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ABSTRACT

Deep Imbalanced Regression (DIR) is challenging due to skewed label distributions
and the need to preserve target continuity. Existing DIR methods rely on a single,
monolithic model, yet empirical analysis shows that standard benchmarks exhibit
strong distributional heterogeneity, exposing a core limitation of such approaches.
We theoretically prove that this property creates an irreducible bias for any single
model, leading to poor performance in data-scarce regions. This creates a core chal-
lenge for algorithmic fairness, as these regions often correspond to marginalized
demographic groups. To address this, we propose RISE—Regression Imbalance
handling via Switching Experts—a modular Mixture-of-Experts—inspired frame-
work, theoretically motivated by our analysis. RISE employs a novel imbalance-
aware algorithm to identify underperforming regions via validation loss and trains
dedicated experts with targeted upsampling. As a complementary framework, RISE
achieves new state-of-the-art performance while improving fairness, highlighting a
principled new direction for imbalanced regression.

1 INTRODUCTION

Imbalanced data distributions—common in real-world settings—create severe challenges for regres-
sion models, producing high variance on minority labels and bias toward majority ones|Wang et al.
(2020); |Gong et al.|(2022)). Unlike classification, where imbalance has been extensively studied,
Deep Imbalanced Regression (DIR) is more complex due to its continuous and unbounded label
space. This limitation has critical fairness implications: in healthcare, underestimating rapid disease
progression delays care for underrepresented patients Cross et al.|(2024)), while in environmental pol-
icy, smoothing over pollution spikes overlooks harms concentrated in marginalized communities |Su
et al.| (2024)—highlighting DIR as both a technical challenge and a fairness imperative in high-stakes
domains.

In Fig[l] we compare state-of-the-art (SOTA) methods for DIR, including LDS-FDSYang et al.
(2021) and SRL |Dong et al.| (2025), on Dataset A [Moschoglou et al.| (2017). While these ap-
proaches reduce training error in tail (few-label) regions, their gains vanish at test time, revealing
overfitting and poor generalization on underrepresented labels. Standard remedies such as frequency-
based oversampling |Steininger et al.| (2021) partially close this gap in the tail but consistently
degrade performance on head (many-label) regions, exposing a persistent head—tail trade-off  Xu
et al.| (2021). A key observation is that performance across label bands is highly sensitive to the
specific sampling realization of the training data, suggesting that the observed dataset is but one
draw from a richer underlying distribution, and oversampling schemes represent alternative draws.
We hypothesize that the persistent head—tail discrepancy in DIR

arises from two factors: (a) different label regions exhibit distinct, Table 1: Cosine similarities
and sometimes conflicting, conditional distributions P(y|x); and
(b) a single monolithic model lacks the capacity to jointly capture ~_DatasetA wWew Wmea  Wmany

these heterogeneous mappings Sattler et al.| (2020). We empirically e S0 Q04 0.03
validate distributional heterogeneity in standard DIR benchmarks,  wmany 0.03 0.09 1.00
providing the first direct evidence in this setting. First, independent  Dataset B wrw  Wmed  Wmany
linear predictors trained on frozen ResNet-50 features for the many-, g, 1.00 002 003
medium-, and few-label bands of Dataset A and Dataset B [Rothe Zﬁﬂjﬁy 88% (1)(1)8 (1)(1)3

et al.| (2018) yield nearly orthogonal weight vectors, with cosine
similarities as low as 0.03 (Table[I), indicating fundamentally different predictive functions across
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Figure 2: Heteroscedas-
Figure 1: Dataset A: SOTA DIR methods cut tail error but worsen  ticity in Model Error-
head, exposing a persistent head—tail trade-off. SRL |Dong et al.|(2025)

regions. Second, to demonstrate the consequences of this heterogeneity, we analyze the error profile
of a single global model SRL. We find pronounced heteroscedasticity in its prediction errors: on test
data, variance in the few-label band is up to 7 x higher than in the many-label band, while the opposite
trend holds on training data—classic overfitting to scarce samples (Fig. 2)). This instability arises
precisely because a monolithic model cannot simultaneously capture distinct conditional distributions
P(y|z) across regions. Together, these findings show that the core challenge in DIR is not merely
label imbalance but distributional heterogeneity, motivating architectures that explicitly specialize
across label regions.

This necessitates an architectural shift towards a multi-expert paradigm. We therefore propose RISE
(Regression Imbalance handling using Switching Experts), a framework that directly confronts this
challenge by learning specialized representations for different data regions. Crucially, RISE is not a
generic Mixture of Experts (MoE) Mu & Lin|(2025). Its novelty lies in its imbalance-aware algorithm
that operationalizes the MoE specifically for DIR. Unlike generic MoEs that partition data by feature
similarity, RISE identifies expert domains by analyzing the failure modes of a global model revealed
through its validation loss. Each expert is then trained with targeted upsampling, ensuring it focuses
on the underrepresented data that challenges a single, monolithic network. This end-to-end approach
transforms the MoE from a general tool for heterogeneity into a targeted, principled solution for DIR.

Below we summarize our key contributions:

1. To the best of our knowledge, we are the first to identify and empirically validate that standard
DIR benchmarks exhibit distributional heterogeneity, reframing the core challenge from mere label
imbalance to representational imbalance.

2. We prove that any monolithic model in DIR suffers from an irreducible heterogeneity bias amplified
by imbalance (Theorem I, and show that targeted expert specialization trades bias reduction against
estimation variance (Theorem [2).

3. Building on this, we propose RISE, a modular and model-agnostic framework that comple-
ments existing SOTA methods by explicitly addressing distributional heterogeneity, overcoming the
persistent head—tail trade-off, and improving performance across all regions (as shown in Fig. [T).

4. RISE sets new SOTA on multiple DIR benchmarks Moschoglou et al.| (2017}, Rothe et al.[(2018)),
outperforming all baselines, highlighting its effectiveness and establishing a new direction for DIR.

2 IMBALANCED REGRESSION PROBLEM FORMULATION

In DIR, we are given a dataset D = {(z;,y;)}1, with inputs 2; € X C R? and continuous labels
yi € Y C R. The label marginal p(y) is highly non-uniform (long-tailed), producing majority
and scarce (tail) regions where conventional models systematically fail. Motivated by empirical
evidence (Sec. , we argue that the core difficulty is not merely imbalance in p(y), but a deeper
distributional heterogeneity in the conditional P(y | x). We posit a latent partition of the problem
space into K regions, with region k comprising fraction py = ny/n of the data and governed by a
distinct conditional distribution Py (y | x). Because the fractions {py} are highly non-uniform, a
single monolithic predictor trained on the pooled data is dominated by majority regions and induces a
persistent bias in scarce ones, a limitation we formalize in Theorem [I] This heterogeneity makes a
MOoE architecture the natural modeling choice. We therefore model the global conditional distribution
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as a mixture of these latent, region-specific distributions:

P(ylz) = Zm )Py (ylz), e))

where each component Py (y|x) is modeled by an expert network Ej and the mixing coefficients
7, (x) are determined by a gating network g,. The final prediction is the expectation under this

mixture: § = Zszl 9o(2)k - Ex(z). The learning task is thus transformed from fitting a single
complex function into discovering this latent partition (the gate) and mastering each sub-problem
(the experts), even when data is sparse—the core challenge our RISE framework is designed to solve.

2.1 RELATED WORK

Deep Imbalanced Regression: DIR is challenging as it must preserve label continuity under skewed
distributions. Prior methods modify loss functions or label densities: LDS-FDS |Yang et al.| (2021)
and Balanced-MSE [Ren et al.| (2022) address global imbalance but ignore local heterogeneity;
RankSim |Gong et al.|(2022), ConR [Keramati et al.|(2024), and SRL Dong et al.|(2025) add feature-
space regularization (ranking, contrastive, or latent uniformity) yet assume homogeneous features.
Regression-via-classification approaches Pintea et al.|(2023)); [Pu et al.| (2025); Xiong & Yao|(2024)
discretize the target and leverage classification training, aligning with MoE formulations, but lack
mechanisms to detect minority regions or train dedicated experts, limiting their ability to capture
distributional heterogeneity.

Ensembling and Mixture of Experts: A common approach to imbalance is partitioning data by class
sizes and training separate experts. Ensemble-based methods Xiang et al.| (2020); (Cui et al.| (2023);
Cai et al.| (2021) follow this strategy in classification but do not extend naturally to regression, where
targets are continuous and lack softmax-style aggregation. In long-tailed recognition, multi-expert
models such as BBN|Zhou et al.|(2020) (two-branch fusion for head/tail) and RIDE |Wang et al.|(2020)
(diversity-regularized experts) reduce bias, yet their applicability to DIR—where label continuity and
regional heterogeneity are central—remains unexplored.

3 THEORETICAL INSIGHTS: WHY MONOLITHIC MODELS FAIL ON DIR

We formalize the core difficulty we empirically observe in DIR: when data comes from a mixture of
region-specific mechanisms, a single global predictor suffers cross-region interference, amplified by
label imbalance. To study this, we adopt a simplified linear regression setting, a standard tool for
analyzing generalization in complex models [Belkin et al.|(2018); [Lin et al.| (2023).

Setup. We consider heterogeneous linear regression with K latent regions, each occurring with
probability pr, = ni/n (Sec.[2). For a sample (z,y) from region k, such that x ~ N(0, %), and
y = wka + ¢, where w} € RP is the region-specific parameter, ¢ ~ N(0,07) is independent
noise, and ¥ > 0 is the common feature covariance matrix [1_1 Heterogeneity is captured entirely
by {w}}, which define distinct Py (y | ). Stacking all n = 2521 ny, samples gives the design
matrix X € R™? and the label vector Y € R". The pooled(or global) Ordinary Least Squares
(OLS) estimator is @ = (X " X)~! X TY trained on all n samples. We evaluate performance by the
region-weighted generalization error: G,(W) = Zszl pr |0 — w2

Theorem 1 (Generalization error under imbalance and heterogeneity). Lef wayg = Zszl prwy, and
7% = max;, 0']%. Under Gaussian design with n > p + 1, the expected region-weighted error of the
pooled OLS estimator decomposes as

K

=2 -1
B[, (@) = =8 + > ol = wave I, @)
Estimation Variance (shrinks with n) N

Heterogeneity Bias (persists)

'In Appendix A we relax this assumption to region-dependent covariances X, and noise o2 and show the
same qualitative conclusions hold.



Under review as a conference paper at ICLR 2026

Proof sketch. The decomposition follows from G, (@) = || — wavg||? + >, pr||w) — wavgl|?, since
>k Pe(W) — Wayg) = 0. The first term is bounded using inverse-Wishart moments for Gaussian
design, yielding the variance term. The second term is deterministic and captures irreducible
heterogeneity. Full derivations, and generalizations to ¥, 07 are provided in Appendix@

Implications. Theorem shows that imbalance amplifies heterogeneity: w,y e is dominated by head
regions, yielding persistent error on tails when w; lies far away. Even with infinite data, a monolithic
model converges to this biased average. Since the Heterogeneity Bias cannot be reduced by more data
or reweighting, a natural remedy is architectural: partition the space and assign specialized predictors,
so each operates in a more homogeneous region and achieves better generalization.

4 PROPOSED METHOD: RISE

Our proposed method, RISE, as illustrated in Fig. [3] operates as an orthogonal meta-framework
designed to systematically enhance any pre-trained DIR baseline. Its core architectural choice—
replacing a single monolithic model with a system of specialized experts—is a direct response to the
distributional heterogeneity we identified in Sec.[I] First, RISE-Identify takes the trained baseline
model (fy) and analyzes its performance on a held-out validation set to discover its specific failure
modes. By using held-out data, we identify regions of true generalization error, not artifacts of
training set memorization. Second, RISE-Train creates a set of dedicated experts, each one targeting
a specific failure region identified in the first stage. These experts are trained on the train-dataset with
targeted upsampling, a strategy that encourages specialization while regularizing against overfitting.
Finally, RISE-Inference learns a gating mechanism, also on the held-out set, that dynamically routes
new inputs to the most appropriate expert at test time. Complete implementation details and pseudo
code are provided in Appendix [D.1]

Baseline DA Baseine O
o

.......

