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Abstract

Continual Learning (CL) is the research field addressing
training settings where the data distribution is not static. One
of the core problems CL addresses is learning without forget-
ting. To solve problems, continual learning algorithms need to
learn robust and stable representations based only on a sub-
set of the data. Those representations are necessarily biased
and should be revisited when new data becomes available.
This paper studies spurious features’ influence on continual
learning algorithms. We show that in continual learning, al-
gorithms have to deal with local spurious features that corre-
late well with labels within a task only but which are not good
representations for the concept to learn. One of the big chal-
lenges of continual learning algorithms is to discover causal
relationships between features and labels under distribution
shifts.

Introduction
Feature selection is a standard machine learning problem. Its
objective is notably to improve the prediction performance
(Guyon and Elisseeff 2003). In the presence of spurious fea-
tures, a learning algorithm may overfit features and learn a
solution that can not generalize to the test set. This problem
can notably be caused by a covariate shift between train and
test data.

In continual learning (CL) (French 1999; Parisi et al.
2019; Lesort et al. 2020), the training data distribution
changes through time. Hence, spurious features (SFs) in one
time-step of the data distribution should not last. A CL al-
gorithm relying on a spurious feature could then be resilient
and learn better features later – given more data. Algorithms
can also learn to ignore past spurious features (Javed, White,
and Bengio 2020). An example of a task with spurious fea-
tures could be a classification task between cars and bikes.
In the training data, all cars are red, and all bikes are white,
while it test data, both are in a unique blue not available in
train data. A model could easily overfit the color to solve
the task while it is not discriminative in the test data. Ad-
dressing spurious features was one of the major goals of the
recent out-of-distribution (OOD) generalization community
(Arjovsky et al. 2019; Ahuja et al. 2021; Sagawa et al. 2019;
Pezeshki et al. 2020).
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Figure 1: Spurious features and local spurious features.
If the task is to distinguish the squares from the circles. In
Fig. 1a and 1b, the color is a spurious feature because there
is a covariate shift between train and test data. In Fig. 1c and
1d, we observe two tasks of a domain-incremental scenario,
the colors are locally spurious in tasks 1 and 2. Even if there
is no significant covariate shift between train and test full
data distribution, colors appear discriminative while looking
at data within a task.

On the other hand, in continual learning, the second type
of spurious feature can be described: local spurious features.
Local features denote features that correlate well with labels
within a task (a state of the data distribution) but not in the
full scenario. In opposite to the usual spurious features, this
problem is provoked by the unavailability of all data. An
example of a classification scenario would be: task 1, blue
cars vs yellow bikes and task 2, yellow cars vs blue bikes. In
both cases, the tasks can be solved efficiently with the colour
feature, but if the test data is composed of cars and bikes of
both yellow and blue, then the colour is not discriminative
anymore, and the model can not generalize. While there is
no covariate shift between all train data and test data, the
model can not generalize because of the distribution shift
through time. It is, therefore, a problem specific to continual
learning.

This paper investigates the problem of spurious features
(with covariate shift) in continual learning and shows that
the continual learning setup leads to a specific type of spu-
rious features that we call local spurious features (LSFs)
(without covariate shift) in CL as shown in Fig. 1.

Problem Formulation
This section introduces the spurious features problems in a
sequence of tasks. The goal is to present the key types of
features, namely: general, local, and spurious features.

General Formalism: We consider a continual scenario
of classification tasks. We study a function fθ(·), imple-



Table 1: Summary of characteristics of the types of features.
For a feature z of a class c, we denote if it verify (1) on
different data setting, a single task Tt, the whole scenario
CT , the test set Dte.

Name Tt CT Dte

Good Feature (z+) ✓ ✓ ✓
Spurious Feature (zspur) ✓ ✓ ×
Local Feature (zloc) ✓ ? ?
Local Spurious Feature (zspur:t) ✓ × ×

mented as a neural network, parameterized by a vector of
parameters θ ∈ Rp (where p is is the number of parameters)
representing the set of weight matrices and bias vectors of
a deep network. In continual learning, the goal is to find a
solution θ∗ by minimizing a loss L on a stream of data for-
malized as a sequence of tasks [T0, T1, ..., TT−1], such that
∀(xt, yt) ∼ Tt (t ∈ [0, T − 1]), fθ∗(x) = y. We do not use
the task index for inferences (i.e. single head setting).

