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Abstract

The theory of spectral filtering is a remarkable tool to understand the statistical
properties of learning with kernels. For least squares, it allows to derive various
regularization schemes that yield faster convergence rates of the excess risk than
with Tikhonov regularization. This is typically achieved by leveraging classical
assumptions called source and capacity conditions, which characterize the diffi-
culty of the learning task. In order to understand estimators derived from other
loss functions, Marteau-Ferey et al. [1] have extended the theory of Tikhonov reg-
ularization to generalized self concordant loss functions (GSC), which contain,
e.g., the logistic loss. In this paper, we go a step further and show that fast and op-
timal rates can be achieved for GSC by using the iterated Tikhonov regularization
scheme, which is intrinsically related to the proximal point method in optimiza-
tion, and overcomes the limitation of the classical Tikhonov regularization.

1 Introduction

We consider the problem of supervised learning where we want to find a prediction function θ
mapping an input point x living in a set X to a label y in Y . In this paper, we assume that θ lives in
a separable Hilbert space H and is learned from a set of observations (xi, yi)i=1,...,n that are i.i.d.
samples drawn from an unknown probability distribution ρ on X × Y . The goal is to find θ that
minimizes the expected risk L, which is defined below along with the empirical risk L̂:

L(θ) =

∫
X×Y

`(y, θ(x))dρ(x, y), L̂(θ) =
1

n

n∑
i=1

`(yi, θ(xi)), (1)

where ` is a suitable loss function comparing true labels with predictions. This paper aims for upper
bounds on the excess risk for a specific estimator θ̂. That is, we assume that the minimum of the
expected risk is attained for some θ? inH, and we want to derive probabilistic upper bounds on the
excess risk:

P
[
L(θ̂)− L(θ?) > C1n

−γ log 2
δ

]
≤ δ, (2)

given some value δ in (0, 1), where C1 is a positive constant, and θ̂ is an estimator built from the n
observations. The quantity O(n−γ) denotes the rate of convergence of the estimator θ̂. A classical
“slow” rate with γ = 1/2 is typically achieved by many estimators and is in fact optimal if only mild
assumptions are made about the data distribution ρ. Even though optimal, this rate is nevertheless
a worst case and faster rates with γ > 1/2 can be achieved both in theory and in practice, by
making additional assumptions about the difficulty of the learning task. Originally introduced in the
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literature of inverse problems, the so-called source and capacity conditions have been shown to be
appropriate for this purpose, leading to statistical analysis with fast rates of convergence [1, 2, 3].
The optimality of results of the form (2) is characterized by comparing them with lower bounds that
are available for various sets of data distributions ρ [3]. Matching upper bounds with lower bounds
ensures that the estimator θ̂ is optimal, in the sense that no information is lost in the process of
exploiting the data samples to compute θ̂, for the given set of distributions.

In this search for optimal estimators, most of the attention has been devoted to minimizers of some
function of the empirical risk L̂, which is defined in (Eq. (1)). Then, the key challenge is to regularize
L̂ in order to achieve better generalization properties. The most widely used scheme is probably
Tikhonov regularization; other examples when H is a RKHS include truncated regression [4], or
early stopping in gradient descent algorithms [5, 6]. When the loss ` is set to least squares, it can be
shown that minimizing the excess risk amounts to solving an ill-posed inverse problem [7], which
led to the remarkable theory of spectral filtering. A large class of regularization schemes can indeed
be seen as a filtering process applied to the training labels yi after regularizing the spectrum of the
kernel matrix [2, 8]. Interestingly, this theory has highlighted the fact that not all regularization
schemes are equal: some of them obtain fast learning rates in (2) on “easy” problem (a thorough
definition is given in Section 2) while others cannot leverage this additional regularity to improve
the learning rate.

Such a general analysis for least squares is made possible by the fact that a closed-form expression of
the estimator is available. When considering different loss function `, the estimator θ̂ is unfortunately
only implicitly available as the solution of an optimization problem involving L̂. A step to extend
least squares results to more general loss functions has been achieved by Marteau-Ferey et al. [1],
who provide bounds on the form (2) for Tikhonov estimator on generalized self concordant (GSC)
functions. GSC functions are three-times-differentiable functions whose third derivative is bounded
by the second-derivative. In practice, they were introduced to conduct a general analysis of the
Newton method in optimization [9, 10], and adapted in [11] to encompass a larger class of loss
function. It includes notably the logistic regression loss, which is widely used for classification.