RISE TRAIN

Ll | |
M | - 1" \‘ (-

RISENFERENCE

Figure 3: Overview of RISE framework.

4.1 RISE-IDENTIFY: DISCOVERING LATENT FAILURE REGIONS

Table 2: Frequency-Loss
Relationship Analysis for
Dataset A

The first stage of RISE is to identify the latent regions where a baseline
model fails, corresponding to the distinct components of the hetero-
geneous data distribution we posited in our problem formulation. The
overall dataset D is first split into a training set Dy, and a held-out
validation set Dy, .A naive approach, implicitly used by frequency-

Label Band Freq Held-out Loss

based methods |Cui et al.| (2023); |Yang et al.| (2021), is to partition 0-20 231 8.86
data using lgbel-degsity bins from l?lmin. Specifically, the continuogs 4218:28 i:g(l)g S:i’g
label space is first discretized into bins, and the frequency of labels in 60-80 2,244 7.79
each bin is computed |Yang et al|(2021). A K’-component Gaussian 80-100 208 9.34

Mixture Model (GMM) is then fitted to these frequencies:

p(v) = Zszll 7N (v|p;, 03) where v denotes the bin frequency. Component with the largest weight

773- corresponds to the majority region, while the remaining components capture minority regions.
However, this frequency-based approach is a flawed proxy for two key reasons. First, as our analysis
shows in Table 2] error (or held-out loss) and frequency are not perfectly correlated; a region can

have moderate data density yet still exhibit high generalization error. The 40-60 label band shows
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higher loss (7.44) than the 20—40 band (6.30), despite similar sample sizes, indicating that frequency
alone does not explain model error—performance is not strictly inversely proportional to frequency,
highlighting the role of distributional heterogeneity. Second, frequency-based partitioning often
creates non-contiguous regions in the label space as shown in Fig. fp, which is problematic for
regression tasks where nearby labels are highly correlated and should be modeled coherently |Yang
et al.| (2021); \Gong et al.|(2022).
[l
[
) a‘H “”“IM\

Figure 4: Comparison of minority region
identification approaches on Dataset A. a)
Frequency-based analysis leads to discon-
nected minority regions (red, yellow) sepa-
rated by majority regions (green). b) Loss-
Label Distribution analysis produces contigu-
ous minority regions

RISE adopts a more direct and principled strategy: =

we identify regions based on the model’s generaliza- ’ | \

tion error, a direct signal of where the single, mono- i \ |
Al

lithic model is failing. First, we take a pre-trained
DIR baseline, fy, trained on Dy,;,. We then use this
model to make predictions on the disjoint D, . For
each sample (z;,y;) € Dya, We compute its point-
wise prediction error, e; = L(fg(x;),y;), where L
is a loss function such as the absolute error (L1) or
squared error (L2). To identify contiguous regions
of high error, we model the joint distribution of these
errors and their corresponding labels. This joint mod-
eling ensures that identified regions are contiguous
in label space—nearby labels with similar error patterns are grouped together—which is crucial
for regression tasks where adjacent target values should be handled by similar predictive func-
tions. Following|Yang et al.| (2021) we partition the continuous label range of Dy, into B disjoint,
uniform-width bins, { By, . .., Bp}. For each bin b, we define the set of sample indices it contains as
Ty = {i | v; € By} and compute its average generalization error: £, = ﬁ > iz, €i- We model the

resulting distribution of (average error, label bin center) pairs, { (¢, y) }2_,, using a K’-component
GMM:

K
p(ly) =Y TN (6 y) |1y, ;). 3)
j=1
The GMM naturally clusters the label bins into K’ distinct and contiguous performance regions
R; The component with the lowest mean error (along the error dimension of p;) is designated
the well-performing “majority” region, while the remaining components correspond to distinct
failure modes requiring specialized experts. K’ is a hyperparameter that needs to be tuned. Using a
held-out set ensures the identified regions correspond to true generalization failures, not training set
memorization—a phenomenon we explicitly observe (Fig. [I).As illustrated in Fig. @b, this approach
produces continuous minority regions, aligning with the principle of region similarity and enabling
more homogeneous expert training. By defining regions based on error, we directly target the
heterogeneity bias identified as the key limitation in Theorem|[I]

4.2 RISE-TRAIN: EXPERT TRAINING

Having identified the baseline model’s failure regions, the next stage is to train a dedicated expert for
each one. To maintain computational efficiency and leverage the powerful representations learned
by the baseline fy, we adopt a parameter-efficient fine-tuning approach [Kirichenko et al.| (2023)).
As shown in Fig. [3|each expert E; shares the frozen backbone of the pre-trained model; only its
final layers are trained for specialization. For RISE-Train, we evaluate two strategies for expert
specialization. A naive strategy (T1: Subgroup-Specific Training) trains each expert exclusively on
its assigned data partition. This hard partitioning forces experts to learn from a severely restricted
support of the data distribution, inducing high estimation variance and overfitting. It also prevents
learning smooth functions across the label space in regression, leading to poor generalization and
discontinuities at region boundaries. We therefore propose a more robust and principled strategy: T2:
Cross-Group Training with Upsampling. For each expert I/;, we train on the full dataset Diyin
with sample weights: target region samples R; are upsampled by a; > 1, others by 1. This weighted
empirical risk minimization both regularizes and specializes: exposure to the full dataset prevents
high variance and discontinuities by constraining experts to remain well-behaved across the manifold,
while «; > 1 amplifies gradients from R’;, biasing the expert toward its designated failure regions.
Our ablations (Sec. [6.3)) empirically confirm that T2 is a far superior strategy, and we adopt it for all
experiments.
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4.3 RISE-INFERENCE: EXPERT SWITCHING STRATEGY

The final stage of RISE is to dynamically route each new input to the most suitable expert at test time.
We compare three strategies: (I1) Expert Averaging, a simple ensemble baseline which aggregates
predictions from all experts via weighted averaging; (I2) Train-based Router, a gating network g4
trained on the training set Dygin; and our proposed (I3) Held-out-based Router, a gating network g4
trained on the held-out validation set D, . Our ablations (Sec.[6.4) show that the held-out router (I3)
is decisively superior. A router trained on Dy, tends to select experts that best fit training artifacts,
whereas training on Dy, turns routing into a meta-learning task: it learns to pick the expert that
generalizes best. We therefore adopt I3 as our standard strategy. The router is implemented as a small
multi-layer perceptron (MLP) that takes the shared features from the baseline’s backbone as input
and outputs a probability distribution over the K’ experts. The final prediction g is the output of the
single expert selected by the router: § = E;-(x), where j* = arg max; gy (z);.

5 THEORETICAL JUSTIFICATION FOR RISE

Having established in Theorem |I| that a global model suffers an irreducible heterogeneity bias,
the natural question is: under what conditions can a region-specialized architecture overcome this
limitation? We provide a formal result showing when RISE strictly outperforms the pooled model.

Theorem 2 (Generalization advantage of RISE). Building on the heterogeneous regression setup of
Theorem let K’ experts be trained with per-region upsampling factors o.; and routing probabilities
qi(j) (the probability that a sample from region k is assigned to expert j). The effective sample

size for expert j is ngf) = (aj — 1)n; + n. From Theorem|I|we know the pooled/global model

incurs region-weighted risk (or generalisation error) Gpooled = Valob + Aglob, Where Agior, =
Zle Pk || W) — Wavgll, and Vo, = O(p/n) is the estimation variance of the global model, while
generalisation error of RISE satisfies

gRISE = Bdet (0[, q) + V:est (av (]) + Rcross (Ol, Q)»
where Bgey is deterministic bias from imperfect specialization (including possible K' # K or

gcf) ) is expert estimation variance, and R oss(t, q) =

O(\/p/ néJff) ) are vanishing cross-terms. RISE outperforms the pooled model whenever

overlapping experts), Vest(,q) = O(p/n

Aglob - Bdet(aa Q) > V;est(aa q) - Vrglob + Rcross(aa Q)

Proof Sketch and Implications. The pooled model converges to the data-weighted average wayg,
incurring a persistent heterogeneity bias Agon. RISE reduces this bias by upsampling scarce
regions and routing them to specialized experts, so their effective targets move closer to wj,. Any
mismatch between the number of experts and true regions (K’ # K or overlaps) is absorbed into
the deterministic bias term Bget (v, ¢). The trade-off is increased finite-sample variance Vgt (v, q) =
O(p/ ngf) ) and negligible cross-terms Reyoss (v, ) = O(4/p/ nggf) ), both of which decay with sample
size. Thus, whenever the bias reduction dominates these penalties, RISE achieves strictly better
generalization than the pooled model. Detailed proofs are in Appendix [B] In practice, imbalance-
aware upsampling (RISE-Train T2) increases n.g in scarce regions and the learned router (RISE-
Inference 13) keeps the maximum routing error ¢ = maxy (1 — gx(k)) small, directly satisfying the
theorem’s condition Grisg < Gpooled- We provide empirical validation of this effect in Sec. @

6 EXPERIMENTS AND RESULTS

We evaluate the utility of RISE through the following research questions-

* RQ1: How effective is RISE compared to SOTA baselines across different datasets?

* RQ2: How do expert training strategies and hyperparameters affect RISE performance?

* RQ3: How do different RISE-INFERENCE strategies affect overall performance?

* RQ4: How Practically Achievable are the Theoretical Conditions (Theorem 2)) for RISE’s Success?
* RQ5: Do RISE’s performance gains stem from its specialized architecture or model capacity?



Under review as a conference paper at ICLR 2026

6.1 EXPERIMENTAL SETUP

Algorithms: We compare RISE with four SOTA DIR methods and a Vanilla ResNet-50 backbone
He et al.| (2016)). Since RISE is a modular framework that complements existing approaches, we
evaluate it in combination with Vanilla, LDS+FDS Yang et al.| (2021), RankSIM |Gong et al.[(2022),
BalancedMSE Ren et al.|(2022), and SRL |Dong et al.| (2025)). For baselines we use released weights
or official implementations. All RISE experts are trained with MSE loss. We tune the number of
experts K', upsampling ratio «, selecting the best configuration by validation performance. Further
details are in Appendix [D.2]

Datasets: We evaluate RISE on four DIR benchmarks across modalities: Dataset A |Moschoglou et al.
(2017)(images, target values in range 0-101), Dataset B Rothe et al.|(2018) (images, range 0-186),
STS-B|Cer et al.|(2017) from GLUE [Wang et al.|(2018)) (text, similarity 0-5), and UCI-Abalone Nash
et al.|(1994) (tabular, range 1-29). Following confidentiality requirements, we anonymize Dataset A
and Dataset B by omitting their names. Full details are in Appendix[C|

Metrics: Following|Yang et al.[(2021);|Gong et al.|(2022); Dong et al.| (2025)), we report performance
overall and across Many (>100 samples), Medium (20-100), and Few (<20) label bands. For
Dataset A and B, we use Mean Absolute Error (MAE)/, Mean Squared Error (MSE)|, and Geometric
Mean Error (GMEAN)/. For STS-B, we additionally report Pearson{ and Spearmant correlation. To
assess fairness — defined as minimizing performance disparities across these bands—we also report
balanced-MAE (bMAE)| Ren et al|(2022)), which averages MAE over uniformly partitioned label
bins to capture regional performance gaps (see Appendix Section [E.2).

