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ABSTRACT

Sparse neural networks have generated substantial interest recently because they
can be more efficient in learning and inference, without any significant drop in
performance. The “lottery ticket hypothesis” has showed the existence of such
sparse subnetworks at initialization. Given a fully-connected initialized archi-
tecture, our aim is to find such “winning ticket” networks, without any training
data. We first show the advantages of forming input-output paths, over pruning
individual connections, to avoid bottlenecks in gradient propagation. Then, we
show that Paths with Higher Edge-Weights (PHEW) at initialization have higher
loss gradient magnitude, resulting in more efficient training. Selecting such paths
can be performed without any data. We empirically validate the effectiveness
of the proposed approach against pruning-before-training methods on CIFAR10,
CIFAR100 and Tiny-ImageNet for VGG-Net and ResNet. PHEW achieves sig-
nificant improvements on the current state-of-the-art methods at 10%, 5% and 2%
network density. We also evaluate the structural similarity relationship between
PHEW networks and pruned networks constructed through Iterated Magnitude
Pruning (IMP), concluding that the former belong in the family of winning tickets
networks.

1 INTRODUCTION

Generating sparse neural networks through pruning has recently led to a major reduction in the
number of parameters, while having minimal loss in performance. Conventionally, pruning methods
operate on pre-trained networks. Generally, such methods use an edge scoring mechanism for elimi-
nating the less important connections. Popular scoring mechanisms include weight magnitudes (Han
et al. (2015b); Janowsky (1989); Park et al. (2020)), loss sensitivity with respect to units (Mozer &
Smolensky (1989)) and with respect to weights (Karnin (1990)), Hessian (LeCun et al. (1990); Has-
sibi & Stork (1993)), and first and second order Taylor expansions (Molchanov et al. (2016; 2019)).
More recent approaches use much more sophisticated variants of these scores (Han et al. (2015a);
Guo et al. (2016); Carreira-Perpinán & Idelbayev (2018); Yu et al. (2018); Dong et al. (2017); Guo
et al. (2016)).

Further analysis of pruning has showed the existence of sparse subnetworks at initialization which,
when trained, are capable of matching the performance of the fully-connected network (Frankle &
Carbin (2018); Frankle et al. (2019); Liu et al. (2018)). However, identifying such “winning ticket”
networks requires expensive training and pruning cycles. More recently, SNIP (Lee et al. (2018)),
You et al. (2019) and GraSP (Wang et al. (2020)) showed that it is possible to find “winning tickets”
prior to training – but still having access to at least some training data to compute initial gradients.
Furthermore, other work has shown that such subnetworks generalize well across datasets and tasks
(Morcos et al. (2019); Tanaka et al. (2020)).

Some network science methods have proposed to construct sparse neural networks but without fo-
cusing on their learning performance (Shafiee et al. (2016); Prabhu et al. (2018); Kepner & Robinett
(2019)). The closest approach that tackles the same problem with our work is SynFlow (Tanaka
et al. (2020)). That work introduced the concept of “layer collapse” in pruning – the state when all
the edges in a layer are eliminated while there exists edges in other layers that can be pruned. They
proved that iterative pruning on the basis of positive gradient-based scores avoids layer collapse
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and introduced an iterative algorithm and an objective function that conserves information flow and
avoids layer collapse.

Our goal is to identify sparse subnetworks that perform almost as well as the fully connected network
(i.e., to identify a “winning ticket”) without any training data. Given a fully-connected and initialized
architecture, and a target number of learnable parameters, we select a set of input-output paths
that will be conserved in the network and prune every remaining connection. The selection of the
conserved paths is based strictly on their initial weight values – and not on any training data. Then,
the pruned network is trained only once. We refer to this method as PHEW (Paths with Higher Edge
Weights). Our main contributions are:

1. We propose to form sparse networks through an input-output path conservation process
rather than edge-based pruning (Sec 2).

2. We introduce the Edge-Weight-Product (EWP) metric for selecting paths based on their
initial weights, and show that higher EWP-valued paths also have larger loss gradient mag-
nitudes at initialization (Sec 3).

3. We empirically show that sparse networks constructed with paths of higher initial gradients
converge faster and perform better (Sec 4).

4. We present a data-agnostic algorithm (PHEW) to construct a sparse network with a given
number of parameters using paths of higher EWP values (Sec 5).

5. Finally, we evaluate the structural similarity relationship between PHEW networks and
pruned networks constructed through Iterated Magnitude Pruning (IMP), concluding that
the former belong in the family of “winning tickets” subnetworks (Sec 6.2).

2 PRUNING EDGES VS. CONSERVING INPUT-OUTPUT PATHS

Most pruning algorithms remove individual connections. At higher sparsity levels, this approach can
result in the formation of “stub units”, i.e., hidden units that do not have any outgoing or incoming
connections, but not both. An input unit can also be a stub if it does not have any output edges –
and an output unit can be a stub if it does not have any input edges. Stub units do not contribute in
learning and they waste model parameters.