While Tikhonov yields fast rates of convergence in several data regimes, it is known to be unable to
adapt to the whole range of learning task difficulties. More precisely, it suffers from a “saturation”
effect [2], meaning that when the learning task becomes simpler, the learning rate stops improving
and is suboptimal. Our paper addresses this limitation for GSC functions by considering instead the
iterated Tikhonov regularization (IT) scheme. In the context of least squares, this approach consists
of successively fitting the residuals. For more general loss functions, it is equivalent to performing a
few steps of the proximal point method in optimization [12]. Our main result is a probabilistic upper
bound on the excess risk, which is optimal given usual source and capacity conditions assumptions
on the learning task, thus addressing the limitations of the classical Tikhonov regularization.

2 Background and Preliminaries

2.1 Definitions: Estimator and Loss Function

Let X be a Borel input space, Y be a vector-valued output spaces, and ρ a probability distribution
on X × Y . We consider H to be a separable Hilbert space of functions from X to Y . Given a loss
function ` : Y × Y → R, we aim at minimizing the expected loss, while we only have access to the
empirical loss – both are defined in Eq. (1). Our work provides an upper bound on the excess risk of
the iterated Tikhonov estimator. For the basic case of least squares with Y = R, it is usually defined
as a procedure that refits the residuals, see, e.g., §5.4 in [2]. Starting with θ̂0λ = 0, it consists of the
sequence

θ̂tλ = θ̂t−1λ + arg min
θ∈H

{
1

n

n∑
i=1

1

2

(
yi − θ̂t−1λ (xi)− θ(xi)

)2
+
λ

2
‖θ‖2

}
. (3)

To extend this regularization to other loss function, we make the change of variable θ′ = θ̂t−1λ + θ
in the equation above, which yields the proximal point algorithm [12].
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Definition 1 (Iterated Tikhonov estimator a.k.a. proximal point algorithm). We define the iter-
ated Tikhonov estimator with the following sequence. Given λ > 0 and θ̂0λ = 0,

θ̂t+1
λ = proxL̂/λ(θ̂tλ)

def.
= arg min

θ∈H

{
L̂(θ) +

λ

2

∥∥∥θ − θ̂tλ∥∥∥2} , (4)

where proxL̂/λ denotes the proximal operator of the empirical risk L̂ rescaled by 1/λ.

Remark 1. In practice, the proximal operator is only computed approximately by using an optimiza-
tion algorithm. Nevertheless, the benefits in terms of statistical accuracy of the iterated Tikhonov
scheme are robust to inexact solutions, as long as the accuracy for solving the sub-problems (Eq. (4))
is high enough. We discuss this point in Section 3.2.
Remark 2. It is easy to show that the sequence of the proximal point algorithm always converges
to a minimizer of the unregularized empirical risk, which is of course not what we are interested in.
Instead, we consider and analyze the procedure with a fixed small number of steps t and show later
that optimal learning rates can be obtained by choosing an appropriate parameter λ.
Remark 3. When the loss is a function of a residual y− θ(x)—assuming Y to be a vector space—as
in the least square case, we recover the classical definition consisting of refitting the residual, and
with t = 1, we recover Tikhonov.

Interestingly, our definition makes the estimator compatible with other loss functions, such as the
logistic loss. More precisely, the main assumption we make on the loss is to be generalized self
concordant. We follow the definition of [1], which is a special case of 2-self concordance introduced
in [13]:
Definition 2 (Generalized self-concordance). For any z = x, y ∈ X ×Y , the function `z : H → R
defined as `z(θ) = `(y, θ(x)) is convex and three times differentiable. Besides, there exists a set
φ(z) ⊆ H s.t:

∀θ, h, k ∈ H,
∣∣∇3`z(θ) [h, k, k]

∣∣ ≤ sup
g∈φ(z)

|k · g| ∇2`z(θ) [k, k] . (5)

The brackets indicate that the vectors h, k and k are applied to the 3-dimensional tensor ∇3`z(θ).
The definition seems technical at first sight, but intuitively, this assumption allows to upper bound
the deviation between the objective function and its local quadratic approximation. This enables
a simple analysis of the Newton method for optimization, making it easy to quantify the basin of
quadratic convergence [14]. On top of this, it has the benefit of encompassing a large class of loss
functions, such as the logistic loss: see Example 1 in [1] for values of φ(z) with usual losses. We
provide some intuition on GSC loss functions in Remark 6 in Appendix C.1.