6.2 RQ1: PERFORMANCE OF RISE ON PUBLIC BENCHMARK DATASETS

Table |4| shows that RISE consistently improves strong baselines Tgble 3: Balanced-MAE
(LDS+FDS, RankSIM, SRL) on Dataset A across all label bands ( (bMAE) | on Dataset A
similar results for other datasets are provided in Appendix Sec. [E.]

). The largest relative gains occur in the Few and Medium regions, bMAE |

where monolithic models suffer most. For example, SRL+RISE _Method Al Many Med Few
reduces Few-MAE by 15% while simultaneously lowering Many- SKC+RISE 335 oo 338 1633
MAE by 10%, thereby overcoming the common head-tail perfor-
mance trade-off. The performance gains from RISE scale directly
with the quality of the learned router. Weak backbones (e.g., Vanilla, with a router accuracy of
=~ (0.44) lead to unstable tail performance. In contrast, strong backbones (e.g., SRL, with a router
accuracy of ~ 0.87) enable RISE to fully realize the theoretical advantage of specialization (Theorem.
[2). This confirms that the benefit from reducing heterogeneity bias dominates once the routing error
is sufficiently low, while the variance cost remains controlled. Additional results (Appendix
show that using an optimal router trained on the best feature representation yields significantly better
performance than the baseline router, due to higher routing accuracy.

We assess fairness via bMAE in Table [3] (full results in Appendix Sec. [E.2). By significantly
improving Few and Medium-band performance while preserving Many-band accuracy, SRL+RISE
directly mitigates the bias towards head regions exhibited by the baseline. This reduces performance
disparities across label bands and demonstrably more equitable performance across all label bands.

6.3 RQ2: ABLATION ON EXPERT TRAINING AND HYPERPARAMETERS

We ablate RISE’s core design choices on Dataset A with SRL as backbone in Tables [5]and [6] Results
on Dataset B is in Appendix Sec. Our adopted expert training strategy, T2 (full-dataset training
with region specific upsampling), consistently outperforms T1 (region specific training). T1’s hard
partitioning causes severe overfitting, whereas T2’s full-dataset exposure acts as a powerful regularizer
that promotes smooth generalization while upsampling encourages specialization. Our analysis of the
number of experts (K') and upsampling ratio («) reveals a clear U-shaped performance curve. This
empirically validates our theory’s cost-benefit trade-off (Theorem [2) and directly operationalizes
it: the upsampling factor « is a key lever to control the expert’s estimation variance (V.s) while still
achieving the primary goal of reducing heterogeneity bias (Bge). Performance peaks at moderate
values (e.g., K’ = 3, = 3) before degrading as the costs of data fragmentation and overfitting
outweigh the benefits of heterogeneity reduction.
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Table 4: Results on Dataset AMoschoglou et al.[(2017). For each baseline/RISE pair, the better score
is in bold; the best overall is underlined. Router accuracy of RISE is shown in parentheses.

L1 (MAE) | GMEAN | MSE |
Method All Many Med Few All Many  Med Few All Many Med Few
VANILLA 11.05 9.96 1279 1653  7.06 6.27 8.37 13.48  202.09 165.09  270.75  361.74

+RISE (0.44) 10.43 9.40 11.62 1693  6.55 5.85 747 1316 181.61 148.38  221.57 384.95

BalancedMSE 8.70 8.44 8.99 1026 5.58 5.44 5.87 6.17 127.05 118.69 133.94  187.01
+RISE (0.47) 7.71 7.23 8.16 10.02  4.83 4.52 5.10 6.87 103.39 91.14 114.84 187.41

LDS+FDS 7.47 6.91 8.27 10.58 477 4.44 5.33 6.87 95.32 79.71 118.52 178.58
+RISE (0.53) 7.28 6.79 8.07 9.72 4.49 4.25 4.88 6.04 92.79 78.88 11649  158.63
RankSIM 7.02 6.58 7.86 9.72 4.55 4.14 5.39 6.97 83.55 74.34 99.30 149.51
+RISE (0.54) 6.94 6.50 7.38 9.10 4.35 4.08 4.80 6.04 82.70 71.96 91.20 138.15
SRL 7.23 6.64 8.28 9.85 4.53 4.17 5.32 6.35 91.79 77.20 115.83 163.15

+RISE(0.87) 657 616 736 830 3.61 340 414 433 8201 7088 9120  134.93

Table 5: Ablation on Dataset A: MAE for varying upsampling (with fixed K’ =3, left) and varying
experts (with fixed =3, right). Best RISE configuration beating baseline SRL is in bold.

L1 (MAE) | L1 (MAE) |
Config All Many Med  Few Config All Many Med  Few
SRL 7.23 6.64 828 9.85 SRL 7.23 6.64 828 9.85
SRL+RISE SRL+RISE
a=2 6.72 6.23 769  8.66 K'= 6.88 6.41 770 9.06
=3 6.57 6.16 7.36  8.30 K'=3 6.57 6.16 7.36  8.30
o=4 6.73 6.32 7.51 843 K'= 6.89 6.48 738 9.29
a=5 6.89 6.52 749  8.68 K'=5 7.29 6.93 7.67  9.58

6.4 RQ3: ABLATION ON RISE-INFERENCE STRATEGIES

We compare three routing strategies as mentioned in Sectiond.3|on Dataset A in Table [7] (full results
in Appendix Sec.[E.3): I1 (expert averaging), I2 (router trained on the training set), and our proposed
I3 (router trained on a held-out validation set). We observe that I3 is significantly superior. The
reason is fundamental—routers trained on the training set (I2) overfit to features already captured by
experts, whereas I3 learns which expert generalizes best, providing a robust signal for routing. To
confirm the gain is not simply from more data, we trained another router-variant on the full dataset
(train+held-out); while this improved over the baseline SRL, it was still outperformed by RISE with
the I3 router. This confirms that RISE’s advantage stems from its effective use of held-out data for
what is essentially a meta-learning task—Iearning to select the best generalizing expert—not from
access to additional training samples.

Table 7: Ablation of RISE inference strategies.

Table 6: Ablation of RISE-Expert training. Best ~ Best results in bold. Full results in Table@
results in bold. Full results in Table

L1 (MAE) |
Method All Many  Med Few
L1 (MAE) |
Baseline SRL 7.23 6.64 8.28 9.85
Method All Many Med  Few
Expert average (I1) 7.23 6.72 8.13 9.54
RISE(TH) 723 677 795 9.6l Train-based Router (12) 726 661 834 1033
RISE(T2) 657 616 736 830 Held-out-based Router (I3)  6.57 616 736  8.30
Train+Held-out Router 7.18 6.62 8.15 9.84

6.5 RQ4: EMPIRICAL VALIDATION OF THEORETICAL TRADE-OFFS IN PRACTICE

Theorem[2]predicts that RISE outperforms a pooled (or monolithic) model whenever the bias reduction
from specialization outweighs the added estimation variance and routing cost. To empirically validate
this, we conduct controlled experiments on Dataset A with RISE using SRL as the backbone. We
simulate router behavior with accuracy p € {0.01,...,1.0}, where the correct expert is chosen
with probability p. We systematically vary (i) the upsampling factor o (Fig. 5 and (ii) the number
of experts K’ (Fig.[6), averaging over 20 trials. Keeping fixed K’ = 3, Fig. [5] shows that higher
upsampling reduces error under accurate routing but increases sensitivity to poor routing, consistent
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Figure 5: MAE vs. router accuracy for differ- Figure 6: MAE vs. router accuracy for vary-
ent upsampling factors o with fixed K’ = 3 ing numbers of experts with fixed a = 3

with « reducing bias while amplifying variance. Keeping ov = 3 fixed in Fig. [f] shows that larger
K’ improves accuracy when routing is reliable but offers diminishing returns and greater instability
when routing is noisy. In both cases, & = 1 or K’ = 1 reduces RISE to the pooled baseline (or
standalone SRL model). Overall, the empirical gain, Gpo0led — GRISE, Decomes positive once router
accuracy exceeds ~60% (with moderate «, K), confirming that RISE successfully operationalizes
the theoretical trade-off and remains robust to realistic routing imperfections.

6.6 RQ5: ABLATION: RISE vS. HIGH-CAPACITY ENSEMBLES.

A critical question is whether RISE’s gains  yple §: Comparison of RISE vs. traditional ensembles
stem from its principled architecture or . Dataset A. Best results in bold
simply from an increased parameter count.

L1 (MAE) |

To isolate this, we compare RISE against B
strong, high-capacity ensembles (Table[8).  Experiment Additional

All Many  Median Few
Parameters

We train gnsgmb!es of 3 and 5 SRL models  — - 0 o ool 535 o
resulting in significantly additional model g+ RISE (K'=3) +2100224 657 616 736 830
size than a RISE-augmented model, where =~ SRL: 3 ensemble 43,150,336 722 6.63 8.28 9.86
ecach member is trained on a random data _ SKL:Sensemble 45250560 722 662 830 9.90

subset to induce diversity. We observe that

RISE consistently and significantly outperforms these ensembles, even with their much higher ca-
pacity. This highlights a fundamental architectural difference. Standard ensembles create diversity
through unstructured, random data sampling. In contrast, RISE employs a principled, structured
specialization: it uses validation loss to deterministically identify the model’s specific failure modes
and trains experts to explicitly target those weaknesses. This confirms that RISE’s performance gains
are not a product of raw model capacity but are a direct result of its intelligent, data-driven approach
to resolving distributional heterogeneity.

7 CONCLUSION, BROADER IMPACT, AND LIMITATIONS

We presented RISE (Regression Imbalance handling via Switching Experts), a novel framework that
addresses the fundamental challenge of distributional heterogeneity in Deep Imbalanced Regression
(DIR). RISE employs a three-stage approach: identifying failure regions via validation loss analysis
rather than frequency-based heuristics, training experts with cross-group upsampling to encourage
specialization while maintaining smoothness, and learning a gating mechanism, that dynamically
routes new inputs to the most appropriate expert at test time. This approach consistently outperforms
existing methods, improving both predictive accuracy and fairness, especially for underrepresented
regions of the target distribution. RISE is broadly applicable to any regression problem with imbalance
issues, advancing the development of more reliable and fair Al systems for critical decision-making.

Limitations: RISE introduces additional computational overhead due to training multiple experts
and a router network; however, this is partially offset by training experts on last-layer features
only. The framework also depends on a high-quality, representative validation set for effective
minority subgroup identification and router training. The method’s performance and fairness gains
can degrade if the validation set is noisy or biased, potentially reinforcing existing biases through
expert specialization. Future work could explore adaptive validation strategies and more efficient
training schemes to further mitigate these limitations.
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APPENDIX

A PROOF OF THEOREM

We restate Theorem [I] from the main paper, together with its assumptions, before presenting a
complete proof and a refinement using matrix concentration to obtain a tighter bound. In addition,
we extend the analysis to region-dependent feature covariances, where feature distributions may
differ across regions, to make the theory more realistic. This extension leads to the same qualitative
conclusion as in the main paper.

A.1 ASSUMPTIONS AND NOTATION

We work in the classical fixed-p regime. Let p,n € withn > p 4+ 1. The conditionn > p + 1
ensures that the expectation of the inverse-Wishart distribution exists, which is needed to evaluate the
estimation variance. For vectors and matrices we use the Euclidean norm || - || and the spectral norm
I - lop; (-) denotes the trace.

Assumption 1 (Gaussian design). Fix a positive definite covariance matrix ¥ € RP*? with eigen-

values 0 < Apin(X) < Amax(2) < oo. Let x1,...,x, E~ N(0,X) be the design rows, stacked into
X € R™*P,
The label space is partitioned into K regions indexed by k = 1, ..., K. Each observation i has a

region label z; € {1, ..., K}, drawn independently of X, with

K
P(z; = k) = pg, pr >0, Zpkzl.
k=1

Letny, = Y ., 1{z; = k} be the (random) region counts, with E[n;] = npy.

