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ABSTRACT

Interactive Fiction (IF) games provide a useful testbed for language-based rein-
forcement learning agents, posing significant challenges of natural language un-
derstanding, commonsense reasoning, and non-myopic planning in the combina-
torial search space. Agents using standard planning algorithms struggle to play
IF games due to the massive search space of language actions. Thus, language-
grounded planning is a key ability of such agents, since inferring the conse-
quence of language action based on semantic understanding can drastically im-
prove search. In this paper, we introduce Monte-Carlo planning with Language
Action Value Estimates (MC-LAVE) that combines Monte-Carlo tree search with
language-driven exploration. MC-LAVE concentrates search effort on semanti-
cally promising language actions using locally optimistic language value esti-
mates, yielding a significant reduction in the effective search space of language
actions. We then present a reinforcement learning approach built on MC-LAVE,
which alternates between MC-LAVE planning and supervised learning of the self-
generated language actions. In the experiments, we demonstrate that our method
achieves new high scores in various IF games.

1 INTRODUCTION

Building an intelligent goal-oriented agent that can perceive and react via natural language is one of
the grand challenges of artificial intelligence. In pursuit of this goal, we consider Interactive Fiction
(IF) games (Nelson, 2001; Montfort, 2005), which are text-based simulation environments where the
agent interacts with the environment only through natural language. They serve as a useful testbed
for developing language-based goal-oriented agents, posing important challenges such as natural
language understanding, commonsense reasoning, and non-myopic planning in the combinatorial
search space of language actions. IF games naturally have a large branching factor, with at least
hundreds of natural language actions that can affect the simulation of game states. This renders naive
exhaustive search infeasible and raises the strong need for language-grounded planning ability, i.e.
effective search space is too large to choose an optimal action, without inferring the future impact
of language actions by understanding the environment state described in natural language.

Still, standard planning methods such as Monte-Carlo tree search (MCTS) are language-agnostic
and rely only on uncertainty-driven exploration, encouraging more search on less-visited states and
actions. This simple uncertainty-based strategy is not sufficient to find an optimal language action
under limited search time, especially when each language action is treated as a discrete token. On the
other hand, recent reinforcement learning agents for IF games have started to leverage pre-trained
word embeddings for language understanding (He et al., 2016; Fulda et al., 2017; Hausknecht et al.,
2020) or knowledge graphs for commonsense reasoning (Ammanabrolu & Hausknecht, 2020), but
their exploration strategies are still limited to the ε-greedy or the softmax policies, lacking more
structured and non-myopic planning ability. As a consequence, current state-of-the-art agents for IF
games still have not yet been up to the human-level play.

In this paper, we introduce Monte-Carlo planning with Language Action Value Estimates (MC-
LAVE), a planning algorithm for the environments with text-based interactions. MC-LAVE com-
bines Monte-Carlo tree search with language-driven exploration, addressing the search inefficiency
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attributed to the lack of language understanding. It starts with credit assignment to language actions
via Q-learning of the experiences collected from the past searches. Then, MC-LAVE assigns non-
uniform search priorities to each language action based on the optimistically aggregated Q-estimates
of the past actions that share similar meanings with the candidate action, so as to focus more on the
semantically promising actions. This is in contrast to the previous methods that involve language
understanding in the form of a knowledge graph, where the insignificant language actions are uni-
formly filtered out by the graph mask (Ammanabrolu & Hausknecht, 2020; Ammanabrolu et al.,
2020). We show that the non-uniform search empowered by language understanding in MC-LAVE
yields better search efficiency while not hurting the asymptotic guarantee of MCTS.

We then present our reinforcement learning approach that uses MC-LAVE as a strong policy im-
provement operator. Since MCTS explores the combinatorial space of action sequences, its search
results can be far better than the simple greedy improvement, as demonstrated in the game of Go (Sil-
ver et al., 2017). This final algorithm, MC-LAVE-RL, alternates between planning via MC-LAVE
and supervised learning of self-generated language actions. Experimental results demonstrate that
MC-LAVE-RL achieves new high scores in various IF games provided in the Jericho framework
(Hausknecht et al., 2020), showing the effectiveness of language-grounded MC-LAVE planning.

2 BACKGROUND

2.1 INTERACTIVE FICTION GAME

Interactive Fiction (IF) games are fully text-based environments where the observation and the action
spaces are defined as natural language. The game-playing agent observes textual descriptions of
the world, selects a language-based action, and receives the associated reward. IF games can be
modeled as a special case of partially observable Markov decision processes (POMDPs) defined
by tuple 〈S,A,Ω, T,O,R, γ〉, where S is the set of environment states s, A is the set of language
actions a, Ω is the set of text observations o, T (s′|s, a) = Pr(st+1 = s′|st = s, at = a) is the
transition function, R(s, a) is the reward function for taking action a in state s, O(s) = o is the
deterministic observation function in state s, and γ ∈ (0, 1) is the discount factor. The history
at time step t, ht = {o0, a0, . . . , ot−1, at−1, ot}, is a sequence of observations and actions. The
goal is to find an optimal policy π∗ that maximizes the expected cumulative rewards, i.e. π∗ =
arg maxπ Eπ [

∑∞
t=0 γ

tR(st, at)].

We use the same definition of observation and action space as Hausknecht et al. (2020); Am-
manabrolu & Hausknecht (2020); Côté et al. (2018), i.e. An observation is defined by ot =
(otdesc

, otgame , otinv , at−1) where otdesc
is the textual description of the current location of the agent,

otgame is the simulator response to the previous action taken by the agent, otinv is the information
of agent’s inventory, and at−1 is the previous action taken by the agent. An action is denoted by a
sequence of words at = (a1

t , a
2
t , . . . , a

|at|
t ). Finally, we denote Avalid(ot) ⊆ A as the set of valid

actions for the observation ot, which is provided by the Jericho environment interface. Figure 1
shows an example of observation and action in ZORK1, one of the representative IF games.