Figure 1: Comparison of random
edge pruning and random input-
output path selection for different
network densities. Architecture:
VGG19. Dataset: CIFAR-10.

To avoid the emergence of stubs during pruning, we construct
sparse neural networks by conserving some of the input-output
paths of the fully connected architecture. The number of such
paths is determined by the target number of parameters. All
edges that do not participate in any of the conserved paths are
then pruned, before the network is trained. Obviously, this ap-
proach cannot lead to the emergence of stub units.

Network density is the fraction of edges of the fully connected
network that are present in the sparse network. In Appendix
A.1, we derive the probability of stub units with random edge
pruning, as a function of the network density. We also com-
pute the expected number of stub units. Accumulation of stub
units in a layer eventually leads to layer collapse. Figure 1 com-
pares the accuracy of two networks with the same number of pa-
rameters: one constructed with random edge pruning network
and another constructed with random path conservation. For a
range of higher density values, the random path method per-
forms marginally better. As the network density decreases, the edge pruning method suddenly fails
because of layer collapse. The performance of the random path method on the other hand shows
more gradual accuracy loss because it avoids wasting parameters in stub units and preserves the flow
of loss gradients during training even at very low density values.
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3 WHICH PATHS TO CONSERVE?

Having demonstrated the advantages of conserving input-output paths, we now address the pertinent
question : Of all the input-output paths in the given fully-connected architecture, which paths are
better in terms of learning performance?

We answer this question in two steps. First, we introduce the Edge-Weight-Product (EWP) metric
for selecting paths based on their initial weights, and show that higher EWP-valued paths also have
larger loss gradient magnitudes at initialization. Second, we empirically show that sparse networks
constructed with paths of higher initial gradients converge faster and perform better.

Figure 2: Two paths be-
tween the same input-
output units – the left
path’s EWP is much lower
than the right path’s EWP.

Edge-Weight-Product (EWP) : Given an input-output path p(i, o) of
depth L with edges el ∈ E, l = 1, ..., L, the path’s EWP is defined as:
Π(p) =

∏L
l=1 |wel |.

Claim : Given two paths between the same input-output units, one
with much lower EWP than the other, the path with higher EWP has a
higher loss gradient magnitude.

Let us consider two input-output paths, p1 and p2 as shown in Fig-
ure 2. The two paths traverse the same unit/edge at each layer, ex-
cept the units/edges of a single layer. The edges have initial weights
{w1, w12, w13, w4} ∈ p1 and {w1, w22, w23, w4} ∈ p2. We assume
that all the weights in p1 are significantly greater than 0, while the
weight w23 of p2 is close to 0, meaning that: (1) Π(p1) >> 0, while
(2) Π(p2) ≈ 0. We also assume that the initial loss gradient of that
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∣∣∣∣ ∂L∂yout

∣∣∣∣ is relatively high at initialization.
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The paths now diverge, the major difference between the weight mag-
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The higher node-gradient at y4, propagates through the paths p1 & p2 to the two units y13 & y23. The
terms representing this propagation in the summation (2) is, G(y4)× w13 and G(y4)× w23. Using
equation (1), we see that the gradient propagation through the higher edge-weight w13 is higher than
the gradient though the low edge-weight w23. The higher node-gradient value G(y4), in a larger
proportion is propagated through edge-weights with higher magnitudes. The detailed derivations for
the remaining edges and units in p1&p2 are included in Appendix A.2.

Note: The loss gradients propagating through the units participating in the lower-EWP path can be
high. This is possible because of other paths with higher edge-weights passing through the units.

4 PATHS WITH HIGHER INITIAL GRADIENT PERFORM BETTER

In this section we argue that paths with higher initial loss gradient form better sparse networks,
and show some supporting empirical results. The argument in favor of higher initial loss gradient
paths is very general: consider any problem in multi-variate optimization and suppose that, due to
various constraints, we can only optimize across a subset of variables – and ignore the rest. In our
context, the variables are parameters of the neural network, and the constraint on the number of
optimization variables corresponds to the desired pruning ratio. A reasonable heuristic would be to
keep the variables with higher initial gradient because they would, presumably, allow us to reach
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the optimization objective faster. This is of course only a greedy heuristic – and it would be easy to
construct counter-examples. As we show experimentally, however, this heuristic is quite effective in
practice.

Together with the previous intuition, some prior work has also utilized gradient-based initialization
schemes for training very deep fully-connected networks(Saxe et al. (2013); Poole et al. (2016);
Yang & Schoenholz (2017); Xiao et al. (2018)). In GraSP (Wang et al. (2020)), the authors argue
that the preservation of gradient propagation by maximizing the gradient norm at initialization leads
to larger loss reduction. They also analyzed the effect of maximizing gradient norm in the Neural
Tangent Kernel (Jacot et al. (2018)) representation of DNNs and showed advantages in training
dynamics and faster convergence.

