozen. This lightweight design makes it feasible for large-scale
models and suitable for scenarios where full retraining is impractical. While our experiments used the
full training set, RISE can potentially be adapted for final-layer tuning using only a small validation
set, as supported by recent adaptation methods (Kirichenko et al. (2023)).

RISE differs from standard fine-tuning by targeting specific regions of poor performance—often
underrepresented or minority subgroups—through expert specialization. This targeted improvement
enhances fairness, particularly in sensitive applications like healthcare or finance, where disparities in
prediction can have serious consequences. By improving minority performance without sacrificing
majority accuracy, RISE moves toward more equitable and efficient machine learning systems.
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Table 20: Comparison of RISE-paired with the baseline methods across Dataset A (Moschoglou et al.
(2017)), Dataset B Rothe et al. (2018b), and STS datasets. Results show MAE, GMEAN, and MSE
metrics for different data segments (All, Many-shot, Medium-shot, Few-shot). Values are reported as
mean ± standard deviation. Best results for each metric and data subset are in bold, we also report the
router accuracy for each RISE configuration in parentheses.

MAE ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

Dataset A
VANILLA 11.06 9.99 12.90 16.65 7.08 6.30 8.41 13.57 203.69 165.70 275.75 367.13

±0.01 ±0.05 ±0.14 ±0.29 ±0.03 ±0.05 ±0.15 ±0.34 ±1.13 ±2.32 ±7.13 ±11.50
VANILLA+RISE (0.60) 10.07 9.20 11.19 15.33 6.18 5.52 7.19 11.99 173.84 146.76 211.69 328.25

±0.04 ±0.08 ±0.14 ±0.21 ±0.04 ±0.06 ±0.11 ±0.28 ±0.77 ±2.37 ±6.80 ±6.86

BalancedMSE 8.71 8.45 9.02 10.30 5.59 5.45 5.94 6.07 127.28 118.71 133.87 191.28
±0.06 ±0.04 ±0.20 ±0.14 ±0.06 ±0.07 ±0.14 ±0.17 ±1.57 ±1.30 ±5.93 ±3.86

BalancedMSE+RISE (0.72) 7.62 7.53 7.90 8.79 4.58 4.56 4.63 4.74 106.40 103.18 111.68 158.98
±0.05 ±0.04 ±0.15 ±0.15 ±0.06 ±0.06 ±0.11 ±0.19 ±1.31 ±1.89 ±4.43 ±3.92

LDS+FDS 7.47 6.92 8.23 10.52 4.77 4.46 5.30 6.84 95.23 79.98 118.33 177.20
±0.08 ±0.11 ±0.13 ±0.25 ±0.06 ±0.07 ±0.10 ±0.23 ±1.85 ±2.73 ±4.26 ±5.09

LDS+FDS+RISE (0.56) 7.27 6.85 7.91 9.54 4.51 4.30 4.81 6.08 92.59 80.18 113.40 153.64
±0.08 ±0.10 ±0.13 ±0.24 ±0.06 ±0.08 ±0.10 ±0.21 ±1.81 ±2.61 ±4.31 ±6.32

RankSIM 7.01 6.48 7.82 9.85 4.55 4.14 5.37 7.04 83.23 71.48 98.21 154.26
±0.04 ±0.06 ±0.08 ±0.09 ±0.04 ±0.04 ±0.05 ±0.19 ±0.77 ±1.37 ±3.40 ±1.35

RankSIM+RISE (0.55) 6.93 6.56 7.34 9.25 4.34 4.07 4.79 6.11 82.47 73.88 90.22 143.25
±0.04 ±0.06 ±0.08 ±0.09 ±0.04 ±0.04 ±0.03 ±0.17 ±0.72 ±1.35 ±3.48 ±1.37

SRL 7.20 6.59 8.35 9.85 4.50 4.14 5.34 6.34 91.67 76.09 118.91 165.16
±0.02 ±0.04 ±0.08 ±0.25 ±0.03 ±0.03 ±0.12 ±0.33 ±0.64 ±0.55 ±1.70 ±6.24

SRL +RISE (0.87) 6.43 5.96 7.30 8.50 3.36 3.13 3.87 4.54 80.70 67.98 103.09 140.35
±0.02 ±0.03 ±0.09 ±0.22 ±0.02 ±0.03 ±0.12 ±0.22 ±0.65 ±0.50 ±1.60 ±5.82

Dataset B
VANILLA 8.04 7.20 15.18 26.20 4.51 4.11 10.69 18.81 137.96 108.17 366.46 972.01