2.2 CHALLENGES IN INTERACTIVE FICTION GAME

IF games pose important challenges for reinforcement learning agents, requiring natural language
understanding, commonsense reasoning, and non-myopic language-grounded planning ability in
combinatorial search space of language actions (Hausknecht et al., 2020). More concretely, consider
the particular game state of ZORK1 described in Figure 1. In this example situation, a human
player would be naturally capable of performing strategic planning via language understanding and
commonsense reasoning: (1) the ‘closed trap door’ will have to be opened and be explored
to proceed with the game, (2) however, acquiring the ‘lantern’ should precede entering the trap
door since the cellar, which is expected to exist below the trap door, could be likely pitch-dark.
Without such language-grounded reasoning and planning, the agent may need to try out every actions
uniformly, most of them making it vulnerable to being eaten by a monster in the cellar who always
appears when there is no light source. As a result, any agent that lacks the ability of long-term
planning with language reasoning is prone to be stuck at a suboptimal policy, which enters the cellar
to obtain an immediate reward and does nothing further to avoid encountering the monster that kills
the agent immediately.

2



Published as a conference paper at ICLR 2021

𝒐𝒕𝐝𝐞𝐬𝐜: Living Room. You are in the living room. There is a doorway to the east, a 

wooden door with strange gothic lettering to the west, which appears to be 
nailed shut, a trophy case, and a closed trap door at your feet. Above the 
trophy case hangs an elvish sword of great antiquity. A battery-powered 
brass lantern is on the trophy case.

𝒐𝒕𝐠𝐚𝐦𝐞
: With a great effort, the rug is moved to one side of the room, revealing 

the dusty cover of a closed trap door.

𝒐𝒕𝐢𝐧𝐯:    You are empty-handed. 𝒂𝒕−𝟏: push rug

𝒂𝒕: open trap door
𝑨𝐯𝐚𝐥𝐢𝐝 𝒐𝒕 : {north, turn on lantern, open trap door, open case, 

take sword, take lantern, east, take all}

Observation

Action Valid actions

Figure 1: Example of observation and actions from ZORK1

To overcome the bottleneck, the agent should be able to infer that ‘take lantern’ is worthy
enough to be chosen in preference to other actions even though it gives no immediate reward.
In this work, we will precisely address such failures of myopic planning that arise from the lack
of language-grounded exploration strategy. To this end, we first propose MCTS-based long-term
planning for nonmyopic-planning. Then we further improve the search efficiency of MCTS-based
planning by incorporating our novel language-grounded exploration strategy based on Language
Action Value Estimates, which will be detailed in the subsequent section.

2.3 MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006; Coulom, 2006; Browne et al., 2012)
is a generic online planning algorithm that combines random sampling and tree search, which has
become the de-facto standard method for large sequential decision-making problems. Starting from
an empty tree, MCTS repeatedly performs the phases of selection, expansion, rollout, and backprop-
agation to evaluate the nodes of the search tree with increased accuracy. UCT (Kocsis & Szepesvári,
2006) is the standard MCTS method, which adopts UCB (Auer et al., 2002) as an action selection
rule at each internal node of the search tree:

arg max
a

[
Q(h, a) + c

√
logN(h)

N(h, a)

]
(1)

where h is the history of past observations and actions, Q(h, a) is the average value of sampled
returns with taking action a in h, N(h) is the number of simulations performed in h, N(h, a) is
the number of times action a is selected in h, and c is a constant that balances exploration and
exploitation. However, UCT suffers from severe search inefficiency in the problems with a large
action space such as IF games, since it requires to take every action at least once and relies only on
uncertainty-driven (or visit-count-based) exploration.

PUCT (Silver et al., 2017; 2018) partially addresses the challenges of IF games by adopting PUCB
(Rosin, 2011), which involves a prior action distribution π(·|h) and eliminates the need for choosing
every action at least once. The action selection rule is given by:

arg max
a

[
Q(h, a) + cPUCTπ(a|h)

√
N(h)

N(h, a) + 1

]
(2)

The prior distribution π(·|h) in Eq. (2) can be trained by behavioral cloning of (hroot, a
∗
root) sam-

ples obtained by the result of tree search in previous time steps (Anthony et al., 2017; Silver
et al., 2018). However, this procedure not only discards other search information such as abun-
dant (ht, at, rt, ht+1) samples obtained during the search but also hardly encourages information
sharing across the semantically similar actions. Therefore, PUCT is still limited in search efficiency
for the tasks with language action space, raising the need for a language-driven exploration strategy.

3 MONTE-CARLO PLANNING WITH LANGUAGE ACTION VALUE ESTIMATES

Language-grounded planning is essential to address the challenges of IF games. To this end, we
need a mechanism to incorporate language understanding and commonsense reasoning into the ex-
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ploration strategy of search. In this section, we introduce Monte-Carlo planning with Language Ac-
tion Value Estimates (MC-LAVE), a novel planning algorithm that combines MCTS with language-
driven exploration. MC-LAVE does not rely on any handcrafted heuristic evaluation but starts tabula
rasa, based only upon pre-trained word embeddings that can well define the semantic similarities be-
tween two language actions. In addition, it only requires a black-box simulator (r, s′, o′) ∼ G(s, a),
which yields (o, a, r, o′) samples at each simulator query.

