

RISE : REGRESSION IMBALANCE HANDLING USING SWITCHING EXPERTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Deep Imbalanced Regression (DIR) is challenging due to skewed label distributions
 012 and the need to preserve target continuity. Existing DIR methods rely on a single,
 013 monolithic model, yet empirical analysis shows that standard benchmarks exhibit
 014 strong distributional heterogeneity, exposing a core limitation of such approaches.
 015 We theoretically prove that this property creates an irreducible bias for any single
 016 model, leading to poor performance in data-scarce regions. This creates a core chal-
 017 lenge for algorithmic fairness, as these regions often correspond to marginalized
 018 demographic groups. To address this, we propose RISE—Regression Imbalance
 019 handling via Switching Experts—a modular Mixture-of-Experts-inspired frame-
 020 work, theoretically motivated by our analysis. RISE employs a novel imbalance-
 021 aware algorithm to identify underperforming regions via validation loss and trains
 022 dedicated experts with targeted upsampling. As a complementary framework, RISE
 023 achieves new state-of-the-art performance while improving fairness, highlighting a
 024 principled new direction for imbalanced regression.

1 INTRODUCTION

028 Imbalanced data distributions—common in real-world settings—create severe challenges for regres-
 029 sion models, producing high variance on minority labels and bias toward majority ones Wang et al.
 030 (2020a); Gong et al. (2022). Unlike classification, where imbalance has been extensively studied,
 031 Deep Imbalanced Regression (DIR) is more complex due to its continuous and unbounded label
 032 space. This limitation has critical fairness implications: in healthcare, underestimating rapid disease
 033 progression delays care for underrepresented patients Cross et al. (2024), while in environmental pol-
 034 icy, smoothing over pollution spikes overlooks harms concentrated in marginalized communities Su
 035 et al. (2024)—highlighting DIR as both a technical challenge and a fairness imperative in high-stakes
 036 domains.

037 In Fig.1, we compare state-of-the-art (SOTA) methods for DIR, including LDS-FDS Yang et al.
 038 (2021b) and SRL Dong et al. (2025), on Dataset A Moschoglou et al. (2017). While these ap-
 039 proaches reduce training error in tail (few-label) regions, their gains vanish at test time, revealing
 040 overfitting and poor generalization on underrepresented labels. Standard remedies such as frequency-
 041 based oversampling Steininger et al. (2021) partially close this gap in the tail but consistently
 042 degrade performance on head (many-label) regions, exposing a persistent head–tail trade-off Xu
 043 et al. (2021). A key observation is that performance across label bands is highly sensitive to the
 044 specific sampling realization of the training data, suggesting that the observed dataset is but one
 045 draw from a richer underlying distribution, and oversampling schemes represent alternative draws.
 046 We hypothesize that the persistent head–tail discrepancy in DIR
 047 arises from two factors: (a) different label regions exhibit distinct, and sometimes conflicting, conditional distributions $P(y|x)$; and
 048 (b) a single monolithic model lacks the capacity to jointly capture these heterogeneous mappings Sattler et al. (2020). We empirically
 049 validate distributional heterogeneity in standard DIR benchmarks, providing the first direct evidence in this setting. First, independent
 050 linear predictors trained on frozen ResNet-50 features for the many-, medium-, and few-label bands of Dataset A and Dataset B Rothe
 051 et al. (2018b) yield nearly orthogonal weight vectors, with cosine
 052 similarities as low as 0.03 (Table 1), indicating fundamentally different predictive functions across
 053

Table 1: Cosine similarities

Dataset A	w_{few}	w_{med}	w_{many}
w_{few}	1.00	0.04	0.03
w_{med}	0.04	1.00	0.09
w_{many}	0.03	0.09	1.00
Dataset B	w_{few}	w_{med}	w_{many}
w_{few}	1.00	0.02	0.03
w_{med}	0.02	1.00	0.18
w_{many}	0.03	0.18	1.00

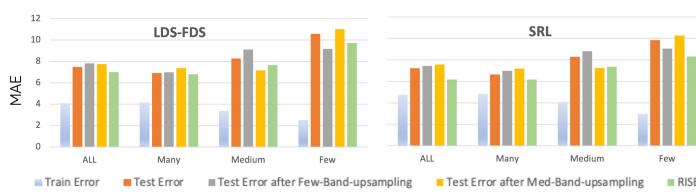


Figure 1: Dataset A: SOTA DIR methods cut tail error but worsen head, exposing a persistent head–tail trade-off.

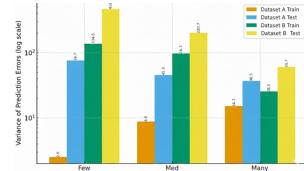


Figure 2: Heteroscedasticity in Model Error–SRL Dong et al. (2025)

regions. Second, to demonstrate the consequences of this heterogeneity, we analyze the error profile of a single global model SRL. We find pronounced heteroscedasticity in its prediction errors: on test data, variance in the few-label band is up to $7\times$ higher than in the many-label band, while the opposite trend holds on training data—classic overfitting to scarce samples (Fig. 2). This instability arises precisely because a monolithic model cannot simultaneously capture distinct conditional distributions $P(y|x)$ across regions. Together, these findings show that the core challenge in DIR is not merely label imbalance but distributional heterogeneity, motivating architectures that explicitly specialize across label regions.

This necessitates an architectural shift towards a multi-expert paradigm. We therefore propose RISE (Regression Imbalance handling using Switching Experts), a framework that directly confronts this challenge by learning specialized representations for different data regions. Crucially, RISE is not a generic Mixture of Experts (MoE) Mu & Lin (2025). Its novelty lies in its imbalance-aware algorithm that operationalizes the MoE specifically for DIR. Unlike generic MoEs that partition data by feature similarity, RISE identifies expert domains by analyzing the failure modes of a global model revealed through its validation loss. Each expert is then trained with targeted upsampling, ensuring it focuses on the underrepresented data that challenges a single, monolithic network. This end-to-end approach transforms the MoE from a general tool for heterogeneity into a targeted, principled solution for DIR.

Below we summarize our key contributions:

1. To the best of our knowledge, we are the first to identify and empirically validate that standard DIR benchmarks exhibit distributional heterogeneity, reframing the core challenge from mere label imbalance to representational imbalance.
2. We prove that any monolithic model in DIR suffers from an irreducible heterogeneity bias amplified by imbalance (Theorem 1), and show that targeted expert specialization trades bias reduction against estimation variance (Theorem 2).
3. Building on this, we propose **RISE**, a modular and model-agnostic framework that complements existing SOTA methods by explicitly addressing distributional heterogeneity, overcoming the persistent head–tail trade-off, and improving performance across all regions (as shown in Fig. 1).
4. RISE sets new SOTA on multiple DIR benchmarks Moschoglou et al. (2017), Rothe et al. (2018b), outperforming all baselines, highlighting its effectiveness and establishing a new direction for DIR.

2 IMBALANCED REGRESSION PROBLEM FORMULATION

In DIR, we are given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ with inputs $x_i \in \mathcal{X} \subset \mathbb{R}^p$ and continuous labels $y_i \in \mathcal{Y} \subset \mathbb{R}$. The label marginal $p(y)$ is highly non-uniform (long-tailed), producing majority and scarce (tail) regions where conventional models systematically fail. Motivated by empirical evidence (Sec. 1), we argue that the core difficulty is not merely imbalance in $p(y)$, but a deeper *distributional heterogeneity* in the conditional $P(y|x)$. We posit a latent partition of the problem space into K regions, with region k comprising fraction $\rho_k = n_k/n$ of the data and governed by a distinct conditional distribution $P_k(y|x)$. Because the fractions $\{\rho_k\}$ are highly non-uniform, a single monolithic predictor trained on the pooled data is dominated by majority regions and induces a persistent bias in scarce ones, a limitation we formalize in Theorem 1. This heterogeneity makes a MoE architecture the natural modeling choice. We therefore model the global conditional distribution

108 as a mixture of these latent, region-specific distributions:
 109

$$110 \quad P(y|x) = \sum_{k=1}^K \pi_k(x) P_k(y|x), \quad (1)$$

$$111$$

$$112$$

113 where each component $P_k(y|x)$ is modeled by an expert network E_k and the mixing coefficients
 114 $\pi_k(x)$ are determined by a gating network g_ϕ . The final prediction is the expectation under this
 115 mixture: $\hat{y} = \sum_{k=1}^K g_\phi(x)_k \cdot E_k(x)$. The learning task is thus transformed from fitting a single
 116 complex function into discovering this latent partition (the gate) and learning specialized solutions for
 117 each sub-problem (the experts), even when data is sparse—the core challenge our RISE framework is
 118 designed to solve.
 119

120 **2.1 RELATED WORK**
 121

122 **Deep Imbalanced Regression:** DIR is challenging as it must preserve label continuity under skewed
 123 distributions. Prior methods modify loss functions or label densities: LDS-FDS Yang et al. (2021b)
 124 and Balanced-MSE Ren et al. (2022) address global imbalance but ignore local heterogeneity;
 125 RankSim Gong et al. (2022), ConR Keramati et al. (2024), and SRL Dong et al. (2025) add feature-
 126 space regularization (ranking, contrastive, or latent uniformity) yet assume homogeneous features.
 127 Regression-via-classification methods Pintea et al. (2023); Pu et al. (2025); Xiong & Yao (2024)
 128 discretize labels into fixed bins—a key limitation in continuous regression, where naïve binning often
 129 yields scattered or incoherent groups.

130 **Ensembling and Mixture of Experts:** A common approach to imbalance is partitioning data by
 131 class sizes and training separate experts. Ensemble-based methods Xiang et al. (2020); Cui et al.
 132 (2023); Cai et al. (2021) follow this strategy in classification but do not extend naturally to regression,
 133 where targets are continuous and lack softmax-style aggregation. In long-tailed recognition, multi-
 134 expert models such as BBN Zhou et al. (2020) (two-branch fusion for head/tail) and RIDE Wang
 135 et al. (2020a) (diversity-regularized experts) reduce bias, yet their applicability to DIR—where label
 136 continuity and regional heterogeneity are central—remains unexplored.
 137

138 **3 THEORETICAL INSIGHTS: WHY MONOLITHIC MODELS FAIL ON DIR**
 139

140 We formalize the core difficulty we empirically observe in DIR: when data comes from a mixture of
 141 region-specific mechanisms, a single global predictor suffers cross-region interference, amplified by
 142 label imbalance. To study this, we adopt a simplified linear regression setting, a standard tool for
 143 analyzing generalization in complex models Belkin et al. (2018); Lin et al. (2023).

144 **Setup.** We consider heterogeneous linear regression with K latent regions, each occurring with
 145 probability $\rho_k = n_k/n$ (Sec. 2). For a sample (x, y) from region k , such that $x \sim \mathcal{N}(0, \Sigma)$, and
 146 $y = w_k^{*\top} x + \varepsilon$, where $w_k^* \in \mathbb{R}^p$ is the region-specific parameter, $\varepsilon \sim \mathcal{N}(0, \sigma_k^2)$ is independent
 147 noise, and $\Sigma \succ 0$ is the common feature covariance matrix¹. Heterogeneity is captured entirely
 148 by $\{w_k^*\}$, which define distinct $P_k(y | x)$. Stacking all $n = \sum_{k=1}^K n_k$ samples gives the design
 149 matrix $X \in \mathbb{R}^{n \times p}$ and the label vector $Y \in \mathbb{R}^n$. The pooled(or global) Ordinary Least Squares
 150 (OLS) estimator is $\hat{w} = (X^\top X)^{-1} X^\top Y$, trained on all n samples. We evaluate performance by the
 151 *region-weighted generalization error*: $\mathcal{G}_\rho(\hat{w}) = \sum_{k=1}^K \rho_k \|\hat{w} - w_k^*\|^2$.
 152

153 **Theorem 1** (Generalization error under imbalance and heterogeneity). *Let $w_{\text{avg}} = \sum_{k=1}^K \rho_k w_k^*$ and
 154 $\bar{\sigma}^2 = \max_k \sigma_k^2$. Under Gaussian design with $n > p + 1$, the expected region-weighted error of the
 155 pooled OLS estimator decomposes as*

$$156 \quad E[\mathcal{G}_\rho(\hat{w})] = \underbrace{\frac{\bar{\sigma}^2 \text{tr}(\Sigma^{-1})}{n-p-1}}_{\text{Estimation Variance (shrinks with } n\text{)}} + \underbrace{\sum_{k=1}^K \rho_k \|w_k^* - w_{\text{avg}}\|^2}_{\text{Heterogeneity Bias (persists)}}, \quad (2)$$

$$157$$

$$158$$

$$159$$

$$160$$

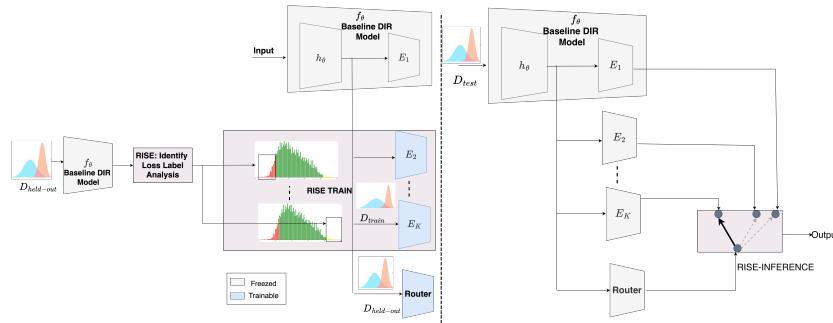
161 ¹In Appendix A we relax this assumption to region-dependent covariances Σ_k and noise σ_k^2 and show the
 same qualitative conclusions hold.

162 **Proof sketch.** The decomposition follows from $\mathcal{G}_\rho(\hat{w}) = \|\hat{w} - w_{\text{avg}}\|^2 + \sum_k \rho_k \|w_k^* - w_{\text{avg}}\|^2$, since
 163 $\sum_k \rho_k (w_k^* - w_{\text{avg}}) = 0$. The first term is bounded using inverse-Wishart moments for Gaussian
 164 design, yielding the variance term. The second term is deterministic and captures irreducible
 165 heterogeneity. Full derivations, and generalizations to Σ_k, σ_k^2 are provided in Appendix A.

166 **Implications.** Theorem 1 shows that imbalance amplifies heterogeneity: w_{avg} is dominated by head
 167 regions, yielding persistent error on tails when w_t^* lies far away. Even with infinite data, a monolithic
 168 model converges to this biased average. Since the Heterogeneity Bias cannot be reduced by more data
 169 or reweighting, a natural remedy is architectural: partition the space and assign specialized predictors,
 170 so each operates in a more homogeneous region and achieves better generalization.

172 4 PROPOSED METHOD: RISE

173 Our proposed method, **RISE**, as illustrated in Fig. 3, operates as a complementary framework
 174 designed to systematically enhance any pre-trained DIR baseline. Its core architectural choice—
 175 replacing a single monolithic model with a system of specialized experts—is a direct response to the
 176 distributional heterogeneity we identified in Sec. 1. First, RISE-Identify takes the trained baseline
 177 model (f_θ) and analyzes its performance on a held-out validation set to discover its specific failure
 178 modes. By using held-out data, we identify regions of true generalization error, not artifacts of
 179 training set memorization. Second, RISE-Train creates a set of dedicated experts, each one targeting
 180 a specific failure region identified in the first stage. These experts are trained on the train-dataset with
 181 targeted upsampling, a strategy that encourages specialization while regularizing against overfitting.
 182 Finally, RISE-Inference learns a gating mechanism, also on the held-out set, that dynamically routes
 183 new inputs to the most appropriate expert at test time. Complete implementation details and pseudo
 184 code are provided in Appendix D.1.



198 **Figure 3:** Overview of RISE framework.

200 4.1 RISE-IDENTIFY: DISCOVERING LATENT FAILURE REGIONS

201 The first stage of RISE is to identify the latent regions where a baseline
 202 model fails, corresponding to the distinct components of the hetero-
 203 geneous data distribution we posited in our problem formulation. The
 204 overall dataset \mathcal{D} is first split into a training set $\mathcal{D}_{\text{train}}$ and a held-out
 205 validation set \mathcal{D}_{val} . A naive approach, implicitly used by frequency-
 206 based methods Cui et al. (2023); Yang et al. (2021b), is to partition
 207 data using label-density bins from $\mathcal{D}_{\text{train}}$. Specifically, the continuous
 208 label space is first discretized into bins, and the frequency of labels in
 209 each bin is computed Yang et al. (2021b). A K' -component Gaussian
 210 Mixture Model (GMM) is then fitted to these frequencies:

211 $p(\nu) = \sum_{j=1}^{K'} \pi'_j \mathcal{N}(\nu | \mu_j, \sigma_j^2)$ where ν denotes the bin frequency. Component with the largest weight
 212 π'_j corresponds to the majority region, while the remaining components capture minority regions.
 213 However, this frequency-based approach is a flawed proxy for two key reasons. First, as our analysis
 214 shows in Table 2, error (or held-out loss) and frequency are not perfectly correlated; a region can
 215 have moderate data density yet still exhibit high generalization error. The 40–60 label band shows

216 **Table 2:** Frequency-Loss
 217 Relationship Analysis for
 218 Dataset A

Label Band	Freq	Held-out Loss
0-20	231	8.86
20-40	4,913	6.30
40-60	4,609	7.44
60-80	2,244	7.79
80-100	208	9.34

higher loss (7.44) than the 20–40 band (6.30), despite similar sample sizes, indicating that frequency alone does not explain model error—performance is not strictly inversely proportional to frequency, aligning with the observation of Yang et al. (2021b). Second, frequency-based partitioning often creates non-contiguous regions in the label space as shown in Fig. 4a, which is problematic for regression tasks where nearby labels are highly correlated and should be modeled coherently Yang et al. (2021b); Gong et al. (2022).

RISE adopts a more direct and principled strategy: we identify regions based on the model’s generalization error, a direct signal of where the single, monolithic model is failing. First, we take a pre-trained DIR baseline, f_θ , trained on $\mathcal{D}_{\text{train}}$. We then use this model to make predictions on the disjoint \mathcal{D}_{val} . For each sample $(x_i, y_i) \in \mathcal{D}_{\text{val}}$, we compute its pointwise prediction error, $e_i = \mathcal{L}(f_\theta(x_i), y_i)$, where \mathcal{L} is a loss function such as the absolute error (L1) or squared error (L2). To identify contiguous regions of high error, we model the joint distribution of these errors and their corresponding labels. This joint modeling ensures that identified regions are contiguous in label space—nearby labels with similar error patterns are grouped together—which is crucial for regression tasks where adjacent target values should be handled by similar predictive functions. Following Yang et al. (2021b) we partition the continuous label range of \mathcal{D}_{val} into B disjoint, uniform-width bins, $\{B_1, \dots, B_B\}$. For each bin b , we define the set of sample indices it contains as $\mathcal{I}_b = \{i \mid y_i \in B_b\}$ and compute its average generalization error: $\ell_b = \frac{1}{|\mathcal{I}_b|} \sum_{i \in \mathcal{I}_b} e_i$. We model the resulting distribution of (average error, label bin center) pairs, $\{(\ell_b, y_b)\}_{b=1}^B$, using a K' -component GMM:

$$p(\ell, y) = \sum_{j=1}^{K'} \pi'_j \mathcal{N}((\ell, y) | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j). \quad (3)$$

The GMM naturally clusters the label bins into K' distinct and contiguous performance regions \mathcal{R}'_j . The component with the lowest mean error (along the error dimension of $\boldsymbol{\mu}_j$) is designated the well-performing “majority” region, while the remaining components correspond to distinct failure modes requiring specialized experts. K' is a hyperparameter that needs to be tuned. Using a held-out set ensures the identified regions correspond to true generalization failures, not training set memorization—a phenomenon we explicitly observe (Fig. 1). As illustrated in Fig. 4b, this approach produces continuous minority regions, aligning with the principle of region similarity and enabling more homogeneous expert training. By defining regions based on error, we directly target the heterogeneity bias identified as the key limitation in Theorem 1.