Figure 3: Comparing GraSP with a network formed by a set of paths with higher initial gradient
magnitude. The plots show classification accuracy, gradient norm, and training error (10% network
density). Network: VGG19. Dataset: CIFAR-100.

We illustrate the previous claim empirically in two steps. First we construct a sparse network by
selecting the input-output paths with the highest gradient magnitude at initialization, until we reach
a target network density. These loss gradients are computed using a small subset of the training
data. We then compare the performance of the network formed by these paths with GraSP, which
preserves the propagation of gradients instead of maximizing the latter. The ”higher gradient paths”
approach results in higher classification accuracy, and smoother performance degradation as the
density decreases(Figure 3(a)). Note that GraSP results has lower initial gradient norm, as expected.
We also compare the training error: larger gradient norm paths result in faster convergence and better
training dynamics (Figure 3(b),(c)).

Figure 4: Comparing sparse networks formed by a) lower EWP paths, b) random paths, and c)
higher EWP paths in terms of classification accuracy, initial gradient norm, and training error (10%
network density). Network: VGG19. Dataset: CIFAR-100.

Another relevant comparison is between sparse networks with the same number of parameters con-
structed by three different sets of paths: a) paths with lower EWPs, b) random paths, and c) paths
with higher EWPs. Figure 4(a) shows that the selection of higher EWP paths results in better learn-
ing performance than random paths, and even more better than lower EWP paths. We also show the
initial gradient norm and the training error at 10% density (90% pruning ratio). Figure 4(b) shows
that the network formed by higher EWP paths has consistently higher gradient norm, and it results
in faster training.

5 THE PHEW NETWORK CONSTRUCTION METHOD

Based on the insight of the last two sections, we would like to construct sparse networks that only
conserve the input-output paths with higher initial EWP values. One option would be to formulate
this as an optimization problem in which we identify the top-k paths in terms of EWP. Those paths,
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however, may form bottlenecks on specific connections of high weight. Those bottlenecks could be
detrimental for the learning process, as they would need to propagate the gradients of many different
paths. In the extreme, we can imagine that the top-k EWP paths may not even traverse all input and
output units. So, instead, we would like to use a set of paths that have both relatively high EWP
values – and that are more uniformly distributed across all the inputs and outputs, forming a more
“balanced” network.

To achieve the previous objective, we select input-output paths probabilistically, based on a biased
random-walk process. The next-hop of each path, from a unit i to a unit j at the next layer, is selected
with a probability that is proportional to the weight of the connection from i to j. Additionally, to
maintain a balance of the conserved paths between all inputs and outputs, we create paths in both
directions: a) start from an input unit and create a biased random-walk towards an output, and b) start
from an output unit and create a reverse biased random-walk towards an input. The random-walk
process is described in more detail next:

Bi-directional walks and selection of starting unit: The selection of the starting unit of each
random-walk is performed so that all input units and all output units participate in the same number
of random-walks. Specifically, 50% of the time we start a forward random-walk from an input, and
50% of the time we start a reverse random-walk from an output. The selection of the starting unit
in each case is such that the number of walks that start or terminate at each input or output unit is
approximately the same.

Probabilistic bias at each step: Suppose that while constructing a random-walk, we are at unit ni.
The probability that the next-hop of the wak will be unit nj at the next layer is given by:

P (j, i) =
|w(j, i)|∑
j |w(j, i)|

(3)

As a result these random-walks are more likely to traverse paths with higher EWP values. At the
same time, the walks are stochastic in nature and so they avoid bottleneck connections and units.

The creation of such random-walks continues until we have reached the given, target number of
parameters for the sparse network. We refer to a network formed by this process as PHEW network.
Note that the network formation process does not depend on the training data or task – but it does
depend on the initial weights.

5.1 COMPARISON WITH UNBIASED RANDOM WALKS

It is informative to compare such biased random-walks with unbiased random-walks in which the
next-hop is selected uniformly at random. In particular, we compare the expected value of the EWP
in a biased random-walk versus in a uniform random-walk.

Consider a fully-connected MLP network with L layers and Nl units in each layer. Suppose that
the weights are initialized according to the Kaiming method (He et al. (2015)) – meaning that are
sampled from a Normal distribution in which the variance is inversely proportional to the width of
each layer: wli,j ∼ N (0, σ2

l ), where σ2
l = 2/Nl. Consider two paths p1&p2, where p1 has been

selected using the previous biased random-walk process while p2 has been selected with a uniform
random-walks. In Appendix A.3 we show that:

E(Π(p1)) =
(π

2

)L/2
×

L∏
l=1

σl >>

(
2

π

)L/2
×

L∏
l=1

σl = E(Π(p2)) (4)

As the number of layers increases the ratio between the two expected values becomes exponentially

higher:
(
π2

4

)L/2
. On the other hand, as the layer width increases the ratio of two values remains the

same. Hence, we conclude that, despite the stochastic nature of PHEW random-walks, the average
EWP of the selected paths is much greated than the EWP of randomly chosen input-output paths.