3.1 CREDIT ASSIGNMENT WITH SEARCH EXPERIENCE

Language-driven exploration in MC-LAVE starts by identifying which word sequences of language
action are likely to yield large long-term rewards. This credit assignment of language action is
done by Q-learning using all the experiences D = {(o, a, r, o′)} obtained during the past searches.
Following the previous work (Hausknecht et al., 2020; Ammanabrolu & Hausknecht, 2020; Am-
manabrolu et al., 2020; Madotto et al., 2020), we assume that the current observation captures all
the information regarding the latent state, as it is just a text description of the game state. There-
fore, we represent the Q-function as a function of the current observation and action, rather than a
function of full history and action. Our parameterization of Qφ(o, a) basically follows that of Deep
Reinforcement Learning Relevance Network (DRRN) (He et al., 2016; Hausknecht et al., 2020),
and more details can be found in Appendix A. Finally, the Qφ is trained by minimizing the temporal
difference error using D:

arg min
φ

E(o,a,r,o′)∼D

[(
r + γ max

a′∈Avalid(o′)
Qφ̄(o′, a′)−Qφ(o, a)

)2
]

(3)

where φ̄ is an exponential moving average of φ, i.e. soft target update, and Avalid(o′) is a set of
valid actions in the observation o′ provided by Jericho environment. While PUCT of Eq. (2) also
uses previous search information to construct a prior policy π, it is typically trained only on plan-
ning trajectories (hroot, a

∗
root) that generally cover very limited regions. Therefore, it can hardly

provide informative search guides for areas outside the planning trajectories. In contrast, Qφ of
Eq. (3) is trained by using every search experience encountered during search processes, thus it can
potentially provide more information over a much broader set of states and actions. However, the
credit assignment provided by Qφ still struggles to provide useful information for novel language
observation-action regions that have never been experienced, making its direct adoption as an explo-
ration strategy inappropriate: the search process necessarily entails visits to novel areas where Qφ
does not work properly, and thus Qφ may instead promote exploitation.

3.2 LANGUAGE-DRIVEN EXPLORATION VIA LANGUAGE ACTION VALUE ESTIMATES

In order to generalize past experiences to novel situations, we adopt context-agnostic information
sharing between language actions based on their semantic similarities. For example, if an action
of ‘take something’ has ever been useful in the past, we may expect that the action of ‘take
something else’ can also be worthy in other situations. Motivated by such instances, we in-
troduce Language Action Value Estimates (LAVE), which assigns non-uniform search priorities to
each language action by examining whether its semantic neighborhood actions have been beneficial
in the past.

As the first step for LAVE, we define a semantic neighborhood of action a, a set of the past experi-
ences whose actions share similar semantics with action a by:

N (a) = {(ō, ā) | d(a, ā) < δ where (ō, ā, r̄, ō′) ∈ D} (4)

where δ is a hyperparameter that controls a proximity threshold, and d(a, ā) is a distance measure
between two actions a and ā in language embedding space represented by the pre-trained word
embeddings e(·):

d(a, ā) = 1− ψ(a) · ψ(ā)

‖ψ(a)‖‖ψ(ā)‖
where ψ(a) =

1

|a|

|a|∑
i=1

e(ai)

For simplicity, we use the average of the word embeddings ψ(a) as the language action (or sentence)
embedding, where the semantic similarity can be well-measured by the cosine similarity in the
embedding space.
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Figure 2: Overall architecture of policy improvement via MC-LAVE.

Then, the LAVE exploration bonus for the action a is estimated through a soft maximum over the
Q-values of a’s semantic neighborhood actions in order to encourage optimistic exploration.

Lφ(a) = log
1

|N (a)|
∑

(ō,ā)∈N (a)

exp[Qφ(ō, ā)] (5)

Note that Lφ(a) in Eq. (5) relies only on the Q-values of (ō, ā) samples experienced in the past,
thus can be reliably estimated. Also, it is context-agnostic in which the action a is taken, thus
circumvents the challenge of measuring the similarity between the very long textual observations,
while promoting active information sharing between affordable language actions.

Finally, MC-LAVE encourages the language-driven exploration in the selection phase of MCTS via
LAVE Lφ(a), which selects actions at each intermediate nodes by the following rule:

arg max
a∈Avalid(o)

[
Q(h, a) +

√
N(h)

N(h, a) + 1︸ ︷︷ ︸
uncertainty-driven

exploration

(
cPUCTπθ(a|o)︸ ︷︷ ︸

prior knowledge
encoding

+ cLAVELφ(a)︸ ︷︷ ︸
language-driven

exploration

)]
(6)

where πθ(a|o) is a prior policy trained by behavior cloning of past planning results, Lφ(a) is a
language-driven exploration bonus, c

LAVE
is an exploration constant. MC-LAVE uses the policy πθ

for incorporating prior knowledge of the past planning trajectories, as well as the language-driven
bonus Lφ(a) for facilitating information sharing between semantic neighborhood actions. MC-
LAVE initially encourages to explore the actions with high language-driven exploration bonuses and
low visit count, but it does not hurt the asymptotic behavior of MCTS (Theorem 2 in Appendix C).
The pseudo-code for the MC-LAVE is provided in Appendix D.

4 REINFORCEMENT LEARNING VIA MC-LAVE

As shown in (Silver et al., 2017), MCTS can be used as a strong policy improvement operator for
reinforcement learning. Similarly, we use MC-LAVE as a policy improvement operator for learning
the IF game. As a result, our reinforcement learning algorithm, MC-LAVE-RL, alternates between
MC-LAVE planning and supervised learning of self-generated actions:

1. Planning Use the MC-LAVE with current policy πθ and Q-function Qφ to collect the n
planning trajectories T =

⋃
i τ

(i) and experience replay D:

τ (i) = {(o(i)
1 , a∗1

(i)), . . . , (o
(i)
T , a∗T

(i))},D = {(o, a, r, o′)}

where a∗t
(i) is selected action at i-th trajectory t-th timestep by MCTS and T denotes an

episode length. (For the first iteration, MC-LAVE uses uniform policy and randomly ini-
tialized Q-function.)
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Algorithms DRRN† TDQN† KG-A2C‡ MC!Q*BERT§ PUCT-RL MC-LAVE-RL