Remark 1 (On independence of z and x). The assumption z; L x; is restrictive but crucial for
tractability. In practice (e.g., econometrics, biostatistics), features are often predictive of group
membership, in which case off-diagonal terms would appear in conditional covariances and the
analysis would require more advanced tools.

Assumption 2 (Linear region-specific models). For each region k there exists a parameter vector
wj, € RP. Observations in region k follow

T, % ind 2
Yi =T; Wy, + &4, g; ~ (0,0’zi),

with €; independent of x; and other noise variables. Label vector y € R".

Define the population-weighted average parameter
K
Wavg = Y PR,
k=1
and the centered deviations

K
Vg = W), — Wavg, E prvg = 0.
k=1

[Pooled OLS and risk] The pooled ordinary least squares estimator is
o = (X'X)1X Ty,
which is well-defined almost surely for n > p.

We measure performance by the p-weighted mean squared error

K
Go(@) = Y prll@ —will*.
k=1

12
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A.2 EXACT DECOMPOSITION OF EXPECTED ERROR

Theorem ([T} Under Assumptions forn>p+1,

E[G,(0)] =E[|(XTX)' X e’ ] + E[I(XTX) "' X T4|1*] + oy , @
estimation variance mismatch term irreducible heterogeneity
where § € R" has entries §; = ] v,,, and
K K
A= ZpkHwZ — Wavg|® = Zpk”UkHQ-
k=1 k=1
Moreover,
_ DR R
B[[(XX) gyTEQ}::n<jD](§:ﬁ%g§). )
k=1

Proof. Expanding Y, pi||@w — wj||? yields

Gp(@) = 1B — wavg||* + A.

The response can be written as y = X wayg + 0 + €, where 6; = x;'— v,,. Therefore

W — Wayg = (X" X)X T (5 +6).

Squaring gives
1% — wag|* = [|(XTX) 71X e + (X T X)X T2
+2((X X)X Te (XTX)IXTH).

Taking expectation: the cross-term vanishes because conditional on (X, z), 4 is fixed and E[¢| X, 2] =
0. This proves @).

For (), let A = (X" X)~*X . Then
E||Ae|? = E(AE[ec"[2]AT)
—Ex (X TX) X7 (02,0 )X(XTX) 7).

Independence of z and X implies

K
E.[(02,....0% )] = (3 prod) L.
k=1

Thus
Bf|Ael® = (3 pro?) BIXT X)),
k

Since X TX ~ W,(E,n),
T 1 »-1
EX X)) |=———— 1
(( )] e SRS

hence the trace formula (3)). O

A.3 REMARKS

* The decomposition (@) provides a transparent separation of error sources: (i) variance due to
noise, (ii) a design-dependent mismatch term induced by parameter heterogeneity, and (iii)
the irreducible population heterogeneity A.

* The estimation variance admits an exact closed form (3)), scaling as O(1/n) for fixed p.

13
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* The mismatch term is always nonnegative. Its precise asymptotics depend on higher-order
Wishart moment identities; deriving tight general rates is delicate and left for future work.

* Asn — oo with p fixed, the total expected error approaches A, which is the asymptotic bias
from heterogeneity.

e Ill-conditioning of ¥ (large (¥~!)) inflates the variance term and slows convergence to A.

* These conclusions hold in the fixed-p, large-n regime. In high-dimensional settings with
p/n # 0, ridge regularization and random matrix theory tools are needed.

Assumption 3 (Sub-Gaussian heterogeneous design). For each region k, the covariates xy, ; are
independent mean-zero K.,—sub-Gaussian vectors with covariance Xy, = 0, i.e. for every unit vector
u € RPandt € R,

FEexp (t uTxkyi) < exp (KitQ/Z).

Define the mixture covariance
K
Ymix = g PRk,
k=1

and assume \pin(Xmix) > 0.

Proposition 1 (Sample-covariance concentration). Under Assumption [3| there exist constants
co, Co > 0 depending only on Ky such that if n > Cy (p + log(l/é)) then with probability at
least 1 — ¢,
a + log(1/6

||E - 2mixHop S Co ||Emix||op pfg(/)
Consequently, on this event )\min(i) > %)\min(zmix) and ||f3_1 llop < 2/Amin(Bmix)-
Theorem 1.1 (Finite-sample generalization under heterogeneous covariances). Suppose Assump-
tionsandhold. Let ogvg = Zszl proi and define A = Zszl pk||ve]|?. There exist constants
C, C1,Cy > 0 depending only on K., and the spectral condition number k(Zmnix) such that if

n > C(p+log(1/4)),

then with probability at least 1 — § the pooled least-squares estimator = (X T X) ™' X Ty satisfies

0, sl o ! EK: iasl
D) <yl -] 5 H ey 6
Gp(w) < 1n)\min(2mix) + 2” mix k_lpk RUK|| T A+ n ©)
Moreover, in the fixed-p, n — oo limit,
K 2
. P 1
nh_{%oE[gp(w)] =A+ HZmix kgil szkka . @)

Proof (proof sketch and main lemmas). The proof proceeds in six steps. Below we give the key ideas
and cite the concentration results used for brevity and readability.

Step 1: Decomposition. Write y = Xw,,z + 0 + ¢ where §; = x: vy, and € = (g;)7,. Then

~ 1 = 1

W — Wavg = yt (fXT(S) +37! (fXTg).
n n
Thus
~ -1 1 T 2 -1 1 T 2
G, (@) = || X e| +[= X 5H 20, ) A

The three display terms correspond to estimation variance, mismatch, and a cross-term.

Step 2: Control of s, Proposition (matrix concentration for sub-Gaussian samples; see|Vershynin
(2018); Tropp| (2015)) implies that for n 2 p + log(1/4) the event in which | — Xpix|lop is

small holds with probability 1 — §. On this event one obtains the deterministic bound |5~ lop S
1/Amin(zmix)-

14



Under review as a conference paper at ICLR 2026

Step 3: Estimation variance term. Conditioning on X and z, X Te is a mean-zero vector with
componentwise variances o ||z;||?. Standard conditional-sub-Gaussian tail bounds together with

operator-norm control of >~ yield the displayed O(p/n) bound in (6). One may make this fully
explicit by combining Hanson—Wright and matrix Bernstein inequalities (see |Vershynin| (2018));
Tropp, (2015)).

Step 4: Population limit and asymptotic bias. Note

1 & 1
XTy= - Z:clx;rw; + ﬁXTE'
=1

1
n

By the law of large numbers and multinomial concentration of region counts, }L > xlx:wjl —
> ok Prirpwy and X — Y. Hence W — wo where wo, = »! > ok PEgwy. Using v, =

mix
W}, — Wayg yields the asymptotic mismatch bias in (7).

Step 5: Finite-sample mismatch fluctuation. The deviation 1 X 6 — Y, p vy, is a mean-zero

sum of sub-Gaussian terms and therefore has Euclidean norm O, (1/+/n). Multiplication by s
which is O(1) in operator norm on the concentration event, yields an O,(1/y/n) deviation of the
centered estimator; squaring gives the O, (1/n) remainder in (6).

Step 6: Cross-term. The cross-term is bounded in absolute value via Cauchy—Schwarz and is of
smaller order (absorbed into the displayed C'/n remainder) under the same sample-size regime.

Combining the bounds in Steps 3-6 yields (6) and the limit (7). O
Remark 2. (References)

» The matrix-concentration proposition can be proved by applying matrix Bernstein / non-
commutative Bernstein inequalities as in (Tropp| (2015) or via Vershynin’s sub-Gaussian
covariance concentration (see|Vershynin|(2018)).

e All big-O and constants can be made explicit by tracking constants in Hanson—Wright and
matrix Bernstein inequalities; we omitted explicit numerical constants for readability.

Remark 3 (Interpretation). Unlike the homogeneous-covariance case, pooled OLS error converges
not only to the irreducible heterogeneity A but also to a persistent asymptotic mismatch bias
(¢f. Eq. ). This bias vanishes only under special conditions such as ¥, = X for all k or
>k PEEkVE = 0. Finite-sample fluctuations of the mismatch term decay at rate O(1/n), while the
estimation variance scales as O(p/n). Both contributions are magnified when ¥ is ill-conditioned.

B THEORETICAL GUARANTEES FOR RISE WITH UPSAMPLING AND ROUTING

We present a rigorous finite-sample analysis of RISE. We first state assumptions, then supporting
lemmas, and finally the main theorem with proof. We also derive the exact pooled decomposition,
and conclude with a corollary giving explicit sufficient conditions under which RISE improves over
pooled OLS.

B.1 ASSUMPTIONS

Assumption 4 (Sub-Gaussian design and bounded covariance). For each region k € [K], covariates
Tk € RP are i.i.d. mean-zero Ky,-sub-Gaussian vectors with covariance ¥y, = E[IMIL] > 0.
Eigenvalues are uniformly bounded:

0< A < )\min(zk) < Amax(zkr) < X < 00.

Assumption 5 (Noise tails). For each region k, labels satisfy y = x"wj + € with E[e | 2] = 0,
(e | ®) = 02, and 0} < 02, < 00. Moreover, the noise satisfies a uniform tail condition: either (i)
¢ is sub-Gaussian, or (ii) €* is sub-exponential (uniform constants). These tail assumptions are used
to obtain operator-norm concentration for heteroskedastic noise matrices; if only finite variance is

available, replace sample moments by robust estimators (truncation / median-of-means).
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Assumption 6 (Routing). Each population sample is drawn from region k with probability py.
Conditional on region k, the sample is routed to expert j with fixed probability gy (j), independent of
features x and noise €. Each expert j may upweight its own region by a factor oi; > 1 (we explain
below how this affects the training mixture and the realized counts). All routing probabilities {qy(j)}
are fixed (non-adaptive).

B.2 EFFECTIVE DISTRIBUTIONS AND A CLARIFYING REMARK ON UPSAMPLING

We use two distinct population-level quantities; reviewers should not conflate them.

(i) Marginal routing probability (controls realized counts). The marginal probability that a
random population sample is routed to expert j (before any upsampling normalization) is

route — Z Pk qk

The realized number N; of training samples routed to expert j is multinomial/binomial with mean
npjoute Lemmalbelow gives precise concentration for IV;.

(ii) Unnormalized upweight mass and training mixture (controls bias). To describe how upsam-
pling changes the training mixture used to estimate each expert, define unnormalized weights

ajijj(j)a k=j, K Wk—sj
Wh—sj = . ' Q= Zwkﬁj, Ty = O
pqu(])a k 7é.77 k=1 J
Here 7, ; defines the population-level training mixture for expert j: when estimating expert j we

(conceptually) mix regions & with proportions 7, ;. These 7j_,; enter the deterministic bias Bget
via

K
— eff E
Ej,train = E wkHjE;w w; 77“@1“( Wk%jkak)

Remark: wj,_,; (and hence 7, ;) involve «; and p; and are not probabllmes over experts; they
describe the training mixture used to form population-level bias terms. The realized counts N;
(used for variance bounds) are governed by p’°"*°, which depends only on py, gx(j) and not on «;.
In practice, upsampling can be implemented either by (A) re-sampling from the modified mixture
induced by 7_,; (sampling interpretation), or (B) by attaching per-sample weights in the loss
(weighting interpretation). The analysis below treats the bias via 7;_,; and controls variance via the
realized counts Nj; if you implement upsampling by weighting, replace N; in variance rates by the
appropriate ESS (effectlve sample size) — see Practical Considerations.

