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ABSTRACT

Given a training set that consists of multiple source domains, the goal of domain
generalization (DG) is to train the model to have generalization capability on the
unseen target domain. Although various solutions have been proposed, existing
ideas suffer from severe cross-domain data/class imbalance issues that naturally
arise in DG. Moreover, the performance of prior works are degraded in practice
where the gap between the style statistics of source and target domains is large.
In this paper, we propose a new strategy to handle these issues in DG. We first
propose style balancing, which strategically balances the number of samples for
each class across all source domains in the style-space, providing a great platform
for the model to get exposed to various styles per classes during training. Based on
the model trained with our style balancing, we also propose test-time style shifting,
which shifts the style of the test sample (that has a large style gap with the source
domains) to the nearest source domain that the model is already familiar with, to
further improve the prediction performance. Our style balancing and test-time style
shifting work in a highly complementary fashion, and can successfully work in
conjunction with various other DG schemes. Experimental results on benchmark
datasets show the improved performance of our scheme over existing methods.

1 INTRODUCTION

The huge success of deep convolutional neural networks (CNNs) relies on the assumption that the
domains of the training data and the test data are the same. However, this assumption does not hold
in practice. For example, in self-driving cars, although we may only have train images on sunny days
and foggy days during training (source domains), we would have to make predictions for images on
snowy days during testing (unseen target domain). As another example, we should sometimes make
predictions on art painting images as a target domain, although we only have photograph and cartoon
image datasets during training as source domains. Due to the practical significance of this problem
setup, the field of domain generalization (DG) is receiving considerable attention nowadays.

Given a training set that consists of multiple (or a single) source domains, the goal of DG is to
achieve generalization capability on the unseen target domain. Existing works tackle this problem
via meta-learning (Li et al., 2019; 2018a; Zhao et al., 2021), data augmentation (Nam et al., 2021;
Shankar et al., 2018; Yue et al., 2019; Zhou et al., 2020) or domain alignment (Li et al., 2018b;c;b;
Erfani et al., 2016). Recently, motivated by the observations (Huang & Belongie, 2017) that the
domain characteristic of data has a strong correlation with the feature statistics (or style statistics)
of the early layers of CNNs, the authors of (Zhou et al., 2021; Li et al., 2022; Zhang et al., 2022)
proposed to generate new style statistics during training via style augmentation. However, there are
two critical issues that limit the performance of current DG approaches, as described in Fig. 1.

Issue 1: Cross-domain data/class imbalance issues. First, existing methods potentially suffer from
cross-domain data/class imbalance issues that are unique to DG setups. When the number of training
samples for a specific domain is limited in a cross-domain data imbalance setup shown in Fig. 1 (a),
the domain diversity of the overall training set becomes limited, which results in reduced generaliza-
tion performance. Similarly, when the train data of a specific class is concentrated in one domain in a
cross-domain class imbalance setup of Fig. 1 (b), the domain diversity of this class becomes limited,
degrading the model performance. To see how critical these issues are, we compare the average
accuracy of the model on balanced PACS vs. imbalanced PACS in the following setting: given three
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Figure 1: DG-specific issues depicted in the style-space. Cross-domain data/class imbalance issues in Figs. 1(a)
and 1(b) reduce the domain diversity; both issues arise during training and degrade the generalization capability
of the model on the unseen domain. The issue in Fig. 1(c), which arises during testing, also degrades the
performance since the trained model is not familiar with the unseen domain that has a large style gap with the
source domains. For example, Sketch domain in Fig. 2 has a large style gap with other domains.

source domains, we removed 80% of train data of two Table 1: Effect of imbalance issue in PACS.
source domains (except the largest one) to model the im- MixStyle is adopted as a baseline. The pro-
balanced dataset, and constructed a balanced dataset hav- posed style balancing (SB) reduces the gap
ing the same number of train samples with the imbalanced ~With the balanced setting.

one. By adopting the well-known style-augmentation strat-
egy termed MixStyle (Zhou et al., 2021), in Table 1, the

Methods ‘ Accuracy

. . MixStyle (imbalanced dataset 75.65
accuracy is degraded more than 6% due to the imbalance MixStzle Er SB (imbalanced d;tase[) 7845
issue, confirming its significance. These cross-domain MixStyle (balanced dataset) 81.88

data/class imbalance issues have different characteristics
compared to the traditional class imbalance problem in a single domain; when a specific domain lacks
certain classes, it turns out in Section 5.3 that existing methods based on resampling or reweighting
fail to handle these DG-specific imbalance issues, while our solution can effectively address them.

Issue 2: Large style gap between source and
target domains. Regarding the second issue,
the target domain can have significantly dif-
ferent feature-level style statistics compared to
that of source domains in practice, as shown in
Fig. 1 (c). Especially in style-augmentation
based DG strategies (e.g., MixStyle (Zhou
et al., 2021) or EFDMix (Zhang et al., 2022))
where new style statistics are generated based  Fjgure 2: t-SNE of concatenated feature-level style statis-
on the source domains, this issue becomes crit- tics & = [y, o] of each sample, obtained from the output
ical. For example, as shown later in Section of second residual block of ResNet-18. Samples are clus-
5.1, the model performance on the Sketch do- tered based on domain characteristics. In this example,
main in Fig. 2 (which has a large style gap with Sketch domain has a large style gap with other domains,
other source domains) is much lower compared ~resulting in low accuracy. Our test-time style shifting
to the performance on other domains, when (TS) can boost up the model perf_ormance on the target
style-augmentation is applied solely. domain that has a large style gap with the source domains.

g

Contributions. In this paper, we propose a new solution that tackles the above issues in DG. We first
propose style balancing, which strategically balances the number of samples for each class across all
source domains in the style-space, to handle the imbalance issues. We specifically choose the sample
that has similar style statistics to other samples (and thus has a similar role compared to others) in the
same domain, and convert the style of this sample to another domain. This strategy provides a great
platform for the model to explore various domains per classes during training. By utilizing the trained
model based on our style balancing, we also propose fest-time style shifting, which shifts the style of
the test sample (that has a large style gap with the source domains) to the nearest source domain that
the model is already familiar with. This strategy enables the model to handle any target domains with
arbitrary style statistics; by reducing the style gap between source and target, the performance can be
significantly improved without additional model update at test-time. Experimental results on various
DG benchmarks show the improved performance of our scheme over existing methods.

Our style balancing and test-time style shifting work in a highly complementary fashion; removing
one of these components can significantly degrade the performance in practice having aforementioned
issues at the same time. Our solution is compatible with not only the style-augmentation based DG
schemes (e.g., MixStyle) that operate in the style space as ours, but also other DG ideas relying on
domain alignment or meta-learning.
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2 RELATED WORKS

DG with style augmentation. DG has been actively studied for the past few years using meta-
learning (Li et al., 2019; Chen et al., 2022; Du et al., 2020; Li et al., 2018a; Zhao et al., 2021), data
augmentation (Nam et al., 2021; Shankar et al., 2018; Yue et al., 2019; Zhou et al., 2020), domain
alignment (Li et al., 2018b;c;b; Erfani et al., 2016) and so on. Motivated by the works (Huang &
Belongie, 2017; Dumoulin et al., 2017) showing that style information is preserved at the early layers
of CNNgs, various style augmentation methods such as MixStyle (Zhou et al., 2021), DSU (Li et al.,
2022), Style Neophile (Kang et al., 2022) and EFDMix (Zhang et al., 2022) have been recently
proposed. As in our solution, style augmentation based DG schemes can be simply applied to any
tasks/models and operate in the style space defined with style statistics. However, the performance
of these methods are potentially limited in practice due to cross-domain imbalance and style gap
issues. In Section 5, we show that our solution can successfully work in conjunction with recent style
augmentation strategies (and also with other DG methods) to handle these issues.