In order to ensure the existence of the loss and its derivatives everywhere, we also need the following
technical assumptions also introduced in [1], which are reasonable in practice. This ensures that both
L and L̂ are generalized self concordant too.
Assumption 1 (Technical assumptions). There exists R s.t supg∈φ(z) ‖g‖ ≤ R almost surely for z
drawn from the distribution ρ and |`z(0)| , ‖∇`z(0)‖ ,Tr∇2`z(0) are almost surely bounded.

The following assumption is usual in excess risk analysis [1, 15]. In our proof strategy, all the quan-
tities are vectors and operators inH, which makes the analysis simpler. Weakening this assumption
(e.g. assuming that θ? ∈ L2(X )) would require finding an equivalent of the covariance operator for
GSC loss function, which constitute an interesting future direction.
Assumption 2 (Existence of a minimizer). There exists θ? inH s.t L(θ?) = infθ∈H L(θ).

Finally, following [1] we also define the expected Hessian and the regularized expected Hessian as

∀θ ∈ H, λ > 0, H(θ) = Ez∼ρ
[
∇2`z(θ)

]
, Hλ(θ) = H(θ) + λI,

and we introduce the degrees of freedom, also known as the effective dimension of the problem:
Definition 3 (Degrees of freedom). The degrees of freedom is defined as:

∀λ, dfλ = Ez∼ρ
[
‖∇`z(θ?)‖2H−1

λ (θ?)

]
.

where we denote by ‖θ‖A =
∥∥A1/2θ

∥∥, with θ ∈ H, the norm induced by a positive definite operator
A onH.
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Remark 4. The intuition about this definition is not straightforward. To better understand why this
quantity is a key to characterize the amount of regularization in a learning problem, it is useful to
consider the specific case of the square loss with kernels. In such a case, H is a reproducing kernel
Hilbert space (RKHS) and θ(x) = θ>Φ(x), where Φ : X → H is the kernel mapping. Then, the
Hessian is constant everywhere and equal to the covariance operator T = Ex∼ρx [Φ(x)⊗ Φ(x)]
where ρx is the marginal of ρ. Consequently, the degrees of freedom (also known as effective
dimension) is a spectral function of T which may be written as dfλ = TrTT−1λ . This is the classical
quantity which appears on the bias/variance decomposition of the excess risk, with a variance part
decaying in TrTT−1λ /n, see [3].

2.2 Source and Capacity Conditions

We now introduce the hypotheses we make on the learning task, which will allow us to derive fast
rates of convergence. They measure the difficulty of the problem and are classical in the context of
learning with kernels, see e.g. [8, 16, 17]. It is indeed established that given an algorithm which
outputs an estimator θ̂ , one can find a probability measure ρ s.t the learning rate of the estimator
is arbitrarily low, a result known as the “no-free lunch theorem” [18]. Inspired by the literature of
inverse problems, two assumptions were introduced to restrict the space of considered distributions.

Assumption 3 (Source condition). There exists r > 0 and v inH s. t: θ? = Hr(θ?)v.

A 7→ Ar is the usual power for positive definite operators. The source condition should be seen as
a smoothness assumption on θ?, and for least square, we recover the usual definition of the source
condition, that is θ? = T rv, with T the covariance operator we previously defined. Bigger r implies
that the optimum can be well approximated by a few eigenvectors. Assuming r = 0 simplifies to
θ? ∈ H.

The second assumption characterizes the ill-posedness of the problem:

Assumption 4 (Capacity condition). There exists α > 1, s,S > 0 s.t sλ−1/α ≤ dfλ ≤ Sλ−1/α.

Again, for the square loss, it turns to a bound on the eigenvalue decay of the covariance operator. If
σj , ej is an eigenbasis of T , then σj = O(j−α). Said differently, the bigger α, the fewer directions
are needed to approximate well a sample x ∼ ρx in expectation, and the easier is the learning task.
This is an assumption on the input space X and does not imply anything on the labels Y .

2.3 Previous Results

Our main result considers iterated Tikhonov with GSC loss functions. While iterated Tikhonov has
been previously analyzed for squared loss by leveraging the theory of spectral filtering (see below),
extensions to other loss functions raise several difficulties, which will be detailed in Section 3.