Define the population-level weighted noise and effective-sample-size
],eff Z 7Tk—>JUk7 E;f:f) =n- Qj'

B.3 PRELIMINARY LEMMAS

Lemma 1 (Routing counts concentration). Let p*"*¢ = 25:1 pkqk(3). Then (N1,...,Ny) ~

Multlnomlal(n piovte L piPite). Fix 6 € (0, ) There exist constants ¢y, c2 > 0 such that for
each j and anyt > 0,

2
Pr (|N; — npi™*°| > t) < 2exp< - an;putct_‘_ (2/3)t)
Choosing tj = c1/np*"*log(J/8) + c2log(J/d) and applying a union bound yields that with
probability at least 1 — 6,
|N; —np| < t; forall j € [J].
Consequently, if npi>"*® 2 C(p +log(.J/9)) for all j, then with probability at least 1 — § we have
Nj > 5npi™ for every j.
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Lemma 2 (Design and noise concentration). Assume rows of X; are independent K -sub-Gaussian
vectors with covariance Y train, and assume the noise satisfies the tail condition in Assumption
(sub-Gaussian or sub-exponential so that Efxlx: has controlled sub-exponential operator-norm).
Fix ¢ € (0,1). There exist constants Cy, C1,Co > 0 (depending on K., and the noise-tail constants)
such that, provided N; 2 p + log(J/d) for all j, the following holds with probability at least 1 — §
simultaneously over j € [J]:

log(J/0) p—+log(J/9)
T < p+log
HNX X5 = Siaran| < Coly [P 5 + ), ®)
2 o |p+log(J/9) 5 p+log(J/)
HN Etz 5 ;T O—jveffzj,train SOlo—max T+C2O—maxT' )
i raln]

In the usual regime N; 2 p + log(J/d) the square-root term dominates and the simpler form with
only the /- term is valid.

Remarks on the lemmas. - Lemmal[T]is a standard Bernstein/Hoeffding tail for binomial/multinomial
counts. - Lemma[2|follows from applying matrix Bernstein / Vershynin concentration to sub-Gaussian
rows, and to the heteroskedastic weighted noise matrices ?z;z, using the noise-tail assumption. If
the noise has only finite variance, replace empirical moments by robust estimators (truncation, MOM)
to retain high-probability control.

B.4 MAIN THEOREM FOR RISE

Intuition. The decomposition below separates prediction risk into: irreducible noise O’avg, deter-
ministic bias Byet due to training-mixture mismatch; estimation variance Vs governed by realized
counts N;; and a cross-term ;¢ Of smaller order.

Theorem 2| (Generalization error of RISE). Suppose Assumptions@H6|and the noise-tail condition
in Assumption E] hold. Suppose further that the marginal routing masses satisfy np?"ute 2 Clp+

log(J/0)) for all j (so Lemma |l|implies N; 2 p w.h.p.). Then, conditioning on the joint high-
probability event from Lemmas[IH2] with probability at least 1 — 6,

gRISE(a Q) = Uzvg + Bdet(a Q) + ‘/;:st(aaq) + Rcross(avq); (10)

Baet(,q) = ZPkZQk ) ws™ = wi3,.,

Vest (@, 9) < O ZZpqu

k=1j=1
2
, N OaxP | P+ 1log(J/6)
+Cl%:pqu(y) N, \/ N, 7

[Resoss(@,0)| < Ca(mac s — wi 5, ) Ao (B4 )

(zkz

7, traln)

p + log(J/9)
Nrnin .

Here Ny, = min; N;, and constants C1, C1, Cy depend only on K., and the noise-tail parameters.

Proof sketch. All concentration statements below are applied on the joint high-probability event from
Lemmas[Iland

Step 1 (decomposition). For a test point (x,y) ~ Ry, routed to expert 7,

E(a"@; —y)* | 2] = w§" — will%, + (Se(@))) + (w§™ — wi) "Bk (@ — wi®) + of.
Averaging over (k, j) with weights pj.qx.(j) yields (T0) and the definition of o2, .
Step 2 (bias). The first term is exactly Bget-
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Step 3 (variance). By Lemma the sandwich covariance satisfies

o2 2 log(J/é
~ Jreff @—1 Omax p+ Og( / )

N= 2=yl 4 R E;|| £C .
(wj) N_] j,train + J H ]H — Z\fj Nj

Taking trace against Y., and averaging with prqx () yields the bound on V.
Step 4 (cross-term). By Cauchy—Schwarz,

ff -~ f
B gl < [lwf" = wills, |05 = wi™ [ls,.-

Using operator-norm change of metric and the concentration bound for [|w; — w$"||5, ... (of order
V/ (p +1og)/N;) gives the stated bound on Reyoss. O

B.5 POOLED MODEL AND COMPARISON

For the pooled estimator @001 = (X ' X) "1 X Ty, the same decomposition (conditioning on the
same high-probability event) yields

2
gpooled = Oavg + Bpooled + Vpooleda

where

K

—1
— eff * (12 efft *
Bpooled = E PElWpoor — Wil Whool = ( E szk) ( E szkwk),
k k

k=1

and Vjooled 18 the pooled estimation variance (bounded by O(p/n) under our assumptions). Subtract-
ing gives the exact comparison

gRISE - gpoolcd = (Bdct - Bpoolcd) + (‘/cst - Vpoolcd) + Rcross»

2

ave cancels.

since the common o

B.6 ILLUSTRATIVE COROLLARY: SUFFICIENT CONDITIONS FOR IMPROVEMENT

Corollary 1 (When RISE improves pooled). Under the conditions of Theorem|2} suppose further
that

(i) (Bias reduction) Byooled — Bdet > €o Y, pr||w) — wang%k for some ¢y > 0;

(ii) (Sufficient counts) min; N; 2 C(p +log(J/d)) so that the variance and cross-term remain-
ders are small.

Then with probability at least 1 — 6,

Grisk < Gpooled-

Proof sketch. Under (ii) the variance and cross-term penalties scale as O(p/N;) and O(/p/N;)
and can be made small; under (i) the deterministic bias reduction is order Ag,1,. Hence the total
difference is negative with high probability. O

PRACTICAL CONSIDERATIONS AND LIMITATIONS

The quantities appearing in Theorem 2| (such as w}, 3, o7, and the induced effective parameters
wj-ﬂ) are population-level objects and unknown in practice. In experiments we approximate them
with plug-in estimates from held-out validation data; standard perturbation bounds for covariance
estimation (Stewart & Sun| [1990; [Vershyninl 2018) imply that population inequalities carry over to
plug-in versions with sufficient validation sample size (scaling as O(p/~?) for margin 7).

Important limitations and practical conditions:
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* Routing independence assumption. We assume ¢y, (j) are fixed and independent of z. If
routing depends on features (learned gating that uses x), conditional covariances and bias
expressions change; the analysis must be adapted to conditional mixtures.

* Implementation of upsampling. Our statements separate the population-level training-
mixture 7,_,; (used to define deterministic bias) from the realized counts IV; (used for
variance). In practice upsampling can be implemented either by (A) re-sampling from a
modified mixture (sampling) or (B) by attaching weights in the loss (weighting). If weighting
is used replace all V;-based rates by the appropriate effective sample size (ESS) and analyze
weighted-OLS (sandwich) covariance (we provide that variant in the appendix on request).

* Noise tails / robustness. We assume sub-Gaussian or sub-exponential noise. If only finite
variance is available, robust estimators (truncation or median-of-means) are required to
obtain comparable high-probability bounds.

* Minimum routing mass required. The bounds require non-negligible routing mass for
each expert: npi*"*® > C(p + log(J/d)). If some expert is assigned vanishing mass,
concentration and OLS asymptotics break down and regularization or enforced minimum
routing mass is necessary.

C DATASET DETAILS

We evaluate our RISE framework on the benchmark datasets on four diverse regression datasets:
two datasets from the computer vision domain (Dataset A (Moschoglou et al.|(2017)) and Dataset
B (Rothe et al.[(2018))), one from the natural language processing domain (STS-B |Cer et al.|(2017))
and one standard tabular regression dataset- UCI Abalone Nash et al.|(1994).

» Dataset A (Moschoglou et al.|(2017)): An image regression dataset with 12,208 training
samples, 2,140 validation samples, and 2,140 test samples. The target range spans from 0 to
101.

* Dataset B (Rothe et al.|(2018)): A large-scale image regression dataset containing 191,509
training samples, 11,022 validation samples, and 11,022 test samples. The target range
spans from 0 to 186.

» STS-B: A text similarity dataset containing 5,249 training sentence pairs, 1,000 validation
pairs, and 1,000 test pairs, with similarity scores ranging from O to 5.

* UCI Abalone: A standard tabular benchmark predicting shellfish ring from 9 different
physical measurements, the dataset consists of of 3155 training, 511 test and 511 validation
samples with the target column shellfish ring ranging from 1 to 29.

We follow the train/val/test split provided in|Yang et al.| (2021)

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

Figure [3]illustrates the RISE architecture and its key components. Let the full dataset be denoted by
D = Dyin U Dyy U Dyeg. The RISE framework begins by employing a baseline Deep Imbalanced
Regression (DIR) model fy for both feature extraction and minority subgroup identification. Input
data—whether image, text, or tabular—is first passed through the feature extractor hg, a component
of the baseline model fy. This model is pre-trained on D\, using existing DIR methods such
as LDS-FDS (Yang et al.|(2021))), RankSim (Gong et al.| (2022)), and SRL (Dong et al.| (2025))).
The architecture of the baseline can be expressed as fy(z) = E1(hg(z)), where hg(z) denotes the
backbone feature extractor, typically instantiated as ResNet-50 for images and BiLSTM for text.
RISE is agnostic to the specific DIR method and can integrate any baseline model fy built on these
backbone architectures.

RISE-Identify: To address underperformance in imbalanced regression, we propose RISE-Identify
for identifying minority or poorly modeled regions by analyzing the joint distribution of validation
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loss and target labels. Specifically, we fit a Gaussian Mixture Model (GMM) to validation data to
uncover latent structure in model error patterns, enabling targeted expert specialization.

In regression tasks with heterogeneous label distributions, performance typically degrades in minority
subregions of the label space. A key observation is that these regions often exhibit higher and more
variable validation losses. By analyzing the joint distribution of validation loss and target values, we
can detect structured error patterns that are not captured by traditional frequency-based binning.

Following (Yang et al.[(2021)), we partition the continuous label space into disjoint intervals B; and
compute the average loss in each bin:

(= % S° Lfo(s), uy) (an

JEB;

Here, B; is the set of samples whose continuous labels fall within the boundaries of bin %, L is
typically Mean Squared Error (MSE) or Mean Absolute Error (MAE), fy denotes the baseline model,
and | B;| is the number of samples in bin ¢. Importantly, the model is trained and evaluated end-to-
end in continuous space—binning is used only for region-level loss estimation, not for converting
regression into classification.

Next, we fit a K’-component Gaussian Mixture Model (GMM) over the joint distribution of loss-label
pairs:

K’

ply) =D TN y)|p, 5) (12)

Jj=1

where 11 and X; denote the mean vector and covariance matrix of the j-th component, respectively.
The component with the lowest mean loss (along the loss dimension of ;) is treated as the majority
group, while the remaining components define minority subgroups requiring dedicated experts.

Unlike frequency-based approaches that often result in non-contiguous minority regions, our loss-
label distribution analysis produces continuous minority regions, aligning with the principle of region
similarity and enabling more homogeneous expert training. We observe a memorization effect where
the baseline model achieves the lowest training loss in few-shot regions despite higher test errors. To
address this, we use held-out set loss as a more reliable signal for minority subgroup identification, as
it better reflects true generalization behavior and mitigates misleading effects of memorization.