R
eq

ui
re

-
m

en
ts

Valid Action Hard Soft Soft Soft Hard Hard
Resettable - - - 3 3 3

External Info - - - ALBERT &
Jericho-QA - Word Embedding

D
iffi

cu
lt

G
am

es ZORK1 32.6 9.9 34 41.6 38.2 45.2
DEEPHOME 1 1 1 8 28.6 35
LUDICORP 13.8 6 17.8 22.8 18 22.8

Po
ss

ib
le

G
am

es
PENTARI 27.2 17.4 50.7 58 64 68

DETECTIVE 197.8 169 207.9 330 322 330
LIBRARY 17 6.3 14.3 19 19 19

BALANCES 10 4.8 10 10 10 10
TEMPLE 7.4 7.9 8 8 8 8

ZTUU 21.6 4.9 9.2 11.8 5 7

Table 1: Performance evaluation of various approaches for IF games in Jericho (Hausknecht et al.,
2020). Handicaps leveraged in each algorithm are described in the table. Valid Action indicates
whether an algorithm uses a valid action handicap provided by Jericho as a hard constraint for the
effective action space or as a soft constraint via entropy loss over the valid actions (Ammanabrolu
& Hausknecht, 2020). Resettable indicates whether an algorithm requires a resettable simulator, i.e.
the previously visited state can be restored. ZORK1, DEEPHOME, LUDICORP are categorized as
difficult games and the other games are categorized as possible games by Hausknecht et al. (2020).
The results of other algorithms are from Hausknecht et al. (2020)†, Ammanabrolu & Hausknecht
(2020)‡, and Ammanabrolu et al. (2020)§ respectively. All our results (PUCT-RL, MC-LAVE-RL)
indicate averages over 5 independent runs, and their standard errors are provided in Appendix E due
to space limit.

2. Policy training Update the policy network parameter θ by minimizing the negative log-
likelihood with using collected planning trajectories T , i.e. supervised learning with cross-
entropy loss:

arg min
θ

E
(o

(i)
t ,a∗t

(i))∼T

[
− log πθ(a

∗
t

(i)|o(i)
t )
]

3. Q-learning Update the Q-function parameter φ by minimizing the temporal difference
error from experience replay D:

arg min
φ

E(o,a,r,o′)∼D

[(
r + γ max

a′∈Avalid(o′)
Qφ̄(o′, a′)−Qφ(o, a)

)2
]

We continue to update the policy through the above policy iteration with the MC-LAVE operator
until the policy performance converges.

5 EXPERIMENTS

In this section, we show experimental results of our approach on IF games included in the Jericho
environment (Hausknecht et al., 2020). The action spaces of IF games in the Jericho environment are
defined by the sequences of the game-dependent input vocabulary whose size is roughly from 500 to
2000. While the size of the vocabulary is limited compared to large-scale open domain dialogues, it
still serves as a useful testbed to demonstrate the effectiveness of semantic-based information shar-
ing of MC-LAVE1. First, we evaluate the performances of MC-LAVE-RL comparing with baseline
methods. Second, we compare intermediate scores of MC-LAVE-RL on ZORK1 with a baseline
(PUCT-RL) that uses PUCT as a policy improvement operator, to show that MC-LAVE is more
effective for IF games than PUCT. Third, we investigate the effectiveness of semantic neighbor-
hood by comparing the planning performance of MC-LAVE under the various sizes of the semantic
neighborhood. Finally, we give a qualitative analysis of our approach using a representative ex-
ample, which shows how MC-LAVE focuses on semantically promising actions during the search.
Detailed configurations of our experiments are described in Appendix B.

1For example, the ZORK1 environment produces identical observations for taking the actions ‘take
lantern’ and ‘get lantern’, where MC-LAVE can readily take advantage by exploiting the informa-
tion sharing across those semantically similar actions (Appendix H).
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Methods
PUCT-RL MC-LAVE-RL

Planning Learning Planning Learning

Iteration 1 31.9 ± 1.4 36.6 ± 1.0 30.4 ± 2.0 36.6 ± 1.0
Iteration 2 35.8 ± 0.0 37.4 ± 1.0 36.1 ± 0.1 38.2 ± 0.8
Iteration 3 35.3 ± 0.2 39.0 ± 0.0 41.2 ± 0.5 43.0 ± 1.0
Iteration 4 35.2 ± 0.4 38.2 ± 0.8 43.8 ± 0.1 45.2 ± 1.2

Table 2: Experimental results of the policy improvement with PUCT and MC-LAVE on ZORK1.
For each iteration, we perform the 25 planning with PUCT and MC-LAVE to collect planning tra-
jectories and experience replay. All results indicate averages and standard errors over 5 trials.

5.1 EVALUATION ON INTERACTIVE FICTION GAMES

First, we compare the performance of MC-LAVE-RL with the following algorithms: (1) DRRN
(Hausknecht et al., 2020), a variant of the DQN algorithm (Mnih et al., 2013) for natural lan-
guage action space, (2) TDQN (Hausknecht et al., 2020), an extension of LSTM-DQN algorithm
(Narasimhan et al., 2015) incorporating with template-based action generation, (3) KG-A2C (Am-
manabrolu & Hausknecht, 2020), an actor-critic method with knowledge graph state representation,
(4) MC!Q*BERT (Ammanabrolu et al., 2020), an extension of KG-A2C with BERT-based knowl-
edge graph construction and knowledge-graph-based intrinsic reward. In addition, we also compare
MC-LAVE-RL with our baseline called PUCT-RL, which uses PUCT as a policy improvement op-
erator.

Table 1 summarizes handicaps leveraged in each algorithm and the performance of MC-LAVE-RL
and baseline algorithms across 9 IF games included in the Jericho environment. The results show that
MC-LAVE-RL outperforms or matches the state-of-the-art results on 8 out of 9 games. Although
MC-LAVE-RL requires more handicap or assumption, it performs the same or better than strong
baseline MC!Q*BERT which requires similar assumptions and more requirements. In addition,
MC-LAVE-RL achieves higher game scores on overall games compared to PUCT-RL, which is a
baseline algorithm that only excludes language-driven exploration strategy from MC-LAVE-RL.
Furthermore, MC-LAVE-RL performs significantly better than other methods on difficult games
such as ZORK1, DEEPHOME, and LUDICORP, which are categorized by Hausknecht et al. (2020) as
a relatively challenging game due to the large action space and sparse rewards.