5.2 APPLYING PHEW IN CONVOLUTIONAL NEURAL NETWORKS

A convolutional layer takes as input a 3D vector with ni channels and transforms it into another 3D
vector of ni+1 channels. Each of the ni+1 units in a layer produces a single 2D channel correspond-
ing to the ni+1 channels. A 2D channel is produced applying convolution on the input vector with
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ni channels, using a 3D filter of depth ni. Therefore each input from a unit at the previous layer
has a corresponding 2D kernel as one of the channels in the filter. So, even though MLPs have an
individual weight for each edge, in convolutional networks we have a 2D kernel for each edge.

A random-walk can traverse an edge of a convolutional network in two ways: either traversing a
single weight in the corresponding 2D kernel – or traversing the entire kernel with all its weights.
Traversing a single weight from a kernel conserves that edge and produces a non-zero output chan-
nel. This creates sparse kernels and allows for the processing of multiple input channels at the
same unit and with fewer parameters. On the other hand, traversing the entire 2D kernel that cor-
responds to an edge means that several other kernels will be eliminated. Earlier work in pruning
has shown empirically the higher performance of creating sparse kernels instead of pruning entire
kernels (Blalock et al. (2020)). Therefore, in PHEW we choose to conserve individual parameters
during a random-walk rather than conserving entire kernels.

In summary, PHEW follows a two-step procedure in convolutional networks: first an edge (i.e., 2D
kernel) is selected using equation (3). Then a single weight is chosen from that kernel, randomly,
with a probability that is proportional to the weight of the sampled parameter. We have also experi-
mented with the approach of conserving the entire kernel, and we present those results as well in the
next section.

6 EXPERIMENTS AND RESULTS

In this section we present various experiments conducted to compare the performance of PHEW
against other pruning strategies. We compare PHEW against uniform random-walks as well as
three state-of-the-art algorithms: SNIP (Lee et al. (2018)), GraSP (Wang et al. (2020)) and SynFlow
(Tanaka et al. (2020)). Because PHEW is data-independent, the most relevant comparison is with
SynFlow, which also does not require any training data.

We present results both for standard image classification tasks using state-of-the-art convolutional
networks as well as an image-transformation task using MLPs (that task is described in more detail
in Appendix B). PHEW depends on the initial weights, and so we also present results for different
weight initialization schemes. Lastly, we perform a structural network analysis between PHEW
networks, and “winning tickets” constructed using the Iterative Magnitude Pruning (IMP) method.

6.1 CLASSIFICATION COMPARISONS

We present results for five pruning algorithms on two architectures (VGG19 and ResNet34) on CI-
FAR10, CIFAR100 and Tiny ImageNet. We used the standard hyper-parameters to train the original
networks and PHEW networks.

For CIFAR-10/100, the network density is set to 10%, 5% and 2% of the fully-connected architecture
– those results are shown Table 1. We run each experiment three times and present the mean and
standard deviation of test accuracy. For Tiny-ImageNet the network density is set to 20%, 10% and
5% – see Table 2.

Figure 5: Accuracy compar-
isons for very low network
densities. Network: VGG19.
Dataset: CIFAR100

Data-Dependent Methods: Figure 5 compares the test accuracy of
different pruning algorithms as the network density decreases. It is
interesting that PHEW networks consistently outperform even the
data-dependent pruning algorithms GraSP and SNIP. At very low
network densities, the accuracy of SNIP and GraSP degrades heav-
ily while the accuracy of the data-agnostic methods, PHEW and
SynFlow, drops more gradually creating a significant gap between
the two groups of methods.

Data-independent Methods : The major contribution of Syn-
Flow is its stability and better performance at very low density
values. We observe that at moderate density levels, PHEW per-
forms better than SynFlow. In very low network densities, below
10−2.5, Figure 5 shows that SynFlow performs better than PHEW.
The reason may be that at very low densities the limited con-
served random-walks may not be sampling the highest EWP paths.
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Dataset CIFAR-10 CIFAR-100
Pruning Ratio/ Density 90%/10% 95%/5% 98%/2% 90%/10% 95%/5% 98%/2%
VGG-19 Baseline 94.30 – – 74.16 – –
SNIP 93.56 ±0.04 92.77 ±0.11 91.38 ±0.15 72.33 ±0.17 71.37 ±0.34 62.90 ±1.13
GraSP 93.28 ±0.07 92.47 ±0.15 90.76 ±0.24 72.07 ±0.12 71.28 ±0.21 65.08 ±0.54