±0.03 ±0.03 ±0.12 ±0.15 ±0.03 ±0.02 ±0.09 ±0.25 ±0.87 ±0.63 ±6.46 ±7.55
VANILLA+RISE (0.85) 7.91 7.22 13.65 24.73 4.45 4.15 8.38 16.59 135.34 108.90 333.20 925.69

±0.03 ±0.03 ±0.13 ±0.13 ±0.03 ±0.03 ±0.07 ±0.22 ±0.90 ±0.67 ±6.67 ±7.15

BalancedMSE 8.10 7.56 12.27 23.24 4.68 4.45 7.10 13.25 139.62 116.96 302.67 868.31
±0.03 ±0.03 ±0.17 ±0.21 ±0.01 ±0.01 ±0.11 ±0.26 ±1.55 ±1.15 ±9.31 ±14.02

BalancedMSE+RISE (0.81) 7.73 7.28 12.12 20.97 4.41 4.29 6.82 11.99 136.36 108.79 300.42 820.76
±0.03 ±0.02 ±0.13 ±0.25 ±0.01 ±0.00 ±0.07 ±0.52 ±1.50 ±1.01 ±8.45 ±13.03

LDS+FDS 7.70 7.13 12.54 21.84 4.32 4.11 7.55 12.75 129.91 106.61 310.90 781.84
±0.01 ±0.01 ±0.06 ±0.39 ±0.01 ±0.01 ±0.10 ±0.38 ±0.85 ±0.57 ±2.90 ±21.50

LDS+FDS+RISE (0.81) 7.64 7.11 12.09 21.24 4.27 4.07 6.46 12.17 131.02 107.06 301.96 768.11
±0.02 ±0.01 ±0.06 ±0.38 ±0.01 ±0.01 ±0.09 ±0.37 ±0.86 ±0.61 ±3.08 ±20.25

RankSIM 7.69 7.12 12.33 21.55 4.33 4.12 6.65 12.68 129.14 106.78 302.58 802.83
±0.02 ±0.02 ±0.12 ±0.37 ±0.01 ±0.01 ±0.08 ±0.41 ±0.72 ±0.43 ±5.76 ±28.19

RankSIM+RISE (0.8) 7.66 7.11 12.08 20.38 4.30 4.09 6.48 12.54 127.49 108.04 298.66 800.72
±0.02 ±0.02 ±0.12 ±0.37 ±0.01 ±0.01 ±0.08 ±0.41 ±0.74 ±0.33 ±5.90 ±29.06

SRL 7.70 7.13 12.66 21.94 4.34 4.13 6.93 12.93 131.96 107.38 337.57 768.85
±0.02 ±0.03 ±0.09 ±0.50 ±0.01 ±0.01 ±0.04 ±0.47 ±1.11 ±0.69 ±5.73 ±25.85

SRL+RISE (0.79) 7.68 7.19 11.98 19.39 4.35 4.15 6.43 11.22 130.07 107.54 298.14 773.48
±0.02 ±0.02 ±0.09 ±0.50 ±0.02 ±0.01 ±0.04 ±0.47 ±1.11 ±0.70 ±5.63 ±24.93

STS-B
LDS+FDS 0.77 0.72 0.98 0.76 0.38 0.33 0.67 0.45 0.91 0.81 1.06 0.94

±0.00 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.05 ±0.06
LDS+FDS+RISE (0.51) 0.75 0.73 0.87 0.66 0.30 0.25 0.56 0.34 0.92 0.79 1.08 0.76

±0.00 ±0.00 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.00 ±0.06 ±0.04

RankSIM 0.76 0.74 0.75 0.64 0.50 0.47 0.54 0.37 0.86 0.86 0.85 0.63
±0.00 ±0.01 ±0.01 ±0.04 ±0.02 ±0.02 ±0.01 ±0.03 ±0.01 ±0.02 ±0.01 ±0.03

RankSIM+RISE (0.55) 0.73 0.73 0.75 0.63 0.39 0.37 0.54 0.36 0.84 0.84 0.85 0.67
±0.01 ±0.01 ±0.01 ±0.05 ±0.01 ±0.02 ±0.02 ±0.04 ±0.02 ±0.02 ±0.02 ±0.09

SRL 0.89 0.84 1.07 0.98 0.63 0.57 0.79 0.69 1.17 1.07 1.57 1.30
±0.01 ±0.01 ±0.04 ±0.07 ±0.02 ±0.02 ±0.05 ±0.09 ±0.02 ±0.02 ±0.08 ±0.12