Unlike methods based on label frequency or manual binning, our loss-aware formulation is adaptive
and reflects the true generalization profile of the baseline model. The identified regions are continuous,
semantically meaningful, and sensitive to the model’s inductive biases. By relying on the valida-
tion—training loss gap, our method is capable of detecting overfitting and memorization—particularly
in underrepresented areas. The resulting expert assignments are thus aligned with true generalization
performance, enabling smooth transitions between expert domains. This leads to coherent regional
specialization and improved overall generalization, especially in long-tailed or imbalanced regression
settings.

The RISE-Identify component leverages a held-out validation set (80% of D,,q;) to conduct this
loss-label distribution analysis, with cross-validation on the remaining 20% to determine GMM
hyperparameters like the number of components K. As illustrated in FigH] this approach successfully
identifies continuous minority regions requiring specialized experts - one towards the lower end of
the label distribution and another in the higher range.

RISE-Train: RISE-Train trains K’ — 1 additional expert networks Es, F3, . .., Ex/ for the identi-
fied minority regions, while the baseline model F; (extracted from fy) serves as the expert for the
majority region. Each expert E; operates on shared features produced by the frozen backbone hy,
and produces predictions as:

9j = Ej(he(z)) (13)

To address data imbalance, we adopt a Cross-Group Training with Upsampling strategy. This
approach (T2) is particularly effective for regression tasks where adjacent labels exhibit strong
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Algorithm 1 RISE Training

Require: Dataset D = {Dyyqin, Dyal}, model fg = {hg, E1}, experts K’, upsampling «
Ensure: Experts {E;};—1._x, router R
1: // Phase 1: RISE-Identify
2 F«+ 0
3: for (z,y) in D,y do
4: < Ey(he(z)) {Baseline model prediction}
5: L+ L(fo(z),y) {Compute validation loss per Eq.
6.
7
8

. P FU{(ty)
: end for
: gmm < FitGaussianMixture(F, K') {Fit GMM using Eq.[12]}
9: {R!};j=1. k' + GetMinorityRegions(gmm) {Identify expert regions}
10: // Phase 2: RISE-Train
11: Initialize experts Eo through Eg-
12: fori =2to K’ do
13:  for epoch =1to 7T do

14: for (Xb, )/b) in Dypqin do

15: F + hy(Xp) {Extract shared features}

16: for j = 1to|X| do

17: if y; € R then

18: w; < a {Upsample minority region samples }
19: else

20: w; < 1 {Normal weight for other samples}
21: end if

22: end for

23: Y < E;(F) {Get predictions from Eq.

24: L+ xy Z‘]Xbll w; (Y — Y;)? {Weighted loss from Eq.
25: Update F; using gradient VL

26: end for

27:  end for

28: end for

29: Initialize router R
30: for epoch = 1to 7" do
31:  for (X;,Y}) in Dy do

32: F + hg (Xb)

33: for j = 1to|X,| do

34: t; < find 7 such that y; € R} {Assign ground truth expert labels}
35: end for

36: r < R(F') {Get router probabilities}

37: L outer < CrossEntropy(r, T;) using Eq.

38: Update R using gradient VL, yter

39:  end for

40: end for

41: return {F;},—1 k', R

correlations, enabling smooth transitions between expert domains while preserving specialization, as
confirmed by our empirical analysis. For each identified region R;, we upsample the samples in R;-
by assigning a higher weight o > 1, while keeping the sample weights unchanged elsewhere. We
train each expert using Dy,.q;, where loss for each expert E; is given by:

experl N Z wi(Yyi — ¥i) (14)

with sample weights w; defined as:
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Algorithm 2 RISE-Inference

Require: Sample x, backbone hyg, router R, experts {E;}j—1. k-
Ensure: Prediction g

: F < hg(z) {Extract features using frozen backbone}

r < R(F') {Get router probabilities}

j* <« Select expert using Eq.

g < Ej«(F) {Get final prediction using Eq.

return g

DW=

o /
wi{a ifz; € R] (15)

1 otherwise

Here, « is an upsampling hyperparameter that emphasizes minority-region samples, and N is the
total number of samples in Dy;.q;,. Importantly, only the final layer of each new expert E; (for
j = 2,..., K') is trained, while the shared backbone hy and the baseline expert £; remain frozen.
This facilitates efficient parameter sharing and reduces computational overhead.

RISE-Inference: ~ We train a router network (implementing the gating network g4 from Eq. 1)
using a held-out validation set (80% of D,,;) to perform dynamic expert selection, with the remaining
20% used for hyperparameter validation. We motivate the choice of using held-out data in Sec. [6.4]
Unlike soft routing strategies that blend predictions from multiple experts, we adopt a hard routing
approach, where exactly one expert is selected per input. This decision is motivated by Theorem ]
which demonstrates that mixing predictions from heterogeneous regions can lead to interference and
degraded performance due to distributional mismatch.

The router is trained as a classification task to predict which expert should handle each input. For
each validation sample (x,y), we first determine the ground truth expert assignment by checking
which region R;- the label y belongs to. The router then learns to map input features to these expert
assignments.

Given input z, the router processes shared features hg(x) and outputs mixing coefficients 7y (x) over
the K’ experts, implementing the gating mechanism from Eq. (1). A hard assignment is then made as
follows:

= ho(z)); 16
j argje{rlr}??K,}gqs( 0(2)); (16)

where j* denotes the index of the selected expert, consistent with the final prediction § = E«(x)
described in Section 4.3. The router is trained using an inverse-frequency weighted cross-entropy
loss to mitigate expert imbalance:

K/
Lrouter = — Z wjtj 10g(Pj) a7

j=1

Here, p; is the predicted probability for expert j, ¢; is the ground truth expert label from the RISE-

Identify stage, and w; = fl is the inverse frequency of expert j’s assigned region, where f; is the
J

fraction of samples assigned to expert j in D).

At inference time, the router selects a single expert I/;- based on the hard assignment, and the final
prediction is:

9= Ej(ho(x)) (18)

This hard routing strategy offers several advantages: it prevents distribution mixing that could degrade
expert specialization, reduces computation by evaluating only one expert at inference, provides
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interpretable routing decisions, and maintains clear accountability for predictions. The complete
RISE framework is summarized in Algorithm|l|for training and Algorithm [2|for inference.

D.2 TRAINING DETAILS

Experiments were run on an AWS ml.g6.24xlarge instance equipped with 4 NVIDIA GPUs. For all
baseline DIR models, we use official released model weights or reproduce their best configuration
using the official implementations. For the model architecture, we froze the backbone network
(ResNet-50 for images, pretrained on ImageNet; BiLSTM with GloVe embeddings for text) and
implemented expert networks with two fully connected layers (dimensions: 2048,512,1) with ReLU
activation and dropout (0.2) for ResNet-50. The router network consists of three linear layers
with ReLLU activation and a final softmax layer. Expert training was conducted for 50 epochs
using the Adam optimizer with a learning rate of 3e-5, utilizing a batch size of 64. For image
datasets, we applied standard augmentations including random horizontal flips, crops, rotations, affine
transformations, and color jittering, followed by normalization. Text data was processed using SpaCy
tokenization with a maximum sequence length of 40.

Hyperparameters were tuned through grid search, exploring different numbers of experts (K’ € 2, 5]),
upsampling ratios (Upsample («) €[1, 5]) based primarily on validation’s overall MAE. For Dataset
A (Moschoglou et al.[(2017)) and Dataset B (Rothe et al.| (2018)) datasets, we set K’ = 3 experts,
with one expert assigned to the left tail, one to the right tail, and one for the majority region. The
upsampling ratio was set to 3 for Dataset A (Moschoglou et al.|(2017)) and 2 for Dataset B (Rothe
et al.| (2018)). For the STS dataset using the RankSim baseline, we used K’ = 2 experts, identifying
a one-sided under-performing region with an upsampling ratio of 3, while K’ = 3 experts with
upsampling ratio of 3 were chosen for LDS+FDS and SRL baselines. The number of experts (K”)
and their assignments were determined based on the baseline model’s loss-label distribution and can
vary depending on model performance. This approach ensures we only train additional experts for
regions where the baseline model underperforms. Further, identified minority regions for experts
may differ across baseline models due to variations in their learned representations and performance
characteristics.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RISE PERFORMANCE ON ADDITIONAL DATASETS

To further demonstrate the effectiveness of RISE, we evaluate our method on additional datasets
beyond Dataset A (Moschoglou et al.| (2017)). Table [9] presents results on Dataset B [Rothe et al.
(2018) (evaluated using MAE, GMEAN, and MSE) and STS-B (evaluated using MAE, Pearson
Correlation, and Spearman Correlation). Additionally, Table @] shows the MAE and bMAE metrics
the UCI-Abalone dataset.

E.2 BALANCED METRICS FOR RISE

To address the challenges of evaluating models on imbalanced data distributions, particularly for tail
labels, we employ three balanced metrics as defined in Ren et al.[(2022)). These metrics are designed
to provide a more equitable assessment across all data regions by dividing the label space into even
sub-regions, enabling a fairer evaluation.

The balanced Mean Squared Error (bMSE) is formulated as:

) ) Drrain (y)
fy pbal(y/|x§ 9) * Ptrain (y/)dy/

bMSE = — Ingtrain(y|x; 8) = - 1ngbal(y|m; 0 (19)

This formulation comprises two components: the standard MSE loss and a balancing term to mitigate
distribution mismatch between training and testing. Balanced metrics such as balanced Mean Absolute
Error (bMAE) and balanced Geometric Mean Error (- GMEAN) are used to fairly assess performance
across regions. bMAE averages errors within each sub-region or bins before computing the overall
mean; formally for B bins with j** bin containing V. ; datapoints with y being the golden label and ¢

being the prediction, eq.[20|describes the formula for bMAE computation.
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Table 9: Results on Dataset B (Rothe et al.|(2018))) and STS-B dataset. The best baseline result for
each metric and data subset is in red, best RISE version in blue, and the overall best result is in bold.

L1 (MAE) | GMEAN | MSE |
Method All Many Med Few All Many Med Few All Many Med Few
Dataset B
Baseline Methods
VANILLA 8.04 7.21 15.18  25.89 4.53 4.13 10.77 18.80 137.82 108.62 36543  954.03
BalancedMSE 8.10 7.57 1227 2298 4.68 4.46 7.05 13.17 139.70 117.19  305.12  848.52
LDS+FDS 7.68 7.07 1278  21.87 433 4.07 7.48 12.72 129.18 105.55 313.90  785.49
RankSIM 7.68 7.12 1230  21.46 433 4.12 6.61 12.47 129.12 106.19  304.08  799.94
SRL 7.71 7.10 12.81 21.52 4.32 4.09 7.01 13.58 133.16 107.77 33995  771.71
RISE Methods
VANILLA+RISE 8.11 7.24 1498  25.00 4.73 4.17 11.68 17.67 136.60 110.18 31945  934.62
BalancedMSE+RISE ~ 8.25 7.56 12.87  22.08 4.90 4.58 7.43 13.03 137.13 111.55 309.90  704.25
LDS+FDS+RISE 7.71 7.09 1294  21.60 4.35 4.08 7.68 13.31 129.84  105.13 31623  779.27
RankSIM+RISE 7.67 7.07 1229 2146 4.32 4.11 6.63 12.53 129.11 106.23  303.55  799.58
SRL +RISE 7.70 7.18 1192 20.92 4.34 4.15 6.41 11.74 129.20 107.31 294.51  783.00
L1 (MAE) | Pearson Correlation (%) T Spearman correlation (%) T
Method All Many Med Few All Many Med Few All Many Med Few
STS-B
Baseline Methods
LDS+FDS 0.77 0.72 0.98 0.75 76.27  74.08  66.07  76.60 76.27 70.75 54.95 74.88
RankSIM 0.75 0.75 0.77 0.67 7728  72.15 69.32  86.84 77.39 69.57 48.05 89.34
SRL 0.89 0.85 1.07 0.95 68.83 6298  63.96  73.65 68.92 59.72 51.07 82.14
RISE Methods
LDS+FDS+RISE 0.75 0.73 0.86 0.68 76.38  72.05  68.81 80.92 75.26 69.31 54.09 79.68
RankSIM+RISE 0.74 0.73 0.75 0.67 7750 7216  72.06 86.91 77.41 69.54 45.70 90.15
SRLA4RISE 0.84 0.83 0.91 0.81 70.14 6433  64.83 7458 69.87 61.26 47.66 76.61

Table 10: Mean Absolute Error (MAE) results on UCI-Abalone dataset. Lower values indicate better
performance. The best of the baseline and baseline+RISE pair is in bold and the best overall metric

is underlined.