SynFlow 93.37 ±0.10 92.63 ±0.08 91.77 ±0.16 72.49 ±0.11 71.77 ±0.19 67.76 ±0.47
Uniform RW 93.21 ±0.11 92.57 ±0.17 91.81 ±0.15 72.53 ±0.09 71.65 ±0.10 67.19 ±0.29
PHEW 93.80 ±0.08 93.18 ±0.14 92.24 ±0.18 73.30 ±0.11 72.51 ±0.13 69.17 ±0.26

Kernel Uniform RW 92.88 ±0.04 92.12 ±0.11 91.59 ±0.20 71.89 ±0.14 71.04 ±0.08 66.46 ±0.17
Kernel PHEW 93.24 ±0.13 92.63 ±0.17 91.77 ±0.19 72.83 ±0.15 72.09 ±0.23 67.71 ±0.29

ResNet-34 Baseline 95.80 – – 78.04 – –
SNIP 94.30 ±0.05 93.60 ±0.21 93.17 ±0.31 75.92 ±0.35 74.18 ±0.69 69.20 ±1.43
GraSP 94.11 ±0.21 93.41 ±0.25 93.03 ±0.24 76.18 ±0.27 74.27 ±0.11 70.43 ±0.61

SynFlow 94.48 ±0.10 94.13 ±0.08 93.14 ±0.16 76.04 ±0.31 74.84 ±0.19 72.19 ±0.37
Uniform RW 94.77 ±0.09 94.37 ±0.24 93.38 ±0.19 76.18 ±0.12 75.25 ±0.25 72.36 ±0.31
PHEW 95.13 ±0.13 94.87 ±0.11 93.86 ±0.22 76.82 ±0.23 75.87 ±0.34 73.22 ±0.37

Kernel Uniform RW 94.08 ±0.05 93.14 ±0.16 92.01 ±0.25 75.68 ±0.06 74.45 ±0.16 71.87 ±0.26
Kernel PHEW 94.80 ±0.12 93.46 ±0.17 92.71 ±0.20 75.91 ±0.09 75.42 ±0.27 72.15 ±0.53

Table 1: Accuracy comparisons for sparse VGG19 and ResNet34 obtained through various pruning
algorithms on CIFAR-10 and CIFAR-100.

VGG-19 ResNet-34
Density 20% 10% 5% 20% 10% 5%
Baseline 61.93 – – 67.77 – –
SNIP 60.23 58.63 55.50 63.65 62.10 56.97
GraSP 60.01 59.64 58.11 63.35 62.34 58.90
SF 60.19 59.38 57.59 63.56 62.38 61.73
Uniform RW 60.10 59.58 58.38 63.73 62.65 61.67
PHEW 61.29 60.10 59.78 64.37 63.31 62.68

Table 2: Accuracy Comparisons on Tiny-
Imagenet.

Kernel-conserved PHEW variant: We also
study a PHEW variant for convolutional neu-
ral networks where instead of conserving a
single weight of a kernel each time a ran-
dom walk traverses that kernel, we conserve
the entire kernel. This approach reduces the
FLOP count immensely by eliminating the op-
erations performed on several 2D feature maps
in specific units. We present the compari-
son for CIFAR10 and CIFAR100 in Table 1,
we can observe that at moderate network den-
sities, the kernel-conserved variant performs as well as the other methods – there-
fore this PHEW variant can be utilized when decreasing the FLOP count is a priority.

Dataset CIFAR-10 CIFAR-100
Density 10% 5% 2% 10% 5% 2%
VGG-19 94.30 – – 74.16 – –
Kaiming 93.90 93.28 92.44 73.30 72.51 68.97
Normal 93.56 93.02 92.24 73.07 72.18 68.78
Xavier 93.63 93.16 92.32 73.24 72.09 69.13

ResNet-34 95.80 – – 78.04 – –
Kaiming 95.13 94.87 93.86 76.82 75.87 73.22
Normal 95.01 94.71 93.36 76.78 75.58 72.82
Xavier 95.32 94.97 93.29 76.95 75.45 72.41

Table 3: PHEW comparisons for different
weight initialization schemes

Different weight initializations: The proposed
method depends on the initial weights, and so it
is important to examine the robustness of PHEW’s
performance across the major weight initialization
methods: Kaiming Normal (He et al. (2015)), Nor-
mal N (0, 0.1), and Xavier uniform (Glorot & Ben-
gio (2010)). Table 3 shows the results of these ex-
periments for CIFAR10 and CIFAR100 on VGG19
and ResNet34. Note that PHEW’s performance is
quite robust across all these weight initializations.
PHEW performs best with Kaiming initialization
which is the most widely used technique for train-
ing Deep Neural Networks.