4.2 RISE-TRAIN: EXPERT TRAINING

Having identified the baseline model’s failure regions, the next stage is to train a dedicated expert for each one. To maintain computational efficiency and leverage the powerful representations learned by the baseline f_θ , we adopt a parameter-efficient fine-tuning approach Kirichenko et al. (2023). As shown in Fig. 3 each expert E_j shares the frozen backbone of the pre-trained model; only its final layers are trained for specialization. For RISE-Train, we evaluate two strategies for expert specialization. A naive strategy (**T1: Subgroup-Specific Training**) trains each expert exclusively on its assigned data partition. This hard partitioning forces experts to learn from a severely restricted support of the data distribution, inducing high estimation variance and overfitting. It also prevents learning smooth functions across the label space in regression, leading to poor generalization and discontinuities at region boundaries. We therefore propose a more robust and principled strategy: **T2: Cross-Group Training with Upsampling**. For each expert E_j , we train on the full dataset $\mathcal{D}_{\text{train}}$ with sample weights: target region samples \mathcal{R}'_j are upsampled by $\alpha_j > 1$, others by 1. This weighted empirical risk minimization both regularizes and specializes: exposure to the full dataset prevents high variance and discontinuities by constraining experts to remain well-behaved across the manifold, while $\alpha_j > 1$ amplifies gradients from \mathcal{R}'_j , biasing the expert toward its designated failure regions. Our ablations (Sec. 6.3) empirically confirm that T2 is a far superior strategy, and we adopt it for all experiments.

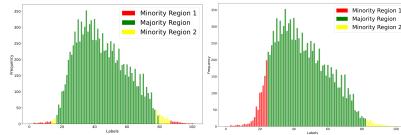


Figure 4: Comparison of minority region identification approaches on Dataset A. a) Frequency-based analysis leads to disconnected minority regions (red, yellow) separated by majority regions (green). b) Loss-Label Distribution analysis produces contiguous minority regions

270 4.3 RISE-INFERENCE: EXPERT SWITCHING STRATEGY
271

272 The final stage of RISE is to dynamically route each new input to the most suitable expert at test
273 time. We compare three strategies: **(I1) Expert Averaging**, a simple ensemble baseline which
274 aggregates predictions from all experts via weighted averaging; **(I2) Train-based Router**, a gating
275 network g_ϕ trained on the training set $\mathcal{D}_{\text{train}}$, our proposed **(I3) Held-out-based Router**; and **(I4)**
276 **Train + Held-out based Router**, a gating network g_ϕ trained on the held-out validation set \mathcal{D}_{val} .
277 Our ablations (Sec. 6.4) show that the held-out router (I3) is decisively superior. A router trained
278 on $\mathcal{D}_{\text{train}}$ tends to select experts that best fit training artifacts, whereas training on \mathcal{D}_{val} turns routing
279 into a meta-learning task: it learns to pick the expert that *generalizes* best. We therefore adopt I3
280 as our standard strategy. The router is implemented as a small multi-layer perceptron (MLP) that
281 takes the shared features from the baseline’s backbone as input and outputs a probability distribution
282 over the K' experts. The final prediction \hat{y} is the output of the single expert selected by the router:
283 $\hat{y} = E_{j^*}(x)$, where $j^* = \arg \max_j g_\phi(x)_j$.
284

285 5 THEORETICAL JUSTIFICATION FOR RISE
286

287 Having established in Theorem 1 that a global model suffers an irreducible heterogeneity bias,
288 the natural question is: under what conditions can a region-specialized architecture overcome this
289 limitation? We provide a formal result showing when RISE strictly outperforms the pooled model.

290 **Theorem 2** (Generalization advantage of RISE). *Building on the heterogeneous regression setup of*
291 *Theorem 1, let K' experts be trained with per-region upsampling factors α_j and routing probabilities*
292 *$q_k(j)$ (the probability that a sample from region k is assigned to expert j). The effective sample*
293 *size for expert j is $n_{\text{eff}}^{(j)} = (\alpha_j - 1)n_j + n$. From Theorem 1 we know the pooled/global model*
294 *incurs region-weighted risk (or generalisation error) $\mathcal{G}_{\text{pooled}} = V_{\text{glob}} + \Delta_{\text{glob}}$, where $\Delta_{\text{glob}} =$*
295 *$\sum_{k=1}^K \rho_k \|w_k^* - w_{\text{avg}}\|$, and $V_{\text{glob}} = O(p/n)$ is the estimation variance of the global model, while*
296 *generalisation error of RISE satisfies*

$$297 \mathcal{G}_{\text{RISE}} = B_{\text{det}}(\alpha, q) + V_{\text{est}}(\alpha, q) + R_{\text{cross}}(\alpha, q),$$

298 where B_{det} is deterministic bias from imperfect specialization (including possible $K' \neq K$ or
299 overlapping experts), $V_{\text{est}}(\alpha, q) = O(p/n_{\text{eff}}^{(j)})$ is expert estimation variance, and $R_{\text{cross}}(\alpha, q) =$
300 $O(\sqrt{p/n_{\text{eff}}^{(j)}})$ are vanishing cross-terms. RISE outperforms the pooled model whenever

$$301 \Delta_{\text{glob}} - B_{\text{det}}(\alpha, q) > V_{\text{est}}(\alpha, q) - V_{\text{glob}} + R_{\text{cross}}(\alpha, q).$$

302 **Proof Sketch and Implications.** The pooled model converges to the data-weighted average w_{avg} ,
303 incurring a persistent heterogeneity bias Δ_{glob} . RISE reduces this bias by upsampling scarce
304 regions and routing them to specialized experts, so their effective targets move closer to w_k^* . Any
305 mismatch between the number of experts and true regions ($K' \neq K$ or overlaps) is absorbed into
306 the deterministic bias term $B_{\text{det}}(\alpha, q)$. The trade-off is increased finite-sample variance $V_{\text{est}}(\alpha, q) =$
307 $O(p/n_{\text{eff}}^{(j)})$ and negligible cross-terms $R_{\text{cross}}(\alpha, q) = O(\sqrt{p/n_{\text{eff}}^{(j)}})$, both of which decay with sample
308 size. Thus, whenever the bias reduction dominates these penalties, RISE achieves strictly better
309 generalization than the pooled model. Detailed proofs are in Appendix B. In practice, imbalance-
310 aware upsampling (RISE-Train T2) increases n_{eff} in scarce regions and the learned router (RISE-
311 Inference I3) keeps the maximum routing error $\epsilon = \max_k (1 - q_k(k))$ small, directly satisfying the
312 theorem’s condition $\mathcal{G}_{\text{RISE}} < \mathcal{G}_{\text{pooled}}$. We provide empirical validation of this effect in Sec. 6.5.
313

314 6 EXPERIMENTS AND RESULTS
315

316 We evaluate the utility of RISE through the following research questions-

- 317 • **RQ1:** How effective is RISE compared to SOTA baselines across different datasets?
- 318 • **RQ2:** How do expert training strategies and hyperparameters affect RISE performance?
- 319 • **RQ3:** How do different RISE-INFERENCE strategies affect overall performance?
- 320 • **RQ4:** How Practically Achievable are the Theoretical Conditions (Theorem 2) for RISE’s Success?
- 321 • **RQ5:** Do RISE’s performance gains stem from its specialized architecture or model capacity?

324
325

6.1 EXPERIMENTAL SETUP

326
327
328
329
330
331
332

Algorithms: We compare RISE with four SOTA DIR methods and a *Vanilla* ResNet-50 backbone He et al. (2016). Since RISE is a modular framework that complements existing approaches, we evaluate it in combination with *Vanilla*, *LDS+FDS* Yang et al. (2021b), *RankSIM* Gong et al. (2022), *BalancedMSE* Ren et al. (2022), and *SRL* Dong et al. (2025). For baselines we use released weights or official implementations. All RISE experts are trained with MSE loss. We tune the number of experts K' , upsampling ratio α , selecting the best configuration by validation performance. Further details are in Appendix D.2.

333
334
335
336
337

Datasets: We evaluate RISE on four DIR benchmarks across modalities: Dataset A Moschoglou et al. (2017)(images, target values in range 0–101), Dataset B Rothe et al. (2018b) (images, range 0–186), STS-B Cer et al. (2017a) from GLUE Wang et al. (2018) (text, similarity 0–5), and UCI-Abalone Nash et al. (1994) (tabular, range 1–29). Following confidentiality requirements, we anonymize Dataset A and Dataset B by omitting their names. Full details are in Appendix C.

338
339
340
341
342
343
344

Metrics: Following Yang et al. (2021b); Gong et al. (2022); Dong et al. (2025), we report performance overall and across Many (>100 samples), Medium (20–100), and Few (<20) label bands. For Dataset A and B, we use Mean Absolute Error (MAE)↓, Mean Squared Error (MSE)↓, and Geometric Mean Error (GMEAN)↓. For STS-B, we additionally report Pearson↑ and Spearman↑ correlation. To assess fairness — defined as minimizing performance disparities across these bands—we also report balanced-MAE (bMAE)↓ Ren et al. (2022), which averages MAE over uniformly partitioned label bins to capture regional performance gaps (see Appendix Section E.2).

345
346

6.2 RQ1: PERFORMANCE OF RISE ON PUBLIC BENCHMARK DATASETS

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

Table 4 shows that RISE consistently improves strong baselines (*LDS+FDS*, *RankSIM*, *SRL*) on Dataset A across all label bands (similar results for other datasets are provided in Appendix Sec. E.1). The largest relative gains occur in the Few and Medium regions, where monolithic models suffer most. For example, *SRL+RISE* reduces Few-MAE by 15% while simultaneously lowering Many-MAE by 10%, thereby overcoming the common head-tail performance trade-off. The performance gains from RISE scale directly with the quality of the learned router. Weak backbones (e.g., *Vanilla*, with a router accuracy of ≈ 0.44) lead to unstable tail performance. In contrast, strong backbones (e.g., *SRL*, with a router accuracy of ≈ 0.87) enable RISE to fully realize the theoretical advantage of specialization (Theorem. 2). This confirms that the benefit from reducing heterogeneity bias dominates once the routing error is sufficiently low, while the variance cost remains controlled. Additional results (Appendix E.4) show that using an optimal router trained on the best feature representation yields significantly better performance than the baseline router, due to higher routing accuracy.

362
363
364
365

We assess fairness via bMAE in Table 3 (full results in Appendix Sec. E.2). By significantly improving Few and Medium-band performance while preserving Many-band accuracy, *SRL+RISE* directly mitigates the bias towards head regions exhibited by the baseline. This reduces performance disparities across label bands and demonstrably more equitable performance across all label bands.

366
367

6.3 RQ2: ABLATION ON EXPERT TRAINING AND HYPERPARAMETERS

368
369
370
371
372
373
374
375
376
377

We ablate RISE’s core design choices on Dataset A with SRL as backbone in Tables 5 and 6. Results on Dataset B is in Appendix Sec. E.3. Our adopted expert training strategy, **T2** (full-dataset training with region specific upsampling), consistently outperforms **T1** (region specific training). T1’s hard partitioning causes severe overfitting, whereas T2’s full-dataset exposure acts as a powerful regularizer that promotes smooth generalization while upsampling encourages specialization. Our analysis of the number of experts (K') and upsampling ratio (α) reveals a clear U-shaped performance curve. This empirically validates our theory’s cost-benefit trade-off (Theorem 2) and directly operationalizes it: the upsampling factor α is a key lever to control the expert’s estimation variance (V_{est}) while still achieving the primary goal of reducing heterogeneity bias (B_{det}). Performance peaks at moderate values (e.g., $K' = 3, \alpha = 3$) before degrading as the costs of data fragmentation and overfitting outweigh the benefits of heterogeneity reduction.

Table 3: Balanced-MAE (bMAE) ↓ on Dataset A

Method	bMAE ↓			
	All	Many	Med	Few
SRL	8.32	6.64	8.34	11.74
SRL + RISE	7.39	6.00	7.25	10.33

378 **Table 4:** Results on Dataset AMoschoglou et al. (2017). For each baseline/RISE pair, the better score
 379 is in **bold**; the best overall is underlined. Router accuracy of RISE is shown in parentheses.
 380

381	Method	382 L1 (MAE) \downarrow				383 GMEAN \downarrow				384 MSE \downarrow			
		385 All	386 Many	387 Med	388 Few	389 All	390 Many	391 Med	392 Few	393 All	394 Many	395 Med	396 Few
VANILLA	11.05	9.96	12.79	16.53	7.06	6.27	8.37	13.48	202.09	165.09	270.75	361.74	384.95
+RISE (0.44)	10.43	9.40	11.62	16.93	6.55	5.85	7.47	13.16	181.61	148.38	221.57	384.95	
BalancedMSE	8.70	8.44	8.99	10.26	5.58	5.44	5.87	6.17	127.05	118.69	133.94	187.01	187.41
+RISE (0.47)	7.71	7.23	8.16	10.02	4.83	4.52	5.10	6.87	103.39	91.14	114.84	187.41	
LDS+FDS	7.47	6.91	8.27	10.58	4.77	4.44	5.33	6.87	95.32	79.71	118.52	178.58	
+RISE (0.53)	7.28	6.79	8.07	9.72	4.49	4.25	4.88	6.04	92.79	78.88	116.49	158.63	
RankSIM	7.02	6.58	7.86	9.72	4.55	4.14	5.39	6.97	83.55	74.34	99.30	149.51	
+RISE (0.54)	6.94	6.50	7.38	9.10	4.35	4.08	4.80	6.04	82.70	71.96	91.20	138.15	
SRL	7.23	6.64	8.28	9.85	4.53	4.17	5.32	6.35	91.79	77.20	115.83	163.15	
+RISE (0.87)	6.57	6.16	7.36	8.30	3.61	3.40	4.14	4.33	82.01	70.88	91.20	134.93	

392 **Table 5:** Ablation on Dataset A: MAE for varying upsampling (with fixed $K' = 3$, left) and varying
 393 experts (with fixed $\alpha = 3$, right). Best RISE configuration beating baseline SRL is in **bold**.
 394

395	396 L1 (MAE) \downarrow				397 L1 (MAE) \downarrow										
	398 Config	399 All	400 Many	401 Med	402 Few	398 Config	399 All	400 Many	401 Med	402 Few					
		SRL	7.23	6.64	8.28	9.85	SRL+RISE	$K'=2$	6.88	6.41	7.70	9.06			
SRL+RISE	$\alpha=2$	6.72	6.23	7.69	8.66	$\alpha=3$	6.57	6.16	7.36	8.30	$\alpha=4$	6.73	6.32	7.51	8.43
	$\alpha=5$	6.89	6.52	7.49	8.68		$K'=4$	6.89	6.48	7.38	9.29				
							$K'=5$	7.29	6.93	7.67	9.58				

403 404 6.4 RQ3: ABLATION ON RISE-INFERENCE STRATEGIES

405 We compare four routing strategies as mentioned in Section 4.3 on Dataset A in Table 7 (full results
 406 in Appendix Sec. E.3 and detailed ablation in Appendix Sec. I): **I1** (expert averaging), **I2** (router
 407 trained on the training set), our proposed **I3** (router trained on a held-out validation set) and **I4**
 408 (router trained on train+held-out dataset). We observe that I3 is significantly superior. The reason
 409 is fundamental—routers trained on the training set (I2 & I4) overfit to features already captured by
 410 experts, whereas I3 learns which expert generalizes best, providing a robust signal for routing. This
 411 confirms that RISE’s advantage stems from its effective use of held-out data for what is essentially a
 412 meta-learning task—learning to select the best generalizing expert.

413 **Table 6:** Ablation of RISE-Expert training. Best
 414 results in **bold**. Full results in Appendix Sec. E.3

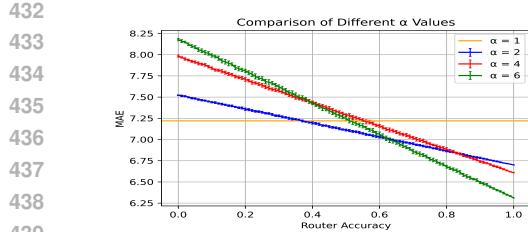
415	416 L1 (MAE) \downarrow					
	417 Method	418 All	419 Many	420 Med		
		422 RISE (T1)	423 7.23	424 6.77		
		425 RISE (T2)	6.57	6.16	7.36	8.30

427 **Table 7:** Ablation of RISE inference strategies.
 428 Best results in **bold**. Full results in Appendix
 429 Sec. E.3

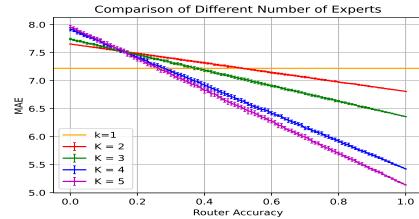
430	431 Method	432 L1 (MAE) \downarrow			
		433 All	434 Many	435 Med	
	Baseline SRL	7.23	6.64	8.28	9.85
	Expert average (I1)	7.23	6.72	8.13	9.54
	Train-based Router (I2)	7.26	6.61	8.34	10.33
	Held-out-based Router (I3)	6.57	6.16	7.36	8.30
	Train+Val based Router (I4)	7.24	6.65	8.31	9.98

423 424 6.5 RQ4: EMPIRICAL VALIDATION OF THEORETICAL TRADE-OFFS IN PRACTICE

425 Theorem 2 predicts that RISE outperforms a pooled (or monolithic) model whenever the bias reduction
 426 from specialization outweighs the added estimation variance and routing cost. To empirically validate
 427 this, we conduct controlled experiments on Dataset A with RISE using SRL as the backbone. We
 428 simulate router behavior with accuracy $p \in \{0.01, \dots, 1.0\}$, where the correct expert is chosen
 429 with probability p . We systematically vary (i) the upsampling factor α (Fig. 5) and (ii) the number
 430 of experts K' (Fig. 6), averaging over 20 trials. Keeping fixed $K' = 3$, Fig. 5 shows that higher
 431 upsampling reduces error under accurate routing but increases sensitivity to poor routing, consistent
 432 with α reducing bias while amplifying variance. Keeping $\alpha = 3$ fixed in Fig. 6 shows that larger



432
433
434
435
436
437
438
439
440 **Figure 5:** MAE vs. router accuracy for differ-
441 ent upsampling factors (α) with fixed $K' = 3$
442



443
444
445
446
447
448
449 **Figure 6:** MAE vs. router accuracy for vary-
450 ing numbers of experts with fixed $\alpha = 3$
451

K' improves accuracy when routing is reliable but offers diminishing returns and greater instability when routing is noisy. In both cases, $\alpha = 1$ or $K' = 1$ reduces RISE to the pooled baseline (or standalone SRL model). Overall, the empirical gain, $\mathcal{G}_{\text{pooled}} - \mathcal{G}_{\text{RISE}}$, becomes positive once router accuracy exceeds $\sim 60\%$ (with moderate α, K'), confirming that RISE successfully operationalizes the theoretical trade-off and remains robust to realistic routing imperfections.