Spectral filters and least squares. As we mentioned earlier, the key insight on regularization
with the square loss is that a closed-form expression of the estimator is available. By using the same
notation as in Remark 4, the kernel ridge regression estimator can be for instance written

θ̂λ =

n∑
i=1

βiΦ(xi) with β =
1

n
gλ

(
K

n

)
y, (6)

where K is the n× n kernel matrix, y = (yi)1≤i≤n is the vector of training labels and gλ(K/n) =
(K/n + λI)−1. Note that gλ is a function acting on the spectrum of K, which makes it a special
case of regularization by spectral filtering, which may be analyzed for more general functions gλ.
In particular, a key quantity for understanding the regularization effect of a filter gλ is the so-called
qualification. Following [2, 8], this quantity is defined below.

Definition 4 (Qualification of a spectral filter). For any λ > 0, define gλ : [0, 1] → R a filter
function. Its qualification is the highest q such that

∀ν ≤ q, sup
σ
|1− σgλ(σ)|σν ≤ ωνλν , (7)

with ων a constant independant of λ.
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Under the source and capacity conditions, it is possible to show that the resulting estimator would

enjoy an optimal rate in n−
α(1+2r)

1+α(1+2r) if r + 1/2 ≤ q (where r comes from the source condition).

When r + 1/2 > q, the rate is instead of order n−
α(1+2q)

1+α(1+2q) , which is suboptimal, see e.g. Thm.
3.4 [17] (set the parameter s to 1/2). This illustrates the saturation effect of some regularization
schemes. For example, Tikhonov regularization amounts to filtering with gλ : σ 7→ (σ + λ)−1 and
has qualification 1, so the parameter r saturates at r = 1/2. Thus, even if r � 1/2, the excess risk
of θ̂λ will decay in n−

α
1+α , which is suboptimal. Designing estimators with high qualification is key

to obtaining fast rates that can adapt to both hard and easy learning tasks.

Iterated Tikhonov with the Square Loss. We can compute the spectral filter function gtλ corre-
sponding to t iterations of IT, which yields

gtλ : σ 7→ (σ + λ)−1
t−1∑
i=0

(
λ

σ + λ

)i
= σ−1

(
1−

(
λ

σ + λ

)t)
. (8)

Choosing a fixed t and computing the supremum of σ 7→ |1− σgλ(σ)|σν , we find that IT estimator
has qualification t, which is thus better than Tikhonov. IT has been thoroughly studied in the com-
munity of inverse problems, dating back to the work of [19]. It was naturally transferred to learning
with kernels thanks to the aforementioned connection with inverse problems.

The link we make with the proximal point algorithm has never been studied from a statistical per-
spective, to the best of our knowledge, even though it has attracted a lot of attention in the optimiza-
tion literature, notably with accelerated algorithms [20, 21], or variants of the proximal operator
on a class of self-concordant loss functions [22]. More attention was devoted to boosting, where
the penalty λ is fixed but the number of iterations t may go to infinity, necessitating an appropriate
stopping rule [23]. Nevertheless, such a work focuses on the least square loss, where the theory of
spectral filter can be applied. Finally, the proximal sequence in Eq. (4) can be cast as a constrained
optimization problem related to sequential greedy approximation [24].

Tikhonov and Generalized Self Concordant losses. Extending the results obtained with the
square loss to more general losses is challenging since there is no closed form available for the
resulting estimator, and the theory of spectral filtering does not apply. Nevertheless, the case of
Tikhonov regularization for GSC loss functions was treated in [1]. It is shown that the resulting esti-
mator enjoys optimal rate as long as r ≤ 1/2, meaning that the saturation of Tikhonov regularization
is recovered in those settings. We will extend these results to the IT regularization, showing that an
improved qualification can be achieved, leading to fast rates for a larger class of learning tasks.

3 Main Result

Our main result establishes an optimal non-asymptotic bias variance decomposition of the excess
risk. It is optimal in the sense that choosing an appropriate regularization parameter λ enables to
achieve the optimal lower rates of convergence established for least squares.

Theorem 1 (Optimal rates of IT estimator). Let δ ∈ (0, 1], and set λ ∈ (0, L0), n ≥ N. The
following bound on the excess risk holds with probability greater than 1− 2δ:

L(θ̂tλ)− L(θ?) ≤ Cbiasλ
2s + Cvar

dfλ
n
, with s = min {r + 1/2, t} . (9)

If we further assume that the capacity condition holds and that the estimator does not saturate, that
is t ≥ r + 1/2, then setting

λ = Crisk n
− α

1+α(2r+1) , (10)

makes the following holds with probability greater than 1− 2δ:

L(θ̂tλ)− L(θ?) ≤ 2Crisk n
− α(2r+1)

1+α(2r+1) . (11)