SRL+RISE (0.57) 0.82 0.80 0.93 0.76 0.43 0.39 0.70 0.36 1.06 1.01 1.24 1.14
±0.01 ±0.00 ±0.03 ±0.07 ±0.01 ±0.02 ±0.04 ±0.05 ±0.018 ±0.01 ±0.08 ±0.17
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Table 21: Comparison of RISE with baseline methods for Dataset A (Moschoglou et al. (2017)) with
balanced metrics. Values are reported as mean ± standard deviation. Best results for each metric and
data subset are in bold.

bMAE ↓ bGMEAN ↓ bMSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

Dataset A
VANILLA 13.18 9.99 12.94 19.84 7.30 6.30 8.41 13.57 271.42 165.70 276.55 483.80

±0.06 ±0.05 ±0.16 ±0.25 ±0.08 ±0.05 ±0.15 ±0.34 ±3.33 ±2.32 ±8.22 ±10.75
VANILLA+RISE 12.15 9.20 11.18 18.81 6.10 5.52 7.19 11.99 242.73 146.76 210.97 458.86

±0.04 ±0.08 ±0.15 ±0.17 ±0.08 ±0.06 ±0.11 ±0.28 ±2.29 ±2.37 ±7.28 ±8.16

BalancedMSE 9.35 8.45 8.99 11.40 6.44 5.45 5.94 6.07 153.18 118.71 132.34 236.83
±0.07 ±0.04 ±0.22 ±0.14 ±0.10 ±0.07 ±0.14 ±0.17 ±1.89 ±1.30 ±6.34 ±3.38

BalancedMSE+RISE 8.44 7.53 7.82 10.61 5.35 4.56 4.63 4.70 134.30 103.18 110.51 217.58
±0.07 ±0.04 ±0.17 ±0.16 ±0.11 ±0.06 ±0.11 ±0.19 ±1.72 ±1.89 ±4.80 ±3.79

LDS+FDS 9.35 8.45 8.99 11.40 5.74 5.45 5.94 6.07 153.18 118.71 132.34 236.83
±0.07 ±0.04 ±0.22 ±0.14 ±0.11 ±0.07 ±0.14 ±0.17 ±1.89 ±1.30 ±6.34 ±3.38

LDS+FDS+RISE 8.31 6.85 7.91 11.55 5.61 4.30 4.81 6.08 122.83 80.18 112.24 216.64
±0.07 ±0.10 ±0.14 ±0.25 ±0.09 ±0.08 ±0.10 ±0.31 ±1.05 ±2.61 ±4.48 ±6.09

RankSIM 8.07 6.48 7.81 11.46 6.14 4.14 5.37 7.04 111.49 71.48 97.46 202.09
±0.04 ±0.06 ±0.08 ±0.05 ±0.07 ±0.04 ±0.05 ±0.19 ±0.47 ±1.37 ±3.37 ±0.88

RankSIM+RISE 7.92 6.56 7.31 11.08 5.09 4.07 4.79 6.11 108.90 73.88 89.22 192.92
±0.03 ±0.06 ±0.08 ±0.05 ±0.06 ±0.04 ±0.03 ±0.17 ±0.43 ±1.35 ±3.45 ±1.04

SRL 8.28 6.59 8.41 11.65 5.15 4.14 5.34 6.34 121.11 76.09 118.76 214.45
±0.04 ±0.04 ±0.08 ±0.18 ±0.06 ±0.03 ±0.12 ±0.33 ±1.26 ±0.55 ±1.58 ±4.64

SRL+RISE 7.36 5.96 7.32 10.24 4.40 3.13 3.87 4.54 105.65 67.98 102.10 184.75
±0.04 ±0.03 ±0.09 ±0.17 ±0.05 ±0.03 ±0.12 ±0.22 ±1.26 ±0.50 ±1.50 ±4.43
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G EXPERIMENTS DEMONSTRATING FUNCTIONAL HETEROGENEITY IN DIR

To provide stronger evidence that the head vs. tail regions in DIR datasets A and B (Moschoglou
et al. (2017); Rothe et al. (2018b)) correspond to fundamentally different predictive functions, we
conducted two additional experiments that directly target this concern: (1) Freeze-and-Probe: testing
feature transferability, and (2) Gradient Cosine Similarity (GCS): measuring optimization conflict.

G.1 FREEZE-AND-PROBE: TESTING FEATURE TRANSFERABILITY

Experimental Setup. The goal of this experiment is to isolate feature transferability as the only
factor under study. To do so, we fix the entire ResNet–50 backbone in both models and train only
a newly initialized linear layer on the scarce Tail-Train data (e.g., label values < 15). By freezing
all convolutional layers, we eliminate effects from forgetting, overfitting, or capacity differences,
ensuring that any performance difference must arise solely from the quality of the underlying feature
representation.