6.2 ARE PHEW NETWORKS “WINNING-TICKETS”?

The lottery ticket hypothesis (Frankle & Carbin (2018)) posits the existence of sparse subnetworks
at initialization that are capable, strictly based on their initial weights, to perform almost as well as
the fully-connected architecture. One approach to compute such “winning tickets” is the Iterative
Magnitude Pruning (IMP) method (Frankle & Carbin (2018)), which requires a sequence of training
and pruning cycles. At the end of the process, the weights of the resulting subnetwork are reverted
back to their original initialized values. The key question we ask here is whether PHEW networks
are also ”winning tickets”, despite the fact that they are constructed in a data-agnostic manner.
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Figure 6: Jaccard Similarity structural comparisons between sparse MLPs on the MNIST image-
transformation.

We answer this question by comparing the structural similarity of IMP networks with PHEW net-
works – as well as with randomly pruned networks. By structural similarity we refer to a comparison
of the specific edges that are present in a given pair of networks using the Jaccard similarity met-
ric. Given that PHEW is a stochastic process, we first generate 10 PHEW networks from the same
initial weights and calculate their average pair-wise similarity (so that we can quantify how similar
PHEW networks are to each other). Then we compare an IMP “winning ticket” network to each of
the PHEW networks, and calculate their average structural similarity. We also perform a compar-
ison between the same IMP network and 10 randomly-pruned networks with the same number of
parameters – as a reference point.

Figure 6 shows the results of these comparisons for the MNIST image-transformation task on four
combinations of 4-layer MLP networks and density values. We find that the average structural sim-
ilarity between the IMP network and PHEW networks is statistically similar to the average pairwise
similarity between PHEW networks. The similarity with randomly pruned networks is much lower,
on the other hand. Therefore, the PHEW networks belong in the class of “winning ticket” networks
that are constructed by the IMP process – even though they are constructed without any training
data.

7 DISCUSSION AND CONCLUSION

In this paper, we proposed an approach called PHEW to create sparse “winning ticket” networks
without any training data. We first showed the advantages of conserving input-output paths instead
of pruning individual connections. We showed that paths with higher initial edge-weights have
larger loss gradient magnitudes initially. We argued, and showed empirically, that the conservation
of such paths leads to faster convergence and better learning performance. Finally, we compared
the performance of PHEW networks against state-of-the-art pruning-before-training methods and
showed that the structural similarity between IMP “winning tickets” and PHEW networks is as high
as that between different PHEW networks with the same initial weights.

Possible future directions for this work include: 1) Explore path-based sparse network formation
methods that can utilize a limited amount of training data to get even higher performance than
PHEW. We have already shown that paths with higher initial loss gradient perform better than other
data-dependent pruning methods. 2) Explore how to identify path-based sparse networks that can
perform as well as PHEW networks but without any training. 3) Investigate how to dynamically
determine the optimal number of parameters in a sparse network at the early stages of training –
instead of starting with a pre-determined target number of parameters that may be too low or too
high.
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A DETAILED ANALYSIS AND DERIVATIONS

A.1 ANALYSIS OF RANDOM ACTIVATION OF CONNECTIONS AND STUB UNITS

In this section we analyze the sparse networks generated with random edge pruning. Edges are
pruned by sampling from a Bernoulli distribution with probability equal to the network density. The
goal of this analysis is to first understand the relationship between network density and the expected
number of stub units. Then as an edge case, show that the probability of encountering at least one
stub unit increases with decreasing density.

Let us consider a constant width network with L hidden layers and the number of neurons in each
layer N . Let the required connection density be be P/Pmax. For the sake of simplicity we work
with pruning ratio, x = 1 − P/Pmax. Network density and pruning ratio have a complimentary
relationship. The probability of a connection j being active P (mj = 0) = P/Pmax = 1−x, where
mj is the mask value. Let S be the set of all the stub units in a sparse network with pruning ratio x.

For any neuron in the network, the maximum number of incoming as well as outgoing edges possible
is the same, N . By assumption there exist N ×L hidden neurons in the network. The probability of
a neuron nj being a stub unit, P (nj ∈ S) and the expected number of stub units, E(‖S‖0) are :

P (nj ∈ S) = (1− xN )× xN + (1− xN )× xN = 2× xN (1− xN ) (5)

E(‖S‖0) = P (nj ∈ S)×N × L (6)

Figure 7: Equation (5)

Equation (5) indicates the probability of no outgoing edges or no in-
coming edges and then subtracts the probability of both these events
occurring together. We can see in Figure 7 that the probability value
attains a maximum, but for higher width values the probability is
mostly an increasing function. Therefore we can see here that the
expected number of stub units also increases and attains a maximum.

We extend the above equations to all the neurons present by assuming
independence Therefore, for the edge case of encountering at least
one stub unit, the probability P (‖S‖0 > 0) is,

P (‖S‖0 > 0) = 1− P (‖S‖0 = 0) = 1− (1− P (nj ∈ S))
N×L (7)

P (‖S‖0 > 0) = 1− (1− 2× xN (1− xN ))N×L (8)

Figure 8: Equation (8)

Figure 8 shows the probability of the presence of at least one stub
unit in the entire network for varying width values and a depth of
three. We can see in Figure 8 if we keep increasing x the probability
of the presence of at least one stub unit keeps increasing.