In the case of ZORK1, as described in Section 2.2, other algorithms (except MC!Q*BERT, which
is concurrent work by Ammanabrolu et al. (2020)) fail to overcome the bottleneck and are stuck
into the suboptimal policy, which leaves the agent being eaten by a monster in the dark with-
out a light source. On the other hand, MC-LAVE-RL successfully finds the optimal action (i.e.
‘take lantern’) on the bottleneck state by using the exploration strategy suitable for natural lan-
guage spaces and obtains additional rewards by discovering novel states that cannot be reached with
other methods. For instance, trajectories of MC-LAVE-RL agent frequently show that the agent
overcomes bottlenecks and behaves crucial actions to complete the game, such as ‘killing the
monster with sword’ and ‘putting the painting in the trophy case’. Further illus-
trative examples of trajectories are provided in Appendix F.

5.2 REINFORCEMENT LEARNING VIA MC-LAVE

In order to understand the effectiveness of MC-LAVE as a policy improvement operator, we compare
the performances of PUCT-RL and MC-LAVE-RL in ZORK1. Table 2 reports the intermediate
results of planning and supervised learning in each iteration of the policy iteration. In each iteration,
the policy and the Q-function are trained using planning trajectories and experience replay collected
from 25 independent planning agents. As can be seen in Table 2, the performance of MC-LAVE-RL
is improved more consistently than PUCT-RL, both in planning and learning. At the beginning of
the policy iteration, PUCT-RL improves the performance, but it fails to overcome bottleneck and
converges to a suboptimal policy: PUCT utilizes the prior policy learned by imitating the planning
results of the previous iteration to estimate the exploration bonus, but this uncertainty-based method
is not much effective to encourage the agent to explore the action space that is not sufficiently
covered. On the other hand, MC-LAVE-RL not only uses the prior policy, but also uses Q-Network
for credit assignment to language actions. This allows a more focused exploration on semantically
promising actions and consequently overcomes the bottleneck to further improve the performance.
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PUCT east open case
open

take all take lantern take sword
turn on

trap door lantern
Q(h, a) 2.65 6.80 13.81 2.03 11.34 0.22 9.00
πθ(a|o) 0.08 0.08 0.50 0.08 0.08 0.08 0.08
N(h, a) 38 39 105 37 52 37 42

MC-LAVE east open case
open

take all take lantern take sword
turn on

trap door lantern
Q(h, a) 7.86 10.59 14.10 2.30 14.23 -1.33 13.11
πθ(a|o) 0.08 0.08 0.50 0.08 0.08 0.08 0.08
N(h, a) 23 58 85 47 67 7 63
Lφ(a) 13.21 35.55 25.35 38.21 49.81 2.25 34.72

Table 3: Illustrative examples of search results of PUCT and MC-LAVE on bottleneck state in
ZORK1 (see Figure 1). Q(h, a) denotes the average of Monte-Carlo returns, πθ(a|o) represents
policy prior, N(h, a) represents visit count of each action, Lφ(a) represents language-driven explo-
ration bonus of MC-LAVE. cPUCT = 200 and cLAVE = 0.1 are used for the exploration constants.

5.3 THE EFFECT OF THE SIZE OF SEMANTIC NEIGHBORHOOD
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Figure 3: Performance of MC-LAVE
planning on ZORK1 for varying δ. The
results are averaged over 100 trials,
and error bars indicate the standard er-
rors.

The size of semantic the neighborhood is particularly cru-
cial for the performance of MC-LAVE planning. To see
this, we conducted a simple ablation experiment in ZORK1
on the effect of varying proximity threshold δ, which con-
trols the size of the semantic neighborhood of actionN (a)
in Eq. (4). Moreover, to demonstrate that the LAVE ex-
ploration bonus works as a meaningful exploration bonus
beyond simple random noise injection, we also present the
result of a simple baseline PUCT+RANDOM, which uses
MC-LAVE action selection rule of Eq. (6) with the neigh-
borhood given by 10 randomly sampled actions. This base-
line can be understood as performing the search with noise
injection via the randomly chosen neighborhood, while
not considering information sharing between semantically
similar actions. As shown in Figure 3, the performance
of PUCT+RANDOM is almost identical to PUCT, which
supports that random noise injection alone does not lead to improving search efficiency. Moreover,
the results of MC-LAVE shows that too small or too large δ are not effective, which can be naturally
explained as follows: (1) when δ = 0, no sample in the replay buffer is considered as neighborhood,
leading LAVE exploration bonus to always zero, (2) when δ = 2 (the largest possible value), every
sample in the replay buffer is considered as neighborhood, yielding LAVE exploration bonus to a
constant value for all a. Therefore, with either two extremes of δ, the MC-LAVE action selection
rule of Eq. (6) is reduced to the PUCT action selection rule of Eq. (2). Finally, the moderately
small δ = 0.3 works the best, which highlights the importance of information sharing between
meaningfully defined semantic neighborhoods to solve IF games efficiently.

5.4 QUALITATIVE ANALYSIS

In this section, we provide a qualitative analysis on the effectiveness of language-driven exploration
in MC-LAVE. We show an illustrative example in Table 3 that demonstrates how MC-LAVE focuses
more on the semantically promising actions, comparing the search results of PUCT and MC-LAVE
in the bottleneck state of ZORK1 described in Figure 1. In this example, the ‘open trap door’ is
a suboptimal action that obtains an immediate reward, while ‘take lantern’ gives no immediate
reward, but it is an optimal action when considering long-term outcome. As can be seen in Table 3,
PUCT cannot explore effectively because the search is mostly based on uncertainty, and converges to
suboptimal action (i.e. ‘open trap door’) that obtains an immediate reward. On the other hand,
MC-LAVE assigns search priorities to actions based on the optimistically aggregated Q-estimates of
the past actions. As the result of focusing on semantically promising actions, MC-LAVE selects the
optimal action (i.e. ‘take lantern’) even though it does not give any immediate reward. PUCT
also performs non-uniform search based on prior policy, but this only encourages to explore the
actions of previous behavior and does not focus on semantically promising actions.
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6 RELATED WORK