Both models are trained under identical conditions: identical linear probe architecture, identical L2
regularization, identical optimization hyperparameters, and identical early stopping based on the
Tail-Val set. The only difference is the source of the frozen backbone:

• Model B (General-Feature Baseline): Frozen ImageNet-pretrained ResNet–50 backbone.
This represents strong, general-purpose features not biased toward any label region in our
dataset.

• Model A-Probe (Head-Feature Test): ResNet–50 backbone first fine-tuned only on the
Head region (e.g., label values 20–40), then frozen. This tests whether features specialized
for the head region transfer effectively to the tail.

We train only the linear layer for both models using the same Tail-Train data and evaluate the best
checkpoint (chosen via Tail-Val early stopping) on the held-out Tail-Test set.

Table 22: Freeze-and-Probe: Tail Test MAE Comparison

Dataset ImageNet (B) Head-pretrained (A-Probe) Relative Drop
Dataset A 3.1844± 0.06 4.7558± 0.07 33.00%
Dataset B 2.2211± 0.01 2.9510± 0.01 24.00%

Observation. As shown in Table 22, Model A-Probe performs substantially worse than Model B
on both datasets. Because all other variables are held fixed, this degradation cannot be attributed
to scarcity or overfitting. Instead, it provides a direct, unconfounded demonstration of negative
transfer: features optimized for the Head region are not only suboptimal but actively harmful for
Tail predictions, supporting our claim that the two regions correspond to fundamentally different
predictive functions.

G.2 GRADIENT COSINE SIMILARITY (GCS): EVIDENCE OF OPTIMIZATION CONFLICT

Initial MSE-Based Analysis (Confounded). We first computed GCS using the standard MSE loss
between balanced batches from the head and tail regions for Dataset A using a monolithic model
with ResNet-50 as backbone. Let Bh,Bt be two balanced mini-batches sampled from the head and
tail regions. For a parameter vector θ (or a chosen layer’s parameters) define

gh =
1

|Bh|
∑

(x,y)∈Bh

∇θℓ(x, y), gt =
1

|Bt|
∑

(x,y)∈Bt

∇θℓ(x, y).

The Gradient Cosine Similarity (GCS) is

GCS(gh, gt) =
⟨gh, gt⟩
∥gh∥2 ∥gt∥2

.
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In practice we compute GCS per-layer and for the final- fully connected layer (fc) by flattening the
corresponding parameter gradients into vectors. We report epoch-wise means over multiple runs (10
random seeds) and over several balanced mini-batches.

As shown in Table 23, deeper layers exhibit strongly negative GCS values during training. However,
this signal is mechanically confounded. For a monolithic regressor ŷ = w⊤ϕ(x) with loss ℓ =
1
2 (y − ŷ)2, the gradient

∇wℓ = −(y − ŷ)ϕ(x)

is scaled by the signed residual. Since head and tail typically lie on opposite sides of the model’s
current prediction, their residuals have opposite signs, forcing the gradients to be antiparallel even
when the underlying feature gradients ∇ϕ are aligned. Thus, negative MSE-GCS does not reliably
indicate functional conflict; it is induced by the regression loss itself.

Table 23: Average GCS (Head vs. Tail) using MSE Loss on Dataset A

Epoch layer1 layer4 fc

1 +0.0069 -0.0361 -0.0493
10 +0.0605 -0.0567 -0.0551
50 -0.0159 -0.3198 -0.9336

100 +0.0364 -0.2923 -0.9815

Unconfounded Experimental Setup (CE Surrogate). To obtain a clean measure of optimization
alignment, we follow the surrogate strategy of Niu et al. (2016): discretize the continuous target into
101 bins and train a 101-way classifier using cross-entropy. The gradient in this setting,

∇ℓ = p̂− p,

contains no residual-dependent sign flip, so the cosine similarity of the gradient vectors:
cos(∇ℓhead,∇ℓtail) directly reflects true optimization conflict. We compute GCS at every epoch
during joint training on head and tail batches.