Inferences : The network density has a complimentary relationship
with pruning ratio (x), therefore

1. As the network density decreases, the probability of nj ∈ S in-
creases, as a result the expected number of stub units increases in a
multiplicative way.

2. We can observe for all width values P (‖S‖0 > 0) is an increas-
ing function as network density decreases and hits one very quickly.
Therefore, the probability of at least one stub unit is very high even for moderate density levels.

A.2 ANALYSIS OF GRADIENTS ALONG INPUT-OUTPUT PATHS

Claim Given two paths between the same input-output units, one with much lower EWP than the
other, the path with higher EWP has a higher loss gradient magnitude.
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Figure 9: Two paths having
extreme EWP values

Let consider two input-output paths p1&p2, originating from the
same input neuron and terminating at the same output neuron as
shown in Figure 9. The edge-weights values (w1, w12, w13, w4 ∈ p1)
form the first path and (w1, w22, w23, w4 ∈ p2) form the second path.
The assumption, Π(p1) = |w1 × w12 × w13 × w4| >> Π(p2) =
|w1 × w22 × w23 × w4| ≈ 0. For symplicity and without loss of
generality we can assume that a single weight in p2 is close to zero,
w23 ≈ 0. The edges-gradient and the node gradients for (w4, y4),

G(w4) =

∣∣∣∣ ∂L∂w4

∣∣∣∣ =

∣∣∣∣ ∂L∂yout
× y4

∣∣∣∣ (9)

G(y4) =

∣∣∣∣ ∂L∂y4
∣∣∣∣ =

∣∣∣∣ ∂L∂yout
× w4

∣∣∣∣ >> 0 (10)

Now from this neuron the paths diverge, we can observe that for
the gradient propagation through p1&p2, the major difference is the
weight magnitudes between w23 and w13. For paths p1&p2 the edge-
gradient (wk3, k = 1, 2) and the node-gradients (yk3, k = 1, 2) are,

G(wk3) =

∣∣∣∣ ∂L∂wk3

∣∣∣∣ =

∣∣∣∣ ∂L∂y4 × ∂y4
∂wk3

∣∣∣∣ =

∣∣∣∣ ∂L∂yout
× w4 × yk3

∣∣∣∣ (11)

G(yk3) =

∣∣∣∣ ∂L∂yk3
∣∣∣∣ =

∣∣∣∣∣∑
i

∂L

∂yl+1
i

× ∂yl+1
i

∂yk3

∣∣∣∣∣ =

∣∣∣∣∣∑
i

∂L

∂yl+1
i

× wl+1
ki

∣∣∣∣∣ (12)

When we analyze the node gradient equations (G(y13) and G(y23)), we can observe,

1. A term in the summation equation (12) for G(y13) is G(y4) × w13. From equation (10) and
assumption, the value is very high, therefore the gradient magnitude propagated through the edge-
weight w13 is relatively higher than the gradient magnitude propagated through other edge-weights.

2. A term in the summation equation (12) for G(y23) is G(y4)×w23, from our assumption, we can
see that gradient magnitude value G(y4) propagating through the edge-weight w23 is very low.

The higher node-gradient value in equation (10) in a higher proportion is transmitted through the
larger edge-weight w13 than the near-zero edge-weight w23. We imply here that the node-gradient
G(y13) will be relatively higher in magnitude due to the contribution from the higher node-gradient
G(y4) and higher edge-weight w13. Again going back-wards with path p1 we can observe,∣∣∣∣ ∂L∂y13

∣∣∣∣ ≈ ∣∣∣∣ ∂L∂y4 × w13

∣∣∣∣ =

∣∣∣∣ ∂L∂yout
× w4 × w13

∣∣∣∣ (13)∣∣∣∣ ∂L∂w12

∣∣∣∣ =

∣∣∣∣ ∂L∂y13 × ∂y13
∂w12

∣∣∣∣ ≈ ∣∣∣∣ ∂L∂yout
× w4 × w13 × y12

∣∣∣∣ (14)∣∣∣∣ ∂L∂y12
∣∣∣∣ ≈ ∣∣∣∣ ∂L∂y13 × w12

∣∣∣∣ ≈ ∣∣∣∣ ∂L∂yout
× w4 × w13 × w12

∣∣∣∣ (15)

The gradient magnitude propagated along high EWP path keeps increasing in a multiplicative man-
ner. But the gradient magnitude being propagated through p2 vanishes after encountering a single
near-zero edge-weight.

Note: The loss gradients propagating through the units participating in the lower-EWP path can be
high. This is possible because of other paths with higher edge-weights passing through the units.