MAE |
Method Many Medium Few  All
VANILLA 1.77 5.46 9.98 2.56
VANILLA + RISE 1.59 5.19 9.75 2.34
BalancedMSE 2.50 5.41 4.61 343
BalancedMSE + RISE  1.30 2.35 453 1.53
LDS+FDS 2.80 4.44 7.64 3.18
LDS+FDS + RISE 2.07 291 7.16 2.30

1 B
bMAE = E,Zl
iz

1

=

N
>y =l
J =1

(20)

bGMEAN is formulated similarly but uses the geometric mean instead of MAE to highlight disparities
across regions. These metrics are especially important for long-tailed distributions, where standard
metrics may disproportionately reflect majority class performance. For our purposes, we chose
to use bMAE to compare different RISE configurations. Due to space limitations for Dataset A
(Moschoglou et al.|(2017)), we had only reported the SRL result in the main paper. Therefore, we
present the bMAE metric across different baselines in Table[TT] Similarly we provide bMAE metrics
for Dataset B (Rothe et al.|(2018))) and STS-B in@ and the balanced metrics for UCI-Abalone in @
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Table 11: bMAE Results: Baseline vs RISE Methods on Dataset A (Moschoglou et al.[(2017)). The
best of the baseline and baseline+RISE pair is in bold and the best overall metric is underlined.

Baseline Methods Baseline + RISE Methods
Method All Many Med Few All Many Med Few
VANILLA 13.14  9.96 12.85 19.81 1284 940 11.66 20.62
BalancedMSE  8.70 8.44 896 1143 8.98 7.23 8.16 13.06
LDS+FDS 8.79 6.91 8.28 1294 8.40 6.79 8.09 11.87
RankSIM 8.06 6.49 7.85 11.40 7.92 6.58 736 11.01
SRL 8.32 6.64 834 11.74 7.39 6.00 7.25 10.33

Table 12: Balanced Mean Absolute Error (bMAE) results on Dataset B (Rothe et al.|(2018)) and
STS-B dataset. Lower values indicate better performance. The best of the baseline and baseline+RISE
pair is in bold and the best overall metric is underlined.

Baseline Baseline + RISE

Method All Many Med Few All Many Med Few

Dataset B (Rothe et al.|(2018))

VANILLA 13.93 7.32 1592 3280 13.21 7.38 1497  30.90
BalancedMSE (Ren et al.|(2022)) 12.65 7.64 1269 2810 12.54 7.62 1247  28.10
LDS+FDS (Yang et al.[(2021)) 12.53 7.14 1325  28.65 1242 7.17 1321 27.95
RankSIM (Gong et al.|(2022)) 12.56 7.19 1280 2895  12.56 7.18 1279 2797
SRL (Dong et al {(2025)) 12.30 7.18 13.09 2754 1228 7.14 12.32  26.27
STS-B
LDS+FDS (Yang et al.[(2021)) 0.77 0.73 0.84 0.79 0.73 0.74 0.77 0.70
RankSIM (Gong et al.|(2022)) 0.72 0.76 0.72 0.66 0.71 0.74 0.71 0.65
SRL (Dong et al.{(2025)) 0.87 0.85 0.88 0.88 0.80 0.84 0.76 0.66

Table 13: Balanced Mean Absolute Error (b MAE) results on UCI-Abalone dataset. Lower values
indicate better performance. The best of the baseline and baseline+RISE pair is in bold and the best
overall metric is underlined.

bMAE |
Method Many Medium Few  All
VANILLA 1.68 5.42 9.75 444
VANILLA + RISE 1.58 5.20 9.74 4.32
BalancedMSE 1.43 2.26 4.86 2.28
BalancedMSE + RISE  1.31 2.23 480 2.21
LDS+FDS 2.64 4.66 7.64 422
LDS+FDS + RISE 2.00 4.18 7.64 3.74

E.3 COMPLETE ABLATION RESULTS

For brevity, the main paper only presented the L1 (MAE) metric for various ablations on Dataset A.
In this section, we present the results across multiple metrics. Table [14{shows the complete ablation
for different RISE-Train Strategies, Table[T5]shows the ablation for different RISE-Infer strategies,
and lastly, Table [I6] provides complete results comparing RISE with ensembles with similar and
increased capacity.

To strengthen our findings and validate the optimal RISE strategy beyond the Dataset A (Moschoglou
et al| (2017)) dataset, we present comprehensive ablation studies on the Dataset B (Rothe et al.
(2018))) dataset. Tabledemonstrates that RISE (T2) consistently outperforms RISE (T1) across all
metrics (MAE, GMEAN, and MSE) and data subsets, confirming the superiority of the T2 training
configuration observed on Dataset A (Moschoglou et al.|(2017)). Furthermore, Table@]provides
detailed architectural ablation results, showing that the optimal configuration uses K=2 experts
with an upsampling ratio of 3, which achieves the best overall performance with an MAE of 7.67.
Additionally, Table[T9examines different inference strategies, revealing that the held-out-based router
(I3) consistently outperforms both expert averaging (I1) and train-based routing (I12), achieving the
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best results across all metrics and data subsets with significant improvements in the Few subset.
These results on Dataset B (Rothe et al.| (2018)) corroborate our Dataset A (Moschoglou et al.
(2017)) findings and demonstrate the robustness of our proposed RISE methodology across different
long-tailed regression datasets.

Table 14: Complete ablation of RISE-Train on Dataset A (Moschoglou et al.| (2017))) with SRL
(Dong et al.|(2025))) backbone, across multiple metrics. Best results in bold.

L1 (MAE) | GMEAN | MSE |
Method All Many  Med Few All Many Med  Few All Many Med Few
RISE (T1)  7.23 6.77 795 961 444 4.15 494 619 9254  80.12 110.96  158.86
RISE (T2)  6.57 6.16 736 830 3.61 3.40 414 433 82.01 7088 100.90 13493

Table 15: Complete ablation of RISE inference strategies with SRL backbone on Dataset A, across
multiple metrics. Best results in bold

L1 (MAE) | GMEAN | MSE |
Method All Many  Med Few All Many Med  Few All Many Med Few
Baseline SRL 7.23 6.64 8.28 9.85 4.53 4.17 532 635 9179 7720 115.83 163.15
Expert average (I1) 7.23 6.72 8.13 9.54 451 4.20 516 616  91.73 7885 11250  156.00
Train-based Router (I2) 7.26 6.61 8.34 1033 4.56 4.15 548 676  92.11 7648 116.26  173.01
Held-out-based Router (I3)  6.57 6.16 7.36 8.30 3.61 3.40 414 433 8201 7088 100.90 134.93
Train+Held-out Router 7.18 6.62 8.15 9.84 4.42 4.11 509 592 90.79  76.68 112.53 163.86

Table 16: Complete comparison of RISE vs. traditional ensembles

metrics. Best results in bold

MSE | L1 (MAE) |
Experiment Additional Parameters All Many  Median Few All Many  Median Few
SRL 0 91.79 7120 115.83 163.15  7.23 6.64 8.28 9.85
SRL+ RISE (K=3) 2,100,224 80.72  69.06 99.88 13795 645 6.00 7.22 8.49
SRL: 3 ensemble 3,150,336 91.66  71.04 115.65 16343 722 6.63 8.28 9.86
SRL: 5 ensemble 5,250,560 91.56 76.75 115.83 164.31 7.22 6.62 8.30 9.90

on Dataset A, across multiple

Table 17: Ablation results for Dataset B |[Rothe et al.| (2018) comparing different RISE-TRAIN
configurations. The overall best result is in bold.

L1 (MAE) | GMEAN | MSE |
Method All Many  Median Few All Many  Median Few All Many Median Few
RISE (T1) 7.94 7.46 12.66 2275  4.50 4.33 6.89 1466 139.69 118.35 339.35 829.19
RISE (T2)  7.67 7.11 12.29 2146  4.32 4.11 6.63 12.53 12911 106.23 303.55 799.58

Table 18: Ablation results for K=2 with varying upsampling rates (left) and for a=3 with varying
expert numbers (K) (right) on Dataset B(|Rothe et al.| (2018))). L1 (MAE) metric is shown. The
overall best result is in bold.

L1 (MAE) |
Config All Many  Median Few
a=1 7.86 7.17 13.67 23.15
a=2 7.81 7.15 13.35 22.71
a=3 7.67 7.11 12.29 21.46
a=4 7.70 7.12 12.48 21.64
a=5 7.68 7.12 12.55 21.79
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L1 (MAE) |
Config All Many  Median Few
K=2 7.67 7.11 12.29 21.46
K=3 7.69 7.17 11.89 21.20
K=4 7.78 7.20 12.61 22.27
K=5 8.28 7.43 15.67 25.46
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Table 19: Ablation results comparing different RISE-INFERENCE configurations on Dataset
B (Rothe et al.| (2018])). The best baseline result for each metric and data subset is in red, and
the overall best result is in bold.

L1 (MAE) | GMEAN | MSE |
Method All Many  Median Few All Many  Median Few All Many Median Few
Baseline Methods
RankSIM 7.68 7.12 12.30 21.46  4.33 4.12 6.61 12.47 129.12 106.19 304.08 799.94
RISE Inference Strategies
Expert average (I1) 8.32 7.62 14.22 1733 479 4.47 8.91 17.33 143.35 117.02 351.47 855.11
Train-based Route (12) 8.00 7.37 13.37 1428 457 4.30 791 14.28 135.82 111.01 329.48 826.43
Held-out-based router (I13)  7.67 7.11 12.29 1253  4.32 4.11 6.63 12.53 129.11  106.23 303.55 799.58

E.4 RISE PERFORMANCE WITH BEST-PERFORMING ROUTER CONFIGURATION

To assess the robustness of our approach, we perform five independent experimental runs and report
the mean and standard deviation for Dataset A, B & STS-B on each performance metric in Table
and the balanced metrics with error bars for Dataset A are reported in Table 21} This evaluation
provides statistical insight into the consistency and reliability of the results. For each run, the router
is trained and the backbone model achieving the highest routing accuracy on the validation set D\, is
selected for reporting. Router with the SRL backbone is picked for the the Dataset A (Moschoglou
et al.|(2017))) dataset, while RankSim backbone is utilized for both IMDB and STS datasets.

Our proposed RISE paradigm consistently outperforms its corresponding baseline methods across
multiple metrics, with particularly notable gains in medium- and few-shot regions—where im-
balanced regression models typically underperform. These improvements are statistically signif-
icant, often exceeding standard error margins. For instance, on the Dataset A (Moschoglou et al.
(2017)) dataset, SRL+RISE achieves a 13.7% reduction in Few-shot MAE (9.85 — 8.50) and a
12.6% reduction in Medium-shot MAE (8.35 — 7.30), alongside a 28.4% improvement in Few-
shot GMEAN (6.34 — 4.54). Similar trends are observed in Dataset B (Rothe et al.| (2018)),
where BalancedMSE+RISE lowers Few-shot MAE by 9.8% (23.24 — 20.97), and in STS, where
LDS+FDS+RISE improves Medium-shot MAE by 11.2% (0.98 — 0.87).