Class-imbalanced learning. Targeting class-imbalanced datasets, various over/down-sampling
strategies (He et al., 2008; Pouyanfar et al., 2018) and loss function modification (e.g., reweighting)
methods (Huang et al., 2016; Shu et al., 2019; Cui et al., 2019) have been proposed. While these works
focus on class imbalance within a single domain, in a DG setup with multiple domains, cross-domain
data/class imbalance issues make the problem more challenging. Especially when each domain
lacks certain classes, these missing classes cannot be compensated via over/under-sampling or loss
modification strategies. A recent work (Yang et al., 2022) focused on a similar multi-domain setup
with imbalanced datasets, by defining a new loss function using the distance between representations.
However, the loss function proposed in (Yang et al., 2022) does not capture the classes missing in
each domain. Our style balancing module handles this issue by shifting the style statistics of the
sample to another domain, compensating for the missing classes in each domain.

Test-time adaptation. Several test-time adaptation methods (Wang et al., 2020; Iwasawa & Matsuo,
2021; Pandey et al., 2021; Sun et al., 2020; Xiao et al., 2022) have been proposed to adapt the model
to unseen target samples at test-time, where (Pandey et al., 2021; Iwasawa & Matsuo, 2021; Xiao
et al., 2022) specifically focused on DG. In (Wang et al., 2020; Iwasawa & Matsuo, 2021; Sun et al.,
2020), the authors proposed schemes to update model parameters during testing. Compared to these
works, our test-time style shifting does not require further model update at test-time; we simply
utilize adaptive instance-normalization (AdaIN) (Huang & Belongie, 2017) to shift the style of the
test sample to the familiar source domain. Recently, the authors of (Xiao et al., 2022) proposed a
method that does not require fine-tuning on target samples at test-time. However, this work requires
additional networks and perform Monte Carlo sampling for variational inference, which increases
the training costs. Notably, (Pandey et al., 2021) proposed to construct a source manifold at the
output of the feature extractor, and projects the feature of the test samples to this source manifold
while preserving class information. Orthogonal to this work focusing on the output of the feature
extractor where the data are clustered according to classes (regardless of the domains), we focus on
shifting the style statistics at earlier layers where the data are clustered according to the domains
(regardless of the classes). Moreover, our test-time style shifting does not require additional changes
in the model architecture or the objective function, making our scheme to be more compatible with
any task/models. To the best of our knowledge, our test-time style shifting is the first work that shifts
the feature-level style statistics of the target sample in the style space during testing.

We stress that our style balancing and test-time style shifting are orthogonal to the aforementioned
works in that we only shift the style statistics in the style-space during training/testing. Previous
works on domain generalization, class-imbalanced learning and test-time adaptation can work in
conjunction with our scheme to improve the prediction performance further.

3 PROBLEM SETUP
3.1 BACKGROUNDS: FEATURE/STYLE AUGMENTATION IN DOMAIN GENERALIZATION

Let z € REXCXHXW pe 3 batch of features at a specific layer, where B, C, H, W are the dimensions
of batch, channel, height, width, respectively. We also let yu(z) € RP*C and o(x) € RE*¢ be the
channel-wise mean and standard deviation of each instance (tensor) in a mini-batch, written as

1 H W 1 H W
:u(x) = W Z Z Tby,c,h,ws 02(25) = W Z Z(xb,c,h,w - N($))2 (1)

h=1w=1 h=1w=1
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The values p(z) and o(x) denote instance-level feature statistics of . These values also denote
style statistics since the instance-level feature statistics carry out style information in CNNs (Huang &
Belongie, 2017). Now define new style statistics (y) and o(y) computed by feature y, corresponding
to another batch of images. According to adaptive instance normalization (AdaIN) (Huang & Belongie,
2017), one can generate new features having content z and style y as follows:

x — ()

AdalN(z,y) = o(y) o)

+ u(y), (2)

which can be viewed as a style transfer performed in the feature space.

MixStyle and DSU. MixStyle (Zhou et al., 2021) and DSU (Li et al., 2022), which are motivated by
AdalN, specifically focus on constructing new style statistics to improve generalization as

r—p@) o 2) = o T pE)
O’({E) +ﬂm1x; DSU( ) Ydsu 0(1’)

where 3 and +y are the coefficients that determine the style of the image as in (2). MixStyle specifically
mixes the style statistics as Smix = Ap(z) + (1 — A) (), Ymix = Ao(x) + (1 — A)o(y), where X is
the instance-wise weight with 0 < A < 1. On the other hand, DSU generates new styles by sampling
Bmix and ymix from Gaussian distributions.

EFDMix. The authors of (Zhang et al., 2022) propose EFDM to replace AdaIN in (2). By redefining
x € RHW on a specific sample and a channel, the elements of vector z are reordered in an ascending
order as [Tr,, Try, . .., Tryyy, ], Where 2, < -, holds for i < j and {z, }2'}" are the elements of
vector . The elements of y are similarly reordered as (Y., , Yrss - - - » Y w |- Then, arbitrary style
transfer can be performed as EFDM(z, y),, = y,, to replace (2), where EFDM(z)., is the 7;-th
element of the output. Based on EFDM, the authors of (Zhang et al., 2022) also propose EFDMix,

which replaces the concept of AdaIN in MixStyle to EFDM, in a channel-wise manner as follows:

EFDMix(z),, = Azr, + (1 — A)yx,- 4)

MixStyle(z) = Ymix + Basu (3)

We note that MixStyle, DSU and EFDMix can be viewed as feature/style-augmentation schemes for
DG, as they generate new styles at feature level during training.

3.2 PROBLEM FORMULATION

Let N be the number of source domains and S, be the set of train samples in source domain n, where
S = Uﬁf:lSn is the overall train set. Let S, 1, be the set of train samples in domain 7 labeled as class
k satisfying S,, = UE_,S,, ,, where K is the number of classes. Given a sample s € S, let f(s) €
RE*HXW be the encoded features at a specific layer. We define u(f(s)) € R and o(f(s)) € R”
as the channel-wise mean and standard deviation of f(s), similar to (1). Related to the notations in
Section 3.1, we have & = [f(s1), f(s2), - f(s5)]. (@) = [u(f(s1)), 1(F(52)); - . 1(f(5))]:
o(x) =[o(f(s1)),0(f(s2)),...,0(f(sp))] where B is the batch size. For any set A C S, we also
define the mean of style statistics in set A as uq = ﬁ Yoscal(f(s))andoa = ﬁ Yoeca0(f(s)).
Given a set A and corresponding j14, 0 4, the concatenation of these two are defined as

Dy = [pa, 04l %)

Similarly, we define ®(f(s)) = [u(f(s)),o(f(s))] for any sample s. Using these notations, we can
formally state the aforementioned issues in DG as follows.

Issue 1. Cross-domain data imbalance problem denotes where |S,,| are different across all source
domains n € {1,2,... N}. Cross-domain class imbalance problem denotes where |S,, 1| are different
for all domains for a specific class k. Both issues limit the performance of existing DG methods.