Variants of Monte-Carlo tree search. Leveraging prior knowledge for MCTS has been one of the
most important directions for improving MCTS (Gelly & Silver, 2007; Silver et al., 2016; 2017;
2018; Gelly & Silver, 2011). PUCT (Rosin, 2011; Silver et al., 2017) is one of the most popular
MCTS algorithms, which incorporates prior knowledge as a policy. The prior policy in PUCT is
typically trained by imitation learning of past behavior; other search information, such as transition
tuples and inferred Q-values, is discarded. To address this limitation, Hamrick et al. (2019) present
Search with Amortized Value Estimates (SAVE), which incorporates Q-based prior knowledge into
MCTS. In SAVE, Q-function is fit by inferred Q-values and transition tuples from search, then
is used as a prior into MCTS. Although SAVE improves sample efficiency in MCTS, it lacks a
language-grounded exploration strategy. Rapid Action Value Estimation (RAVE) (Gelly & Silver,
2011) is another notable method that addresses information sharing, which allows sharing action
values in the search tree. However, RAVE is designed especially for the game of Go and cannot be
straightforwardly applied to IF games. Furthermore, to leverage the prior knowledge given as textual
information, Branavan et al. (2011) present a method that extracts the most relevant information to
the current state and incorporates linguistic information into the Monte-Carlo search framework.
However, they assume natural language documents that contain domain knowledge of the task.

Reinforcement Learning via Monte-Carlo tree search. There are a number of recent works on
using MCTS for reinforcement learning. Silver et al. (2017) achieved successful results with MCTS
as a policy improvement operator in the game of Go. Also, in the negotiation dialogue domain,
Jang et al. (2020) used Bayes-adaptive Monte-Carlo planning as a policy improvement operator
to prevent the issue of diverging from human language. Inspired by these successes, we use the
MC-LAVE algorithm as a policy improvement operator which effectively works on IF games.

Deep Reinforcement Learning for Interactive Fiction Games. IF games have attracted a lot of
interest from the RL research since the introduction of Jericho (Hausknecht et al., 2020), an OpenAI
Gym-like (Brockman et al., 2016) learning environment for IF games. Jericho includes baseline RL
agents such as DRRN and TDQN. DRRN is a variant of deep Q-Network architecture for handling
natural language actions in text-based decision making tasks. TDQN is an extension of LSTM-DQN
(Narasimhan et al., 2015) utilizing predefined templates in order to reduce effective search spaces of
combinatorial language action space. More recently, knowledge-graph-based approaches have been
introduced to address the issues of partial observability and commonsense reasoning (Ammanabrolu
& Riedl, 2019; Ammanabrolu & Hausknecht, 2020; Ammanabrolu et al., 2020). KG-A2C (Am-
manabrolu & Hausknecht, 2020) is an actor-critic algorithm that leverages knowledge graph state
representation for commonsense reasoning. Ammanabrolu et al. (2020) introduce Q*BERT, an ex-
tension of KG-A2C, which updates the knowledge graph by using the pre-trained language model
ALBERT (Lan et al., 2020), a variant of BERT (Devlin et al., 2019). To encourage better exploration
and overcome the bottleneck state in IF games, they introduce MC!Q*BERT that additionally uses
intrinsic motivation based on changes of the knowledge graphs.

7 CONCLUSION

We presented Monte-Carlo planning with Language Action Value Estimates (MC-LAVE), an
MCTS-based algorithm for language action space, which combines MCTS with language-driven
exploration strategy. MC-LAVE assigns search priorities to each language action based on Q-values
of previously executed actions that share similar meanings, then invests more search effort into
semantically promising actions. We then incorporated MC-LAVE into reinforcement learning by
using MC-LAVE as a policy improvement operator. Our approach achieved remarkable results in
difficult games that feature large action space and sparse reward and outperforms or matches the
state-of-the-art on the various IF games.
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A IMPLEMENTATION DETAILS

As discussed in section 4, MC-LAVE-RL alternates (1) planning, (2) supervised learning and Q-
learning. In the planning phase, multiple planning workers are run in parallel on a distributed
computing system to collect various planning trajectories and experience replay. After planning,
we merge collected trajectories and experience replay and train the policy network and Q-Network
using merged trajectories and experience replay respectively. For Q-Network, we exploit the same
architecture used in DRRN (He et al., 2016) illustrated as Figure 5, which takes an observation ot,
an action at as an input and outputs Qφ(ot, at). For the policy network, we use a network architec-
ture similar with DRRN as described in Figure 4, which directly outputs fθ(at|ot), an unnormalized
probability of an action at given an observation ot, i.e. πθ(at|ot) ∝ fθ(at|ot). Our code is publicly
available2.
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Figure 4: Policy network
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Figure 5: Q-Network

B EXPERIMENTS DETAILS

Hyperparameters ZORK1 DEEPHOME LUDICORP PENTARI DETECTIVE LIBRARY BALANCES TEMPLE ZTUU

λ (discount factor) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
# of max iterations 4 4 4 4 4 4 4 4 4
δ (neighborhood threshold) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Max search depth 10 10 20 10 10 15 15 10 15
Max episode length 35 35 50 35 50 35 35 35 35
# of simulations per action 50 50 50 50 50 50 50 50 50
# of planning workers 25 25 25 25 25 25 25 25 25
cLAVE 1.0 1.0 2.0 1.0 0.1 1.0 1.0 1.0 1.0
cPUCT 50 20 50 50 200 20 50 50 50

Table 4: Configurations of MC-LAVE-RL used in our experimental results. Hyperparameters in
the upside of the table were globally adapted in the planning-learning framework and the other
hyperparameters are used only in the MCTS planning phase.