The constants L0,N,Cbias,Cvar,Crisk are detailed in Theorem 4 in the appendix; they are explicit
and depend only on r, α,S, R, t, δ and the distribution ρ.
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Optimal rates. First, we note that the decay rate of the excess risk is optimal provided t ≥ r+1/2.
It means that, up to constant factors, no estimators trained on n observations can benefit from a better
learning rate (in the worse case sense) with the prior considered on ρ, that is source and capacity
conditions of parameters r, α. This leads to the second point: we see that IT has qualification q = t.
When t = 1, this is Tikhonov estimator and we recover the result of [1]. This qualification shows in
the bound on the bias: if r ≤ t − 1/2, the bias is optimal in λ2r+1; otherwise, it is suboptimal and
decays only in λ2t, which leads to higher excess risk, hence generalization error.

Influence of t. The leading multiplicative constant of the rate Cvar in Eq. (9) depends linearly on
the number of steps t, as shown in Eq. (55) in Appendix B.5. Thus, the rate in Eq. (11) is optimal in
n when t = O(r). Letting t go to infinity amounts to minimizing the empirical risk, which yield the
unregularized estimator: this agrees with our bound on the excess risk, as the constant Cvar would
go to infinity in that case.

Source and capacity condition. The source and capacity conditions enable precise bounds on the
bias and the variance, respectively. If they do not hold, the bias can only be bounded by O(λ),
while we can upper bound the degrees of freedom with O(1/λ), leading to slow learning rates.
If the source condition holds but the capacity condition does not, we then obtain learning rates in
n−2s/(2s+1), s = min {r + 1/2, t}, which are also optimal in these settings.

Example: a very easy learning task. Suppose the source condition satisfies r = 10 and that the
capacity condition does not hold. Then, using Tikhonov estimator [1] amounts to setting t = 1.
The generalization error would then decay as n−2/3. On the other hand, using Iterated Tikhonov
estimator with t = 10 would make the generalization error decay in n−20/21, which is much better.

3.1 Sketch of the proof

The proof, which is fully detailed in the appendix, has the following outline:

• First, we give technical results on generalized self concordant functions;
• Then, we define the intermediate quantity in our bias-variance decomposition;
• Finally, we proceed to bounding the bias and the variance separately, which plugged to-

gether give our bound on the excess risk.

To prove the theorem above we build upon the tools from [1] on generalized self concordant func-
tions. The resulting proof covers and simplifies the case of Tikhonov regularization (one step of
iterated Tikhonov) and generalizes the rates to r > 1/2. We provide also a fine control of the
constants, that takes into account the sequential nature of the IT estimator.

Properties of generalized self concordant loss functions Here, we report key properties of GSC
loss functions, which are covered in depth in Appendix A. GSC loss functions are convenient to
study as they come with a set of bounds on the Hessian, the gradients and the function values.
Intuitively, by integrating multiple times the relation between the third and second derivative in the
definition from Eq. (5), one can obtain bounds on function values. To introduce them, we first define
the following function:

∀θ ∈ H, t(θ) = sup
z∈Supp ρ

sup
g∈φ(z)

|g · θ| . (12)

By integrating three times the bound of the definition, one can show that:

L(θ̂tλ)− L(θ?) ≤ Ψ
(
t(θ̂tλ − θ?)

)∥∥∥θ̂tλ − θ?∥∥∥2
H(θ?)

, Ψ : t 7→ (et − t− 1)/t2. (13)

This type of bound first appeared in [11] and was given in this form in [1]. We report it in Proposi-
tion 3 in the appendix. For instance, when ` is the square loss, t = 0 everywhere and the r.h.s turns
to 1/2‖θ̂tλ − θ?‖2T , see [17, 25]. On top of this, we generalize a lower bound on the gradient:
Lemma 1 (Stacking operator on gradient bounds). Let θ, ν, ξ ∈ H, λ > 0. If A : H → H
commutes with H(ξ), the following holds:

e− t(θ−ξ)φ (t(ν − θ)) ‖A(ν − θ)‖Hλ(ξ)
≤ ‖A(∇Lλ(ν)−∇Lλ(θ))‖H−1

λ (ξ) , (14)

where φ : t 7→ (1− e−t)/t.
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Together with Eq. (13), this result is the workhorse of our proof for the upper bound on the excess
risk. It is detailed and proven in Appendix D.