Issue 2. Let ¢t be the test sample in the unseen target domain. In practice, the style gap between
source and target domains could be large, i.e., ||[®g, — ®(f(¢))| is large foralln € {1,2,..., N}
(see Sketch domain in Fig. 1(c)). This issue can degrade the performance at testing since the trained
model is not familiar with the new target domain that has a large gap with the source domains.

Goal. The goal of this paper is to tackle the above two issues for general DG approaches. Our specific
goal is to improve the domain diversity of individual classes during training, while reducing the gap
between style statistics of source and target domains at testing.
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Figure 3: An overview of proposed idea. Given imbalanced feature statistics at a specific layer, style balancing
is first performed to balance the style statistics across all domains. Then, a specific DG scheme (e.g., style-
augmentation) can be adopted for training. At testing, the style of the test sample (far from the source domains)
is shifted to the nearest source domain based on our test-time style shifting. The style balancing module and the
test-time style shifting module can be flexibly applied at any layers of the backbone network.

4 PROPOSED ALGORITHM

Section 4.1 describes our style balancing to handle the cross-domain data/class imbalance issues.
Based on the model obtained by our style balancing, in Section 4.2, we propose fest-time style shifting
to handle the issue on the large style gap between source and target domains. A high-level description
of our idea is shown in Fig. 3. The pseudo codes are provided in Appendix A.11.

4.1 STYLE BALANCING

We first describe style balancing which strategically shifts the style (i.e., style statistics) of each train
sample to another source domain (that has insufficient amount of data samples for each class), to
handle the cross-domain imbalance issues. Given a mini-batch, style balancing is applied to each
class k € {1,2,..., K} independently. Hence, we describe our scheme focusing on class k.

Step 1: Determining the number of samples to be shifted. To focus on class k, given a specific
mini-batch, we define Sn % as the set of samples that belong to source domain n labeled as class k.
We would like to balance the number of samples across all source domains n € {1,2,..., N} so
that each domain has average number of samples @y := % Zi:;l \S'nk| for class k. If |S'nk| > Qg
holds, |§n x| — Qr samples in source domain n should shift their styles to other domains that have
less than @)y, samples. Otherwise (i.e., |§nk| < @), we similarly shift the styles of samples in other
domains (that have more than )}, samples) to domain n. Based on this, one can easily determine the
number of samples to be shifted from domain n to another domain n’ for all n,n’ € {1,2,..., N},
in order to balance class k across all source domains.

Step 2: Sample selection. In this step, for domain n satisfying |§n k| > Q. we propose a strategy
for selecting |, x| — @ samples to be shifted from domain 7 to other source domains.

Key insight: Our key insight is that samples having similar style statistics would provide similar
effects on improving domain diversity, when existing DG schemes are applied. Based on this intuition,
we propose to move the style of the sample that has very similar style statistics with other samples.

We first define the distance between the style statistics of any two samples s;, s; € S'n,k as
dij = ®(f(s:)) = @(f (sl (6)

where || - || denotes the Euclidean distance. Now we choose two samples s;- and s;- from S, ;. that
satisfy (i*, j*) = argmin; ;yd; ;; these two samples have the closest style statistics so that similar
effect can be observed even when one of these samples are removed from source domain n. Among

these two samples, we choose the sample that has a smaller minimum distance with other samples, and

s . . Sk . S
shift its style to another domain; we choose sample s;+ if min{d. ;- }lzzl‘kz‘#j* < min{d, ;- }‘Zil’kz‘#*

and choose sample s, otherwise. This process is repeated until \Snk| — @y samples are selected
from source domain n. We repeat this process for all source domains n € {1,2,..., N}.

Step 3: Balancing. Suppose sample s in domain 7 has to shift its style to domain n’, according to
Steps 1 and 2 above. We randomly select two samples s, s5 € S,/ from domain n’ and shift the style
of s to s/, s, by using EFDM, and apply EFDMix. Specifically, our style balancing (SB) performs

SB(f(8))r, = Af(s1)w, + (1= A f(s)n, + f(s)r = (f(5)r), )
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where 7;, K4, 1); are the indices of the i-th smallest elements of vectors f(s), f(s]), f(s}), respectively.
(-) is the stop gradient operation; (f(s)) denotes the copy of f(s) detached from computational graph.
The term f(s) — (f(s)) is introduced to facilitate backpropagation of sample s as in (Zhang et al.,
2022). This process eventually shifts the style of sample s in source domain 7 to source domain 7n’.
As in MixStyle and EFDMix, A is a mixing parameter which is sampled from the Beta distribution.

The above three steps are applied to the samples in each class k € {1,2,..., K} independently.
By balancing the number of samples for each class across all source domains, our style balancing
provides a great platform for the model to get exposed to various styles per classes during traininig.

4.2 TEST-TIME STYLE SHIFTING

In order to improve the model performance during testing, we propose test-time style shifting. If the
test sample has a large style gap with the source domains, then the style of the test sample is shifted
to the nearest source domain that the model is already familiar with. Otherwise, i.e., when the style
gaps between the test sample and the sources are small, the test sample keeps its original style.

Let ¢ € T be the test sample from an arbitrary unseen domain in test set 7', where f(¢) is the encoded
features of ¢ at a specific layer. Recall that p(f(¢)) and o(f(¢)) are the channel-wise mean and
standard deviation of f(¢). Also recall that the mean of feature statistics in each source domain

n € {1,2,..., N} are written as ug, = ﬁ > ses, M(f(s)) and og, = ﬁ > ses, 0(f(s)). We
also define the mean feature statistics averaged over all source domains as pg = +; 25:1 s, and
os =% 25:1 o, - According to the definition in (5), we have &g = [us, ,05,], Ps = [us, 0s].

Based on these notations, at a specific layer, we generate new style statistics of sample ¢ as

P 1N
B o 4 P T IO =0l > a(F 05— 2 ).
D(f(t)) otherwise,

where @ (f(t))new = [1(f () )new, 0 (f(t))new], 1’ is the index of the closest source domain to the test
sample ¢, i.e., n’ = argmin,, || ®(f(t)) — ®g,, ||, and « is a hyperparameter greater than or equal to 0.

Now based on i( f(t))new and o (f (t))new, following the process of AdalN in (2), our test-time style
shifting (TS) shifts the style of sample ¢ while preserving its content at the corresponding layer as
TS((1) = 0 e DO 1) ©
a(f(t))
Intuitions. In (8), if there is a large gap between style statistics of source domains and the test sample,
we shift the style statistics of the test sample to the nearest source domain. This enables predictions
on the domain that the model is already familiar with. Otherwise, i.e., when the gap between the style
statistics of source domains and the test sample is acceptable, the model is likely to be well-trained

on the style of the test sample; thus, we let the test sample ¢ to keep its current style statistics. A
comprehensive study on our test-time style shifting is provided in Appendix A.3.

4.3 OVERALL PROCEDURE AND DISCUSSIONS

The overall procedure of our algorithm is shown in Fig. 3. Given imbalanced style statistics, we first
perform style balancing. Then, we can apply any DG methods for training (e.g., style augmentation).
When training is finished, we apply our test-time style shifting and make a prediction.

Where to apply SB and TS. Our style balancing (SB) and test-time style shifting (TS) can be flexibly
applied at any layer of the backbone. During training, we only have SB module, which is discarded
when training is finished. During testing, TS module is applied at a predetermined layer. Various
ablations and complexity analysis of our SB and TS modules are provided in Section 5 and Appendix.