A.3 DETAILED DERIVATION OF EXPECTATION OF EWP

Let us assume a neural network architecture with L layers and Nl neurons in each layer at initial-
ization. The weights have been initialized by sampling from Kaiming Normal distribution, that is
wli,j ∼ N (0, σ2

l ), where σ2
l = 2/Nl. Now let us consider two paths p1&p2, where p1 has been

sampled using biased random walks and p2 has been sampled using uniform random walks.
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Biased Random Walks First we derive the expected value of the edge-weight-product of the path
if it is sampled using biased random walks. Let the path sample be p1, and the weight values sampled
at step t be wt,

E(Π(p1)) =

L∏
t=1

E(|wt|) (16)

E(|wt|) =

W∑
k=0

|wi,k| × P (wt = wi,k) =

W∑
k=0

|wi,k| ×
|wi,k|∑W
j=0 |wi,j |

=

∑W
k=0 |wi,k|2∑W
j=0 |wi,j |

(17)

1. For the numerator, we know that wi,j ∼ N(0, σ2
t ), hence the variance,

V(|wi,k|) = E(w2
i,k)− (E(wi,k))

2
= E(w2

i,k) = σ2
t (18)

2. Similarly for the denominator. |wi,j | ∼ folded normal distribution centered at 0,

E(|wi,j |) = σt ×
√

2

π
(19)

From equations (18) and (19), we get the following,

E(Π(p1)) =

L∏
t=1

E(|wt|) =

L∏
t=1

 σ2
t

σt

√
2

π

 =
(π

2

)L
2

L∏
t=1

σt (20)

Uniform Sampling of Paths We generate an expected value for the EWP of the paths when the
paths are sampled randomly (Uniformly). We use the mean of the folded normal distribution so as
to arrive at the value.

E(Π(p2)) =

L∏
t=1

E(|wt|) =

L∏
t=1

(
σt

√
2

π

)
=

(
2

π

)L
2

L∏
t=1

σt (21)

Inferences : We can observe the bounds from equations (21) and (20),

E(Π(p1)) =
(π

2

)L
2 ×

L∏
l=1

σl >>

(
2

π

)L
2 ×

L∏
l=1

σl = E(Π(p2)) (22)

As the number of layers increases this difference is more and more profound due to the exponential
factor of L/2. Similarly, as the width for each of the layers increases, there is no difference in the
ratio of two value but the two values themselves decrease due to the inverse nature. Hence, we
conclude that even with the randomness in selection of high EWP paths, the EWP of resulting paths
is exponentially larger than selecting random paths.

B REGRESSION BASED TASK : CLASS SPECIFIC TRANSFORMATION

The task chosen for the experiments is that of class specific transformation. We generate the ground
truth transformation by rotation and shearing. The angle of rotation and shearing coefficient are
class specific. We then crop and pad the rotated image to fit the original dimensions. The classes
are rotated in multiples of 30◦ and sheared with coefficients uniformly sampled between -0.6 and
0.6. Figure 10 shows various examples for the input and ground truth output. We experiment with
MNIST and all classes have been used in the single task.
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Figure 10: Examples of the input and the output for the transformation task

Network Architectures and Hyper-parameters: We use constant width MLP networks, with
width equal to 100, 200, 300 and 400. Only 1000 examples per class were used in training for 20
epochs. A learning rate of 0.001 was used with an exponential decay factor of 0.95 after every epoch,
Adam optimizer, batch size of 32, and MSE as the loss. Test performance was evaluated with MSE
metric on the entire test set. ReLU in combination with batch-normalization were implemented after
each layer, including the output layer.

Results : We present the results for this particular task in two steps, first we compare the perfor-
mance of the two data-dependent methods SNIP and GraSP with the current state-of-the-art data-
independent method SynFlow. Then we compare and analyze the proposed biased random walks
based method against SynFlow. The division is created for the sake of clarity in observing the plots
as well as understanding the results.

Figure 11: Comparison of SynFlow pruning algorithm with SNIP and GraSP. The row indicates the
plots for constant width networks with widths 100, 200, 300 and 400 from left to right.

Figure 12: Comparison of the data-agnostic SynFlow pruning algorithm to the biased random walk

Figure 11 shows the comparison between the data-agnostic SynFlow algorithm to the SNIP and
GraSP algorithms. Here we can clearly observe that the SynFlow algorithm performs better than the
other algorithms for very high level of sparsity, whereas when the density increases the performances
start to coincide with each other. This can be explained by the fact that in the cases of very high
sparsity also the SynFlow algorithm preserves the effective flow of information.

In the Figure 12, we can see that PHEW networks marginally but consistently performs better than
SynFlow networks in terms of test errors. However there exists several cases in which the perfor-
mance is the same. It is to be observed here that as the size or the capacity of the initialized networks
increases the superior performance becomes more and more clear.

Conclusion : The experiments and the results presented in this section further verify the validity of
the proposed approach against the state-of-the-art methods. It is to be noted that we are able to show
significant improvements and generalization capabilities across data-sets and even tasks.
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