Table 24: Average GCS (Head vs. Tail) using CE Loss on Dataset A

Epoch layer1 layer4 fc

1 -0.0147 -0.0527 -0.1799
10 -0.0370 -0.0707 -0.5965
50 +0.0276 -0.1183 -0.4788

100 +0.0444 -0.1914 -0.4905

Table 25: Average GCS (Head vs. Tail) using CE Loss on Dataset B

Epoch layer1 layer4 fc

1 +0.0283 -0.0404 -0.1258
10 +0.0132 -0.0512 -0.3165
50 +0.0154 -0.1081 -0.3754

100 +0.0121 -0.1104 -0.3408

Observation. Across training, deeper layers (layer4, fc) exhibit persistently negative GCS values
across both datasets (approximately −0.18 to −0.60 even in early epochs), while lower layers remain
near zero (−0.03 to +0.04). This aligns with architectural intuition: early CNN layers encode generic
edges/textures shared across the label space, whereas higher layers encode semantic attributes that
differ sharply between tail and head regions. Persistent negative GCS indicates that updates lowering
head loss tend to increase tail loss, and vice versa, revealing that the two regions exert inherently
conflicting optimization pressures (Wang et al. (2020b)).

Combined with our Freeze-and-Probe results, this provides direct causal evidence that head and tail
correspond to distinct predictive functions, and that the head–tail tradeoff arises from task conflict,
not data scarcity.
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H EXPERIMENTS USING 80-20 SPLIT OF TRAINING DATA

To further demonstrate that our performance gains do not stem from using held-out validation data,
we conducted an additional ablation experiment on Dataset A Moschoglou et al. (2017).

Experimental Setup: We designed the experiment as follows:

1. Data Splitting: We split the original training set into two subsets: (i) train1, compris-
ing 80% of the training data, and (ii) train2, a balanced dataset (Yang et al. (2021a))
containing the remaining 20%.

2. Baseline Training: We trained all baselines from scratch on train1, using train2 as the
validation set for LDS-FDS2 and SRL3, using the code publicly released by the respective
authors. We denote these models as LDS-FDS(train-split) and SRL(train-split) respectively.

3. RISE Training: On these newly trained baselines, we applied our three-stage RISE ap-
proach: (i) RISE-IDENTIFY on train2 to identify underperforming regions, (ii) RISE-
TRAIN on train1 to train expert models on the identified regions, and (iii) RISE-INFER
on train2 to train the routing mechanism. We denote this as RISE(train-split).

Results and Discussion: Table 26 presents the results of this ablation study. We observe a consistent
trend across both methods: RISE(train-split) not only outperforms its corresponding baseline(train-
split) models but also surpasses the original baselines trained on the entire training data. This
finding strongly supports our claim that RISE’s performance improvements arise from its MOE based
architecture and principled identification and targeting of underperforming regions rather than from
exploiting additional validation data.

Table 26: Ablation result on Dataset A by training baseline and corresponding RISE configuration
from scratch on 80% split of train dataset. The best result for baseline and corresponding RISE is in
bold with the router accuracy reported in brackets.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method All Many Med Few All Many Med Few All Many Med Few

SRL Methods
SRL-Original (on entire train) 7.23 6.64 8.28 9.85 4.53 4.17 5.32 6.35 91.79 77.20 115.83 163.15
SRL-Original+RISE (on entire train) (0.87) 6.57 6.16 7.36 8.30 3.61 3.40 4.14 4.33 82.01 70.88 91.20 134.93
SRL (train1-split) 7.36 6.60 8.84 10.53 4.62 4.11 5.88 7.21 94.42 76.03 127.43 176.77
SRL+RISE (train1-split) (0.74) 6.88 6.36 7.73 9.51 4.05 3.69 4.84 5.89 87.36 74.32 106.97 156.20

LDS-FDS Methods
LDS-FDS-Original (on entire train) 7.47 6.91 8.27 10.58 4.77 4.44 5.33 6.87 95.32 79.71 118.52 178.58
LDS-FDS-Original+RISE (on entire train) (0.56) 7.28 6.79 8.07 9.72 4.49 4.25 4.88 6.04 92.79 78.88 116.49 158.63
LDS-FDS(train1-split) 7.71 6.78 8.83 12.96 4.95 4.39 5.77 9.47 99.51 75.47 126.50 248.01
LDS-FDS + RISE (train1-split) (0.58) 7.40 6.58 8.14 10.31 4.39 4.31 5.32 6.73 93.54 78.51 118.25 165.16

I ADDITIONAL ROUTER TRAINING ABLATION

We evaluate routers trained on: (i) training data only, (ii) held-out validation data (our proposed
approach), (iii) train+validation union, (iv) balanced training data, and (v) balanced training + valida-
tion. We include three baseline configurations: SRL trained on full training data, train+validation
union (matching RISE’s data access), and 80% of training data (matching RISE’s reduced training
set). Table 27 presents MAE performance and router accuracy on Dataset A:

Analysis and Key Findings:

(1) Routing mechanism: Comparing held-out validation router (6.57 MAE, 87% accuracy) versus
train+val union router (7.24 MAE, 45% accuracy)—where expert training is identical—isolates the
routing strategy’s contribution. (2) Data volume: To address whether RISE’s gains stem from using
validation data unavailable to baselines, we retrained SRL on the Train+Val union, giving it all data
RISE uses for meta-learning. Importantly, no RISE expert weights are trained on held-out data—it is

2https://github.com/YyzHarry/imbalanced-regression
3https://github.com/yilei-wu/imbalanced-regression
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Table 27: Complete router training ablation on Dataset A. Router accuracy measures the fraction of
samples correctly assigned to their ground-truth expert. Best results in bold.