Compatibility with various DG methods. The simplest way to combine our work with others is to
apply style augmentation (e.g., MixStyle) after SB, which also work in the style space as our scheme.
Our method can also work in conjunction with other DG strategies due to the high flexibility of SB and
TS modules. For example, the proposed SB module can be applied at the inner optimization process
of meta-learning DG approach (Li et al., 2018a) to handle the imbalance issues in the meta-train
source domains. As another example, our SB can be applied at the feature learning network of
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Table 2: Effect of style balancing (SB) and test-time style shifting (TS) on original PACS using ResNet-18. We
reproduced the results of MixStyle, DSU, EFDMix while other values are from original papers (denoted with *).

Methods ‘ Reference ‘ Art Cartoon ~ Photo  Sketch ‘ Average
L2A-OT* (Zhou et al., 2020) ECCV’20 83.3 78.2 96.2 73.6 82.8
pAdaIN™ (Nuriel et al., 2021) | CVPR’21 81.74 76.91 96.29 75.13 8251
SagNet™ (Nam et al., 2021) CVPR’21 83.58 77.66 95.47 76.3 83.25
Baseline (ResNet-18) - 73.97 74.71 96.07 65.71 77.62
Baseline + SB Ours 80.55 77.16 96.39 71.68 81.44
Baseline + TS Ours 73.89 75.14 95.87 72.00 79.23
Baseline + SB + TS Ours 80.60 77.58 96.35 74.37 82.22
MixStyle (Zhou et al., 2021) ICLR’21 82.54 79.42 95.88 74.06 82.98
MixStyle + SB Ours 83.48 79.07 96.15 73.74 83.11
MixStyle + TS Ours 82.59 79.99 95.88 78.66 84.28
MixStyle + SB + TS Ours 83.62 80.07 96.15 78.66 84.63
DSU (Li et al., 2022) ICLR’22 81.78 78.66 95.91 76.75 83.27
DSU + SB Ours 80.98 79.61 95.95 78.66 83.80
DSU + TS Ours 81.12 80.31 95.82 79.19 84.11
DSU +SB + TS Ours 80.73 80.69 95.83 79.47 84.18
EFDMix (Zhang et al., 2022) CVPR22 | 83.40 79.87 96.43 74.49 83.55
EFDMix + SB Ours 83.32 79.47 96.59 74.42 83.45
EFDMix+ TS Ours 83.41 81.41 96.25 78.40 84.87
EFDMix + SB + TS Ours 83.33 80.56 96.55 78.61 84.77

conditional invariant deep DG method (Li et al., 2018c). For all methods, we can apply our TS at a
specific layer of the network during testing. In Section 5, we show via experiments that our SB and
TS are compatible not only with style augmentation based schemes but also with other DG methods
relying on meta-learning or domain alignment, and improve the model performance.

Hyperparameters. In our SB module, note that the mixing parameter A in (7) is sampled from
Beta distribution as A ~ Beta(7, 7). This parameter also appears in MixStyle (Zhou et al., 2021)
and EFDMix (Zhang et al., 2022), and we set 7 = 0.1 for all experiments as in these prior works.
Compared to existing style augmentation methods, our scheme requires an additional hyperparameter
« that appears in (8) of our TS module, which is set to 3 for all classification results. A more detailed
discussion regarding « is provided in Appendix A.S.

Our SB and TS work in a highly complementary fashion to handle the two issues at the same time.
In the next section, we show that (i) adopting these two components can significantly boost up the
performance of recent DG strategies, and (ii) removing one of these components can degrade the
performance in practical scenarios having both issues at the same time.

5 EXPERIMENTAL RESULTS
5.1 GENERALIZATION ON MULTI-DOMAIN CLASSIFICATION

Experimental setup. Targeting multi-domain classification, we perform experiments using PACS
(Li et al., 2017) with 4 domains (Art, Cartoon, Photo, Sketch) and VLCS (Fang et al., 2013) with
4 domains (Caltech, LabelMe, Pascal, Sun), which are the commonly adopted benchmarks for DG.
We consider the leave-one-domain-out setting where the model is trained on three domains and
tested on the remaining one domain. Following the setups in (Zhou et al., 2021; Li et al., 2022;
Zhang et al., 2022), we adopt ResNet-18 pre-trained on ImageNet as a backbone. For PACS, the
proposed SB module is probabilistically operated once at first or second or third residual blocks
during training, while the TS module is operated at the second residual block during testing. Other
implementation details and ablations on SB/TS locations are provided in Appendix. We consider not
only the original PACS and VLCS datasets but also the imbalanced/reduced version of each dataset.
To model the cross-domain data imbalance scenario, we keep the training data of the largest source
domain while removing 80% of the training data of the remaining two domains. When constructing
the cross-domain class-imbalanced dataset, among 7 classes in PACS, we select 3 classes from the
first source domain, other 2 classes from the second source domain, and the remaining 2 classes
from the last source domain. In VLCS, among 5 classes, we select 2, 2, 1 classes from each source
domain to construct the imbalanced dataset. The class imbalanced dataset could be also constructed
in different settings, e.g., in a long-tailed imbalance setting (Cao et al., 2019). The corresponding
results are reported in Appendix A.10. The performance is obtained by averaging the results over 3
independent trials. More details on our experimental setup are provided in Appendix.
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Table 3: Effect of style balancing (SB) and test-time style shifting (T'S) on imbalanced PACS. Compared to the
result in Table 2, the role of SB becomes more significant in severely imbalanced scenarios.

Cross-domain data imbalance

Cross-domain class imbalance

Methods ‘ Reference ‘ Art Cartoon ~ Photo  Sketch | Avg. ‘ ‘ Art Cartoon  Photo  Sketch | Avg.
MixStyle ICLR’21 71.73 73.80 90.60 66.48 75.65 3991 54.08 56.45 44.82 48.82
MixStyle + SB Ours 76.53 75.61 93.33 68.34 78.45 44.49 55.57 56.28 44.93 50.32
MixStyle + TS Ours 72.04 74.01 90.60 75.12 77.94 39.98 54.01 56.45 44.44 48.74
MixStyle + SB + TS Ours 76.97 76.62 93.29 75.88 80.69 44.50 55.84 56.28 46.68 50.83
DSU ICLR’22 75.76 75.26 91.90 72.45 78.84 29.61 45.24 46.90 39.37 40.28
DSU + SB Ours 76.04 76.15 92.87 73.47 79.64 45.09 53.93 60.25 47.74 51.75
DSU + TS Ours 75.49 76.69 91.92 76.36 80.12 29.78 44.54 46.90 36.65 39.47
DSU +SB + TS Ours 75.93 77.39 92.85 75.90 80.52 45.03 54.42 60.24 49.20 52.22
EFDMix CVPR’22 75.33 75.67 90.59 71.07 78.16 44.68 54.87 58.15 44.64 50.59
EFDMix + SB Ours 7791 76.38 92.79 70.99 79.52 46.63 54.84 57.89 44.47 50.96
EFDMix+ TS Ours 75.39 75.92 90.56 74.97 79.21 44.56 55.05 58.15 45.96 50.93
EFDMix + SB + TS Ours 77.90 76.54 92.71 76.37 80.88 46.03 55.29 57.87 49.99 52.30
Table 4: Performance on imbalanced VLCS.