6.6 RQ5: ABLATION: RISE vs. HIGH-CAPACITY ENSEMBLES.

A critical question is whether RISE’s gains stem from its principled architecture or simply from an increased parameter count. To isolate this, we compare RISE against strong, high-capacity ensembles (Table 8, complete results in Appendix Sec. E.3). We train ensembles of 3 and 5 SRL models resulting in significantly additional model size than a RISE-augmented model, where each member is trained on a random data subset to induce diversity. We observe that RISE consistently and significantly outperforms these ensembles, even with their much higher capacity. This highlights a fundamental architectural difference. Standard ensembles create diversity through *unstructured*, random data sampling. In contrast, RISE employs a *principled, structured specialization*: it uses validation loss to deterministically identify the model’s specific failure modes and trains experts to explicitly target those weaknesses. This confirms that RISE’s performance gains are not a product of raw model capacity but are a direct result of its intelligent, data-driven approach to resolving distributional heterogeneity.

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 8: Comparison of RISE vs. traditional ensembles
on Dataset A. Best results in **bold**

Experiment	Additional Parameters	L1 (MAE) \downarrow		
		All	Many	Median
<i>SRL</i>	0	7.23	6.64	8.28
<i>SRL+ RISE (K'=3)</i>	+2,100,224	6.57	6.16	7.36
<i>SRL: 3 ensemble</i>	+3,150,336	7.22	6.63	8.28
<i>SRL: 5 ensemble</i>	+5,250,560	7.22	6.62	8.30
				9.90

7 CONCLUSION, BROADER IMPACT, AND LIMITATIONS

We presented RISE (Regression Imbalance handling via Switching Experts), a novel framework that addresses the fundamental challenge of distributional heterogeneity in Deep Imbalanced Regression (DIR). RISE employs a three-stage approach: identifying failure regions via validation loss analysis rather than frequency-based heuristics, training experts with cross-group upsampling to encourage specialization while maintaining smoothness, and learning a gating mechanism, that dynamically routes new inputs to the most appropriate expert at test time. This approach consistently outperforms existing methods, improving both predictive accuracy and fairness, especially for underrepresented regions of the target distribution. RISE is broadly applicable to any regression problem with imbalance issues, advancing the development of more reliable and fair AI systems for critical decision-making.

Limitations: RISE introduces additional computational overhead due to training multiple experts and a router network; however, this is partially offset by training experts on last-layer features only. The framework also depends on a high-quality, representative validation set for effective minority subgroup identification and router training. The method’s performance and fairness gains can degrade if the validation set is noisy or biased, potentially reinforcing existing biases through expert specialization. Future work could explore adaptive validation strategies and more efficient training schemes to further mitigate these limitations.

486 REFERENCES
487

488 Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
489 pitfalls of memorization: When memorization hurts generalization. In *The Thirteenth International*
490 *Conference on Learning Representations*, 2025.

491 Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
492 kernel learning. In *International Conference on Machine Learning*, pp. 541–549. PMLR, 2018.

493 Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. Ace: Ally complementary experts for solving
494 long-tailed recognition in one-shot. In *Proceedings of the IEEE/CVF International Conference on*
495 *Computer Vision*, pp. 112–121, 2021.

496 Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1:
497 Semantic textual similarity multilingual and crosslingual focused evaluation. In *Proceedings of the*
498 *11th International Workshop on Semantic Evaluation*, 2017a.

499 Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1:
500 Semantic textual similarity multilingual and crosslingual focused evaluation. In *Proceedings of the*
501 *11th International Workshop on Semantic Evaluation (SemEval-2017)*, pp. 1–14, 2017b.

502 James L Cross, Michael A Choma, and John A Onofrey. Bias in medical ai: Implications for clinical
503 decision-making. *PLOS Digital Health*, 3(11):e0000651, 2024.

504 Jiequan Cui, Shu Liu, Zhuotao Tian, Zhisheng Zhong, and Jiaya Jia. Reslt: Residual learning for
505 long-tailed recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):
506 3695–3706, 2023. doi: 10.1109/TPAMI.2022.3174892.

507 Zijian Dong, Yilei Wu, Chongyang Chen, Yingtian Zou, Yichi Zhang, and Juan Helen Zhou. Improve
508 representation for imbalanced regression through geometric constraints. *Proceedings of the*
509 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.

510 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
511 awareness. In *Proceedings of the 3rd Innovations in Theoretical Computer Science Conference*, pp.
512 214–226. ACM, 2012.

513 Yu Gong, Greg Mori, and Fred Tung. Ranksim: Ranking similarity regularization for deep imbalanced
514 regression. In *International Conference on Machine Learning*, pp. 7634–7649. PMLR, 2022.

515 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
516 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
517 pp. 770–778, 2016.

518 Mahsa Keramati, Lili Meng, and R. David Evans. Conr: Contrastive regularizer for deep imbalanced
519 regression. In *The Twelfth International Conference on Learning Representations*, 2024. URL
520 <https://openreview.net/forum?id=RIuevDSK5V>.

521 Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
522 for robustness to spurious correlations. In *The Eleventh International Conference on Learning*
523 *Representations*, 2023. URL <https://openreview.net/forum?id=Zb6c8A-Fghk>.

524 Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
525 continual learning. In *International Conference on Machine Learning*, pp. 21078–21100. PMLR,
526 2023.

527 Evan Z. Liu, Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
528 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
529 group information. In *International Conference on Machine Learning*, pp. 6781–6792. PMLR,
530 2021.

531 Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia, and
532 Stefanos Zafeiriou. Agedb: The first manually collected, in-the-wild age database. In *Proceedings*
533 *of the IEEE Conference on Computer Vision and Pattern Recognition Workshop*, volume 2, pp. 5,
534 2017.

535

540 Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory, and
 541 applications. *arXiv preprint arXiv:2503.07137*, 2025.

542

543 Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
 544 Machine Learning Repository, 1994. DOI: <https://doi.org/10.24432/C55C7W>.

545

546 Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. Ordinal regression with multiple
 547 output cnn for age estimation. In *Proceedings of the IEEE conference on computer vision and*
 548 *pattern recognition*, pp. 4920–4928, 2016.

549

550 Silvia L Pintea, Yancong Lin, Jouke Dijkstra, and Jan C van Gemert. A step towards understanding
 551 why classification helps regression. In *Proceedings of the IEEE/CVF International Conference on*
 552 *Computer Vision*, pp. 19972–19981, 2023.

553

554 Ruizhi Pu, Gezheng Xu, Ruiyi Fang, Bing-Kun Bao, Charles Ling, and Boyu Wang. Leveraging
 555 group classification with descending soft labeling for deep imbalanced regression. In *Proceedings*
 556 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19978–19985, 2025.

557

558 Shikai Qiu, Andres Potapczynski, Pavel Izmailov, and Andrew Gordon Wilson. Simple and fast group
 559 robustness by automatic feature reweighting. In *International Conference on Machine Learning*,
 560 pp. 28448–28467. PMLR, 2023.

561

562 Jiawei Ren, Mingyuan Zhang, Cunjun Yu, and Ziwei Liu. Balanced mse for imbalanced visual
 563 regression. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 564 2022.

565

566 Rita P Ribeiro and Nuno Moniz. Imbalanced regression and extreme value prediction. *Machine*
 567 *Learning*, 109(9):1803–1835, 2020.

568

569 Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from
 570 a single image without facial landmarks. *International Journal of Computer Vision*, 126(2-4):
 571 144–157, 2018a.

572

573 Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from
 574 a single image without facial landmarks. *International Journal of Computer Vision*, 126(2-4):
 575 144–157, 2018b.

576

577 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 578 neural networks for group shifts: On the importance of regularization for worst-case generalization.
 579 In *International Conference on Learning Representations*, 2020.

580

581 Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
 582 agnostic distributed multitask optimization under privacy constraints. *IEEE transactions on neural*
 583 *networks and learning systems*, 32(8):3710–3722, 2020.

584

585 Aníbal Silva, Rita P Ribeiro, and Nuno Moniz. Model optimization in imbalanced regression. In
 586 *International Conference on Discovery Science*, pp. 3–21. Springer, 2022.

587

588 Dimitri P Solomatine and Durga L Shrestha. Adaboost. rt: a boosting algorithm for regression
 589 problems. In *2004 IEEE international joint conference on neural networks (IEEE Cat. No.*
 590 *04CH37541)*, volume 2, pp. 1163–1168. IEEE, 2004.

591

592 Michael Steininger, Konstantin Kobs, Padraig Davidson, Anna Krause, and Andreas Hotho. Density-
 593 based weighting for imbalanced regression. *Machine Learning*, 110:2187–2211, 2021.

594

595 Gilbert W Stewart and Ji-guang Sun. Matrix perturbation theory. (*No Title*), 1990.

596

597 Jason G Su, Shadi Aslebagh, Vy Vuong, Eahsan Shahriary, Emma Yakutis, Emma Sage, Rebecca
 598 Haile, John Balmes, Michael Jerrett, and Meredith Barrett. Examining air pollution exposure
 599 dynamics in disadvantaged communities through high-resolution mapping. *Science Advances*, 10
 600 (32):eadm9986, 2024.

601

602 Luis Torgo and Rita Ribeiro. Utility-based regression. In *European conference on principles of data*
 603 *mining and knowledge discovery*, pp. 597–604. Springer, 2007.

594 Joel A. Tropp. An introduction to matrix concentration inequalities, 2015. URL <https://arxiv.org/abs/1501.01571>.

595

596

597 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*.

598 Cambridge University Press, Cambridge, UK, 2018.

599

600 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:

601 A multi-task benchmark and analysis platform for natural language understanding. In *EMNLP*,

602 2018.

603

604 Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X Yu. Long-tailed recognition by

605 routing diverse distribution-aware experts. *arXiv preprint arXiv:2010.01809*, 2020a.

606

607 Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and improv-

608 ing multi-task optimization in massively multilingual models. *arXiv preprint arXiv:2010.05874*,

609 2020b.

610

611 Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced

612 knowledge distillation for long-tailed classification. In *European Conference on Computer Vision*,

613 pp. 247–263. Springer, 2020.

614

615 Haipeng Xiong and Angela Yao. Deep imbalanced regression via hierarchical classification adjust-

616 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,

617 pp. 23721–23730, 2024.

618

619 Da Xu, Yuting Ye, and Chuanwei Ruan. Understanding the role of importance weighting for deep

620 learning. *arXiv preprint arXiv:2103.15209*, 2021.

621

622 Yuzhe Yang, Kaibin Zha, Yu-Chen Chen, Hao Wang, and Dina Katabi. Delving into deep imbalanced

623 regression. *International Conference on Machine Learning*, 2021a.

624

625 Yuzhe Yang, Kaiwen Zha, Yingcong Chen, Hao Wang, and Dina Katabi. Delving into deep imbal-

626 anced regression. In *International Conference on Machine Learning*, pp. 11842–11851. PMLR,

627 2021b.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

APPENDIX

A PROOF OF THEOREM 1

We restate Theorem 1 from the main paper, together with its assumptions, before presenting a complete proof and a refinement using matrix concentration to obtain a tighter bound. In addition, we extend the analysis to *region-dependent feature covariances*, where feature distributions may differ across regions, to make the theory more realistic. This extension leads to the same qualitative conclusion as in the main paper.

A.1 ASSUMPTIONS AND NOTATION

We work in the classical fixed- p regime. Let $p, n \in \mathbb{N}$ with $n > p + 1$. The condition $n > p + 1$ ensures that the expectation of the inverse-Wishart distribution exists, which is needed to evaluate the estimation variance. For vectors and matrices we use the Euclidean norm $\|\cdot\|$ and the spectral norm $\|\cdot\|_{\text{op}}$; (\cdot) denotes the trace.

Assumption 1 (Gaussian design). *Fix a positive definite covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$ with eigenvalues $0 < \lambda_{\min}(\Sigma) \leq \lambda_{\max}(\Sigma) < \infty$. Let $x_1, \dots, x_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Sigma)$ be the design rows, stacked into $X \in \mathbb{R}^{n \times p}$.*

The label space is partitioned into K regions indexed by $k = 1, \dots, K$. Each observation i has a region label $z_i \in \{1, \dots, K\}$, drawn independently of X , with

$$P(z_i = k) = \rho_k, \quad \rho_k > 0, \quad \sum_{k=1}^K \rho_k = 1.$$

Let $n_k = \sum_{i=1}^n \mathbf{1}\{z_i = k\}$ be the (random) region counts, with $\mathbf{E}[n_k] = n\rho_k$.

Remark 1 (On independence of z and x). *The assumption $z_i \perp x_i$ is restrictive but crucial for tractability. In practice (e.g., econometrics, biostatistics), features are often predictive of group membership, in which case off-diagonal terms would appear in conditional covariances and the analysis would require more advanced tools.*

Assumption 2 (Linear region-specific models). *For each region k there exists a parameter vector $w_k^* \in \mathbb{R}^p$. Observations in region k follow*

$$y_i = x_i^\top w_{z_i}^* + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_{z_i}^2),$$

with ε_i independent of x_i and other noise variables. Label vector $y \in \mathbb{R}^n$.

Define the population-weighted average parameter

$$w_{\text{avg}} := \sum_{k=1}^K \rho_k w_k^*,$$

and the centered deviations

$$v_k := w_k^* - w_{\text{avg}}, \quad \sum_{k=1}^K \rho_k v_k = 0.$$

[Pooled OLS and risk] The pooled ordinary least squares estimator is

$$\hat{w} = (X^\top X)^{-1} X^\top y,$$

which is well-defined almost surely for $n > p$.

We measure performance by the ρ -weighted mean squared error

$$\mathcal{G}_\rho(\hat{w}) = \sum_{k=1}^K \rho_k \|\hat{w} - w_k^*\|^2.$$

702 A.2 EXACT DECOMPOSITION OF EXPECTED ERROR
703704 **Theorem 1.** Under Assumptions 1–2, for $n > p + 1$,

705
$$\mathbf{E}[\mathcal{G}_\rho(\hat{w})] = \underbrace{\mathbf{E}[\|(X^\top X)^{-1}X^\top \varepsilon\|^2]}_{\text{estimation variance}} + \underbrace{\mathbf{E}[\|(X^\top X)^{-1}X^\top \delta\|^2]}_{\text{mismatch term}} + \underbrace{\Delta}_{\text{irreducible heterogeneity}}, \quad (4)$$

706
707

708 where $\delta \in \mathbb{R}^n$ has entries $\delta_i = x_i^\top v_{z_i}$, and
709

710
$$\Delta := \sum_{k=1}^K \rho_k \|w_k^* - w_{\text{avg}}\|^2 = \sum_{k=1}^K \rho_k \|v_k\|^2.$$

711
712

713 Moreover,

714
$$\mathbf{E}[\|(X^\top X)^{-1}X^\top \varepsilon\|^2] = \frac{(\Sigma^{-1})}{n-p-1} \left(\sum_{k=1}^K \rho_k \sigma_k^2 \right). \quad (5)$$

715
716

717 *Proof.* Expanding $\sum_k \rho_k \|\hat{w} - w_k^*\|^2$ yields
718

719
$$\mathcal{G}_\rho(\hat{w}) = \|\hat{w} - w_{\text{avg}}\|^2 + \Delta.$$

720

721 The response can be written as $y = Xw_{\text{avg}} + \delta + \varepsilon$, where $\delta_i = x_i^\top v_{z_i}$. Therefore
722

723
$$\hat{w} - w_{\text{avg}} = (X^\top X)^{-1}X^\top(\delta + \varepsilon).$$

724

725 Squaring gives
726

727
$$\|\hat{w} - w_{\text{avg}}\|^2 = \|(X^\top X)^{-1}X^\top \varepsilon\|^2 + \|(X^\top X)^{-1}X^\top \delta\|^2$$

728
$$+ 2\langle (X^\top X)^{-1}X^\top \varepsilon, (X^\top X)^{-1}X^\top \delta \rangle.$$

729

730 Taking expectation: the cross-term vanishes because conditional on (X, z) , δ is fixed and $\mathbf{E}[\varepsilon|X, z] = 0$. This proves (4).
731732 For (5), let $A = (X^\top X)^{-1}X^\top$. Then
733

734
$$\mathbf{E}\|A\varepsilon\|^2 = \mathbf{E}(A \mathbf{E}[\varepsilon\varepsilon^\top | z] A^\top)$$

735
$$= \mathbf{E}_{X,z} \left((X^\top X)^{-1}X^\top (\sigma_{z_1}^2, \dots, \sigma_{z_n}^2) X (X^\top X)^{-1} \right).$$

736

737 Independence of z and X implies
738

739
$$\mathbf{E}_z[(\sigma_{z_1}^2, \dots, \sigma_{z_n}^2)] = \left(\sum_{k=1}^K \rho_k \sigma_k^2 \right) I_n.$$

740
741

742 Thus

743
$$\mathbf{E}\|A\varepsilon\|^2 = \left(\sum_k \rho_k \sigma_k^2 \right) \mathbf{E}((X^\top X)^{-1}).$$

744

745 Since $X^\top X \sim \mathcal{W}_p(\Sigma, n)$,

746
$$\mathbf{E}[(X^\top X)^{-1}] = \frac{\Sigma^{-1}}{n-p-1}, \quad n > p + 1,$$

747
748

749 hence the trace formula (5). \square
750751 A.3 REMARKS
752753

- The decomposition (4) provides a transparent separation of error sources: (i) variance due to
754 noise, (ii) a design-dependent mismatch term induced by parameter heterogeneity, and (iii)
755 the irreducible population heterogeneity Δ .
- The estimation variance admits an exact closed form (5), scaling as $O(1/n)$ for fixed p .

- 756 • The mismatch term is always nonnegative. Its precise asymptotics depend on higher-order
757 Wishart moment identities; deriving tight general rates is delicate and left for future work.
758
- 759 • As $n \rightarrow \infty$ with p fixed, the total expected error approaches Δ , which is the asymptotic bias
760 from heterogeneity.
761
- 762 • Ill-conditioning of Σ (large (Σ^{-1})) inflates the variance term and slows convergence to Δ .
763
- 764 • These conclusions hold in the fixed- p , large- n regime. In high-dimensional settings with
765 $p/n \not\rightarrow 0$, ridge regularization and random matrix theory tools are needed.
766

767 **Assumption 3** (Sub-Gaussian heterogeneous design). *For each region k , the covariates $x_{k,i}$ are
768 independent mean-zero K_ψ -sub-Gaussian vectors with covariance $\Sigma_k \succ 0$, i.e. for every unit vector
769 $u \in \mathbb{R}^p$ and $t \in \mathbb{R}$,*

$$770 E \exp(t u^\top x_{k,i}) \leq \exp(K_\psi^2 t^2/2).$$

771 Define the mixture covariance

$$772 \Sigma_{\text{mix}} := \sum_{k=1}^K \rho_k \Sigma_k,$$

773 and assume $\lambda_{\min}(\Sigma_{\text{mix}}) > 0$.

774 **Proposition 1** (Sample-covariance concentration). *Under Assumption 3, there exist constants
775 $c_0, C_0 > 0$ depending only on K_ψ such that if $n \geq C_0(p + \log(1/\delta))$ then with probability at
776 least $1 - \delta$,*

$$777 \|\widehat{\Sigma} - \Sigma_{\text{mix}}\|_{\text{op}} \leq c_0 \|\Sigma_{\text{mix}}\|_{\text{op}} \sqrt{\frac{p + \log(1/\delta)}{n}}.$$

778 Consequently, on this event $\lambda_{\min}(\widehat{\Sigma}) \geq \frac{1}{2} \lambda_{\min}(\Sigma_{\text{mix}})$ and $\|\widehat{\Sigma}^{-1}\|_{\text{op}} \leq 2/\lambda_{\min}(\Sigma_{\text{mix}})$.