While RISE generally maintains or improves performance in majority (Many-shot) regions, there
are isolated instances where baseline models marginally outperform RISE. For example, in Dataset
A (Moschoglou et al.|(2017)), RankSIM achieves a slightly lower Many-shot MAE (6.48 vs. 6.56),
and in Dataset B (Rothe et al.[(2018))), LDS+FDS reports a marginally better Many-shot MSE (106.61
vs. 107.06). However, these differences are minor and fall within overlapping standard deviation
intervals.

Importantly, RISE demonstrates strong generalization by significantly improving performance
in minority regions while preserving accuracy on majority classes. This balance highlights the
effectiveness of RISE in addressing the fundamental challenge of imbalanced regression, offering a
scalable and principled solution for real-world settings.

F BROADER IMPACT

RISE offers a practical and efficient alternative to end-to-end training by leveraging pre-trained
models. Unlike typical deep learning approaches, it requires training only the expert heads and router
network while keeping the backbone frozen. This lightweight design makes it feasible for large-scale
models and suitable for scenarios where full retraining is impractical. While our experiments used the
full training set, RISE can potentially be adapted for final-layer tuning using only a small validation
set, as supported by recent adaptation methods (Kirichenko et al.[(2023))).

RISE differs from standard fine-tuning by targeting specific regions of poor performance—often
underrepresented or minority subgroups—through expert specialization. This targeted improvement
enhances fairness, particularly in sensitive applications like healthcare or finance, where disparities in
prediction can have serious consequences. By improving minority performance without sacrificing
majority accuracy, RISE moves toward more equitable and efficient machine learning systems.
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Table 20: Comparison of RISE-paired with the baseline methods across Dataset A (Moschoglou et al.
(2017)), Dataset B [Rothe et al.|(2018), and STS datasets. Results show MAE, GMEAN, and MSE
metrics for different data segments (All, Many-shot, Medium-shot, Few-shot). Values are reported as
mean + standard deviation. Best results for each metric and data subset are in bold, we also report the
router accuracy for each RISE configuration in parentheses.

MAE | GMEAN | MSE |
Method All Many Med Few All Many Med Few All Many Med Few
Dataset A
VANILLA 11.06 9.99 12.90 16.65 7.08 6.30 8.41 13.57  203.69 16570 27575  367.13
+0.01  +0.05 +0.14 +0.29 +0.03 +0.05 +0.15 +0.34 +1.13 +2.32 +7.13 +11.50
VANILLA+RISE (0.60) 10.07 9.20 11.19 15.33 6.18 5.52 7.19 1199 173.84 146.76  211.69  328.25
+0.04  +0.08 +0.14 +0.21 +0.04 +0.06  +0.11  +0.28 +0.77 +2.37 +6.80 +6.86
BalancedMSE 8.71 8.45 9.02 10.30 5.59 5.45 5.94 6.07 127.28 118.71 133.87 191.28

BalancedMSE+RISE (0.72) 7.62 7.53 7.90 8.79 4.58 4.56 4.63 4.74 10640  103.18 111.68  158.98

LDS+FDS 7.47 6.92 8.23 10.52 4.71 4.46 5.30 6.84 95.23 79.98 118.33 177.20
+0.08  +0.11  +0.13  +0.25 +0.06 +0.07 +0.10 +0.23 +1.85 +2.73 +4.26 +5.09
LDS+FDS+RISE (0.56) 7.27 6.85 791 9.54 4.51 4.30 4.81 6.08 92.59 80.18 11340  153.64
+0.08  +0.10 +0.13  +0.24  +0.06 +0.08 +0.10  +0.21 +1.81 +2.61 +4.31 +6.32
RankSIM 7.01 6.48 7.82 9.85 4.55 4.14 5.37 7.04 83.23 71.48 98.21 154.26
+0.04 +0.06 +0.08 +0.09 +0.04 +0.04 +0.05 0.19 +0.77 +1.37 +3.40 +1.35
RankSIM+RISE (0.55) 6.93 6.56 7.34 9.25 4.34 4.07 4.79 6.11 82.47 73.88 90.22 143.25
+0.04  +0.06 +0.08 +0.09 +0.04 +0.04 +0.03  0.17 +0.72 +1.35 +3.48 +1.37
SRL 7.20 6.59 8.35 9.85 4.50 4.14 5.34 6.34 91.67 76.09 118.91 165.16
+0.02  +0.04 +0.08 +0.25 +0.03 +0.03 +0.12  +0.33 +0.64 +0.55 +1.70 +6.24
SRL +RISE (0.87) 6.43 5.96 7.30 8.50 3.36 313 3.87 4.54 80.70 67.98 103.09  140.35

Dataset B

VANILLA 8.04 7.20 15.18 26.20 4.51 4.11 10.69 18.81 137.96 108.17  366.46  972.01
+0.03  +0.03 £0.12  £0.15 #0.03 #0.02 +0.09 +0.25 +0.87 +0.63 +6.46 +7.55

VANILLA+RISE (0.85) 7.91 7.22 13.65 24.73 445 4.15 8.38 16.59 135.34 108.90  333.20  925.69
+0.03  +0.03 +0.13 #0.13 +0.03 +0.03 +0.07 +0.22 +0.90 +0.67 +6.67 +7.15

BalancedMSE 8.10 7.56 12.27 23.24 4.68 4.45 7.10 13.25 139.62 116.96  302.67 868.31

BalancedMSE+RISE (0.81) 773 728 1212 2097 441 429 682 1199 13636 10879 30042 82076

LDS+FDS 7.70 7.13 1254 21.84 4.32 4.11 7.55 12.75 129.91 106.61 31090  781.84
+0.01  +0.01 #0.06 +039  +0.01 +0.01 +0.10  +0.38 +0.85 +0.57 +2.90 +21.50
LDS+FDS+RISE (0.81) 7.64 711 12.09 21.24 4.27 4.07 6.46 12.17 131.02 107.06  301.96  768.11
+0.02  x0.01 +0.06 +0.38  +0.01 +0.01 +0.09  +0.37 +0.86 +0.61 +3.08 +20.25
RankSIM 7.69 7.12 12.33 21.55 4.33 4.12 6.65 12.68 129.14  106.78  302.58  802.83
+0.02  +0.02 £0.12  £037  £0.01 +0.01 +0.08  +0.41 +0.72 +0.43 +5.76 +28.19
RankSIM+RISE (0.8) 7.66 7.11 12.08  21.38 4.30 4.09 6.48 1254 12749 108.04  298.66  800.72
+0.02  x0.02 #0.12  x037 £0.01 #0.01 0.08 0.41 +0.74 +0.33 +5.90 +29.06
SRL 7.70 7.13 12,66  21.94 4.34 4.13 6.93 12.93 131.96  107.38  337.57  768.85
+0.02  x0.03 x0.09 £0.50 £0.01 +0.01 +0.04  +0.47 +1.11 +0.69 +5.73 +25.85
SRLARISE (0.79) 7.68 7.19 11.98 19.39 4.35 4.15 6.43 11.22 130.07 107.54  298.14  773.48
+0.02  +0.02 £0.09 #0.50 +0.02 +0.01 +0.04 +0.47 +1.11 +0.70 +5.63 +24.93
STS-B
LDS+FDS 0.77 0.72 0.98 0.76 0.38 0.33 0.67 0.45 0.91 0.81 1.06 0.94
+0.00  x0.01 +0.02  x0.02  x0.01 +0.01 +0.02  +0.01 +0.01 +0.01 +0.05 +0.06
LDS+FDS+RISE (0.51) 0.75 0.73 0.87 0.66 0.30 0.25 0.56 0.34 0.92 0.79 1.08 0.76
+0.00 +0.00 £0.02 £0.02 +0.01 +0.01 +0.01 +0.02 +0.01 +0.00 +0.06 +0.04
RankSIM 0.76 0.74 0.75 0.64 0.50 0.47 0.54 0.37 0.86 0.86 0.85 0.63
+0.00 x0.01 £0.01 #0.04 £0.02 £0.02 +0.01 +0.03 +0.01 +0.02 +0.01 +0.03
RankSIM+RISE (0.55) 0.73 0.73 0.75 0.63 0.39 0.37 0.54 0.36 0.84 0.84 0.85 0.67
+0.01  +0.01 #0.01 #0.05 #0.01 +0.02  +0.02  +0.04 +0.02 +0.02 +0.02 +0.09
SRL 0.89 0.84 1.07 0.98 0.63 0.57 0.79 0.69 1.17 1.07 1.57 1.30
+0.01  +0.01 +0.04 #0.07 +0.02 +0.02 +0.05 +0.09 +0.02 +0.02 +0.08 +0.12
SRLARISE (0.57) 0.82 0.80 0.93 0.76 0.43 0.39 0.70 0.36 1.06 1.01 1.24 1.14
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Table 21: Comparison of RISE with baseline methods for Dataset A (Moschoglou et al.|(2017)) with
balanced metrics. Values are reported as mean + standard deviation. Best results for each metric and
data subset are in bold.

bMAE | bGMEAN | bMSE |
Method All Many Med Few All Many Med Few All Many Med Few
Dataset A
VANILLA 13.18 9.99 12.94 19.84 7.30 6.30 8.41 13.57 27142 16570  276.55  483.80
+0.06  +0.05 £0.16 025 +0.08 +0.05 +0.15 +0.34 +3.33 +2.32 +8.22 +10.75
VANILLA+RISE 12.15 9.20 11.18  18.81 6.10 5.52 7.19 1199 24273 14676  210.97  458.86
+0.04 +0.08 +0.15 +0.17 +0.08 +0.06 +0.11 +0.28 +2.29 +2.37 +7.28 +8.16
BalancedMSE 9.35 8.45 8.99 11.40 6.44 5.45 5.94 6.07 153.18  118.71 132.34  236.83

BalancedMSE+RISE 844 753 7.82 1061 535 456 463 470 13430 10318 11051  217.58

+0.07  +0.04 x0.17 x0.16  #0.11 +0.06  x0.11 +0.19 +1.72 +1.89 +4.80 +3.79
LDS+FDS 9.35 8.45 8.99 11.40 5.74 5.45 5.94 6.07 153.18 118.71 13234 236.83
+0.07  +0.04 022 x0.14  x0.11 +0.07  x0.14  x0.17 +1.89 +1.30 +6.34 +3.38
LDS+FDS+RISE 8.31 6.85 791 11.55 5.61 4.30 4.81 6.08 122.83 80.18 11224 216.64
+0.07  +0.10 +0.14  +025 #0.09 #0.08 +0.10 +0.31 +1.05 +2.61 +4.48 +6.09
RankSIM 8.07 6.48 7.81 11.46 6.14 4.14 5.37 7.04 111.49 71.48 97.46 202.09
+0.04 +0.06 +0.08 #0.05 *0.07 *0.04 +0.05 *0.19 +0.47 +1.37 +3.37 +0.88
RankSIM+RISE 7.92 6.56 7.31 11.08 5.09 4.07 4.79 6.11 108.90 73.88 89.22 192.92
+0.03  +0.06 +0.08 +0.05 *0.06 *0.04 +0.03 *0.17 +0.43 +1.35 +3.45 +1.04
SRL 8.28 6.59 8.41 11.65 5.15 4.14 5.34 6.34 121.11 76.09 118.76  214.45
+0.04  +0.04 +0.08 +0.18 #0.06 +0.03 #0.12 +0.33 +1.26 +0.55 +1.58 +4.64
SRL+RISE 7.36 5.96 7.32 10.24 4.40 313 3.87 4.54 105.65 67.98 102.10  184.75
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