Methods | Reference | Caltech  LabelMe  Pascal Sun | Average

MixStyle (Zhou et al., 2021) ICLR’21 68.87 53.32 55.12 39.09 54.10

MixStyle + SB Ours 69.97 53.87 55.51 38.51 54.47

MixStyle + TS Ours 73.51 53.20 55.15 38.98 55.21

MixStyle + SB + TS Ours 73.27 53.78 55.02 38.58 55.16

DSU (Li et al., 2022) ICLR’22 63.07 54.13 56.01 39.90 53.28

DSU + SB Ours 74.02 53.40 55.91 40.22 55.89

DSU + TS Ours 65.99 53.90 55.93 40.02 53.96

DSU + SB + TS Ours 75.99 53.50 55.46 40.28 56.31

Baselines. First, we consider the state-of-the-art style augmentation schemes, MixStyle (Zhou et al.,
2021), DSU (Li et al., 2022), EFDMix (Zhang et al., 2022), that also work in the style space as
ours. Built upon each method, we apply our SB and TS to validate the effectiveness of the proposed
ideas. For a fair comparison, all hyperparemters are set to be same as in the original setup of each
baseline. We also apply our methods to the pure baseline without any DG algorithm. We compare
the performance with other recent works on DG: L2A-OT (Zhou et al., 2020), pAdaIN (Nuriel et al.,
2021), SagNet (Nam et al., 2021). Finally, to confirm the compatibility with other DG methods, we
also apply our SB/TS to MLDG (Li et al., 2018a) and CDANN (Li et al., 2018c) in Section 5.3.

Result 1: Original dataset. We first observe Table 2, which shows the results on original PACS.
Both SB and TS play important roles in all baselines. The performance gain of SB is noticeable
since PACS is already slightly imbalanced across domains. The performance gain of TS is especially
large in Sketch, since the Sketch domain has a large style gap with other source domains (see Fig.
2). The overall results show that our scheme significantly boosts up the performance of recent
style-augmentation methods. Our scheme also outperforms other recent methods for DG.

Result 2: Cross-domain data imbalanced dataset. In Table 3, we consider two different imbal-
anced versions of PACS. Since less training data is used in Table 3, the performance is generally
degraded compared to the results in Table 2. We first observe the left part of Table 3, the data
imbalance case. The advantage of SB is significant compared to the case in Table 2; the major
performance gains of Art, Cartoon, Photo come from SB, showing the effectiveness of SB to improve
the domain diversity during training. On the other hand, the main performance gain of Sketch comes
from TB as in Table 2; again, this is because Sketch has a significant style gap with other three source
domains as shown in Fig. 2. The overall results confirm the advantage of both SB and TS.

Result 3: Cross-domain class imbalanced dataset. In cross-domain class imbalance scenario
(right part of Table 3), different from the trends in original dataset and cross-domain data imbalanced
dataset, directly applying TB (without SB) does not improve the performance in general (even in
Sketch). This is because the model trained without SB lack generalization capability in this scenario,
indicating the importance of SB. The performance gain of SB is especially large when combined with
DSU; compared to MixStyle or EFDMix, in DSU, each class tends to get exposed to only a limited
styles and thus show limited performance. A meaningful gain is obtained when TS is applied after
SB, again confirming the effectiveness of SB. Table 4 shows the performance on cross-domain class
imbalanced VLCS. Although the performance gain is smaller compared to PACS due to the small
style gaps of source and target domains, the trend is consistent with the results in PACS.
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Table 5: Performance on person re-ID task, using Market1501 and GRID datasets.

Market — GRID GRID — Market
mAP R1 R5 R10 mAP R1 R5 R10

MixStyle (Zhou et al., 2021) ICLR’21 3530 26.67 4453  53.07 5.25 1640  30.05  37.05
MixStyle + SB + TS Ours 36.30 28.27 4293 5547 5.70 17.75  31.90  39.65

DSU (Li et al., 2022) ICLR’22 ‘ 38.57 3040 4640  53.07 ‘ 4.45 1490  27.65 34.60

Methods Reference

DSU +SB + TS Ours 40.10  30.67 48.00 58.13 5.25 16.70  31.60  38.85

5.2 GENERALIZATION ON INSTANCE RETRIEVAL

We also consider a different task, known as multi-domain instance retrieval. We consider person
re-identification (re-ID), where the goal is to match the same person using various camera views.
This setup can be viewed as a multi-domain image matching problem by regarding different camera
views as distinct domains. As in the setup of (Zhang et al., 2022), we adopt Market1501 (Zheng et al.,
2015) and GRID (Loy et al., 2009) datasets, and train the model in one dataset and test on the other
one. We train OSNet (Zhou et al., 2019) which was specifically designed for person re-ID. Other
details are provided in Appendix. Table 5 shows the corresponding results, indicating that our idea is
powerful even in multi-domain image matching problem.

5.3 FURTHER EXPERIMENTS AND DISCUSSIONS

Compatibility with other DG methods. Since our SB and TS modules are applicable to any
CNN-based feature extractor, our scheme can also work effectively with other DG strategies
based on meta-learning and domain alignment. Table ... ¢ tibility of thods with
6 shows the results of MLDG (Li et al., 2018a) (meta- oo DG stratogics on imbalanced PACS.

learning based method) and CDANN (Li et al., 2018c) (do-

main alignment based method) combined with our scheme Methods | Accuracy
on cross-domain class imbalanced PACS. We consider the MLDG 40.26
DomainBed setup for experiments. It can be seen that MLDG + SB 3328

. MLDG + SB + TS 53.54
our scheme improves the performance of both methods,
confirming that both SB and TS can work in conjunction ggﬁgg +sB 42122}
with various DG methods to mitigate the cross-domain CDANN + SB + TS 46.22

imbalance and the style gap issues.

Comparison with existing class imbalance methods. In  Table 7: Comparison with existing class im-
Table 7, we compare SB with existing class imbalanced balance methods on imbalanced PACS.
learning methods in a cross-domain class imbalance sce-

. - . Method: A
nario, under the same setup in Table 3. We consider the ethods | Accuracy
following baselines: undersampling majority classes, over- g:g erég al., 2022) ‘ ‘5‘(1332
sampling minority classes, reweighting the objective func- -
tion based on the effective number (Cui et al., 2019). We DSU Undersampling 40.37

. DSU Undersampling + SB 47.74
also compare our method with the recent work (Yang et al.,
2022) focusing on a multi-domain setup with imbalanced DSU Oversampling 4391
A g A p R DSU Oversampling + SB 54.01
datasets, in Appendix. It can be seen that existing meth- —
d 1ly fail to handle the imbal . . th DSU Reweighting 41.57
ods generally fail to handle the imbalance issues since the DSU Reweighting + SB 5257

missing classes of each domain cannot be compensated via
over/under-sampling or reweighting in this cross-domain class imbalance setup. Our SB effectively
alleviates this issue, significantly improving the model performance.

Additional experimental results. Other results including results in a DomainBed setup, results
without domain labels, results on long-tailed imbalance settings, results on other datasets are shown
in Appendix. We also perform comprehensive studies on our SB and TS modules, in Appendix.