2https://github.com/jys5609/MC-LAVE-RL
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C ASYMPTOTIC OPTIMALITY OF MC-LAVE

In this section, we show that the asymptotic optimality of PUCB (Rosin, 2011) is still held after the
introduction of the language-driven exploration bonus in Eq. (5). We start by restating the theoretical
result for PUCB.
Lemma 1. (Theorem 1 in (Rosin, 2011)) For any stochastic policy π(a) > 0 with

∑
a π(a) = 1,

c1 > 0, and c2 > 0, PUCB action selection rule at trial t is defined as:

arg max
a

[
r(t, a) + c1

√
log t

N(a)
− c2

1

π(a)

√
log t

t

]
whereN(a) is the number of simulations action a is taken in the past, r(t, a) is an empirical average
reward of action a at the start of trial t., Then, expected regret of PUCB action selection rule is
bounded by O(

√
n log n) ∀n > 1.

Note that the prior policy π in the PUCB rule encourages the actions that have a high value of π(a)
to be selected more often. In this work, we use a variant of PUCB as in (Silver et al., 2017).
Theorem 2. MC-LAVE action selection rule at trial t is defined as:

arg max
a

[
r(t, a) + c1

√
log t

N(a)
− c2

1

π(a)

√
log t

t
− c3

1

L(a)

√
log t

t

]
whereN(a) is the number of simulations action a is taken in the past, r(t, a) is an empirical average
reward of action a at the start of trial t, π(a) > 0 is a stochastic policy with

∑
a π(a) = 1, c1 > 0,

c2 > 0, c3 > 0 and L(a) > 0 is a bonus of action a. Then MC-LAVE action selection rule also
achieves expected regret bounded by O(

√
n log n) ∀n > 1.

Proof. The theorem can be proved by showing that the MC-LAVE action selection rule can be
represented as the PUCB action selection rule with another policy. MC-LAVE action selection rule
is defined as

arg max
a

[
r(t, a) + c1

√
log t

N(a)
− c2

1

π(a)

√
log t

t
− c3

1

L(a)

√
log t

t

]

= arg max
a

[
r(t, a) + c1

√
log t

N(a)
− c2

(
1

π(a)
+
c3
c2

1

L(a)

)√
log t

t

]
Define p(a), π′(a), c′2 as follows:

p(a) :=
1(

1
π(a) + c3

c2
1

L(a)

) , π′(a) :=
p(a)∑
a p(a)

, c′2 := c2
1∑
a p(a)

Then MC-LAVE action selection rule can be represented as follows:

arg max
a

[
r(t, a) + c1

√
log t

N(a)
− c2

1

p(a)

√
log t

t

]

= arg max
a

r(t, a) + c1

√
log t

N(a)
− c2

1∑
a p(a)

· 1
p(a)∑
a p(a)

√
log t

t


= arg max

a

[
r(t, a) + c1

√
log t

N(a)
− c′2

1

π′(a)

√
log t

t

]
which induces PUCB action selection rule with another policy π′ and coefficient c′2. Hence, by
Lemma 1, MC-LAVE achieves expected regret bounded by the same order with PUCB, which is
O(
√
n log(n)) ∀n > 1.

Thus, in the same manner, we obtain the analysis of UCT from that of UCB, i.e. induction with a
mild assumption on the drift-condition of the inherent non-stationary bandit problem, we can obtain
the analysis of MCTS using MC-LAVE using the above result.
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D PSEUDOCODE OF MC-LAVE

Algorithm 1 Monte-Carlo Planning with Language Action Value Estimates (MC-LAVE)
procedure SEARCH(s0)

o0 ← O(s0)
h0 ← o0
repeat

SIMULATE (s0, h0, 0)
until TIMEOUT ()
return arg max

a∈Avalid(o0)

Q(h0, a)

end procedure

procedure SIMULATE(s, h, t)
if t = (planning horizon H) then

return 0
end if
[a, rollout]← SELECTACTION(h)
[r, s′, o′]← G(s, a)
h′ ← hao′

if rollout then
R′ ←− ROLLOUT(s′, t+ 1)

else
R′ ←− SIMULATE(s′, h′, t+ 1)

end if
R← r + γ ·R′
N(h)← N(h) + 1
N(h, a)← N(h, a) + 1

Q(h, a)← Q(h, a) + R−Q(h,a)
N(h,a)

return R
end procedure

procedure SELECTACTION(h)

a←− arg max
a∈Avalid(o)

[
Q(h, a) + cPUCTπθ(a|o)

√
N(h)

N(h,a)+1

+cLAVELφ(a)

√
N(h)

N(h,a)+1

]
if N(h, a) = 0 then

rollout←− true
else

rollout←− false
end if
return [a, rollout]

end procedure

procedure ROLLOUT(s, t)
if t = (planning horizon H) then

return 0
end if
o← O(s)
a ∼ πθ(·|o)
[r, s′, o′]← G(s, a)
return r + γ · ROLLOUT(s′, t+ 1)

end procedure
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E COMPARISON RESULTS OF SOFT AND HARD CONSTRAINTS

Algorithms KG-A2C-Soft KG-A2C-Hard PUCT-RL MC-LAVE-RL

R
eq

ui
re

-
m

en
ts

Valid Action Soft Hard Hard Hard
Resettable - - 3 3

External Info - - - Word Embedding
D

iffi
cu

lt
G

am
es

ZORK1 34 ± 2.2 40.2 ± 0.4 38.2 ± 0.8 45.2 ± 1.2
DEEPHOME 1 ± 0.0 20 ± 2.1 28.6 ± 2.9 35 ± 0.6
LUDICORP 18.6 ± 0.5 19.8 ± 1.0 18 ± 0.0 22.8 ± 0.2

Po
ss

ib
le

G
am

es

PENTARI 41 ± 0.9 44 ± 0.9 64 ± 2.4 68 ± 2.0
DETECTIVE 318 ± 5.2 338 ± 3.4 322 ± 2.0 330 ± 0.0

LIBRARY 15.8 ± 0.5 17 ± 0.0 19 ± 0.0 19 ± 0.0
BALANCES 10 ± 0.0 10 ± 0.0 10 ± 0.0 10 ± 0.0

TEMPLE 8 ± 0.0 8 ± 0.0 8 ± 0.0 8 ± 0.0
ZTUU 5 ± 0.0 5 ± 0.0 5 ± 0.0 7 ± 2.7

Table 5: Experimental results comparing soft and hard constraints of valid action handicap. KG-
A2C (Soft/Hard) indicates the use of valid action handicap as a (soft constraint via entropy loss over
the valid actions/hard constraint for the effective action space). All results indicate averages and
standard errors over 5 independent runs.