Bias-variance decomposition. Thanks to Eq. (13), we can relate the excess risk with the distance
between estimates. This is why bounding the excess risk amounts to finding a good bias-variance
decomposition. Most of the proof we find for the square loss rely on the quantity

ϑtλ = gtλ(T̂ )T̂ θ?, (15)

with T̂ = 1/n
∑
i Φ(xi) ⊗ Φ(xi) the empirical covariance operator, obtained by replacing ρ with

the empirical distribution in Remark 4. This is basically the estimator trained on noiseless empirical
data (i.e. using θ?(xi) instead of yi) [17, 26, 23]. Unfortunately, working with GSC function makes
the spectral filtering point of view inapplicable. We need to translate a closed-form expression of
the intermediate quantity with filters into the solution of an optimization problem. In our case, we
can achieve the optimal bias-variance decomposition with the following quantity:

ϑ0λ = θ?,

ϑk+1
λ = proxL̂/λ(ϑkλ), k ≥ 0.

(16)

Consequently, we write

‖θ̂tλ − θ?‖H(θ?) ≤ ‖θ̂tλ − ϑtλ‖H(θ?) + ‖ϑtλ − θ?‖H(θ?). (17)

We recover Eq. (15) with the square loss. In [1], a different decomposition is used; we found Eq. (16)
to greatly simplify the proof.

Bounding the bias and the variance. The first term in Eq. (17) is the bias of the estimator, as
it goes to 0 when the regularization λ goes to 0. By applying the lower bound on gradient values
– Eq. (14) – with the definition of the proximal operator, one can express ‖θ̂tλ − ϑtλ‖ function of
‖θ̂t−1λ − ϑt−1λ ‖. Unfolding the recursion, we obtain Theorem 2 in the appendix. It shows that the
bias decreases in O

(
λr+1/2

)
if the qualification is sufficient, i.e. t ≥ r + 1/2. Otherwise, we

recover the saturation experienced with least squares: the bias only decreases in O (λt). Specific
attention is devoted to bounding the prefactor, which is otherwise difficult to manage.

The second term in Eq. (17) is the variance, as it goes to 0 when the number of samples n increases.
Theorem 3 shows that it decays in O(

√
dfλ/n). It follows closely the work of [17]. However, we

cannot use the convenient fact that dfλ = TrH(θ?)Ĥ−1λ (θ?), which is valid for least squares but
not in general. Thus, we took specific care in adapting our bounds to the different regimes so as not
to impact the learning rate.

Plugging these results together, we obtain the upper bound on the excess risk.

3.2 Optimization

The aim of this section is to extend the result of Theorem 1 to a practical case, where we only have
access to an inexact solver for computing the proximal operator. Specifically, let ε > 0 be the error
(to be defined precisely in Proposition 1) made when approximating θ̂tλ with θ

t

λ, the quantity we
compute numerically. We aim for a bound of the type:

L(θ
t

λ)− L(θ?) ≤ Crisk n
− α(2r+1)

1+α(2r+1) + ε.

The first term in the right hand side is the statistical error, and is optimal following the discussion of
Theorem 1. The second term is the optimization error, which is the price to pay for approximating
θ̂kλ by θ

k

λ with tolerance ε. The goal is to give a simple optimization rule on the sub-problems to
ensure that ε is of the same order as the upper-bound for the noiseless case.

Assuming that we cannot compute the proximal operator in Eq. (4) exactly, we need to evaluate
how the error in approximating θ̂1λ propagates to the evaluation of θ̂2λ, and so on. As generalized
self-concordant functions are well suited to (approximate) second-order optimization scheme, we
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assume we use a solver with guarantees on a quantity called Newton decrement, such as the one
developed in [14]. Starting from θ̂0λ = θ

0

λ = 0, define the following for k > 0:

θ̂kλ = arg min
θ∈H

L̂k−1λ (θ)
def.
= L̂(θ) +

λ

2

∥∥∥θ − θ̂k−1λ

∥∥∥2 , νkλ (θ)
def.
=
∥∥∥∇L̂k−1λ (θ)

∥∥∥
Ĥ−1
λ (θ)

, (18)

θ
k

λ ≈ arg min
θ∈H

L
k−1
λ (θ)

def.
= L̂(θ) +

λ

2

∥∥∥θ − θk−1λ

∥∥∥2 , νkλ (θ)
def.
=
∥∥∥∇Lk−1λ (θ)

∥∥∥
Ĥ−1
λ (θ)

. (19)

θ
k

λ approximates the proximal operator evaluated on θ
k−1
λ , and L

t−1
λ is the function we manipulate

at step t. If the optimization was carried without error in Eq. (19), we would have L
t−1

= L̂t−1. The
quality of the approximation is measured with the Newton decrement of Eq. (19), see e.g, Lemma 6
of [14]. We need to enforce a bound on the true Newton decrement in Eq. (18) when we only have
access to L

t−1
λ . The next proposition gives a simple rule to achieve this.