6 CONCLUSION

We proposed style balancing and test-time style shifting, new strategies that can handle the current
issues in domain generalization. Style balancing provides a platform for the model to get exposed
to various styles per classes during training, while test-time style shifting enables the model to
make predictions on the familiar style regardless of the target domain. Our solution provides a new
guideline for domain generalization in practice, where handling the imbalance issues and reducing
the gap between the source and target domains are of paramount importance.
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REPRODUCIBILITY STATEMENT

The detailed experimental setups of our experiments are described in Section 5.1 of the main
manuscript and Appendix A.12. Our code is provided in Supplementary Material.
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A APPENDIX

A.1 COMPARISON WITH OTHER STATE-OF-THE-ARTS IN DOMAINBED SETUP

Following the DomainBed setup (Gulrajani & Lopez-Paz, 2021), in Table 8, we compare our approach
with other state-of-the-arts using ResNet-50. Training-domain validation strategy is used for selecting
the model in DomainBed setup. It can be seen that the proposed scheme combined with MixStyle
achieves the best performance with average accuracy of 86.6%. We also combine our scheme with
one of the state-of-the-art benchmarks, termed SWAD (Cha et al., 2021). It is shown that our scheme
can further improve the performance of the existing method. The overall results in Table 8 show
that our style balancing (SB) and test-time style shifting (TS) can be easily combined with other
state-of-the-arts to achieve the best performance.

Table 8: Performance in DomainBed setup.

Methods | Art  Cartoon Photo Sketch | Average
ERM (Vapnik, 1999) 84.7 80.8 97.2 79.3 85.5
IRM (Arjovsky et al., 2019) 84.8 76.4 96.7 76.1 83.5
GroupDRO (Sagawa et al., 2019) 83.5 79.1 96.7 78.3 84.4
Mixup (Zhang et al., 2017) 86.1 78.9 97.6 75.8 84.6
MLDG (Li et al., 2018a) 85.5 80.1 97.4 76.6 84.9
CORAL (Sun & Saenko, 2016) 88.3 80.0 97.5 78.8 86.2
MMD (Li et al., 2018c) 86.1 79.4 96.6 76.5 84.6
DANN (Ganin et al., 2016) 86.4 774 97.3 73.5 83.6
CDANN (Li et al., 2018c¢) 84.6 75.5 96.8 73.5 82.6
MTL (Blanchard et al., 2017) 87.5 77.1 96.4 71.3 84.6
SagNet (Nam et al., 2021) 874 80.7 97.1 80.0 86.3
ARM (Zhang et al., 2020) 86.8 76.8 97.4 79.3 85.1
VREXx (Krueger et al., 2021) 86.0 79.1 96.9 71.7 84.9
RSC (Huang et al., 2020) 85.4 79.7 97.6 78.2 85.2
EFDMix (Zhang et al., 2022), 86.7 80.3 96.3 80.8 86.0
MixStyle (Zhou et al., 2021) 85.6 80.6 95.5 81.6 85.8
MixStyle + SB (ours) 87.8 82.1 95.6 81.0 86.6
Combination with SWAD

SWAD (Cha et al., 2021) 89.3 83.4 97.3 82.5 88.1
SWAD + MixStyle 90.3 84.4 97.2 85.0 89.2
SWAD + MixStyle + SB + TS (ours) | 90.8  84.5 97.1 854 89.4

A.2  ABLATION STUDIES ON STYLE BALANCING
We first provide ablations studies on our style balancing (SB) module.

Effect of proposed sample selection method. In Step 2 of our style balancing procedure, we
proposed to move the style of the sample that has very similar statistics with other samples. To
validate the effectiveness of this idea, here we provide results with random sample selection; for
domain n satisfying |S'nk| > @k, we randomly select |§n k| — Qr samples to shift their styles to
other domains. Tables 9 and 10 show the results in domain imbalance scenario and cross-domain
class imbalance scenario, respectively. The setup is exactly the same as in the main manuscript.
The results of both Tables 9 and 10 confirm the effectiveness of our sample selection strategy in
SB compared to the random sampling strategy. The gain is especially large in cross-domain class
imbalance scenario.

Where to shift samples. Suppose sample s shifts its style from domain n to domain n’ in Step 3
of our style balancing procedure. In the main manuscript, we randomly selected two samples from
domain n’ and mixed the feature statistics of these samples via EFDMix (Zhang et al., 2022), and
shifted the style statistics of sample s to this mixed style. Here we consider another baseline for
ablation study: we randomly sample the new style statistics from Gaussian distribution with mean
and variance computed from the samples in domain n’, and shift the style of sample s via AdaIN
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Table 9: Effect of the proposed sample selection method in style balancing (SB) in domain imbalanced PACS.

Methods | Art  Cartoon Photo Sketch | Average
MixStyle + random sampling based SB 76.25 75.49 93.05  68.00 78.20
MixStyle + proposed SB 76.53 75.61 9333 68.34 78.45

MixStyle + random sampling based SB + TS | 76.58 76.17 93.05 7591 80.43
MixStyle + proposed SB + TS 7697  76.62 9329  75.88 80.69

Table 10: Effect of the proposed sample selection method in style balancing (SB) in cross-domain class
imbalanced PACS.

Methods | Art  Cartoon Photo Sketch | Average

43.37 54.02 5491 45.74 49.51
44.49 55.57 56.28  44.93 50.32

43.43 54.32 5491  44.60 ‘ 49.32

MixStyle + random sampling based SB
MixStyle + proposed SB

MixStyle + random sampling based SB + TS

MixStyle + proposed SB + TS 44.50 55.84 56.28  46.68 50.83

(Huang & Belongie, 2017) to this new style. Table 11 compares our method with this SB variant,
confirming the advantage of the proposed strategy.

Table 11: Comparison with another style balancing (SB) variant in original PACS.

Methods | Art  Cartoon Photo Sketch | Average
MixStyle + SB variant 82.83 79.24 95.69  73.18 82.73
MixStyle + proposed SB 83.48 79.07 96.15  73.74 83.11

MixStyle + SB variant + TS 82.91 79.95 95.69  79.07 84.40
MixStyle + proposed SB + TS | 83.62 80.07 96.15  78.66 84.63

A.3 ABLATION STUDIES ON TEST-TIME STYLE SHIFTING

In this section, we provide ablation studies on our test-time style shifting (TS) module.

Variants of test-time style shifting. We investigate the performance of other possible variants of TS.
We consider two additional strategies for TS: first, instead of only shifting the style of the test samples
that have large style gaps with the source domains (as in the main manuscript), we consider a scheme
that shifts the styles of all samples to the nearest source domain (TS variant 1). We also consider a
scheme that shifts the style of the sample to the nearest sample among randomly selected 100 samples,
based on the condition in equation (8) of the main manuscript (TS variant 2). Table 12 compares
the results of variants of TS. It can be first seen that TS variant 2 has lower performance compared
to others, indicating that shifting the style to the nearest sample is less effective compared to the
scheme that shifts the style to the nearest center of the source domain. Shifting all the samples (TS
variant 1) can improve the performance on Cartoon or Sketch domains, but suffers from performance
degradation on Art or Photo; this indicates that it is better to keep the sample’s original style when the
gap with the source domain is small. In general, TS variant 1 achieves similar or lower performance
compared to our TS strategy.

Location of TS module. In the main manuscript, our TS module is applied at the output of the 2"
residual block of ResNet-18, when training with PACS dataset. In Table 13, we applied the proposed
TS module at different residual blocks. It is observed that applying TS module after the 1% block or
the 2" block or the 3™ block improves the performance. However, operating our TS module after
the 4" residual block significantly degrades the performance, which is straightforward since data are
clustered according to the classes (regardless of the domains) at later layers.
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Table 12: Comparison with other test-time style shifting (TS) variants in original PACS.