The original KG-A2C (published state-of-the-art, denoted as KG-A2C-Soft in Table 5) uses the
valid action handicap as a soft constraint via entropy loss over valid actions, while our MC-LAVE-
RL exploits the valid action handicap as a hard constraint that constrains the effective action space
directly. For an equivalent comparison in terms of how a valid action handicap is handled, we
also implemented KG-A2C-Hard, which uses the valid action handicap as a hard constraint for the
effective action space. Table 5 shows that MC-LAVE-RL still significantly outperforms or matches
both KG-A2C-Soft and KG-A2C-Hard on the 8 out of 9 games. This result implies that reducing
an effective search space alone may not be sufficient, and language-grounded planning ability is the
key to solve IF games successfully. Still, care must be taken to interpret the result of Table 5 in that
KG-A2C is a pure RL method and MC-LAVE-RL is an RL algorithm that requires an additional
planning assumption (i.e. resettable simulator).
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F ILLUSTRATIVE BEHAVIOR EXAMPLES

To understand how MC-LAVE-RL discovers more novel states than other reinforcement learning
agents, we provide illustrative examples that represent the behavior of each agent playing ZORK1.

North of 
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Behind 
HouseKitchenLiving 

Room
Cellar

Start

Ground Basement

: normal state
: gives a reward when agent first reached
: bottleneck state

(a) Behavior of DRRN, KG-A2C and PUCT-RL playing ZORK1
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(b) Behavior of MC!Q*BERT playing ZORK1
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(c) Behavior of MC-LAVE-RL playing ZORK1

Figure 6: Illustrative examples on ZORK1 that represents the behavior of learned policy by baselines
and our algorithms.
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G ILLUSTRATIVE EXAMPLES FOR LANGUAGE-ACTION EMBEDDING

We present the t-SNE visualization for the language-action embedding and the (semantic) neigh-
borhood of the action ‘take lantern’ on ZORK1. In the following figures, the color of points
indicates the observation-marginalized Q-value of each action with respect to the replay buffer,
which is defined as:

E(ō,ā)∼D(a)[Q(ō, ā)] s.t. D(a) = {(ō, ā) : a = ā where (ō, ā, r̄, ō′) ∈ D}

Only a subset of the entire language actions is presented in the figures to prevent the cluttered
presentation. The bold fonts with cyan and yellow indicate the (semantic) neighborhood of the
action ‘take lantern’ and ‘open trap door’, and the bold font with magenta indicates the
common neighborhood of them. As shown in Figure 7, the semantic neighborhood of language
actions defined by the pre-trained word embedding is composed of semantically similar actions.
However, as shown in Figure 7, when using the word embedding fine-tuned by Qφ training, the
semantic neighborhood includes a number of irrelevant actions. This result highlights the importance
of word embedding for effective information sharing in MC-LAVE-RL.
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Figure 7: (Left) The t-SNE visualization for the semantic neighborhood of language actions defined
by the pre-trained word embedding. The language-actions sharing similar meanings are located at
similar points in the embedding space. (Right) The t-SNE visualization for the neighborhood of
language actions defined by the word embedding fine-tuned by Qφ training. The training objective
of Qφ does not account for the semantics of language actions but only considers rewards, thus the
resulting embedding loses the linguistic semantics of words.
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H ILLUSTRATIVE EXAMPLE FOR SEMANTIC-BASED INFORMATION SHARING

MC-LAVE east open case
open

take all take lantern take sword
turn on

trap door lantern

Q(h, a) 7.86 10.59 14.10 2.30 14.23 -1.33 13.11
πθ(a|o) 0.08 0.08 0.50 0.08 0.08 0.08 0.08
N(h, a) 23 58 85 47 67 7 63
Lφ(a) 13.21 35.55 25.35 38.21 49.81 2.25 34.72

MC-LAVE east open case
open

take all get lantern take sword
turn on

trap door lantern

Q(h, a) 6.22 11.37 14.29 4.05 15.31 -0.82 13.88
πθ(a|o) 0.08 0.08 0.50 0.08 0.08 0.08 0.08
N(h, a) 21 47 125 35 57 11 54
Lφ(a) 13.21 35.55 25.35 38.21 41.43 2.25 34.72

Table 6: An illustrative example of search results of MC-LAVE on bottleneck state in ZORK1 (see
Figure 1) with modifying the action ‘take lantern’ to ‘get lantern’. The above result with
the action ‘take lantern’ is the same as in Table 3. Q(h, a) denotes the average of Monte-
Carlo returns, πθ(a|o) represents policy prior, N(h, a) represents visit count of each action, Lφ(a)
represents language-driven exploration bonus of MC-LAVE. Note that some differences in Q(h, a)
and N(h, a) between results are due to two independent simulation runs.

In order to show the effectiveness of language-action embedding, we further investigate MC-LAVE
planning on the bottleneck state presented in Figure 1 and Table 3. Specifically, in the bottleneck
state, we artificially modified the action ‘take lantern’ to ‘get lantern’ within the valid action
set which is used for MC-LAVE planning. As shown in Table 6, MC-LAVE still can successfully
select the modified ‘get lantern’ over ‘open trap door’ as a final action, even though ‘get
lantern’ had never seen by the agent before. This generalization property of MC-LAVE is due to
the effect of pre-trained embedding, which shows the importance of language-action embedding for
information sharing across semantic space.
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