779 **Theorem 1.1** (Finite-sample generalization under heterogeneous covariances). *Suppose Assumptions 2 and 3 hold. Let $\sigma_{\text{avg}}^2 := \sum_{k=1}^K \rho_k \sigma_k^2$ and define $\Delta := \sum_{k=1}^K \rho_k \|v_k\|^2$. There exist constants
780 $C, C_1, C_2 > 0$ depending only on K_ψ and the spectral condition number $\kappa(\Sigma_{\text{mix}})$ such that if
781*

$$782 n \geq C(p + \log(1/\delta)),$$

783 then with probability at least $1 - \delta$ the pooled least-squares estimator $\widehat{w} = (X^\top X)^{-1} X^\top y$ satisfies

$$784 \mathcal{G}_\rho(\widehat{w}) \leq C_1 \frac{\sigma_{\text{avg}}^2 p}{n \lambda_{\min}(\Sigma_{\text{mix}})} + C_2 \left\| \Sigma_{\text{mix}}^{-1} \sum_{k=1}^K \rho_k \Sigma_k v_k \right\|^2 + \Delta + \frac{C}{n}. \quad (6)$$

785 Moreover, in the fixed- p , $n \rightarrow \infty$ limit,

$$786 \lim_{n \rightarrow \infty} E[\mathcal{G}_\rho(\widehat{w})] = \Delta + \left\| \Sigma_{\text{mix}}^{-1} \sum_{k=1}^K \rho_k \Sigma_k v_k \right\|^2. \quad (7)$$

787 *Proof (proof sketch and main lemmas).* The proof proceeds in six steps. Below we give the key ideas
788 and cite the concentration results used for brevity and readability.

789 **Step 1: Decomposition.** Write $y = X w_{\text{avg}} + \delta + \varepsilon$ where $\delta_i = x_i^\top v_{z_i}$ and $\varepsilon = (\varepsilon_i)_{i=1}^n$. Then

$$790 \widehat{w} - w_{\text{avg}} = \widehat{\Sigma}^{-1} \left(\frac{1}{n} X^\top \delta \right) + \widehat{\Sigma}^{-1} \left(\frac{1}{n} X^\top \varepsilon \right).$$

791 Thus

$$792 \mathcal{G}_\rho(\widehat{w}) = \left\| \widehat{\Sigma}^{-1} \frac{1}{n} X^\top \varepsilon \right\|^2 + \left\| \widehat{\Sigma}^{-1} \frac{1}{n} X^\top \delta \right\|^2 + 2 \langle \cdot, \cdot \rangle + \Delta.$$

793 The three display terms correspond to estimation variance, mismatch, and a cross-term.

794 **Step 2: Control of $\widehat{\Sigma}$.** Proposition 1 (matrix concentration for sub-Gaussian samples; see Vershynin
795 (2018); Tropp (2015)) implies that for $n \gtrsim p + \log(1/\delta)$ the event in which $\|\widehat{\Sigma} - \Sigma_{\text{mix}}\|_{\text{op}}$ is
796 small holds with probability $1 - \delta$. On this event one obtains the deterministic bound $\|\widehat{\Sigma}^{-1}\|_{\text{op}} \lesssim
797 1/\lambda_{\min}(\Sigma_{\text{mix}})$.

810
 811 **Step 3: Estimation variance term.** Conditioning on X and z , $X^\top \varepsilon$ is a mean-zero vector with
 812 componentwise variances $\sigma_{z_i}^2 \|x_i\|^2$. Standard conditional-sub-Gaussian tail bounds together with
 813 operator-norm control of $\widehat{\Sigma}^{-1}$ yield the displayed $O(p/n)$ bound in (6). One may make this fully
 814 explicit by combining Hanson–Wright and matrix Bernstein inequalities (see Vershynin (2018);
 815 Tropp (2015)).

816 **Step 4: Population limit and asymptotic bias.** Note

817

$$\frac{1}{n} X^\top y = \frac{1}{n} \sum_{i=1}^n x_i x_i^\top w_{z_i}^* + \frac{1}{n} X^\top \varepsilon.$$

818

819 By the law of large numbers and multinomial concentration of region counts, $\frac{1}{n} \sum_i x_i x_i^\top w_{z_i}^* \rightarrow$
 820 $\sum_k \rho_k \Sigma_k w_k^*$ and $\widehat{\Sigma} \rightarrow \Sigma_{\text{mix}}$. Hence $\widehat{w} \rightarrow w_\infty$ where $w_\infty = \Sigma_{\text{mix}}^{-1} \sum_k \rho_k \Sigma_k w_k^*$. Using $v_k =$
 821 $w_k^* - w_{\text{avg}}$ yields the asymptotic mismatch bias in (7).

822 **Step 5: Finite-sample mismatch fluctuation.** The deviation $\frac{1}{n} X^\top \delta - \sum_k \rho_k \Sigma_k v_k$ is a mean-zero
 823 sum of sub-Gaussian terms and therefore has Euclidean norm $O_p(1/\sqrt{n})$. Multiplication by $\widehat{\Sigma}^{-1}$,
 824 which is $O(1)$ in operator norm on the concentration event, yields an $O_p(1/\sqrt{n})$ deviation of the
 825 centered estimator; squaring gives the $O_p(1/n)$ remainder in (6).

826 **Step 6: Cross-term.** The cross-term is bounded in absolute value via Cauchy–Schwarz and is of
 827 smaller order (absorbed into the displayed C/n remainder) under the same sample-size regime.

828 Combining the bounds in Steps 3–6 yields (6) and the limit (7). \square

829 **Remark 2. (References)**

830

- The matrix-concentration proposition can be proved by applying matrix Bernstein / non-
 831 commutative Bernstein inequalities as in Tropp (2015) or via Vershynin’s sub-Gaussian
 832 covariance concentration (see Vershynin (2018)).
- All big- O and constants can be made explicit by tracking constants in Hanson–Wright and
 833 matrix Bernstein inequalities; we omitted explicit numerical constants for readability.

834 **Remark 3 (Interpretation).** Unlike the homogeneous-covariance case, pooled OLS error converges
 835 not only to the irreducible heterogeneity Δ but also to a persistent asymptotic mismatch bias
 836 (cf. Eq. (7)). This bias vanishes only under special conditions such as $\Sigma_k \equiv \Sigma$ for all k or
 837 $\sum_k \rho_k \Sigma_k v_k = 0$. Finite-sample fluctuations of the mismatch term decay at rate $O(1/n)$, while the
 838 estimation variance scales as $O(p/n)$. Both contributions are magnified when Σ_{mix} is ill-conditioned.

839 B THEORETICAL GUARANTEES FOR RISE WITH UPSAMPLING AND ROUTING

840 We present a rigorous finite-sample analysis of RISE. We first state assumptions, then supporting
 841 lemmas, and finally the main theorem with proof. We also derive the exact pooled decomposition,
 842 and conclude with a corollary giving explicit sufficient conditions under which RISE improves over
 843 pooled OLS.

844 B.1 ASSUMPTIONS

845 **Assumption 4** (Sub-Gaussian design and bounded covariance). For each region $k \in [K]$, covariates
 846 $x_{k,i} \in \mathbb{R}^p$ are i.i.d. mean-zero K_ψ -sub-Gaussian vectors with covariance $\Sigma_k = \mathbf{E}[x_{k,i} x_{k,i}^\top] \succ 0$.
 847 Eigenvalues are uniformly bounded:

848

$$0 < \underline{\lambda} \leq \lambda_{\min}(\Sigma_k) \leq \lambda_{\max}(\Sigma_k) \leq \bar{\lambda} < \infty.$$

849

850 **Assumption 5** (Noise tails). For each region k , labels satisfy $y = x^\top w_k^* + \varepsilon$ with $\mathbf{E}[\varepsilon | x] = 0$,
 851 $(\varepsilon | x) = \sigma_k^2$ and $\sigma_k^2 \leq \sigma_{\text{max}}^2 < \infty$. Moreover, the noise satisfies a uniform tail condition: either (i)
 852 ε is sub-Gaussian, or (ii) ε^2 is sub-exponential (uniform constants). These tail assumptions are used
 853 to obtain operator-norm concentration for heteroskedastic noise matrices; if only finite variance is
 854 available, replace sample moments by robust estimators (truncation / median-of-means).

864 **Assumption 6 (Routing).** *Each population sample is drawn from region k with probability ρ_k .
 865 Conditional on region k , the sample is routed to expert j with fixed probability $q_k(j)$, independent of
 866 features x and noise ε . Each expert j may upweight its own region by a factor $\alpha_j \geq 1$ (we explain
 867 below how this affects the training mixture and the realized counts). All routing probabilities $\{q_k(j)\}$
 868 are fixed (non-adaptive).*

870 **B.2 EFFECTIVE DISTRIBUTIONS AND A CLARIFYING REMARK ON UPSAMPLING**

871 We use two distinct population-level quantities; reviewers should not conflate them.

873 **(i) Marginal routing probability (controls realized counts).** The marginal probability that a
 874 random population sample is routed to expert j (before any upsampling normalization) is

$$876 \quad p_j^{\text{route}} := \sum_{k=1}^K \rho_k q_k(j).$$

879 The realized number N_j of training samples routed to expert j is multinomial/binomial with mean
 880 np_j^{route} . Lemma 1 below gives precise concentration for N_j .

881 **(ii) Unnormalized upweight mass and training mixture (controls bias).** To describe how upsam-
 882 pling changes the *training mixture* used to estimate each expert, define unnormalized weights

$$884 \quad \omega_{k \rightarrow j} := \begin{cases} \alpha_j \rho_j q_j(j), & k = j, \\ \rho_k q_k(j), & k \neq j, \end{cases} \quad \Omega_j := \sum_{k=1}^K \omega_{k \rightarrow j}, \quad \pi_{k \rightarrow j} := \frac{\omega_{k \rightarrow j}}{\Omega_j}.$$

887 Here $\pi_{k \rightarrow j}$ defines the *population-level training mixture* for expert j : when estimating expert j we
 888 (conceptually) mix regions k with proportions $\pi_{k \rightarrow j}$. These $\pi_{k \rightarrow j}$ enter the deterministic bias B_{det}
 889 via

$$890 \quad \Sigma_{j, \text{train}} := \sum_{k=1}^K \pi_{k \rightarrow j} \Sigma_k, \quad w_j^{\text{eff}} := \Sigma_{j, \text{train}}^{-1} \left(\sum_{k=1}^K \pi_{k \rightarrow j} \Sigma_k w_k^* \right).$$

893 **Remark:** $\omega_{k \rightarrow j}$ (and hence $\pi_{k \rightarrow j}$) involve α_j and ρ_k and are *not* probabilities over experts; they
 894 describe the training mixture used to form population-level bias terms. The realized counts N_j
 895 (used for variance bounds) are governed by p_j^{route} , which depends only on $\rho_k, q_k(j)$ and not on α_j .
 896 In practice, upsampling can be implemented either by (A) re-sampling from the modified mixture
 897 induced by $\pi_{k \rightarrow j}$ (sampling interpretation), or (B) by attaching per-sample weights in the loss
 898 (weighting interpretation). The analysis below treats the bias via $\pi_{k \rightarrow j}$ and controls variance via the
 899 realized counts N_j ; if you implement upsampling by weighting, replace N_j in variance rates by the
 900 appropriate ESS (effective sample size) — see Practical Considerations.

901 Define the population-level weighted noise and effective-sample-size

$$902 \quad \sigma_{j, \text{eff}}^2 = \sum_{k=1}^K \pi_{k \rightarrow j} \sigma_k^2, \quad n_{\text{eff}}^{(j)} = n \cdot \Omega_j.$$

905 **B.3 PRELIMINARY LEMMAS**

907 **Lemma 1 (Routing counts concentration).** *Let $p_j^{\text{route}} = \sum_{k=1}^K \rho_k q_k(j)$. Then $(N_1, \dots, N_J) \sim$
 908 $\text{Multinomial}(n; p_1^{\text{route}}, \dots, p_J^{\text{route}})$. Fix $\delta \in (0, 1)$. There exist constants $c_1, c_2 > 0$ such that for
 909 each j and any $t > 0$,*

$$910 \quad \Pr(|N_j - np_j^{\text{route}}| \geq t) \leq 2 \exp \left(- \frac{t^2}{2np_j^{\text{route}} + (2/3)t} \right).$$

913 Choosing $t_j = c_1 \sqrt{np_j^{\text{route}} \log(J/\delta)} + c_2 \log(J/\delta)$ and applying a union bound yields that with
 914 probability at least $1 - \delta$,

$$915 \quad |N_j - np_j^{\text{route}}| \leq t_j \quad \text{for all } j \in [J].$$

916 Consequently, if $np_j^{\text{route}} \gtrsim C(p + \log(J/\delta))$ for all j , then with probability at least $1 - \delta$ we have
 917 $N_j \geq \frac{1}{2} np_j^{\text{route}}$ for every j .

918 **Lemma 2** (Design and noise concentration). *Assume rows of X_j are independent K_ψ -sub-Gaussian
919 vectors with covariance $\Sigma_{j,\text{train}}$, and assume the noise satisfies the tail condition in Assumption 5
920 (sub-Gaussian or sub-exponential so that $\varepsilon_i^2 x_i x_i^\top$ has controlled sub-exponential operator-norm).
921 Fix $\delta \in (0, 1)$. There exist constants $C_0, C_1, C_2 > 0$ (depending on K_ψ and the noise-tail constants)
922 such that, provided $N_j \gtrsim p + \log(J/\delta)$ for all j , the following holds with probability at least $1 - \delta$
923 simultaneously over $j \in [J]$:*

$$924 \quad \left\| \frac{1}{N_j} X_j^\top X_j - \Sigma_{j,\text{train}} \right\| \leq C_0 \left(\sqrt{\frac{p + \log(J/\delta)}{N_j}} + \frac{p + \log(J/\delta)}{N_j} \right), \quad (8)$$

$$928 \quad \left\| \frac{1}{N_j} \sum_{i \in \text{train}_j} \varepsilon_i^2 x_i x_i^\top - \sigma_{j,\text{eff}}^2 \Sigma_{j,\text{train}} \right\| \leq C_1 \sigma_{\max}^2 \sqrt{\frac{p + \log(J/\delta)}{N_j}} + C_2 \sigma_{\max}^2 \frac{p + \log(J/\delta)}{N_j}. \quad (9)$$

931 In the usual regime $N_j \gtrsim p + \log(J/\delta)$ the square-root term dominates and the simpler form with
932 only the $\sqrt{\cdot}$ term is valid.

933 **Remarks on the lemmas.** - Lemma 1 is a standard Bernstein/Hoeffding tail for binomial/multinomial
934 counts. - Lemma 2 follows from applying matrix Bernstein / Vershynin concentration to sub-Gaussian
935 rows, and to the heteroskedastic weighted noise matrices $\varepsilon_i^2 x_i x_i^\top$ using the noise-tail assumption. If
936 the noise has only finite variance, replace empirical moments by robust estimators (truncation, MOM)
937 to retain high-probability control.

939 B.4 MAIN THEOREM FOR RISE

941 **Intuition.** The decomposition below separates prediction risk into: irreducible noise σ_{avg}^2 ; deter-
942 ministic bias B_{det} due to training-mixture mismatch; estimation variance V_{est} governed by realized
943 counts N_j ; and a cross-term R_{cross} of smaller order.

944 **Theorem 2** (Generalization error of RISE). *Suppose Assumptions 4–6 and the noise-tail condition
945 in Assumption 5 hold. Suppose further that the marginal routing masses satisfy $np_j^{\text{route}} \gtrsim C(p +
946 \log(J/\delta))$ for all j (so Lemma 1 implies $N_j \gtrsim p$ w.h.p.). Then, conditioning on the joint high-
947 probability event from Lemmas 1–2, with probability at least $1 - \delta$,*

$$948 \quad \mathcal{G}_{\text{RISE}}(\alpha, q) = \sigma_{\text{avg}}^2 + B_{\text{det}}(\alpha, q) + V_{\text{est}}(\alpha, q) + R_{\text{cross}}(\alpha, q), \quad (10)$$

$$950 \quad B_{\text{det}}(\alpha, q) = \sum_{k=1}^K \rho_k \sum_{j=1}^J q_k(j) \|w_j^{\text{eff}} - w_k^*\|_{\Sigma_k}^2,$$

$$954 \quad V_{\text{est}}(\alpha, q) \leq C_1 \sum_{k=1}^K \sum_{j=1}^J \rho_k q_k(j) \frac{\sigma_{j,\text{eff}}^2}{N_j} (\Sigma_k \Sigma_{j,\text{train}}^{-1}) \\ 955 \quad + C'_1 \sum_{k,j} \rho_k q_k(j) \frac{\sigma_{\max}^2 p}{N_j} \sqrt{\frac{p + \log(J/\delta)}{N_j}},$$

$$960 \quad |R_{\text{cross}}(\alpha, q)| \leq C_2 \left(\max_{j,k} \|w_j^{\text{eff}} - w_k^*\|_{\Sigma_k} \right) \sqrt{\lambda_{\max}(\Sigma_k \Sigma_{j,\text{train}}^{-1})} \sqrt{\frac{p + \log(J/\delta)}{N_{\min}}}.$$

963 Here $N_{\min} = \min_j N_j$, and constants C_1, C'_1, C_2 depend only on K_ψ and the noise-tail parameters.

965 *Proof sketch.* All concentration statements below are applied on the joint high-probability event from
966 Lemmas 1 and 2.

967 **Step 1 (decomposition).** For a test point $(x, y) \sim \mathcal{R}_k$ routed to expert j ,

$$969 \quad \mathbf{E}[(x^\top \hat{w}_j - y)^2 | x] = \|w_j^{\text{eff}} - w_k^*\|_{\Sigma_k}^2 + (\Sigma_k(\hat{w}_j)) + (w_j^{\text{eff}} - w_k^*)^\top \Sigma_k(\hat{w}_j - w_j^{\text{eff}}) + \sigma_k^2.$$

970 Averaging over (k, j) with weights $\rho_k q_k(j)$ yields (10) and the definition of σ_{avg}^2 .

971 **Step 2 (bias).** The first term is exactly B_{det} .