Methods | Art  Cartoon Photo Sketch | Average
MixStyle + SB + TS variant 1 (shift all samples) 82.71 81.66 95.55 78.81 84.68
MixStyle + SB + TS variant 2 (shift to the nearest sample) | 83.60 79.57 96.15  77.25 84.14
MixStyle + SB + proposed TS 83.62 80.07 96.15  78.66 84.63
DSU + SB + TS variant 1 (shift all samples) 79.75 80.18 94.80  79.49 83.55
DSU + SB + TS variant 2 (shift to the nearest sample) 80.58 80.14 95.83 77.92 83.62
DSU + SB + proposed TS 80.73 80.69 95.83  79.47 84.18

Table 13: Effect of location of test-time style shifting (T'S) module in original PACS.

Methods | Art  Cartoon Photo Sketch | Average
MixStyle + SB | 83.48  79.07 96.15 73.74 | 83.11
MixStyle + SB + TS (output of 1* residual block) | 83.50 79.11 96.15  75.67 83.61
MixStyle + SB + TS (output of 2" residual block) | 83.62 80.07 96.15  78.66 84.63
MixStyle + SB + TS (output of 3" residual block) | 83.66  79.80  96.09  77.85 84.35
MixStyle + SB + TS (output of 4™ residual block) | 18.51 25.60 18.84  17.89 20.21

A.4 RESULTS WITHOUT DOMAIN LABELS

Throughout the main manuscript, we described our algorithm using domain labels. In Table 14,
we show the performance of our scheme without any domain labels. Here, we provide pseudo
domain labels using k-means clustering, where £ is set to be 3. We apply our SB and TS by utilizing
the clustered domains with pseudo labels. We let o = 2 throughout all experiments in Table 14.
Experimental results show that both SB and TS are effective even without any domain labels. The
performance of TS without domain labels is sometimes even better compared to the case with domain
labels. This indicates that it is more important to consider how the train samples are clustered in the
style space, rather than the original domain label, during the TS process.

Table 14: Performance without domain label on original PACS.

Methods | Reference | Art  Cartoon Photo Sketch | Average
MixStyle (Zhou et al., 2021) ICLR’21 82.65 78.84 96.09 72.23 82.45
MixStyle + SB Ours 83.72 79.34 96.43  73.22 83.18
MixStyle + TS Ours 83.10 80.99 96.15 78.11 84.59
MixStyle + SB + TS Ours 83.61 81.79 96.31 79.03 85.19
DSU (Li et al., 2022) ICLR’22 | 81.78 78.66 95.91 76.75 83.27
DSU + SB Ours 81.92 79.14 95.95 7854 83.89
DSU + TS Ours 80.16 79.37 94.91 78.97 83.35
DSU +SB + TS Ours 81.59 80.01 95.19 79.16 83.99
EFDMix (Zhang et al., 2022) | CVPR’22 | 83.35 79.91 96.67 74.52 83.61
EFDMix + SB Ours 83.38 80.22 96.81 75.13 83.89
EFDMix+ TS Ours 83.43 81.25 96.26  78.92 84.96
EFDMix + SB + TS Ours 83.80 81.57 96.49  79.05 85.23

A.5 EFFECT OF «

Recall that « is a hyperparameter that appears in equation (8) of the main manuscript. In the main
manuscript, we set o = 3 for all experiments for PACS and VLCS. However, this value may not be
the optimal value for each domain/setup. In Table 15, we provide results on various « values. When
a is large (o = 5), most of the test samples do not shift their styles; this reduces to the scheme with
only SB. When a = 0, all the test samples move their styles to the nearest source domain, which
can degrade the performance of specific domains (Art and Photo) but improves the performance of
Cartoon and Sketch. One can also select the a value by considering the extended validation set at
feature-level; one can additionally generate new styles that have large style gaps with the current
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source domains, so that the extended set contains both samples that have small/large style gaps
with the source domains. Nevertheless, whatever o we choose, we have additional performance
improvement (or at least the same performance) compared to the case with no TS, confirming the
advantage of our TS module.

Table 15: Performance with varying « on original PACS: whatever a we choose, an additional performance
gain can be obtained compared to no TS.

Methods | Reference | Art  Cartoon Photo Sketch | Average
MixStyle (Zhou et al., 2021) ICLR 21 82.54 79.42 95.88  74.06 82.98
MixStyle + SB Ours 83.48 79.07 96.15 73.74 83.11

MixStyle + SB + TS
MixStyle + SB + TS
MixStyle + SB + TS
MixStyle + SB + TS
MixStyle + SB + TS

Ours 82.71 81.66 95.55 78.81 84.68
Ours 83.31 81.81 96.01 78.81 84.99
Ours 83.62 80.07 96.15  78.66 84.63
Ours 83.48 79.10 96.15 73.81 83.13
Ours 83.48 79.07 96.15 73.74 83.11
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A.6 EXPERIMENTS ON OFFICE-HOME DATASET

In addition to the results on PACS, VLCS, Market1501 and GRID in the main manuscript, in Table
16, we provide additional results on Office-Home dataset (Venkateswara et al., 2017) with 4 domains
and 65 classes. We can observe a performance gain via SB even in the original Office-Home dataset.
The performance gain of TS is marginal since the style gaps between domains are relatively small in
Office-Home. Nevertheless, existing schemes can still benefit from the proposed SB and TS modules.

Table 16: Performance on original Office-Home dataset.

Methods | Reference | Art  Clipart Product Real world | Average
MixStyle (Zhou et al., 2021) | ICLR’21 | 57.99 53.04 73.64 74.98 64.91
MixStyle + SB Ours 5829  53.20 74.01 75.29 65.20
MixStyle + SB + TS Ours 58.27 5341 74.05 75.33 65.27

A.7 COMPARISON WITH BODA

In this subsection, we compare our SB with BoDA (Yang et al., 2022), which is a recent work
that reduces the domain representation gap for each class in a multi-domain imbalanced setup.
Specifically, in BoDA, a new loss function is proposed to reduce the distance between a sample and
the means of samples in different domains (that the sample does not belong to) for each class, in the
representation space. For a fair comparison, we implemented BoDA in our experimental setup. We
set the hyperparameters in BoDA to the default values in the original paper (Yang et al., 2022) which
we found to achieve the best performance. In this experiment, we construct a cross-domain class
imbalanced PACS where each domain has 5 classes out of a total of 7 (the missing classes of each
domain are different between domains). As shown in Table 17, our SB with Baseline and Mixstyle
shows better performance compared to the BoDA. This is because when a specific domain does not
have certain classes, BoDA is not able to consider the mean of that domain for the missing class in
computing the loss function of BoDA, reducing the generalization capability of the class. On the
other hand, our SB can effectively improve the generalization performance by compensating for the
missing class of each domain. Moreover, we stress that in the setup of Table 7, the loss function of
BoDA cannot be defined due to lack of classes in most of the domains, making BoDA not applicable.

Table 17: Comparison with BoDA (Yang et al., 2022) in cross-domain class imbalanced PACS on ResNet-18.