Method Router Acc. All Many Med Few

Baselines

SRL baseline (full train) - 7.23 6.64 8.28 9.85
SRL baseline (Train+Val union) - 7.18 6.62 8.15 9.84
SRL baseline (80% train) - 7.37 6.60 8.84 10.53

RISE Variants

SRL + RISE (held-out val router) 0.87 6.57 6.16 7.36 8.30
SRL + RISE (20% train held-out) 0.74 6.88 6.36 7.73 9.51
SRL + RISE (train-based router) 0.43 7.26 6.61 8.34 10.33
SRL + RISE (train+val union router) 0.45 7.24 6.65 8.32 9.98

reserved exclusively for meta-learning (region discovery and router training). The baseline achieves
minimal improvement (7.23 to 7.18 MAE, 0.7% reduction), while RISE achieves (7.23 to 6.57 MAE,
9.1% reduction). This demonstrates that RISE’s advantage stems from architectural separation of
expert training and meta-learning, not from privileged data access.(3) Importance of held-out data:
SRL baseline trained on 80% of data achieves 7.37 MAE, while SRL+RISE with 20% held-out
achieves 6.88 MAE (74% router accuracy). Despite using 20% less training data, RISE outperforms
the full-data baseline by 6.6%. This result aligns with recent work showing that held-out data enables
distinguishing memorization from generalization Bayat et al. (2025); Qiu et al. (2023) and effective
post-hoc model improvement (Kirichenko et al., 2023). Unlike classification methods that use
held-out data for reweighting or retraining a single model Liu et al. (2021); Qiu et al. (2023), RISE
uses it exclusively for meta-learning—identifying failure regions and training the router—ensuring it
remains an unbiased signal of generalization performance. This approach extends held-out-based
failure discovery to regression, where threshold-free identification and spatially contiguous regions
are essential. (4) Router accuracy and performance correlation: The strong correlation between
router accuracy (held-out approaches: 87%, 74% vs. training-based approaches: 43–45%) and
performance (6.57–6.88 vs. 7.24–7.26 MAE) confirms Theorem 2’s prediction. Routers trained on
training data cannot distinguish generalization failures from training artifacts; held-out data enables
genuine meta-learning where the router selects experts that generalize best, not those that memorize
best. The train+val union router (0.45 accuracy, 7.24 MAE) performs similarly to the train-based
router (0.43 accuracy, 7.26 MAE) despite more data, confirming that data separation, not volume, is
critical.

J ADDITIONAL EXPERIMENTS FOR FAIRNESS EVALUATION

Apart from well-documented DIR metrics such as bMAE (Ren et al. (2022)) and GMEAN (Yang
et al. (2021b)) which provide a more robust and label-frequency agnostic evaluation of regression
models. In this section we provide evaluation results for RISE using other imbalanced regression
metrics such as SERA and RW-RMSE (Ribeiro & Moniz (2020); Silva et al. (2022)).

SERA (Squared Error Relevance Area) and RW-RMSE (Relevance-Weighted Root Mean Squared
Error) are both measured using a relevance function (Torgo & Ribeiro (2007)) (ϕ : Y → [0, 1]) is a
continuous function mapping label space Y into a [0, 1] scale of relevance where 0 and 1 represent
the minimum and maximum relevance. Torgo & Ribeiro (2007) introduced a way that uses box-plot
to automatically assign relevance to different labels. Once this mapping relevance function has
been identified, for a dataset D = {(xi, yi)}Ni=1, with xi and yi being the feature and label space
respectively, we define SERA as-

SERA =

∫ 1

0

∑
yi∈Dt

(ŷi − yi)
2dt (21)

with Dt being defined as Dt = {(xi, yi) ∈ D | ϕ(yi) ≥ t}. Similarly based on ϕ, we define
RW-RMSE as

RW −RMSE =

√√√√∑N
i=0 ϕ(yi)(ŷi − yi)2∑N

i=0 ϕ(yi)
(22)
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For our implementation, we used IRon4, a public R implementation of SERA metric with method
= "extremes", extr.type = "both" and coef = 1.5 as hyper-parameters.