972 **Step 3 (variance).** By Lemma 2 the sandwich covariance satisfies
 973

$$974 \quad (\widehat{w}_j) = \frac{\sigma_{j,\text{eff}}^2}{N_j} \Sigma_{j,\text{train}}^{-1} + E_j, \quad \|E_j\| \leq C \frac{\sigma_{\max}^2}{N_j} \sqrt{\frac{p + \log(J/\delta)}{N_j}}.$$

$$975$$

$$976$$

977 Taking trace against Σ_k and averaging with $\rho_k q_k(j)$ yields the bound on V_{est} .
 978

979 **Step 4 (cross-term).** By Cauchy–Schwarz,

$$980 \quad |R_{k,j}| \leq \|w_j^{\text{eff}} - w_k^*\|_{\Sigma_k} \|\widehat{w}_j - w_j^{\text{eff}}\|_{\Sigma_k}.$$

$$981$$

982 Using operator-norm change of metric and the concentration bound for $\|\widehat{w}_j - w_j^{\text{eff}}\|_{\Sigma_{j,\text{train}}}$ (of order
 983 $\sqrt{(p + \log)/N_j}$) gives the stated bound on R_{cross} . \square
 984

985 B.5 POOLED MODEL AND COMPARISON

987 For the pooled estimator $\widehat{w}_{\text{pool}} = (X^\top X)^{-1} X^\top y$, the same decomposition (conditioning on the
 988 same high-probability event) yields

$$989 \quad \mathcal{G}_{\text{pooled}} = \sigma_{\text{avg}}^2 + B_{\text{pooled}} + V_{\text{pooled}},$$

$$990$$

991 where

$$993 \quad B_{\text{pooled}} = \sum_{k=1}^K \rho_k \|w_{\text{pool}}^{\text{eff}} - w_k^*\|_{\Sigma_k}^2, \quad w_{\text{pool}}^{\text{eff}} = \left(\sum_k \rho_k \Sigma_k \right)^{-1} \left(\sum_k \rho_k \Sigma_k w_k^* \right),$$

$$994$$

$$995$$

996 and V_{pooled} is the pooled estimation variance (bounded by $O(p/n)$ under our assumptions). Subtracting
 997 gives the exact comparison

$$998 \quad \mathcal{G}_{\text{RISE}} - \mathcal{G}_{\text{pooled}} = (B_{\text{det}} - B_{\text{pooled}}) + (V_{\text{est}} - V_{\text{pooled}}) + R_{\text{cross}},$$

$$999$$

1000 since the common σ_{avg}^2 cancels.
 1001

1002 B.6 ILLUSTRATIVE COROLLARY: SUFFICIENT CONDITIONS FOR IMPROVEMENT

1004 **Corollary 1** (When RISE improves pooled). *Under the conditions of Theorem 2, suppose further
 1005 that*

1006 (i) (Bias reduction) $B_{\text{pooled}} - B_{\text{det}} \geq c_0 \sum_k \rho_k \|w_k^* - w_{\text{avg}}\|_{\Sigma_k}^2$ for some $c_0 > 0$;
 1007

1008 (ii) (Sufficient counts) $\min_j N_j \gtrsim C(p + \log(J/\delta))$ so that the variance and cross-term remainders are small.
 1009

1010 Then with probability at least $1 - \delta$,

$$1012 \quad \mathcal{G}_{\text{RISE}} < \mathcal{G}_{\text{pooled}}.$$

$$1013$$

1015 *Proof sketch.* Under (ii) the variance and cross-term penalties scale as $O(p/N_j)$ and $O(\sqrt{p/N_j})$
 1016 and can be made small; under (i) the deterministic bias reduction is order Δ_{glob} . Hence the total
 1017 difference is negative with high probability. \square
 1018

1019 PRACTICAL CONSIDERATIONS AND LIMITATIONS

1020 The quantities appearing in Theorem 2 (such as w_k^* , Σ_k , σ_k^2 , and the induced effective parameters
 1021 w_j^{eff}) are population-level objects and unknown in practice. In experiments we approximate them
 1022 with plug-in estimates from held-out validation data; standard perturbation bounds for covariance
 1023 estimation (Stewart & Sun, 1990; Vershynin, 2018) imply that population inequalities carry over to
 1024 plug-in versions with sufficient validation sample size (scaling as $O(p/\gamma^2)$ for margin γ).
 1025

Important limitations and practical conditions:

- **Routing independence assumption.** We assume $q_k(j)$ are fixed and independent of x . If routing depends on features (learned gating that uses x), conditional covariances and bias expressions change; the analysis must be adapted to conditional mixtures.
- **Implementation of upsampling.** Our statements separate the population-level training-mixture $\pi_{k \rightarrow j}$ (used to define deterministic bias) from the realized counts N_j (used for variance). In practice upsampling can be implemented either by (A) re-sampling from a modified mixture (sampling) or (B) by attaching weights in the loss (weighting). If weighting is used replace all N_j -based rates by the appropriate effective sample size (ESS) and analyze weighted-OLS (sandwich) covariance (we provide that variant in the appendix on request).
- **Noise tails / robustness.** We assume sub-Gaussian or sub-exponential noise. If only finite variance is available, robust estimators (truncation or median-of-means) are required to obtain comparable high-probability bounds.
- **Minimum routing mass required.** The bounds require non-negligible routing mass for each expert: $np_j^{\text{route}} \gtrsim C(p + \log(J/\delta))$. If some expert is assigned vanishing mass, concentration and OLS asymptotics break down and regularization or enforced minimum routing mass is necessary.

C DATASET DETAILS

We evaluate our RISE framework on the benchmark datasets on four diverse regression datasets: two datasets from the computer vision domain (Dataset A (Moschoglou et al. (2017)) and Dataset B (Rothe et al. (2018b))), one from the natural language processing domain (STS-B Cer et al. (2017a)) and one standard tabular regression dataset- UCI Abalone Nash et al. (1994).

- **Dataset A (Moschoglou et al. (2017)):** An image regression dataset with 12,208 training samples, 2,140 validation samples, and 2,140 test samples. The target range spans from 0 to 101.
- **Dataset B (Rothe et al. (2018b)):** A large-scale image regression dataset containing 191,509 training samples, 11,022 validation samples, and 11,022 test samples. The target range spans from 0 to 186.
- **STS-B:** A text similarity dataset containing 5,249 training sentence pairs, 1,000 validation pairs, and 1,000 test pairs, with similarity scores ranging from 0 to 5.
- **UCI Abalone:** A standard tabular benchmark predicting shellfish ring from 9 different physical measurements, the dataset consists of 3155 training, 511 test and 511 validation samples with the target column shellfish ring ranging from 1 to 29.

We follow the train/val/test split provided in Yang et al. (2021b)

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

Figure 3 illustrates the RISE architecture and its key components. Let the full dataset be denoted by $D = D_{\text{train}} \cup D_{\text{val}} \cup D_{\text{test}}$. The RISE framework begins by employing a baseline Deep Imbalanced Regression (DIR) model f_θ for both feature extraction and minority subgroup identification. Input data—whether image, text, or tabular—is first passed through the feature extractor h_θ , a component of the baseline model f_θ . This model is pre-trained on D_{train} using existing DIR methods such as LDS-FDS (Yang et al. (2021b)), RankSim (Gong et al. (2022)), and SRL (Dong et al. (2025)). The architecture of the baseline can be expressed as $f_\theta(x) = E_1(h_\theta(x))$, where $h_\theta(x)$ denotes the backbone feature extractor, typically instantiated as ResNet-50 for images and BiLSTM for text. RISE is agnostic to the specific DIR method and can integrate any baseline model f_θ built on these backbone architectures.

RISE-Identify: To address underperformance in imbalanced regression, we propose RISE-Identify for identifying minority or poorly modeled regions by analyzing the joint distribution of validation

loss and target labels. Specifically, we fit a Gaussian Mixture Model (GMM) to validation data to uncover latent structure in model error patterns, enabling targeted expert specialization.

In regression tasks with heterogeneous label distributions, performance typically degrades in minority subregions of the label space. A key observation is that these regions often exhibit higher and more variable validation losses. By analyzing the joint distribution of validation loss and target values, we can detect structured error patterns that are not captured by traditional frequency-based binning.

Following (Yang et al. (2021b)), we partition the continuous label space into disjoint intervals B_i and compute the average loss in each bin:

$$\ell_i = \frac{1}{|B_i|} \sum_{j \in B_i} \mathcal{L}(f_\theta(x_j), y_j) \quad (11)$$

Here, B_i is the set of samples whose continuous labels fall within the boundaries of bin i , \mathcal{L} is typically Mean Squared Error (MSE) or Mean Absolute Error (MAE), f_θ denotes the baseline model, and $|B_i|$ is the number of samples in bin i . Importantly, the model is trained and evaluated end-to-end in continuous space—binning is used only for region-level loss estimation, not for converting regression into classification.

Next, we fit a K' -component Gaussian Mixture Model (GMM) over the joint distribution of loss-label pairs:

$$p(\ell, y) = \sum_{j=1}^{K'} \pi'_j \mathcal{N}((\ell, y) | \mu_j, \Sigma_j) \quad (12)$$

where μ_j and Σ_j denote the mean vector and covariance matrix of the j -th component, respectively. The component with the lowest mean loss (along the loss dimension of μ_j) is treated as the majority group, while the remaining components define minority subgroups requiring dedicated experts.

Unlike frequency-based approaches that often result in non-contiguous minority regions, our loss-label distribution analysis produces continuous minority regions, aligning with the principle of region similarity and enabling more homogeneous expert training. We observe a memorization effect where the baseline model achieves the lowest training loss in few-shot regions despite higher test errors. To address this, we use held-out set loss as a more reliable signal for minority subgroup identification, as it better reflects true generalization behavior and mitigates misleading effects of memorization.

Unlike methods based on label frequency or manual binning, our loss-aware formulation is adaptive and reflects the true generalization profile of the baseline model. The identified regions are continuous, semantically meaningful, and sensitive to the model’s inductive biases. By relying on the validation-training loss gap, our method is capable of detecting overfitting and memorization—particularly in underrepresented areas. The resulting expert assignments are thus aligned with true generalization performance, enabling smooth transitions between expert domains. This leads to coherent regional specialization and improved overall generalization, especially in long-tailed or imbalanced regression settings.

The RISE-Identify component leverages a held-out validation set (80% of D_{val}) to conduct this loss-label distribution analysis, with cross-validation on the remaining 20% to determine GMM hyperparameters like the number of components K' . As illustrated in Fig.4, this approach successfully identifies continuous minority regions requiring specialized experts - one towards the lower end of the label distribution and another in the higher range.

RISE-Train: RISE-Train trains $K' - 1$ additional expert networks $E_2, E_3, \dots, E_{K'}$ for the identified minority regions, while the baseline model E_1 (extracted from f_θ) serves as the expert for the majority region. Each expert E_j operates on shared features produced by the frozen backbone h_θ , and produces predictions as:

$$\hat{y}_j = E_j(h_\theta(x)) \quad (13)$$

To address data imbalance, we adopt a *Cross-Group Training with Upsampling* strategy. This approach (T2) is particularly effective for regression tasks where adjacent labels exhibit strong

1134 **Algorithm 1** RISE Training

1135

1136 **Require:** Dataset $D = \{D_{train}, D_{val}\}$, model $f_\theta = \{h_\theta, E_1\}$, experts K' , upsampling α

1137 **Ensure:** Experts $\{E_j\}_{j=1..K'}$, router R

1138 1: // Phase 1: RISE-Identify

1139 2: $F \leftarrow \emptyset$

1140 3: **for** (x, y) in D_{val} **do**

1141 4: $\hat{y} \leftarrow E_1(h_\theta(x))$ {Baseline model prediction}

1142 5: $\ell \leftarrow \mathcal{L}(f_\theta(x), y)$ {Compute validation loss per Eq. 11}

1143 6: $F \leftarrow F \cup \{(\ell, y)\}$

1144 7: **end for**

1145 8: $gmm \leftarrow \text{FitGaussianMixture}(F, K')$ {Fit GMM using Eq. 12}

1146 9: $\{R'_j\}_{j=1..K'} \leftarrow \text{GetMinorityRegions}(gmm)$ {Identify expert regions}

1147 10: // Phase 2: RISE-Train

1148 11: Initialize experts E_2 through $E_{K'}$

1149 12: **for** $i = 2$ to K' **do**

1150 13: **for** epoch = 1 to T **do**

1151 14: **for** (X_b, Y_b) in D_{train} **do**

1152 15: $F \leftarrow h_\theta(X_b)$ {Extract shared features}

1153 16: **for** $j = 1$ to $|X_b|$ **do**

1154 17: **if** $y_j \in R'_i$ **then**

1155 18: $w_j \leftarrow \alpha$ {Upsample minority region samples}

1156 19: **else**

1157 20: $w_j \leftarrow 1$ {Normal weight for other samples}

1158 21: **end if**

1159 22: **end for**

1160 23: $\hat{Y} \leftarrow E_i(F)$ {Get predictions from Eq. 13}

1161 24: $L \leftarrow \frac{1}{|X_b|} \sum_{j=1}^{|X_b|} w_j (\hat{Y}_j - Y_j)^2$ {Weighted loss from Eq. 14}

1162 25: Update E_i using gradient ∇L

1163 26: **end for**

1164 27: **end for**

1165 28: **end for**

1166 29: Initialize router R

1167 30: **for** epoch = 1 to T' **do**

1168 31: **for** (X_b, Y_b) in D_{val} **do**

1169 32: $F \leftarrow h_\theta(X_b)$

1170 33: **for** $j = 1$ to $|X_b|$ **do**

1171 34: $t_j \leftarrow \text{find } i \text{ such that } y_j \in R'_i$ {Assign ground truth expert labels}

1172 35: **end for**

1173 36: $r \leftarrow R(F)$ {Get router probabilities}

1174 37: $\mathcal{L}_{\text{router}} \leftarrow \text{CrossEntropy}(r, T_b)$ using Eq. 17

1175 38: Update R using gradient $\nabla \mathcal{L}_{\text{router}}$

1176 39: **end for**

1177 40: **end for**

1178 41: **return** $\{E_j\}_{j=1..K'}, R$

1178 correlations, enabling smooth transitions between expert domains while preserving specialization, as
 1179 confirmed by our empirical analysis. For each identified region R'_j , we upsample the samples in R'_j
 1180 by assigning a higher weight $\alpha > 1$, while keeping the sample weights unchanged elsewhere. We
 1181 train each expert using D_{train} where loss for each expert E_j is given by:

1182

1183

1184
$$\mathcal{L}_{\text{expert}}^j = \frac{1}{N} \sum_{i=1}^N w_i (y_i - \hat{y}_i)^2 \quad (14)$$

1185

1186

1187 with sample weights w_i defined as:

1188 **Algorithm 2** RISE-Inference
1189
1190 **Require:** Sample x , backbone h_θ , router R , experts $\{E_j\}_{j=1..K'}$
1191 **Ensure:** Prediction \hat{y}
1192 1: $F \leftarrow h_\theta(x)$ {Extract features using frozen backbone}
1193 2: $r \leftarrow R(F)$ {Get router probabilities}
1194 3: $j^* \leftarrow$ Select expert using Eq. 16
1195 4: $\hat{y} \leftarrow E_{j^*}(F)$ {Get final prediction using Eq. 18}
1196 5: **return** \hat{y}

1197
1198
1199
1200 $w_i = \begin{cases} \alpha & \text{if } x_i \in R'_j \\ 1 & \text{otherwise} \end{cases}$ (15)
1201

1202 Here, α is an upsampling hyperparameter that emphasizes minority-region samples, and N is the
1203 total number of samples in D_{train} . Importantly, only the final layer of each new expert E_j (for
1204 $j = 2, \dots, K'$) is trained, while the shared backbone h_θ and the baseline expert E_1 remain frozen.
1205 This facilitates efficient parameter sharing and reduces computational overhead.

1206
1207 **RISE-Inference:** We train a router network (implementing the gating network g_ϕ from Eq. 1)
1208 using a held-out validation set (80% of D_{val}) to perform dynamic expert selection, with the remaining
1209 20% used for hyperparameter validation. We motivate the choice of using held-out data in Sec. 6.4.
1210 Unlike soft routing strategies that blend predictions from multiple experts, we adopt a hard routing
1211 approach, where exactly one expert is selected per input. This decision is motivated by Theorem 1,
1212 which demonstrates that mixing predictions from heterogeneous regions can lead to interference and
1213 degraded performance due to distributional mismatch.

1214 The router is trained as a classification task to predict which expert should handle each input. For
1215 each validation sample (x, y) , we first determine the ground truth expert assignment by checking
1216 which region R'_j the label y belongs to. The router then learns to map input features to these expert
1217 assignments.

1218 Given input x , the router processes shared features $h_\theta(x)$ and outputs mixing coefficients $\pi_k(x)$ over
1219 the K' experts, implementing the gating mechanism from Eq. (1). A hard assignment is then made as
1220 follows:

1221
1222 $j^* = \arg \max_{j \in \{1, \dots, K'\}} g_\phi(h_\theta(x))_j$ (16)
1223

1224 where j^* denotes the index of the selected expert, consistent with the final prediction $\hat{y} = E_{j^*}(x)$
1225 described in Section 4.3. The router is trained using an inverse-frequency weighted cross-entropy
1226 loss to mitigate expert imbalance:

1227
1228 $\mathcal{L}_{\text{router}} = - \sum_{j=1}^{K'} w_j t_j \log(p_j)$ (17)
1229
1230
1231

1232 Here, p_j is the predicted probability for expert j , t_j is the ground truth expert label from the RISE-
1233 Identify stage, and $w_j = \frac{1}{f_j}$ is the inverse frequency of expert j 's assigned region, where f_j is the
1234 fraction of samples assigned to expert j in D_{val} .

1235 At inference time, the router selects a single expert E_{j^*} based on the hard assignment, and the final
1236 prediction is:

1237
1238
1239 $\hat{y} = E_{j^*}(h_\theta(x))$ (18)
1240

1241 This hard routing strategy offers several advantages: it prevents distribution mixing that could degrade
1242 expert specialization, reduces computation by evaluating only one expert at inference, provides

1242 interpretable routing decisions, and maintains clear accountability for predictions. The complete
 1243 RISE framework is summarized in Algorithm 1 for training and Algorithm 2 for inference.
 1244

1245 D.2 TRAINING DETAILS

1246 Experiments were run on an AWS ml.g6.24xlarge instance equipped with 4 NVIDIA GPUs. For all
 1247 baseline DIR models, we use official released model weights or reproduce their best configuration
 1248 using the official implementations. For the model architecture, we froze the backbone network
 1249 (ResNet-50 for images, pretrained on ImageNet; BiLSTM with GloVe embeddings for text) and
 1250 implemented expert networks with two fully connected layers (dimensions: 2048,512,1) with ReLU
 1251 activation and dropout (0.2) for ResNet-50. The router network consists of three linear layers
 1252 with ReLU activation and a final softmax layer. Expert training was conducted for 50 epochs
 1253 using the Adam optimizer with a learning rate of 3e-5, utilizing a batch size of 64. For image
 1254 datasets, we applied standard augmentations including random horizontal flips, crops, rotations, affine
 1255 transformations, and color jittering, followed by normalization. Text data was processed using SpaCy
 1256 tokenization with a maximum sequence length of 40.
 1257

1258 Hyperparameters were tuned through grid search, exploring different numbers of experts ($K' \in 2, 5]$),
 1259 upsampling ratios (Upsample (α) $\in [1, 5]$) based primarily on validation's overall MAE. For Dataset
 1260 A (Moschoglou et al. (2017)) and Dataset B (Rothe et al. (2018b)) datasets, we set $K' = 3$ experts,
 1261 with one expert assigned to the left tail, one to the right tail, and one for the majority region. The
 1262 upsampling ratio was set to 3 for Dataset A (Moschoglou et al. (2017)) and 2 for Dataset B (Rothe
 1263 et al. (2018b)). For the STS dataset using the RankSim baseline, we used $K' = 2$ experts, identifying
 1264 a one-sided under-performing region with an upsampling ratio of 3, while $K' = 3$ experts with
 1265 upsampling ratio of 3 were chosen for LDS+FDS and SRL baselines. The number of experts (K')
 1266 and their assignments were determined based on the baseline model's loss-label distribution and can
 1267 vary depending on model performance. This approach ensures we only train additional experts for
 1268 regions where the baseline model underperforms. Further, identified minority regions for experts
 1269 may differ across baseline models due to variations in their learned representations and performance
 1270 characteristics.