Methods | Art  Cartoon Photo Sketch | Average
BoDA 5356  63.27 9497  60.92 68.18
Baseline (ResNet-18) + proposed SB | 65.04 64.63 95.63  67.85 73.29
MixStyle + proposed SB 66.26 64.46 9497 7144 74.28
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A.8 ADDITIONAL EXPERIMENTS USING RESNET-50
In Table 18, we show the results using ResNet-50. Other setups are exactly the same as in the main

manuscript with ResNet-18. The results are consistent with all previous results, confirming the strong
advantages of our SB and TS modules.

Table 18: Performance comparison using ResNet-50 on original PACS.

Methods | Reference | At Cartoon ~ Photo ~ Sketch | Average
MixStyle (Zhou et al., 2021) ICLR’21 89.42 81.94 97.82  76.04 86.31
MixStyle + SB Ours 89.782 81.71 97.80 7593 86.31
MixStyle + SB + TS Ours 89.92 81.77 97.80  80.20 87.42
DSU (Li et al., 2022) ICLR’22 88.52 82.32 97.17 7642 86.11
DSU + SB Ours 88.05 82.90 97.62  80.08 87.16
DSU +SB + TS Ours 88.11 82.94 97.59  82.04 87.67
EFDMix (Zhang et al., 2022) | CVPR’22 | 89.68 82.10 97.84  78.37 87.00
EFDMix + SB Ours 90.08 81.75 97.72  78.17 86.93
EFDMix + SB + TS Ours 90.1 4 81.80 97.66  81.16 87.69

A.9 ADDITIONAL EXPERIMENTS FOR INSTANCE RETRIEVAL
In this section, we provide the full version of Table 4 in the main manuscript. Table 19 shows the

corresponding result, confirming the effectiveness of the proposed style balancing and test-time style
shifting strategies for instance retrieval, especially when they are used together.

Table 19: Performance on person re-ID task, using Market1501 and GRID datasets.

Methods Reference Market — GRID GRID — Market

mAP R1 R5 R10 mAP R1 R5 R10
MixStyle ICLR’21 3530 26.67 44.53 53.07 | 525 1640 30.05 37.05
MixStyle + SB Ours 3573 27.73 4293 52.00 | 570 17.70 31.90 39.65
MixStyle + TS Ours 3483 25.60 43.73 50.67 | 525 1640 30.05 37.10
MixStyle + SB + TS Ours 36.30 28.27 4293 5547 | 570 17.75 3190 39.65
DSU ICLR’22 | 38.57 3040 4640 53.07 | 445 1490 27.65 34.60
DSU + SB Ours 4147 3333 48.80 5493 | 525 16.75 31.65 38.85
DSU + TS Ours 3727 28.00 46.13 5573 | 440 14.75 27.35 34.60
DSU+SB + TS Ours 40.10 30.67 48.00 58.13 | 5.25 16.70 31.60 38.85

A.10 ADDITIONAL EXPERIMENTS IN LONG-TAILED IMBALANCE SETTING

We have performed additional experiments on the long-tailed imbalance setting where the results are
provided in Table 20. The imbalance ratio, which represents the ratio between sample sizes of the
most frequent and least frequent class, is set to 64. The results are consistent with the ones in the
main manuscript.

The results are consistent with the ones in our original manuscript, confirming the effectiveness of
our algorithm in various imbalance scenarios including the setup in (Cao et al., 2019). These results
are also provided in Table 2 of Appendix.

A.11 ALGORITHM IN PSEUDO CODE

Algorithm 1 shows the sample selection process in style balancing. The process for test-time style
shifting is provided in Algorithm 2.
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Table 20: Experimental results on long-tailed imbalance setting.

Methods | Reference | Art  Cartoon Photo Sketch | Average
MixStyle ICLR’21 73.49 76.75 86.17 62.73 74.79
MixStyle + SB Ours 76.46 75.30 88.20 61.81 75.44
MixStyle + TS Ours 73.68 76.75 86.17  69.04 77.53
MixStyle + SB + TS Ours 77.25 75.64 88.20  69.04 77.53
DSU ICLR’22 | 7547 76.01 89.31  60.81 75.40
DSU + SB Ours 73.66 76.17 90.93 67.51 77.07
DSU + TS Ours 74.54 76.43 89.16  66.55 76.67
DSU +SB + TS Ours 73.27 76.09 90.78  68.92 77.26

Algorithm 1 Sample Selection Process in Style Balancing (SB)

Input: S'mk (samples in domain n with class &, in a mini-batch) satisfying |§nk| > Qk
Output: Z, i, which contains |S, k| — Q& samples (with class k) to be shifted from domain n to other source
domains

1: Znﬂk-:@,E?O
2: while F < |S,.x| — Qx do

3:  foralls;,s; € S'n,k (i #j)do

4: Compute d; ; = [|®(f(s:)) — (S (s5))l

5: end for

6:  Choose two samples (¢*,j*) = argmin“.,j)di,j.

7. ifmin{d.- )7, < min{d. ;) 7¢ L then
8: Zng — Znp U {81*}

9: else

10: Zn ks 4= Zn,e U {57}

11: end if

122 E+ E+1
13: end while

A.12 OTHER IMPLEMENTATION DETAILS

Our work is built upon the official setup of EFDMix (Zhang et al., 2022). Different from the original
setting of EFDMix, for image classification tasks, we trained the model for 150 epochs with a
mini-batch size of 128. We also randomly sampled the data from all source domains in each mini-
batch. Other setups are exactly the same as in MixStyle (Zhou et al., 2021), DSU (Li et al., 2022)
and EFDMix (Zhang et al., 2022) when implementing each module; each module is activated with
probability 0.5. Following the original setups, Mixstyle and EFDM are inserted after the 1st, 2nd and
3rd residual blocks for PACS. For other datasets, Mixstyle and EFDM are inserted after the 1st and
2nd residual blocks. DSU is inserted after 1st convolutional layer, max pooling, 1,2,3,4-th residual
blocks. Here, our SB module is operated at the moment where MixStyle, DSU, EFDMix are first
activated. The TS module is operated at first residual blocks during testing for VLCS, Office-Home
and person re-ID task. We set o = 3 for all experiments on image classification tasks, while o = 5 is
utilized for person re-ID task.

A.13 COMPLEXITIES

Style balancing. Recall that B, N, K are the batch size, number of source domains, total number
of classes, respectively. To compute the time complexity, suppose that there are N—BK samples in

a mini-batch corresponding to each domain n with class label k. Then, the addition complexity
2

required for our style balancing in Step 2 becomes O((2:)? x N x K) = O(£%), which is the
additional cost for achieving an improved domain diversity.

Test-time style shifting. Once the style statistics of train samples are obtained, only the style gaps
between the test sample and the center of /N source domains are required for test-time style shifting;
this makes the additional complexity negligible.
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Algorithm 2 Test-Time Style Shifting (TS)

Input: Test sample ¢ and the corresponding feature f () at a specific layer (where TS module is operated), ® s
and ®g,, for all source domains n € {1,2,..., N}, and o
Output: New feature TS(f(¢)).

for each test sample ¢ do
Compute - 32, [2(f(1)) — ®s,,|
if & S0 [0(/(1) — s, || > o & S0, |9 — @) then

1:

2

3

4: O(f(t))new = Ps,,, where n’ = argmin, || ®(f(t)) — Ps,, || / style shift to the nearest source domain
5:  else
6.

7

8

D(f(t))new = ©(f(t)) I/ keep the original style
end if

: From ®(f(£))new = [(f(£))new, o (f () )new],
9:  compute TS(f(¢)) = U(f(t))newW + (£ (t))new
10: end for
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