Proposition 1 (Error propagation with proximal sequence). Let ε > 0 the target precision.
Assume that we can solve each sub-problem with precision ε̄k:

∀k ∈ {1, . . . , t} , νk−1λ

(
θ
k

λ

)
≤ ε̄k = ε

1.4k−t

t
,

and that ε ≤
√
λ/(2R). This suffice to achieve an error ε on the target function:

νt−1λ

(
θ
t

λ

)
≤ ε.

This is a specialized version of Proposition 7, whose proof is detailed in the appendix. Intuitively,
this means that enforcing a geometrically higher precision on the first steps is sufficient to obtain
high precision on the final estimate. To compute IT’s estimator in practice, one would need to
solve t optimization problem with decreasing precision. As second order schemes have double
logarithmic complexity w.r.t the precision ε, the complexity of computing the proximal sequence of
IT with tolerance ε would be only (up to logarithm term) t times bigger than estimating Tikhonov
estimator with tolerance ε. In practice, when learning with kernels, one would use the representer
theorem and aim at estimating β in Rn as in Eq. (6) [27]. This results in an optimization problem
with n observations in dimension n, with complexity O(n3). A practical implementation could
use Nyström projection to avoid this cubic computational burden in the number of samples. The
statistical effects of such projection are well studied with Tikhonov regularization [14, 15]; their
effect on other regularization scheme is an interesting future research direction.

This proposition can be used directly to bound the excess risk with inexact solvers.

Proposition 2 (Upper bound on the excess risk with inexact solvers). Let δ ∈ (0, 1) and assume
that the statistical assumptions of Theorem 1 hold as well as the optimization assumptions of Propo-
sition 1. Then, the following bound on the excess risk holds with probability greater than 1 − 2δ:

L(θ
t

λ)− L(θ?) ≤ 2Crisk n
− α(2r+1)

1+α(2r+1) + E1/2 ε, s = min {r + 1/2, t} (20)

with Crisk as in Theorem 1 and E1/2 ≤ 4.3 · 103.

This is a specialized version of Proposition 8 proved in the appendix. The first term is the statistical
excess risk, whereas the second term in ε is the price we pay for inexact approximation. For the
sake of clarity, crude upper bounds were used (notably Ĥ

−1/2
λ (·) ≤ B?2/

√
λ) at the expanse of big

constants. They can be expected to be an order of magnitude lower in practice.

Setting t in real application. In classical machine learning settings, we do not have access to the
source condition parameter r. The number of proximal steps t can be seen as an hyperparameter,
which is chosen by cross-validation. One would run the algorithm and test the resulting error on
a validation set for each iteration, and keep doing proximal steps as long as the validation loss
improves.

8



4 Experiments

The purpose of the experiments is to illustrate the saturation effect of the Tikhonov estimator when
r � 1/2, and see how the saturation is overcome by iterated Tikhonov IT. We also show that
the statistical rates we derive are achieved both in theory and in practice on synthetic data with
well-controlled source and capacity conditions.

Settings. To that end, we use a synthetic binary classification data set for which we know the
source and capacity condition parameters r and α by design. Then, we study the performance of
IT(t), t ∈ {1, . . . , 8}, trained with the logistic loss, which satisfies Definition 2 about generalized
self-concordant functions. Related experiments were conducted in the context of kernel ridge re-
gression with synthetic data in [16], which we follow here. Specifically, we use splines of order α
to define a kernel matrix:

K(x, z) = Λα(x, z) =
∑
k∈Z

e2iπk(x−z)

|k|α ,

for which a closed form expression is available as soon as α is a positive even integer (see for
instance Eq (2.1.7) in [28]). We then use X = [0, 1], ρx is the uniform distribution, and θ?(x) =
Λ(r+1/2)α+1/2(0, ·), which may be shown to live in the RKHSH of K. Then, it is possible to show
that the source and capacity assumption are satisfied with value r, α, see [16].