To describe the different types of features, let z be a fea-
ture and x ∼ D a datum point in dataset D. We define
w(.) a function which returns 1 if z is in x and 0 if not.
w(.)’s output is binary for simplicity. Then, for all data with
a label y in the dataset D, we can compute the correlation
c(D, z, y) = correlation(w(z, x) = 1, Y = y), which esti-
mates how a feature correlates with the data of a given class.
We can then define discriminative features as:

z is discriminative for class y in D if:

∀y′ ∈ Y, y ̸= y′ c(D, z, y) ≫ c(D, z, y′) (1)

Y is the set of classes in D. In other words, z is discrimina-
tive for y if it correlates significantly more to y’s data than
to the data of any other class. Then a good feature z+ for a
class y respects (1) for training data Dtr and test data Dte.

Spurious Features vs Local Spurious Features
A spurious feature zspur for a class y respects (1) for

training data Dtr but not for test data Dte. A spurious fea-
ture is well correlated with labels in training data but not
with testing data.

Hence, learning from zspur may offer a low training error
but high test error. The presence of zspur is due to a covariate
shift between train and test distribution which changes the
feature distribution.

In continual learning, the covariate shift between train and
test zspur may also lead to poor generalization. Further, the
features can be locally spurious, e.g., they correlate well
with labels within a task but not within the whole scenario.
We name them local spurious features (LSF). We illustrate
the difference between spurious features and local spurious
features in Figure 1.

At task t, A local spurious feature zspur;t respects (1) for
a class yt in task Tt, but not for the whole scenario CT . z is
a LSF for a class y in Tt ∼ CT , with t ∈ J0, T − 1K:

if ∀ y′ ∈ Yt, y ̸= y′ c(Tt, z, y) ≫ c(Tt, z, y′)
and ∃ y′′ ∈ Y, y ̸= y′′ c(CT , z, y) ̸≫ c(CT , z, y′′)

(2)

Yt is the classes set in task Tt and Y is the classes set in
the full scenario CT composed of T tasks. A LSF zspur;t

correlates well with a label on the current task but not on the
whole scenario. zspur;t can be extended from a single task
Tt to all task seen so far T0:t without loss of generality.

Global vs Local Optimum: We assume that machine
learning models solve tasks by learning to detect/select fea-
tures that correlate well with labels. Then, while learning on
a task t, we distinguish a local optimum θ∗t , satisfying for the
current task Tt, from a global optimum θ∗0:T that is satisfying
for whole scenario CT (past, current, and future tasks).

Similarly, we can differentiate local and global features,
leading to local and global optimum. The global features
are the good features z+ that are predictive for the full sce-
nario. Unfortunately, at time t, we can not know if a feature
is part of z+ without access to the future data. Therefore,
algorithms should learn with their current data but update
their knowledge afterwards, given new data. For example,
in classification, the discriminative features for a given class
depend on all the classes. Therefore, when new classes ar-
rive, discriminative features can become outdated in class-
incremental scenarios.

To learn robust solution in CL, algorithms should them be
able to deal both with spurious features and local spurious
features. One trivial solution to deal with local spurious fea-
tures is the use of replay. Replay can avoid and fix local spu-
rious features’ influence by providing more context on the
full data distribution. Nevertheless, replay can be compute
and data-intensive and a better solution could be developed.

Conclusion
Continual learning algorithms are built to learn, accumulate
and memorize knowledge through time to reuse them later.
Memorizing bad features can have catastrophic repercus-
sions on future performance. Then, to learn general features,
algorithms need to deal with spurious and local spurious fea-
tures.

This paper first investigates the question of spurious fea-
tures on continual learning. Algorithms easily overfit spuri-
ous features for one or several tasks, leading to poor gener-
alization. Spurious features are then problematic for them.
Furthermore, we formalize another type of spurious feature
that we call local spurious feature and which can be prob-
lematic for continual learning algorithms.

Local spurious features are features that correlate well
with labels when only a subset of data are available but not
when all the data is available. These types of features make
harder the discovery of robust features. From a causality per-
spective, local spurious features makes it harder to discover
the causal relationship between features and labels in con-
tinual learning. Causality algorithms could help to find a so-
lution to solve this issue.

In the continual learning literature, performance decrease
is generally attributed to catastrophic forgetting. Our results
show that the problem of local spurious features also plays a
major role. More research is needed to understand better the
impact of local spurious features along with catastrophic for-
getting. Understanding this phenomenon is critical to better
address forgetting and feature selection and enable efficient
continual learning.
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