We report the results using these metrics on Dataset A (Moschoglou et al. (2017)), Dataset B (Rothe
et al. (2018b)) and STS-B(Cer et al. (2017b)) in Table 28, 29 and 30 respectively. Across these tables,
we observe that the RISE framework consistently improves SERA and RW-RMSE errors over their
respective baseline.

Table 28: Overall SERA and RW-RMSE comparison between baseline and RISE methods on Dataset
A (Moschoglou et al. (2017)) with the best results of baseline and corresponding RISE in bold.

Baseline RISE

Method SERA RW-RMSE SERA RW-RMSE

Vanilla 185632.05 15.34 178765.91 15.06
BMSE 104793.37 11.53 86088.50 10.45
LDS-FDS 89469.81 10.65 81101.40 10.14
RankSIM 76067.22 9.82 72396.88 9.58
SRL 80512.74 10.10 68728.10 9.33

Table 29: Overall SERA and RW-RMSE comparison between baseline and RISE methods on Dataset
B (Rothe et al. (2018a)) with the best results of baseline and corresponding RISE in bold.

Baseline RISE

Method SERA RW-RMSE SERA RW-RMSE

Vanilla 1204812.95 14.09 1155859.68 13.85
BMSE 1199632.82 13.71 1060634.34 13.63
LDS-FDS 1085458.96 13.34 1065592.69 13.33
RankSIM 1086665.20 13.29 1038208.49 13.22
SRL 1113412.91 13.56 1061609.02 13.25

Table 30: Overall SERA and RW-RMSE comparison between baseline and RISE methods on STS-B
(Cer et al. (2017b)) with the best results of baseline and corresponding RISE in bold.

Baseline RISE

Method SERA RW-RMSE SERA RW-RMSE

LDS-FDS 286.58 1.11 261.85 1.06
RankSIM 305.22 1.14 264.67 1.06
SRL 327.53 1.18 288.28 1.11

To further strengthen our fairness claims, we evaluate RISE on Dataset A and B by dividing the
datasets in three groups old (y ≥ 80), adult (y ∈ [18, 80) ) and young (y < 18), for each of these
groups (Dg) we calculate SERA metric, Normalized-SERA (Norm-SERA = SERA(Dg)

|Dg| ) and MAE.
Further, we also calculate Worst-Case Disparity (WCD) as-

WCD = Max(MAE(Di))−Min(MAE(Di)) ∀i ∈ [1, ||Dg||] (23)

WCD takes reference from the Statistical Parity Difference (SPD) Dwork et al. (2012), a key metric
implemented in toolkits like AI Fairness 360 (AIF360), using the maximum difference between
extreme group outcomes to identify bias. Tailored for regression, it quantifies the maximum disparity
in prediction error rather than measuring differences in positive outcome rates between groups. This
focus on error magnitude is crucial for assessing robust model performance for all groups, specifically
confirming that the system is not concentrating its largest prediction errors on any single subgroup
Sagawa et al. (2020).

The results across these groups are provided for Dataset A in Table 31 and for Dataset B in 32. For
both the datasets, we consistently observe that SERA across the groups gets reduced as well as WCD
is reduced for RISE vis-a-vis the corresponding baseline

4https://github.com/nunompmoniz/IRon

35

https://github.com/nunompmoniz/IRon


1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 31: SERA values and normalized SERA across groups, along with MAE per group and
worst-group disparity on Dataset A (Moschoglou et al. (2017)) with the best result of baseline and its
corresponding RISE configuration in bold.

Young SERA Adult SERA Old SERA MAE by Group

Method Raw Normalized Raw Normalized Raw Normalized Young Adult Old WCD

Vanilla 47057.23 480.18 107441.23 57.92 41548.28 222.18 19.59 10.37 14.50 9.21
Vanilla+RISE 36642.55 373.90 99623.81 53.71 32084.87 171.58 17.28 9.70 12.91 7.58

LDS-FDS 22511.14 229.71 51426.41 27.72 15532.26 83.06 12.78 7.09 8.45 5.69
LDS-FDS+RISE 18157.90 185.28 47482.65 25.60 15460.84 82.68 10.79 6.98 8.38 3.80

RankSIM 16393.81 167.28 45531.07 24.55 14142.34 75.63 10.31 6.71 8.46 3.60
RankSIM+RISE 15335.53 156.49 44271.32 23.87 12790.03 68.40 9.67 6.70 7.83 2.97

SRL 15880.41 162.05 47009.29 25.34 17623.04 94.24 10.01 6.86 9.36 3.15
SRL+RISE 13874.21 141.57 41224.47 22.22 13629.41 72.88 8.90 6.26 7.57 2.65

Table 32: SERA values and normalized SERA across groups, along with MAE per group and
worst-group disparity on Dataset B (Rothe et al. (2018a)) with the best result of baseline and its
corresponding RISE configuration in bold.