Finally, we design the distribution ρy|x of the labels such that θ? is indeed the minimizer of the
risk over H. This may be ensured if θ? coincides with the minimizer of the risk over the set of
measurable functions, which has the following form under mild assumptions (see Eq. (3) in [26]):

θ?(x) = arg min
z

Ey|x [`(y, z)] . (21)

The previous relation can be satisfied by choosing ρy|x accordingly. More precisely, we need

Y = {−1, 1} , P(y = 1 | x) =
(

1 + e−θ
?(x)
)−1

, P(y = −1 | x) =
(

1 + eθ
?(x)
)−1

,

which ensures that Eq. (21) holds – see details in Appendix E.3. To our knowledge, this is the first
synthetic dataset with given source and capacity condition for classification tasks. For each λ, t,
we sample n points uniformly on [0, 1], evaluate θ?, the observed labels yi, and θ̂tλ. We evaluate
the excess risk L(θ̂tλ) − L(θ?) with Monte Carlo sampling. We then report the lowest excess risk
achieved across the regularization λ, and the optimal regularization used to achieve this loss. We
plot lines of slope 2sα/1+2sα and α/1+2sα respectively, with s = (r + 1/2) ∧ t in order to compare
the statistical rates achieved in practice and in theory.

Results. Results for the logistic loss are available in Fig. 1 and we also present results with least
squares where the noise is Gaussian in Appendix E.2. We set α = 2, r ∈ {1/4, 41/4}, and we study
the performance of Iterated Tikhonov estimators with t ∈ {1, 3, 8}. t = 1 corresponds to Tikhonov
estimator and saturates at r = 1/2. IT(3) and IT(8) saturates at r = 5/2 and r = 15/2 respectively.
Consequently, all estimators have optimal rates on the difficult task with r = 1/4; however, only IT
exploits the additional regularity of the easy task, with r = 41/4. This experimentally shows that
better sample complexity can be achieved when the learning task is easier and t is high, matching the
rates predicted in Theorem 4, which are n−α(1+2s)/1+α(1+2s), with s = min {r, t− 1/2}. Learning
rates were estimated with an ordinary least square regression in log-log scale, and are given in
Table 1, where they are compared with the theoretical values. To conclude, we observe a slight
improvement in absolute value of the excess risk in the range r � t, suggesting that IT is useful
even when the learning task is hard. This could be because of lower constants for high t: e.g. we
show that Cbias decays in 1/tr when t ≥ r + 1/2, see Theorem 2 in the appendix. We report in the
appendix additional experimental results such as plots with the chosen regularization λ as a function
of n, and plots on the ratio between the excess risk of IT(t) and Tikhonov, to show that the former
is consistently better than the latter on easy tasks.

5 Conclusion

This paper studies a well-known regularization scheme for least square, and extend it for the first
time to other loss functions, which notably contain the logistic loss used for classification. We prove
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Figure 1: Excess risk for various Iterated Tikhonov estimators as a function of n. Colors: t = 1
(Tikhonov) estimator is shown in blue; t = 3, 8 in green, orange. Left: from a difficult problem,
r = 1/4, α = 2. Right: easy problem, r = 41/4, α = 2. Plain lines are predicted by theory, with
slope −α(1+2s)/1+α(1+2s), s = min {r, t− 1/2} (see main text). All plots are averaged over 100
runs of the optimization procedure with different initialization.

Table 1: Learning rate coefficients for capacity condition α = 2 and various source condition as-
sumption r. We estimate γ with ordinary least square with the model L(θ̂tλ) − L(θ?) ∝ n−γ . We
display the coefficient we expect in theory, and the one we estimate.

r 0.25 3.25 10.25

t = 1
Theory 0.75 0.80 0.80

Estimation 0.71 0.73 0.72

t = 3
Theory 0.75 0.92 0.92

Estimation 0.75 0.83 0.87

t = 8
Theory 0.75 0.94 0.97

Estimation 0.79 0.95 0.98

that Iterated Tikhonov, corresponding to proximal point iterations, has optimal learning rates and
higher qualification than Tikhonov, and as such could outperform it on easy tasks. We extend the
scope of the theory of learning with generalized self concordant loss functions beyond standard
Tikhonov regularization, which fills a gap in the previous theory, showing that it is possible to be
fully adaptive to the regularity of the learning problem, without saturation effects. On top of this, we
gave sufficient conditions to compute the estimator in practice, which is nontrivial by its sequential
nature. Interesting research directions include related regularization schemes, such as boosting,
but also implementations of the iterated Tikhonov procedure with sketching techniques as Nyström
projections. The goal is to derive algorithms that are both optimal, in terms of statistical guarantees,
and with reduced computational complexity, which is an aspect we will address in future work.
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