1271 E ADDITIONAL EXPERIMENTAL RESULTS

1272 E.1 RISE PERFORMANCE ON ADDITIONAL DATASETS

1273 To further demonstrate the effectiveness of RISE, we evaluate our method on additional datasets
 1274 beyond Dataset A (Moschoglou et al. (2017)). Table 9 presents results on Dataset B Rothe et al.
 1275 (2018b) (evaluated using MAE, GMEAN, and MSE) and STS-B (evaluated using MAE, Pearson
 1276 Correlation, and Spearman Correlation). Additionally, Table 10 shows the MAE and bMAE metrics
 1277 the UCI-Abalone dataset.
 1278

1279 E.2 BALANCED METRICS FOR RISE

1280 To address the challenges of evaluating models on imbalanced data distributions, particularly for tail
 1281 labels, we employ three balanced metrics as defined in Ren et al. (2022). These metrics are designed
 1282 to provide a more equitable assessment across all data regions by dividing the label space into even
 1283 sub-regions, enabling a fairer evaluation.
 1284

1285 The balanced Mean Squared Error (bMSE) is formulated as:
 1286

$$1287 \text{bMSE} = -\log p_{\text{train}}(y|x; \theta) = -\log p_{\text{bal}}(y|x; \theta) \cdot \frac{p_{\text{train}}(y)}{\int_Y p_{\text{bal}}(y'|x; \theta) \cdot p_{\text{train}}(y') dy'} \quad (19)$$

1288 This formulation comprises two components: the standard MSE loss and a balancing term to mitigate
 1289 distribution mismatch between training and testing. Balanced metrics such as balanced Mean Absolute
 1290 Error (bMAE) and balanced Geometric Mean Error (bGMEAN) are used to fairly assess performance
 1291 across regions. bMAE averages errors within each sub-region or bins before computing the overall
 1292 mean; formally for B bins with j^{th} bin containing N_j datapoints with y being the golden label and \hat{y}
 1293 being the prediction, eq. 20 describes the formula for bMAE computation.
 1294

1296 **Table 9:** Results on Dataset B (Rothe et al. (2018b)) and STS-B dataset. The best baseline result for
 1297 each metric and data subset is in **red**, best RISE version in **blue**, and the overall best result is in **bold**.
 1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318	L1 (MAE) \downarrow				GMEAN \downarrow				MSE \downarrow			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
Dataset B												
<i>Baseline Methods</i>												
VANILLA	8.04	7.21	15.18	25.89	4.53	4.13	10.77	18.80	137.82	108.62	365.43	954.03
BalancedMSE	8.10	7.57	12.27	22.98	4.68	4.46	7.05	13.17	139.70	117.19	305.12	848.52
LDS+FDS	7.68	7.07	12.78	21.87	4.33	4.07	7.48	12.72	129.18	105.55	313.90	785.49
RankSIM	7.68	7.12	12.30	21.46	4.33	4.12	6.61	12.47	129.12	106.19	304.08	799.94
SRL	7.71	7.10	12.81	21.52	4.32	4.09	7.01	13.58	133.16	107.77	339.95	771.71
<i>RISE Methods</i>												
VANILLA+RISE	8.11	7.24	14.98	25.00	4.73	4.17	11.68	17.67	136.60	110.18	319.45	934.62
BalancedMSE+RISE	8.25	7.56	12.87	22.08	4.90	4.58	7.43	13.03	137.13	111.55	309.90	704.25
LDS+FDS+RISE	7.71	7.09	12.94	21.60	4.35	4.08	7.68	13.31	129.84	105.13	316.23	779.27
RankSIM+RISE	7.67	7.07	12.29	21.46	4.32	4.11	6.63	12.53	129.11	106.23	303.55	799.58
SRL+RISE	7.70	7.18	11.92	20.92	4.34	4.15	6.41	11.74	129.20	107.31	294.51	783.00
1310 1311 1312 1313 1314 1315 1316 1317 1318	L1 (MAE) \downarrow				Pearson Correlation (%) \uparrow				Spearman correlation (%) \uparrow			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
STS-B												
<i>Baseline Methods</i>												
LDS+FDS	0.77	0.72	0.98	0.75	76.27	74.08	66.07	76.60	76.27	70.75	54.95	74.88
RankSIM	0.75	0.75	0.77	0.67	77.28	72.15	69.32	86.84	77.39	69.57	48.05	89.34
SRL	0.89	0.85	1.07	0.95	68.83	62.98	63.96	73.65	68.92	59.72	51.07	82.14
<i>RISE Methods</i>												
LDS+FDS+RISE	0.75	0.73	0.86	0.68	76.38	72.05	68.81	80.92	75.26	69.31	54.09	79.68
RankSIM+RISE	0.74	0.73	0.75	0.67	77.50	72.16	72.06	86.91	77.41	69.54	45.70	90.15
SRL+RISE	0.84	0.83	0.91	0.81	70.14	64.33	64.83	74.58	69.87	61.26	47.66	76.61

1319 **Table 10:** Mean Absolute Error (MAE) results on UCI-Abalone dataset. Lower values indicate better
 1320 performance. The best of the baseline and baseline+RISE pair is in **bold** and the best overall metric
 1321 is underlined.
 1322

1323 1324 1325 1326 1327 1328 1329 1330 1331	Method	MAE \downarrow			
		Many	Medium	Few	All
VANILLA	1.77	5.46	9.98	2.56	
VANILLA + RISE	<u>1.59</u>	<u>5.19</u>	<u>9.75</u>	<u>2.34</u>	
BalancedMSE	2.50	5.41	4.61	3.43	
BalancedMSE + RISE	<u>1.30</u>	<u>2.35</u>	<u>4.53</u>	<u>1.53</u>	
LDS+FDS	2.80	4.44	7.64	3.18	
LDS+FDS + RISE	<u>2.07</u>	<u>2.91</u>	<u>7.16</u>	<u>2.30</u>	

$$bMAE = \frac{1}{B} \sum_{j=1}^B \frac{1}{N_j} \sum_{i=1}^{N_j} \|y - \hat{y}\| \quad (20)$$

1337 bGMEAN is formulated similarly but uses the geometric mean instead of MAE to highlight disparities
 1338 across regions. These metrics are especially important for long-tailed distributions, where standard
 1339 metrics may disproportionately reflect majority class performance. For our purposes, we chose
 1340 to use bMAE to compare different RISE configurations. Due to space limitations for Dataset A
 1341 (Moschoglou et al. (2017)), we had only reported the SRL result in the main paper. Therefore, we
 1342 present the bMAE metric across different baselines in Table 11. Similarly we provide bMAE metrics
 1343 for Dataset B (Rothe et al. (2018b)) and STS-B in 12, and the balanced metrics for UCI-Abalone in
 1344 13.

1345
 1346
 1347
 1348
 1349

1350 **Table 11:** bMAE Results: Baseline vs RISE Methods on Dataset A (Moschoglou et al. (2017)). The
 1351 best of the baseline and baseline+RISE pair is in **bold** and the best overall metric is underlined.
 1352

Method	Baseline Methods				Baseline + RISE Methods			
	All	Many	Med	Few	All	Many	Med	Few
VANILLA	13.14	9.96	12.85	19.81	12.84	9.40	11.66	20.62
BalancedMSE	8.70	8.44	8.96	11.43	8.98	7.23	8.16	13.06
LDS+FDS	8.79	6.91	8.28	12.94	8.40	6.79	8.09	11.87
RankSIM	8.06	6.49	7.85	11.40	7.92	6.58	7.36	11.01
SRL	8.32	6.64	8.34	11.74	7.39	6.00	7.25	10.33

1360
 1361 **Table 12:** Balanced Mean Absolute Error (bMAE) results on Dataset B (Rothe et al. (2018b)) and
 1362 STS-B dataset. Lower values indicate better performance. The best of the baseline and baseline+RISE
 1363 pair is in **bold** and the best overall metric is underlined.
 1364

Method	Baseline				Baseline + RISE			
	All	Many	Med	Few	All	Many	Med	Few
Dataset B (Rothe et al. (2018b))								
VANILLA	13.93	7.32	15.92	32.80	13.21	7.38	14.97	30.90
BalancedMSE (Ren et al. (2022))	12.65	7.64	12.69	28.10	12.54	7.62	12.47	28.10
LDS+FDS (Yang et al. (2021b))	12.53	7.14	13.25	28.65	12.42	7.17	13.21	27.95
RankSIM (Gong et al. (2022))	12.56	7.19	12.80	28.95	12.56	7.18	12.79	27.97
SRL (Dong et al. (2025))	12.30	7.18	13.09	27.54	12.28	7.14	12.32	26.27
STS-B								
LDS+FDS (Yang et al. (2021b))	0.77	0.73	0.84	0.79	0.73	0.74	0.77	0.70
RankSIM (Gong et al. (2022))	0.72	0.76	0.72	0.66	0.71	0.74	0.71	0.65
SRL (Dong et al. (2025))	0.87	0.85	0.88	0.88	0.80	0.84	0.76	0.66

1376 **Table 13:** Balanced Mean Absolute Error (bMAE) results on UCI-Abalone dataset. Lower values
 1377 indicate better performance. The best of the baseline and baseline+RISE pair is in **bold** and the best
 1378 overall metric is underlined.
 1379

Method	bMAE ↓			
	Many	Medium	Few	All
VANILLA	1.68	5.42	9.75	4.44
VANILLA + RISE	1.58	5.20	9.74	4.32
BalancedMSE	1.43	2.26	4.86	2.28
BalancedMSE + RISE	1.31	2.23	4.86	2.21
LDS+FDS	2.64	4.66	7.64	4.22
LDS+FDS + RISE	2.00	4.18	7.64	3.74

E.3 COMPLETE ABLATION RESULTS

1391 For brevity, the main paper only presented the L1 (MAE) metric for various ablations on Dataset A.
 1392 In this section, we present the results across multiple metrics. Table 14 shows the complete ablation
 1393 for different RISE-Train Strategies, Table 15 shows the ablation for different RISE-Infer strategies,
 1394 and lastly, Table 16 provides complete results comparing RISE with ensembles with similar and
 1395 increased capacity.

1396 To strengthen our findings and validate the optimal RISE strategy beyond the Dataset A (Moschoglou
 1397 et al. (2017)) dataset, we present comprehensive ablation studies on the Dataset B (Rothe et al.
 1398 (2018b)) dataset. Table 17 demonstrates that RISE (T2) consistently outperforms RISE (T1) across
 1399 all metrics (MAE, GMEAN, and MSE) and data subsets, confirming the superiority of the T2 training
 1400 configuration observed on Dataset A (Moschoglou et al. (2017)). Furthermore, Table 18 provides
 1401 detailed architectural ablation results, showing that the optimal configuration uses K=2 experts
 1402 with an upsampling ratio of 3, which achieves the best overall performance with an MAE of 7.67.
 1403 Additionally, Table 19 examines different inference strategies, revealing that the held-out-based router
 1404 (I3) consistently outperforms both expert averaging (I1) and train-based routing (I2), achieving the

best results across all metrics and data subsets with significant improvements in the Few subset. These results on Dataset B (Rothe et al. (2018b)) corroborate our Dataset A (Moschoglou et al. (2017)) findings and demonstrate the robustness of our proposed RISE methodology across different long-tailed regression datasets.

Table 14: Complete ablation of RISE-Train on Dataset A (Moschoglou et al. (2017)) with SRL (Dong et al. (2025)) backbone, across multiple metrics. Best results in **bold**.

Method	L1 (MAE) ↓				GMEAN ↓				MSE ↓			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
RISE (T1)	7.23	6.77	7.95	9.61	4.44	4.15	4.94	6.19	92.54	80.12	110.96	158.86
RISE (T2)	6.57	6.16	7.36	8.30	3.61	3.40	4.14	4.33	82.01	70.88	100.90	134.93

Table 15: Complete ablation of RISE inference strategies with SRL backbone on Dataset A, across multiple metrics. Best results in **bold**

Method	L1 (MAE) ↓				GMEAN ↓				MSE ↓			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
Baseline SRL	7.23	6.64	8.28	9.85	4.53	4.17	5.32	6.35	91.79	77.20	115.83	163.15
Expert average (I1)	7.23	6.72	8.13	9.54	4.51	4.20	5.16	6.16	91.73	78.85	112.50	156.00
Train-based Router (I2)	7.26	6.61	8.34	10.33	4.56	4.15	5.48	6.76	92.11	76.48	116.26	173.01
Held-out-based Router (I3)	6.57	6.16	7.36	8.30	3.61	3.40	4.14	4.33	82.01	70.88	100.90	134.93
Train+Held-out Router (I4)	7.24	6.65	8.31	9.98	4.55	4.19	5.34	6.37	92.25	75.37	116.51	165.69
Train+Held-out Baseline	7.18	6.62	8.15	9.84	4.42	4.11	5.09	5.92	90.79	76.68	112.53	163.86

Table 16: Complete comparison of RISE vs. traditional ensembles on Dataset A, across multiple metrics. Best results in **bold**

Experiment	Additional Parameters	MSE ↓				L1 (MAE) ↓			
		All	Many	Median	Few	All	Many	Median	Few
<i>SRL</i>	0	91.79	77.20	115.83	163.15	7.23	6.64	8.28	9.85
<i>SRL+RISE</i> (K=3)	2,100,224	80.72	69.06	99.88	137.95	6.45	6.00	7.22	8.49
<i>SRL</i> : 3 ensemble	3,150,336	91.66	77.04	115.65	163.43	7.22	6.63	8.28	9.86
<i>SRL</i> : 5 ensemble	5,250,560	91.56	76.75	115.83	164.31	7.22	6.62	8.30	9.90

Table 17: Ablation results for Dataset B Rothe et al. (2018b) comparing different RISE-TRAIN configurations. The overall best result is in **bold**.

Method	L1 (MAE) ↓				GMEAN ↓				MSE ↓			
	All	Many	Median	Few	All	Many	Median	Few	All	Many	Median	Few
RISE (T1)	7.94	7.46	12.66	22.75	4.50	4.33	6.89	14.66	139.69	118.35	339.35	829.19
RISE (T2)	7.67	7.11	12.29	21.46	4.32	4.11	6.63	12.53	129.11	106.23	303.55	799.58

Table 18: Ablation results for K=2 with varying upsampling rates (left) and for $\alpha=3$ with varying expert numbers (K) (right) on Dataset B (Rothe et al. (2018b)). L1 (MAE) metric is shown. The overall best result is in **bold**.

Config	L1 (MAE) ↓				Config	L1 (MAE) ↓			
	All	Many	Median	Few		All	Many	Median	Few
$\alpha=1$	7.86	7.17	13.67	23.15	K=2	7.67	7.11	12.29	21.46
$\alpha=2$	7.81	7.15	13.35	22.71	K=3	7.69	7.17	11.89	20.90
$\alpha=3$	7.67	7.11	12.29	21.46	K=4	7.78	7.20	12.61	22.27
$\alpha=4$	7.70	7.12	12.48	21.64	K=5	8.28	7.43	15.67	25.46
$\alpha=5$	7.68	7.12	12.55	21.79					

1458 **Table 19:** Ablation results comparing different RISE-INFERENCE configurations on Dataset
 1459 B (Rothe et al. (2018b)). The best baseline result for each metric and data subset is in **red**, and the
 1460 overall best result is in **bold**.

Method	L1 (MAE) ↓				GMEAN ↓				MSE ↓			
	All	Many	Median	Few	All	Many	Median	Few	All	Many	Median	Few
<i>Baseline Methods</i>												
RankSIM	7.68	7.12	12.30	21.46	4.33	4.12	6.61	12.47	129.12	106.19	304.08	799.94
<i>RISE Inference Strategies</i>												
Expert average (I1)	8.32	7.62	14.22	17.33	4.79	4.47	8.91	17.33	143.35	117.02	351.47	855.11
Train-based Route (I2)	8.00	7.37	13.37	14.28	4.57	4.30	7.97	14.28	135.82	111.01	329.48	826.43
Held-out-based router (I3)	7.67	7.11	12.29	12.53	4.32	4.11	6.63	12.53	129.11	106.23	303.55	799.58

E.4 RISE PERFORMANCE WITH BEST-PERFORMING ROUTER CONFIGURATION

To assess the robustness of our approach, we perform five independent experimental runs and report the mean and standard deviation for Dataset A, B & STS-B on each performance metric in Table 20 and the balanced metrics with error bars for Dataset A are reported in Table 21. This evaluation provides statistical insight into the consistency and reliability of the results. For each run, the router is trained and the backbone model achieving the highest routing accuracy on the validation set D_{val} is selected for reporting. Router with the SRL backbone is picked for the the Dataset A (Moschoglou et al. (2017)) dataset, while RankSim backbone is utilized for both IMDB and STS datasets.

Our proposed RISE paradigm consistently outperforms its corresponding baseline methods across multiple metrics, with particularly notable gains in medium- and few-shot regions—where imbalanced regression models typically underperform. These improvements are statistically significant, often exceeding standard error margins. For instance, on the Dataset A (Moschoglou et al. (2017)) dataset, SRL+RISE achieves a 13.7% reduction in Few-shot MAE (9.85 → 8.50) and a 12.6% reduction in Medium-shot MAE (8.35 → 7.30), alongside a 28.4% improvement in Few-shot GMEAN (6.34 → 4.54). Similar trends are observed in Dataset B (Rothe et al. (2018b)), where BalancedMSE+RISE lowers Few-shot MAE by 9.8% (23.24 → 20.97), and in STS, where LDS+FDS+RISE improves Medium-shot MAE by 11.2% (0.98 → 0.87).

While RISE generally maintains or improves performance in majority (Many-shot) regions, there are isolated instances where baseline models marginally outperform RISE. For example, in Dataset A (Moschoglou et al. (2017)), RankSIM achieves a slightly lower Many-shot MAE (6.48 vs. 6.56), and in Dataset B (Rothe et al. (2018b)), LDS+FDS reports a marginally better Many-shot MSE (106.61 vs. 107.06). However, these differences are minor and fall within overlapping standard deviation intervals.

Importantly, RISE demonstrates strong generalization by significantly improving performance in minority regions while preserving accuracy on majority classes. This balance highlights the effectiveness of RISE in addressing the fundamental challenge of imbalanced regression, offering a scalable and principled solution for real-world settings.

F BROADER IMPACT

RISE offers a practical and efficient alternative to end-to-end training by leveraging pre-trained models. Unlike typical deep learning approaches, it requires training only the expert heads and router network while keeping the backbone frozen. This lightweight design makes it feasible for large-scale models and suitable for scenarios where full retraining is impractical. While our experiments used the full training set, RISE can potentially be adapted for final-layer tuning using only a small validation set, as supported by recent adaptation methods (Kirichenko et al. (2023)).

RISE differs from standard fine-tuning by targeting specific regions of poor performance—often underrepresented or minority subgroups—through expert specialization. This targeted improvement enhances fairness, particularly in sensitive applications like healthcare or finance, where disparities in prediction can have serious consequences. By improving minority performance without sacrificing majority accuracy, RISE moves toward more equitable and efficient machine learning systems.

Table 20: Comparison of RISE-paired with the baseline methods across Dataset A (Moschoglou et al. (2017)), Dataset B Rothe et al. (2018b), and STS datasets. Results show MAE, GMEAN, and MSE metrics for different data segments (All, Many-shot, Medium-shot, Few-shot). Values are reported as mean \pm standard deviation. Best results for each metric and data subset are in bold, we also report the router accuracy for each RISE configuration in parentheses.