Young SERA Adult SERA Old SERA MAE by Group

Method Raw Normalized Raw Normalized Raw Normalized Young Adult Old WCD

Vanilla 338905.27 225.64 636982.43 70.50 228925.25 472.01 10.31 7.49 14.35 6.86
Vanilla+RISE 334993.39 223.03 621537.61 68.79 199328.68 410.99 11.21 7.20 12.73 5.53

LDS-FDS 293761.17 195.58 593789.73 65.72 197908.06 408.06 9.77 7.00 14.99 7.98
LDS-FDS+RISE 293284.22 195.26 584400.34 64.68 187908.12 387.44 9.72 6.93 13.75 6.83

RankSIM 298707.74 198.87 607310.86 67.22 180646.59 372.47 9.81 7.05 12.96 5.91
RankSIM+RISE 268222.22 178.58 593226.72 65.66 176759.56 364.45 8.79 7.18 12.89 5.71

SRL 281178.22 187.20 640468.17 70.89 191766.52 395.39 9.63 7.09 13.54 6.46
SRL+RISE 270906.40 180.36 604839.63 66.94 185863.00 383.22 8.73 7.17 12.89 5.72

K ADDITIONAL EXPERIMENT ON ENSEMBLE TRAINING

In addition to comparing RISE with bagging ensemble models (Table 16), we conducted experiments
comparing RISE against boosting-based approaches, specifically AdaBoost.

AdaBoost Implementation: Our AdaBoost implementation (Solomatine & Shrestha (2004)) employs
a frozen ResNet-50 backbone with multiple expert heads. Each expert is sequentially trained on
weighted bootstrap samples, where the algorithm adaptively reweights training instances based on age
group prediction errors. This enables subsequent experts to focus on poorly performing age ranges.
Final predictions are obtained by combining expert outputs using learned alpha weights proportional
to their individual performance. We trained ensembles with k = 3 and k = 5 experts using both
LDS-FDS and SRL loss functions, and compared their performance against RISE variants.

Results and Analysis: Table 33 presents the comparative results. While AdaBoost outperforms both
the baseline and bagging methods (see Table 16), its performance gains are primarily concentrated in
the all and many data bands, with the median and few bands showing only marginal improvements
over the baseline. In contrast, RISE consistently outperforms all AdaBoost configurations across
all evaluation metrics and data frequency bands, achieving superior performance with significantly
fewer additional parameters. This demonstrates RISE’s ability to effectively handle underperforming
regions across the entire data distribution, not just the well-represented segments.
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Table 33: Comparison of baseline and rise with over-parameterized AdaBoost ensemble configura-
tions for Dataset A (Moschoglou et al. (2017)). The best result between baseline and corresponding
Adaboost configuration is in bold and the best overall result is presented in color blue.

L1 (MAE) ↓ GMEAN ↓ MSE ↓

Method Extra Parameters All Many Med Few All Many Med Few All Many Med Few

LDS-FDS Methods
LDS-FDS-Baseline 0 7.47 6.91 8.27 10.58 4.77 4.44 5.33 6.87 95.32 79.71 118.52 178.58
LDS-FDS+RISE 2,100,224 7.28 6.79 8.07 9.72 4.49 4.25 4.88 6.04 92.79 78.88 116.49 158.63
LDS-FDS-k=3 3,150,336 7.44 6.86 8.29 10.60 4.74 4.39 5.33 6.73 94.70 77.48 119.11 178.84
LDS-FDS-k=5 5,250,560 7.43 6.82 8.31 10.61 4.71 4.36 5.33 6.81 94.29 76.63 119.44 178.98

SRL Methods
SRL-Baseline 0 7.23 6.64 8.28 9.85 4.53 4.17 5.32 6.35 91.79 77.20 115.83 163.15
SRL+RISE 2,100,224 6.57 6.16 7.36 8.30 3.61 3.40 4.14 4.33 82.01 70.88 91.20 134.93
SRL-k=3 3,150,336 7.17 6.61 8.28 9.84 4.52 4.16 5.34 6.34 90.57 76.17 115.79 163.15
SRL-k=5 5,250,560 7.15 6.59 8.28 9.85 4.51 4.13 5.33 6.34 89.78 74.18 115.83 163.18
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