Method	MAE \downarrow				GMEAN \downarrow				MSE \downarrow			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
Dataset A												
VANILLA	11.06 ± 0.01	9.99 ± 0.05	12.90 ± 0.14	16.65 ± 0.29	7.08 ± 0.03	6.30 ± 0.05	8.41 ± 0.15	13.57 ± 0.34	203.69 ± 1.13	165.70 ± 2.32	275.75 ± 7.13	367.13 ± 11.50
VANILLA+RISE (0.60)	10.07 ± 0.04	9.20 ± 0.08	11.19 ± 0.14	15.33 ± 0.21	6.18 ± 0.04	5.52 ± 0.06	7.19 ± 0.11	11.99 ± 0.28	173.84 ± 0.77	146.76 ± 2.37	211.69 ± 6.80	328.25 ± 6.86
BalancedMSE	8.71 ± 0.06	8.45 ± 0.04	9.02 ± 0.20	10.30 ± 0.14	5.59 ± 0.06	5.45 ± 0.07	5.94 ± 0.14	6.07 ± 0.17	127.28 ± 1.57	118.71 ± 1.30	133.87 ± 5.93	191.28 ± 3.86
BalancedMSE+RISE (0.72)	7.62 ± 0.05	7.53 ± 0.04	7.90 ± 0.15	8.79 ± 0.15	4.58 ± 0.06	4.56 ± 0.06	4.63 ± 0.11	4.74 ± 0.19	106.40 ± 1.31	103.18 ± 1.89	111.68 ± 4.43	158.98 ± 3.92
LDS+FDS	7.47 ± 0.08	6.92 ± 0.11	8.23 ± 0.13	10.52 ± 0.25	4.77 ± 0.06	4.46 ± 0.07	5.30 ± 0.10	6.84 ± 0.23	95.23 ± 1.85	79.98 ± 2.73	118.33 ± 4.26	177.20 ± 5.09
LDS+FDS+RISE (0.56)	7.27 ± 0.08	6.85 ± 0.10	7.91 ± 0.13	9.54 ± 0.24	4.51 ± 0.06	4.30 ± 0.08	4.81 ± 0.10	6.08 ± 0.21	92.59 ± 1.81	80.18 ± 2.61	113.40 ± 4.31	153.64 ± 6.32
RankSIM	7.01 ± 0.04	6.48 ± 0.06	7.82 ± 0.08	9.85 ± 0.09	4.55 ± 0.04	4.14 ± 0.04	5.37 ± 0.05	7.04 ± 0.19	83.23 ± 0.77	71.48 ± 1.37	98.21 ± 3.40	154.26 ± 1.35
RankSIM+RISE (0.55)	6.93 ± 0.04	6.56 ± 0.06	7.34 ± 0.08	9.25 ± 0.09	4.34 ± 0.04	4.07 ± 0.04	4.79 ± 0.03	6.11 ± 0.17	82.47 ± 0.72	73.88 ± 1.35	90.22 ± 3.48	143.25 ± 1.37
SRL	7.20 ± 0.02	6.59 ± 0.04	8.35 ± 0.08	9.85 ± 0.25	4.50 ± 0.03	4.14 ± 0.03	5.34 ± 0.12	6.34 ± 0.33	91.67 ± 0.64	76.09 ± 0.55	118.91 ± 1.70	165.16 ± 6.24
SRL+RISE (0.87)	6.43 ± 0.02	5.96 ± 0.03	7.30 ± 0.09	8.50 ± 0.24	3.36 ± 0.06	3.13 ± 0.08	3.87 ± 0.10	4.54 ± 0.21	80.70 ± 0.65	67.98 ± 0.50	103.09 ± 1.60	140.35 ± 5.82
Dataset B												
VANILLA	8.04 ± 0.03	7.20 ± 0.03	15.18 ± 0.12	26.20 ± 0.15	4.51 ± 0.03	4.11 ± 0.02	10.69 ± 0.09	18.81 ± 0.25	137.96 ± 0.87	108.17 ± 0.63	366.46 ± 6.46	972.01 ± 7.55
VANILLA+RISE (0.85)	7.91 ± 0.03	7.22 ± 0.03	13.65 ± 0.13	24.73 ± 0.13	4.45 ± 0.03	4.15 ± 0.03	8.38 ± 0.03	16.59 ± 0.07	135.34 ± 0.22	108.90 ± 0.90	333.20 ± 6.67	925.69 ± 7.15
BalancedMSE	8.10 ± 0.03	7.56 ± 0.03	12.27 ± 0.17	23.24 ± 0.21	4.68 ± 0.01	4.45 ± 0.01	7.10 ± 0.11	13.25 ± 0.26	139.62 ± 1.55	116.96 ± 1.15	302.67 ± 9.31	868.31 ± 14.02
BalancedMSE+RISE (0.81)	7.73 ± 0.03	7.28 ± 0.02	12.12 ± 0.13	20.97 ± 0.25	4.41 ± 0.01	4.29 ± 0.01	6.82 ± 0.09	11.99 ± 0.37	136.36 ± 0.52	108.79 ± 1.50	300.42 ± 1.01	820.76 ± 8.45
LDS+FDS	7.70 ± 0.01	7.13 ± 0.01	12.54 ± 0.06	21.84 ± 0.39	4.32 ± 0.01	4.11 ± 0.01	7.55 ± 0.10	12.75 ± 0.38	129.91 ± 0.85	106.61 ± 0.57	310.90 ± 2.90	781.84 ± 21.50
LDS+FDS+RISE (0.81)	7.64 ± 0.02	7.11 ± 0.01	12.09 ± 0.06	21.24 ± 0.38	4.27 ± 0.01	4.07 ± 0.01	6.46 ± 0.09	12.17 ± 0.37	131.02 ± 0.86	301.96 ± 0.61	768.11 ± 3.08	20.25
RankSIM	7.69 ± 0.02	7.12 ± 0.02	12.33 ± 0.12	21.55 ± 0.37	4.33 ± 0.01	4.12 ± 0.01	6.65 ± 0.08	12.68 ± 0.41	129.14 ± 0.72	106.78 ± 0.43	302.58 ± 5.76	802.83 ± 28.19
RankSIM+RISE (0.8)	7.66 ± 0.02	7.11 ± 0.02	12.08 ± 0.12	20.38 ± 0.37	4.30 ± 0.01	4.09 ± 0.01	6.48 ± 0.09	12.54 ± 0.41	127.49 ± 0.74	108.04 ± 0.33	298.66 ± 5.90	800.72 ± 29.06
SRL	7.70 ± 0.02	7.13 ± 0.03	12.66 ± 0.09	21.94 ± 0.50	4.34 ± 0.01	4.13 ± 0.01	6.93 ± 0.04	12.93 ± 0.47	131.96 ± 1.11	107.38 ± 0.69	337.57 ± 5.73	768.85 ± 25.85
SRL+RISE (0.79)	7.68 ± 0.02	7.19 ± 0.02	11.98 ± 0.09	19.39 ± 0.50	4.35 ± 0.02	4.15 ± 0.01	6.43 ± 0.04	11.22 ± 0.04	130.07 ± 0.47	107.54 ± 1.11	298.14 ± 0.70	773.48 ± 5.63
STS-B												
LDS+FDS	0.77 ± 0.00	0.72 ± 0.01	0.98 ± 0.02	0.76 ± 0.02	0.38 ± 0.01	0.33 ± 0.01	0.67 ± 0.02	0.45 ± 0.01	0.91 ± 0.01	0.81 ± 0.01	1.06 ± 0.05	0.94 ± 0.06
LDS+FDS+RISE (0.51)	0.75 ± 0.00	0.73 ± 0.00	0.87 ± 0.02	0.66 ± 0.02	0.30 ± 0.02	0.25 ± 0.01	0.56 ± 0.01	0.34 ± 0.02	0.92 ± 0.02	0.79 ± 0.00	1.08 ± 0.06	0.76 ± 0.04
RankSIM	0.76 ± 0.00	0.74 ± 0.01	0.75 ± 0.01	0.64 ± 0.04	0.50 ± 0.02	0.47 ± 0.02	0.54 ± 0.01	0.37 ± 0.03	0.86 ± 0.01	0.86 ± 0.02	0.85 ± 0.01	0.63 ± 0.03
RankSIM+RISE (0.55)	0.73 ± 0.01	0.73 ± 0.01	0.75 ± 0.01	0.63 ± 0.05	0.39 ± 0.01	0.37 ± 0.02	0.54 ± 0.02	0.36 ± 0.04	0.92 ± 0.02	0.84 ± 0.02	0.85 ± 0.02	0.67 ± 0.09
SRL	0.89 ± 0.01	0.84 ± 0.01	1.07 ± 0.04	0.98 ± 0.07	0.63 ± 0.02	0.57 ± 0.02	0.79 ± 0.05	0.69 ± 0.09	1.17 ± 0.02	1.07 ± 0.02	1.57 ± 0.08	1.30 ± 0.12
SRL+RISE (0.57)	0.82 ± 0.01	0.80 ± 0.00	0.93 ± 0.03	0.76 ± 0.07	0.43 ± 0.01	0.39 ± 0.02	0.70 ± 0.04	0.36 ± 0.05	1.06 ± 0.018	1.01 ± 0.01	1.24 ± 0.08	1.14 ± 0.17

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580

1581 **Table 21:** Comparison of RISE with baseline methods for Dataset A (Moschoglou et al. (2017)) with
 1582 balanced metrics. Values are reported as mean \pm standard deviation. Best results for each metric and
 1583 data subset are in bold.

1584

Method	bMAE \downarrow				bGMEAN \downarrow				bMSE \downarrow			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
Dataset A												
VANILLA	13.18 ± 0.06	9.99 ± 0.05	12.94 ± 0.16	19.84 ± 0.25	7.30 ± 0.08	6.30 ± 0.05	8.41 ± 0.15	13.57 ± 0.34	271.42 ± 3.33	165.70 ± 2.32	276.55 ± 8.22	483.80 ± 10.75
VANILLA+RISE	12.15 ± 0.04	9.20 ± 0.08	11.18 ± 0.15	18.81 ± 0.17	6.10 ± 0.08	5.52 ± 0.06	7.19 ± 0.11	11.99 ± 0.28	242.73 ± 2.29	146.76 ± 2.37	210.97 ± 7.28	458.86 ± 8.16
BalancedMSE	9.35 ± 0.07	8.45 ± 0.04	8.99 ± 0.22	11.40 ± 0.14	6.44 ± 0.10	5.45 ± 0.07	5.94 ± 0.14	6.07 ± 0.17	153.18 ± 1.89	118.71 ± 1.30	132.34 ± 6.34	236.83 ± 3.38
BalancedMSE+RISE	8.44 ± 0.07	7.53 ± 0.04	7.82 ± 0.17	10.61 ± 0.16	5.35 ± 0.11	4.56 ± 0.06	4.63 ± 0.11	4.70 ± 0.19	134.30 ± 1.72	103.18 ± 1.89	110.51 ± 4.80	217.58 ± 3.79
LDS+FDS	9.35 ± 0.07	8.45 ± 0.04	8.99 ± 0.22	11.40 ± 0.14	5.74 ± 0.11	5.45 ± 0.07	5.94 ± 0.14	6.07 ± 0.17	153.18 ± 1.89	118.71 ± 1.30	132.34 ± 6.34	236.83 ± 3.38
LDS+FDS+RISE	8.31 ± 0.07	6.85 ± 0.10	7.91 ± 0.14	11.55 ± 0.25	5.61 ± 0.09	4.30 ± 0.08	4.81 ± 0.10	6.08 ± 0.31	122.83 ± 1.05	80.18 ± 2.61	112.24 ± 4.48	216.64 ± 6.09
RankSIM	8.07 ± 0.04	6.48 ± 0.06	7.81 ± 0.08	11.46 ± 0.05	6.14 ± 0.07	4.14 ± 0.04	5.37 ± 0.05	7.04 ± 0.19	111.49 ± 0.47	71.48 ± 1.37	97.46 ± 3.37	202.09 ± 0.88
RankSIM+RISE	7.92 ± 0.03	6.56 ± 0.06	7.31 ± 0.08	11.08 ± 0.05	5.09 ± 0.06	4.07 ± 0.04	4.79 ± 0.03	6.11 ± 0.17	108.90 ± 0.43	73.88 ± 1.35	89.22 ± 3.45	192.92 ± 1.04
SRL	8.28 ± 0.04	6.59 ± 0.04	8.41 ± 0.08	11.65 ± 0.18	5.15 ± 0.06	4.14 ± 0.03	5.34 ± 0.12	6.34 ± 0.33	121.11 ± 1.26	76.09 ± 0.55	118.76 ± 1.58	214.45 ± 4.64
SRL+RISE	7.36 ± 0.04	5.96 ± 0.03	7.32 ± 0.09	10.24 ± 0.17	4.40 ± 0.05	3.13 ± 0.03	3.87 ± 0.12	4.54 ± 0.22	105.65 ± 1.26	67.98 ± 0.50	102.10 ± 1.50	184.75 ± 4.43

1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 G EXPERIMENTS DEMONSTRATING FUNCTIONAL HETEROGENEITY IN DIR 1621

1622 To provide stronger evidence that the head vs. tail regions in DIR datasets A and B (Moschoglou
 1623 et al. (2017); Rothe et al. (2018b)) correspond to fundamentally different predictive functions, we
 1624 conducted two additional experiments that directly target this concern: **(1) Freeze-and-Probe:** testing
 1625 feature transferability, and **(2) Gradient Cosine Similarity (GCS):** measuring optimization conflict.
 1626

1627 G.1 FREEZE-AND-PROBE: TESTING FEATURE TRANSFERABILITY 1628

1629 **Experimental Setup.** The goal of this experiment is to isolate *feature transferability* as the only
 1630 factor under study. To do so, we fix the entire ResNet-50 backbone in both models and train only
 1631 a newly initialized linear layer on the scarce Tail-Train data (e.g., label values < 15). By freezing
 1632 all convolutional layers, we eliminate effects from forgetting, overfitting, or capacity differences,
 1633 ensuring that any performance difference must arise solely from the quality of the underlying feature
 1634 representation.

1635 Both models are trained under identical conditions: identical linear probe architecture, identical L2
 1636 regularization, identical optimization hyperparameters, and identical early stopping based on the
 1637 Tail-Val set. The *only* difference is the source of the frozen backbone:

- 1639 • **Model B (General-Feature Baseline):** Frozen ImageNet-pretrained ResNet-50 backbone.
 1640 This represents strong, general-purpose features not biased toward any label region in our
 1641 dataset.
- 1642 • **Model A-Probe (Head-Feature Test):** ResNet-50 backbone first fine-tuned *only on the*
 1643 *Head region* (e.g., label values 20–40), then frozen. This tests whether features specialized
 1644 for the head region transfer effectively to the tail.

1645 We train only the linear layer for both models using the same Tail-Train data and evaluate the best
 1646 checkpoint (chosen via Tail-Val early stopping) on the held-out Tail-Test set.

1648 **Table 22:** Freeze-and-Probe: Tail Test MAE Comparison

1650 Dataset	1651 ImageNet (B)	1652 Head-pretrained (A-Probe)	1653 Relative Drop
1652 <i>Dataset A</i>	3.1844 ± 0.06	4.7558 ± 0.07	33.00%
1653 <i>Dataset B</i>	2.2211 ± 0.01	2.9510 ± 0.01	24.00%

1655 **Observation.** As shown in Table 22, Model A-Probe performs substantially worse than Model B
 1656 on both datasets. Because all other variables are held fixed, this degradation cannot be attributed
 1657 to scarcity or overfitting. Instead, it provides a direct, unconfounded demonstration of **negative**
 1658 **transfer:** features optimized for the Head region are not only suboptimal but actively harmful for
 1659 Tail predictions, supporting our claim that the two regions correspond to fundamentally different
 1660 predictive functions.

1662 G.2 GRADIENT COSINE SIMILARITY (GCS): EVIDENCE OF OPTIMIZATION CONFLICT 1663

1664 **Initial MSE-Based Analysis (Confounded).** We first computed GCS using the standard MSE loss
 1665 between balanced batches from the head and tail regions for Dataset A using a monolithic model
 1666 with ResNet-50 as backbone. Let $\mathcal{B}_h, \mathcal{B}_t$ be two balanced mini-batches sampled from the head and
 1667 tail regions. For a parameter vector θ (or a chosen layer’s parameters) define

$$1668 \quad g_h = \frac{1}{|\mathcal{B}_h|} \sum_{(x,y) \in \mathcal{B}_h} \nabla_{\theta} \ell(x, y), \quad g_t = \frac{1}{|\mathcal{B}_t|} \sum_{(x,y) \in \mathcal{B}_t} \nabla_{\theta} \ell(x, y).$$

1671 The Gradient Cosine Similarity (GCS) is

$$1673 \quad \text{GCS}(g_h, g_t) = \frac{\langle g_h, g_t \rangle}{\|g_h\|_2 \|g_t\|_2}.$$

In practice we compute GCS per-layer and for the final- fully connected layer (fc) by flattening the corresponding parameter gradients into vectors. We report epoch-wise means over multiple runs (10 random seeds) and over several balanced mini-batches.

As shown in Table 23, deeper layers exhibit strongly negative GCS values during training. However, this signal is *mechanically confounded*. For a monolithic regressor $\hat{y} = w^\top \phi(x)$ with loss $\ell = \frac{1}{2}(y - \hat{y})^2$, the gradient

$$\nabla_w \ell = -(y - \hat{y}) \phi(x)$$

is scaled by the *signed residual*. Since head and tail typically lie on opposite sides of the model’s current prediction, their residuals have opposite signs, forcing the gradients to be antiparallel even when the underlying feature gradients $\nabla \phi$ are aligned. Thus, negative MSE-GCS does not reliably indicate functional conflict; it is induced by the regression loss itself.

Table 23: Average GCS (Head vs. Tail) using MSE Loss on Dataset A

Epoch	layer1	layer4	fc
1	+0.0069	-0.0361	-0.0493
10	+0.0605	-0.0567	-0.0551
50	-0.0159	-0.3198	-0.9336
100	+0.0364	-0.2923	-0.9815

Unconfounded Experimental Setup (CE Surrogate). To obtain a clean measure of optimization alignment, we follow the surrogate strategy of Niu et al. (2016): discretize the continuous target into 101 bins and train a 101-way classifier using cross-entropy. The gradient in this setting,

$$\nabla \ell = \hat{\mathbf{p}} - \mathbf{p},$$

contains no residual-dependent sign flip, so the cosine similarity of the gradient vectors: $\cos(\nabla \ell_{\text{head}}, \nabla \ell_{\text{tail}})$ directly reflects true optimization conflict. We compute GCS at every epoch during joint training on head and tail batches.

Table 24: Average GCS (Head vs. Tail) using CE Loss on Dataset A

Epoch	layer1	layer4	fc
1	-0.0147	-0.0527	-0.1799
10	-0.0370	-0.0707	-0.5965
50	+0.0276	-0.1183	-0.4788
100	+0.0444	-0.1914	-0.4905

Table 25: Average GCS (Head vs. Tail) using CE Loss on Dataset B

Epoch	layer1	layer4	fc
1	+0.0283	-0.0404	-0.1258
10	+0.0132	-0.0512	-0.3165
50	+0.0154	-0.1081	-0.3754
100	+0.0121	-0.1104	-0.3408

Observation. Across training, deeper layers (layer4, fc) exhibit persistently negative GCS values across both datasets (approximately -0.18 to -0.60 even in early epochs), while lower layers remain near zero (-0.03 to $+0.04$). This aligns with architectural intuition: early CNN layers encode generic edges/textures shared across the label space, whereas higher layers encode semantic attributes that differ sharply between tail and head regions. Persistent negative GCS indicates that updates lowering head loss tend to increase tail loss, and vice versa, revealing that the two regions exert inherently conflicting optimization pressures (Wang et al. (2020b)).

Combined with our Freeze-and-Probe results, this provides direct causal evidence that head and tail correspond to distinct predictive functions, and that the head–tail tradeoff arises from *task conflict*, not data scarcity.

1728 H EXPERIMENTS USING 80-20 SPLIT OF TRAINING DATA

1730 To further demonstrate that our performance gains do not stem from using held-out validation data,
 1731 we conducted an additional ablation experiment on Dataset A Moschoglou et al. (2017).

1733 **Experimental Setup:** We designed the experiment as follows:

- 1734 **Data Splitting:** We split the original training set into two subsets: (i) train1 , comprising
 1735 80% of the training data, and (ii) train2 , a balanced dataset (Yang et al. (2021a))
 1736 containing the remaining 20%.
- 1737 **Baseline Training:** We trained all baselines from scratch on train1 , using train2 as the
 1738 validation set for LDS-FDS² and SRL³, using the code publicly released by the respective
 1739 authors. We denote these models as LDS-FDS(*train-split*) and SRL(*train-split*) respectively.
- 1740 **RISE Training:** On these newly trained baselines, we applied our three-stage RISE ap-
 1741 proach: (i) RISE-IDENTIFY on train2 to identify underperforming regions, (ii) RISE-
 1742 TRAIN on train1 to train expert models on the identified regions, and (iii) RISE-INFER
 1743 on train2 to train the routing mechanism. We denote this as RISE(*train-split*).

1745 **Results and Discussion:** Table 26 presents the results of this ablation study. We observe a consistent
 1746 trend across both methods: RISE(*train-split*) not only outperforms its corresponding baseline(*train-
 1747 split*) models but also surpasses the original baselines trained on the entire training data. This
 1748 finding strongly supports our claim that RISE’s performance improvements arise from its MOE based
 1749 architecture and principled identification and targeting of underperforming regions rather than from
 1750 exploiting additional validation data.

1751 **Table 26:** Ablation result on Dataset A by training baseline and corresponding RISE configuration
 1752 from scratch on 80% split of train dataset. The best result for baseline and corresponding RISE is in
 1753 **bold** with the router accuracy reported in brackets.

Method	L1 (MAE) \downarrow				GMEAN \downarrow				MSE \downarrow			
	All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
<i>SRL Methods</i>												
SRL-Original (on entire train)	7.23	6.64	8.28	9.85	4.53	4.17	5.32	6.35	91.79	77.20	115.83	163.15
SRL-Original+RISE (on entire train) (0.87)	6.57	6.16	7.36	8.30	3.61	3.40	4.14	4.33	82.01	70.88	91.20	134.93
SRL (<i>train1-split</i>)	7.36	6.60	8.84	10.53	4.62	4.11	5.88	7.21	94.42	76.03	127.43	176.77
SRL+RISE (<i>train1-split</i>) (0.74)	6.88	6.36	7.73	9.51	4.05	3.69	4.84	5.89	87.36	74.32	106.97	156.20
<i>LDS-FDS Methods</i>												
LDS-FDS-Original (on entire train)	7.47	6.91	8.27	10.58	4.77	4.44	5.33	6.87	95.32	79.71	118.52	178.58
LDS-FDS-Original+RISE (on entire train) (0.56)	7.28	6.79	8.07	9.72	4.49	4.25	4.88	6.04	92.79	78.88	116.49	158.63
LDS-FDS(<i>train1-split</i>)	7.71	6.78	8.83	12.96	4.95	4.39	5.77	9.47	99.51	75.47	126.50	248.01
LDS-FDS + RISE (<i>train1-split</i>) (0.58)	7.40	6.58	8.14	10.31	4.39	4.31	5.32	6.73	93.54	78.51	118.25	165.16

1766 I ADDITIONAL ROUTER TRAINING ABLATION

1769 We evaluate routers trained on: (i) training data only, (ii) held-out validation data (our proposed
 1770 approach), (iii) train+validation union, (iv) balanced training data, and (v) balanced training + valida-
 1771 tion. We include three baseline configurations: SRL trained on full training data, train+validation
 1772 union (matching RISE’s data access), and 80% of training data (matching RISE’s reduced training
 1773 set). Table 27 presents MAE performance and router accuracy on Dataset A:

1774 Analysis and Key Findings:

1775 **(1) Routing mechanism:** Comparing held-out validation router (6.57 MAE, 87% accuracy) versus
 1776 train+val union router (7.24 MAE, 45% accuracy)—where expert training is identical—isolates the
 1777 routing strategy’s contribution. **(2) Data volume:** To address whether RISE’s gains stem from using
 1778 validation data unavailable to baselines, we retrained SRL on the Train+Val union, giving it all data
 1779 RISE uses for meta-learning. Importantly, no RISE expert weights are trained on held-out data—it is

1781 ²<https://github.com/YyzHarry/imbalanced-regression>

³<https://github.com/yilei-wu/imbalanced-regression>

1782 **Table 27:** Complete router training ablation on Dataset A. Router accuracy measures the fraction of
 1783 samples correctly assigned to their ground-truth expert. Best results in bold.

Method	Router Acc.	All	Many	Med	Few
<i>Baselines</i>					
SRL baseline (full train)	-	7.23	6.64	8.28	9.85
SRL baseline (Train+Val union)	-	7.18	6.62	8.15	9.84
SRL baseline (80% train)	-	7.37	6.60	8.84	10.53
<i>RISE Variants</i>					
SRL + RISE (held-out val router)	0.87	6.57	6.16	7.36	8.30
SRL + RISE (20% train held-out)	0.74	6.88	6.36	7.73	9.51
SRL + RISE (train-based router)	0.43	7.26	6.61	8.34	10.33
SRL + RISE (train+val union router)	0.45	7.24	6.65	8.32	9.98

1795 reserved exclusively for meta-learning (region discovery and router training). The baseline achieves
 1796 minimal improvement (7.23 to 7.18 MAE, 0.7% reduction), while RISE achieves (7.23 to 6.57 MAE,
 1797 9.1% reduction). This demonstrates that RISE’s advantage stems from architectural separation of
 1798 expert training and meta-learning, not from privileged data access.**(3) Importance of held-out data:**
 1799 SRL baseline trained on 80% of data achieves 7.37 MAE, while SRL+RISE with 20% held-out
 1800 achieves 6.88 MAE (74% router accuracy). Despite using 20% less training data, RISE outperforms
 1801 the full-data baseline by 6.6%. This result aligns with recent work showing that held-out data enables
 1802 distinguishing memorization from generalization Bayat et al. (2025); Qiu et al. (2023) and effective
 1803 post-hoc model improvement (Kirichenko et al., 2023). Unlike classification methods that use
 1804 held-out data for reweighting or retraining a single model Liu et al. (2021); Qiu et al. (2023), RISE
 1805 uses it exclusively for meta-learning—identifying failure regions and training the router—ensuring it
 1806 remains an unbiased signal of generalization performance. This approach extends held-out-based
 1807 failure discovery to regression, where threshold-free identification and spatially contiguous regions
 1808 are essential. **(4) Router accuracy and performance correlation:** The strong correlation between
 1809 router accuracy (held-out approaches: 87%, 74% vs. training-based approaches: 43–45%) and
 1810 performance (6.57–6.88 vs. 7.24–7.26 MAE) confirms Theorem 2’s prediction. Routers trained on
 1811 training data cannot distinguish generalization failures from training artifacts; held-out data enables
 1812 genuine meta-learning where the router selects experts that *generalize* best, not those that memorize
 1813 best. The train+val union router (0.45 accuracy, 7.24 MAE) performs similarly to the train-based
 1814 router (0.43 accuracy, 7.26 MAE) despite more data, confirming that data separation, not volume, is
 1815 critical.

J ADDITIONAL EXPERIMENTS FOR FAIRNESS EVALUATION

1818 Apart from well-documented DIR metrics such as bMAE (Ren et al. (2022)) and GMEAN (Yang
 1819 et al. (2021b)) which provide a more robust and label-frequency agnostic evaluation of regression
 1820 models. In this section we provide evaluation results for RISE using other imbalanced regression
 1821 metrics such as SERA and RW-RMSE (Ribeiro & Moniz (2020); Silva et al. (2022)).

1822 SERA (Squared Error Relevance Area) and RW-RMSE (Relevance-Weighted Root Mean Squared
 1823 Error) are both measured using a relevance function (Torgo & Ribeiro (2007)) ($\phi : Y \rightarrow [0, 1]$) is a
 1824 continuous function mapping label space Y into a $[0, 1]$ scale of relevance where 0 and 1 represent
 1825 the minimum and maximum relevance. Torgo & Ribeiro (2007) introduced a way that uses box-plot
 1826 to automatically assign relevance to different labels. Once this mapping relevance function has
 1827 been identified, for a dataset $D = \{(x_i, y_i)\}_{i=1}^N$, with x_i and y_i being the feature and label space
 1828 respectively, we define SERA as

$$SERA = \int_0^1 \sum_{y_i \in D^t} (\hat{y}_i - y_i)^2 dt \quad (21)$$

1829 with D_t being defined as $D_t = \{(x_i, y_i) \in D \mid \phi(y_i) \geq t\}$. Similarly based on ϕ , we define
 1830 RW-RMSE as

$$RW - RMSE = \sqrt{\frac{\sum_{i=0}^N \phi(y_i)(\hat{y}_i - y_i)^2}{\sum_{i=0}^N \phi(y_i)}} \quad (22)$$

1836 For our implementation, we used IRon⁴, a public R implementation of SERA metric with `method`
 1837 = "extremes", `extr.type` = "both" and `coef` = 1.5 as hyper-parameters.
 1838

1839 We report the results using these metrics on Dataset A (Moschoglou et al. (2017)), Dataset B (Rothe
 1840 et al. (2018b)) and STS-B(Cer et al. (2017b)) in Table 28, 29 and 30 respectively. Across these tables,
 1841 we observe that the RISE framework consistently improves SERA and RW-RMSE errors over their
 1842 respective baseline.

1843 **Table 28:** Overall SERA and RW-RMSE comparison between baseline and RISE methods on Dataset
 1844 A (Moschoglou et al. (2017)) with the best results of baseline and corresponding RISE in **bold**.
 1845

Method	Baseline		RISE	
	SERA	RW-RMSE	SERA	RW-RMSE
Vanilla	185632.05	15.34	178765.91	15.06
BMSE	104793.37	11.53	86088.50	10.45
LDS-FDS	89469.81	10.65	81101.40	10.14
RankSIM	76067.22	9.82	72396.88	9.58
SRL	80512.74	10.10	68728.10	9.33

1853 **Table 29:** Overall SERA and RW-RMSE comparison between baseline and RISE methods on Dataset
 1854 B (Rothe et al. (2018a)) with the best results of baseline and corresponding RISE in **bold**.
 1855

Method	Baseline		RISE	
	SERA	RW-RMSE	SERA	RW-RMSE
Vanilla	1204812.95	14.09	1155859.68	13.85
BMSE	1199632.82	13.71	1060634.34	13.63
LDS-FDS	1085458.96	13.34	1065592.69	13.33
RankSIM	1086665.20	13.29	1038208.49	13.22
SRL	1113412.91	13.56	1061609.02	13.25

1863 **Table 30:** Overall SERA and RW-RMSE comparison between baseline and RISE methods on STS-B
 1864 (Cer et al. (2017b)) with the best results of baseline and corresponding RISE in **bold**.
 1865

Method	Baseline		RISE	
	SERA	RW-RMSE	SERA	RW-RMSE
LDS-FDS	286.58	1.11	261.85	1.06
RankSIM	305.22	1.14	264.67	1.06
SRL	327.53	1.18	288.28	1.11

1872 To further strengthen our fairness claims, we evaluate RISE on Dataset A and B by dividing the
 1873 datasets in three groups old ($y \geq 80$), adult ($y \in [18, 80)$) and young ($y < 18$), for each of these
 1874 groups (D_g) we calculate SERA metric, Normalized-SERA ($\text{Norm-SERA} = \frac{\text{SERA}(D_g)}{|D_g|}$) and MAE.
 1875 Further, we also calculate Worst-Case Disparity (WCD) as-

$$WCD = \text{Max}(\text{MAE}(D_i)) - \text{Min}(\text{MAE}(D_i)) \quad \forall i \in [1, |D_g|] \quad (23)$$

1879 WCD takes reference from the Statistical Parity Difference (SPD) Dwork et al. (2012), a key metric
 1880 implemented in toolkits like AI Fairness 360 (AIF360), using the maximum difference between
 1881 extreme group outcomes to identify bias. Tailored for regression, it quantifies the maximum disparity
 1882 in prediction error rather than measuring differences in positive outcome rates between groups. This
 1883 focus on error magnitude is crucial for assessing robust model performance for all groups, specifically
 1884 confirming that the system is not concentrating its largest prediction errors on any single subgroup
 1885 Sagawa et al. (2020).

1886 The results across these groups are provided for Dataset A in Table 31 and for Dataset B in 32. For
 1887 both the datasets, we consistently observe that SERA across the groups gets reduced as well as WCD
 1888 is reduced for RISE vis-a-vis the corresponding baseline

1889 ⁴<https://github.com/nunompmoniz/IRon>

1890 **Table 31:** SERA values and normalized SERA across groups, along with MAE per group and
 1891 worst-group disparity on Dataset A (Moschoglou et al. (2017)) with the best result of baseline and its
 1892 corresponding RISE configuration in **bold**.

1894	Young SERA		Adult SERA		Old SERA		MAE by Group			1893 WCD	
	Method	Raw	Normalized	Raw	Normalized	Raw	Normalized	Young	Adult	Old	
1896	Vanilla	47057.23	480.18	107441.23	57.92	41548.28	222.18	19.59	10.37	14.50	9.21
1897	Vanilla+RISE	36642.55	373.90	99623.81	53.71	32084.87	171.58	17.28	9.70	12.91	7.58
1898	LDS-FDS	22511.14	229.71	51426.41	27.72	15532.26	83.06	12.78	7.09	8.45	5.69
1899	LDS-FDS+RISE	18157.90	185.28	47482.65	25.60	15460.84	82.68	10.79	6.98	8.38	3.80
1900	RankSIM	16393.81	167.28	45531.07	24.55	14142.34	75.63	10.31	6.71	8.46	3.60
1901	RankSIM+RISE	15335.53	156.49	44271.32	23.87	12790.03	68.40	9.67	6.70	7.83	2.97
1902	SRL	15880.41	162.05	47009.29	25.34	17623.04	94.24	10.01	6.86	9.36	3.15
1903	SRL+RISE	13874.21	141.57	41224.47	22.22	13629.41	72.88	8.90	6.26	7.57	2.65

1904 **Table 32:** SERA values and normalized SERA across groups, along with MAE per group and
 1905 worst-group disparity on Dataset B (Rothe et al. (2018a)) with the best result of baseline and its
 1906 corresponding RISE configuration in **bold**.

1907	Young SERA		Adult SERA		Old SERA		MAE by Group			1908 WCD	
	Method	Raw	Normalized	Raw	Normalized	Raw	Normalized	Young	Adult	Old	
1910	Vanilla	338905.27	225.64	636982.43	70.50	228925.25	472.01	10.31	7.49	14.35	6.86
1911	Vanilla+RISE	334993.39	223.03	621537.61	68.79	199328.68	410.99	11.21	7.20	12.73	5.53
1912	LDS-FDS	293761.17	195.58	593789.73	65.72	197908.06	408.06	9.77	7.00	14.99	7.98
1913	LDS-FDS+RISE	293284.22	195.26	584400.34	64.68	187908.12	387.44	9.72	6.93	13.75	6.83
1914	RankSIM	298707.74	198.87	607310.86	67.22	180646.59	372.47	9.81	7.05	12.96	5.91
1915	RankSIM+RISE	268222.22	178.58	593226.72	65.66	176759.56	364.45	8.79	7.18	12.89	5.71
1916	SRL	281178.22	187.20	640468.17	70.89	191766.52	395.39	9.63	7.09	13.54	6.46
1917	SRL+RISE	270906.40	180.36	604839.63	66.94	185863.00	383.22	8.73	7.17	12.89	5.72

1918 K ADDITIONAL EXPERIMENT ON ENSEMBLE TRAINING

1919 In addition to comparing RISE with bagging ensemble models (Table 16), we conducted experiments
 1920 comparing RISE against boosting-based approaches, specifically AdaBoost.

1921 **AdaBoost Implementation:** Our AdaBoost implementation (Solomatine & Shrestha (2004)) employs
 1922 a frozen ResNet-50 backbone with multiple expert heads. Each expert is sequentially trained on
 1923 weighted bootstrap samples, where the algorithm adaptively reweights training instances based on age
 1924 group prediction errors. This enables subsequent experts to focus on poorly performing age ranges.
 1925 Final predictions are obtained by combining expert outputs using learned alpha weights proportional
 1926 to their individual performance. We trained ensembles with $k = 3$ and $k = 5$ experts using both
 1927 LDS-FDS and SRL loss functions, and compared their performance against RISE variants.

1928 **Results and Analysis:** Table 33 presents the comparative results. While AdaBoost outperforms both
 1929 the baseline and bagging methods (see Table 16), its performance gains are primarily concentrated in
 1930 the *all* and *many* data bands, with the *median* and *few* bands showing only marginal improvements
 1931 over the baseline. In contrast, RISE consistently outperforms all AdaBoost configurations across
 1932 all evaluation metrics and data frequency bands, achieving superior performance with significantly
 1933 fewer additional parameters. This demonstrates RISE’s ability to effectively handle underperforming
 1934 regions across the entire data distribution, not just the well-represented segments.

1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964

Table 33: Comparison of baseline and rise with over-parameterized AdaBoost ensemble configurations for Dataset A (Moschoglou et al. (2017)). The best result between baseline and corresponding AdaBoost configuration is in **bold** and the best overall result is presented in color **blue**.

Method	Extra Parameters	L1 (MAE) ↓			GMEAN ↓			MSE ↓					
		All	Many	Med	Few	All	Many	Med	Few	All	Many	Med	Few
LDS-FDS Methods													
LDS-FDS-Baseline	0	7.47	6.91	8.27	10.58	4.77	4.44	5.33	6.87	95.32	79.71	118.52	178.58
LDS-FDS+RISE	2,100,224	7.28	6.79	8.07	9.72	4.49	4.25	4.88	6.04	92.79	78.88	116.49	158.63
LDS-FDS-k=3	3,150,336	7.44	6.86	8.29	10.60	4.74	4.39	5.33	6.73	94.70	77.48	119.11	178.84
LDS-FDS-k=5	5,250,560	7.43	6.82	8.31	10.61	4.71	4.36	5.33	6.81	94.29	76.63	119.44	178.98
SRL Methods													
SRL-Baseline	0	7.23	6.64	8.28	9.85	4.53	4.17	5.32	6.35	91.79	77.20	115.83	163.15
SRL+RISE	2,100,224	6.57	6.16	7.36	8.30	3.61	3.40	4.14	4.33	82.01	70.88	91.20	134.93
SRL-k=3	3,150,336	7.17	6.61	8.28	9.84	4.52	4.16	5.34	6.34	90.57	76.17	115.79	163.15
SRL-k=5	5,250,560	7.15	6.59	8.28	9.85	4.51	4.13	5.33	6.34	89.78	74.18	115.83	163.18

1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997