
4th Symposium on Advances in Approximate Bayesian Inference, 2022 1–8

Efficient Bayesian Inverse Reinforcement Learning via
Conditional Kernel Density Estimation

Aishwarya Mandyam aishwarya@princeton.edu
Princeton University, Gladstone Institutes

Didong Li didongli@princeton.edu
Princeton University

Diana Cai dcai@cs.princeton.edu
Princeton University

Andrew Jones aj13@princeton.edu
Princeton University

Barbara E. Engelhardt bee@cs.princeton.edu

Princeton University, Gladstone Institutes

Abstract

Inverse reinforcement learning (IRL) methods attempt to recover the reward function of an
agent by observing its behavior. Given the large amount of uncertainty in the underlying
reward function, it is often useful to model this function probabilistically, rather than
estimate a single reward function. However, existing Bayesian approaches to IRL use a
Q-value function to approximate the likelihood, leading to a computationally intractable
and inflexible framework. Here, we introduce kernel density Bayesian IRL (KD-BIRL), a
method that uses kernel density estimation to approximate the likelihood, or the probability
of the observed states and actions given a reward function. This approximation allows for
efficient posterior inference of the reward function given a sequence of agent observations.
Empirically, using both linear and nonlinear reward functions in a Gridworld environment,
we demonstrate that the KD-BIRL posterior centers around the true reward function.

1. Introduction

Reinforcement learning (RL) methods find policies and sequences of actions that maximize
an agent’s long-term expected reward in a Markov decision process (MDP). However, in
many off-policy, observational data settings, we observe a sequence of states and actions
for an agent who is carrying out a policy based on a reward function that is unknown
to the observer. In these cases, it is of interest to infer the reward function that the
agent is using in order to understand the factors driving certain behavioral patterns. For
example, in a hospital setting, we may observe the treatment schedule for a patient along
with measurements of the patient’s health state, as represented by physiological covariates
and clinical interventions. In this case, we may be interested in understanding the doctor’s
reward function—which is typically complex and mostly unobserved—and how this function
drives certain treatment decisions based on a patient’s state.

For this purpose, inverse reinforcement learning (IRL) methods aim to recover the re-
ward function (i.e., objectives or priorities) of an agent given observations of the agent’s
behavior. Early IRL algorithms focused on estimating a single reward function (a point
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estimate) that best explained the observed behavior (Abbeel and Ng, 2004; Ng and Rus-
sell, 2000). These IRL frameworks led to applications in path planning (Mombaur et al.,
2010), urban navigation (Ziebart et al., 2008), and robotics settings, such as quadruped
locomotion (Ratliff et al., 2006a; Kolter et al., 2008). Additionally, a challenge in RL is
designing reward functions for achieving desired behavior patterns; IRL can be used in this
setting to infer the reward function from a set of desired behavior demonstrations, which
can then be used to fit improved RL policies.

Despite the success of early IRL approaches, there are major limitations to point esti-
mation in this setting. First, the IRL problem is often non-identifiable (Ziebart et al., 2008,
2009; Ratliff et al., 2006b; Abbeel and Ng, 2004). That is, there are multiple (and possibly
infinite) reward functions that explain a set of behaviors in an agent equally well. Second,
for finite training datasets, point estimates fail to capture the uncertainty and noise in the
data generating process. Thus, it is advantageous to take a Bayesian approach and express
uncertainty through a posterior distribution over the estimated reward function (Ramachan-
dran and Amir, 2007; Balakrishnan et al., 2020; Chan and van der Schaar, 2021; Michini
and How, 2012a,b; Choi and Kim, 2012). A Bayesian approach communicates a degree of
confidence that relies on the dataset distribution, placing mass on all regions of the reward
function space that could explain the observed behavior.

Despite advances in Bayesian IRL, existing methods are computationally demanding.
This is because, in sampling-based inference for the posterior, these methods require value
iteration for each instance of a reward function. A single instance of value iteration is in itself
computationally demanding, so repeating it for each sampled reward function compounds
the problem.

To address this issue, we introduce kernel density Bayesian inverse reinforcement learn-
ing (KD-BIRL), an efficient IRL framework that eliminates the need to fit a new policy
for each sampled reward function. Our contributions to the IRL literature are as follows:
(1) We introduce KD-BIRL, an IRL method that calculates the likelihood using a con-
ditional kernel density estimation that does not require value iteration at inference time;
(2) We show that KD-BIRL is more computationally feasible than related approaches; (3)
We demonstrate that KD-BIRL returns accurate posterior estimates with both linear and
nonlinear reward functions.

2. Related Work

The first work exploring Bayesian IRL (Ramachandran and Amir, 2007) used a Q-value
function to calculate the likelihood of seeing a given state and action pair (s, a) given a
reward function R. This method is unsuitable for complex state spaces because it requires
us to repeatedly solve an environment’s MDP using value iteration to learn a Q-value
function. The proposed inference algorithm uses Markov chain Monte Carlo (MCMC)
sampling to compute a Gibbs posterior. Every sampling iteration requires running value
iteration to estimate the Q-value function for the sampled reward function. This step is
computationally prohibitive, especially with infinite or real-valued state spaces.

To address this issue, it is necessary to either formulate a different likelihood estima-
tor or minimize the number of times value iteration is performed. Recently, a likelihood
approximation was proposed that relies on human-recorded pairwise preferences over the
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demonstrations (Brown and Niekum, 2019). While this greatly reduces the computational
complexity of earlier methods, these human-recorded preferences are not available in most
settings. Another line of work has proposed approximating the exact reward function pos-
terior using variational inference (Chan and van der Schaar, 2021); this approach requires
far fewer instances of value iteration, making it more appropriate for high-dimensional en-
vironments. However, it still relies on an expensive Q-value function estimate to compute
the likelihood of the observed data.

3. Background: Inverse reinforcement learning

In the IRL setting, the data we wish to model are a set of expert demonstrations, {(si, ai)}ni=1,
where the demonstration at time i is a 2-tuple (si, ai) representing the agent’s state and
chosen action. These demonstrations are assumed to arise from an agent acting according
to an optimal policy, π? : S → A, for a fixed but unknown reward function R : S → R,
where A is the action space and S is the state space. Given these demonstrations, the IRL
objective is to recover R. Specifically, IRL seeks the set of reward functions such that π? is
optimal.

We now formalize this problem. Suppose that S ⊆ Rp, and let s ∈ S denote a state
vector. LetR denote the space of reward functions. The value function for a given policy π is
V π = E[

∑∞
t=0 γ

tR(st)|b0, π] where b0 is the probability of starting in state st, and γ ∈ (0, 1)
is a discount factor. Without loss of generality, assume that the optimal policy is given by
π?(s) = a?, where a? is the optimal action to be taken at state s. In order to identify a reward
function R for which π is optimal, it must be true that Es′∼Psa?

[V π(s′)] ≥ Es′∼Psa [V π(s′)],
for all states s ∈ S and all actions a ∈ A \ a?, where Psa = p(s′|s, a) is the state transition
probability. In other words, the long-term expected value of the optimal policy under the
reward must be equal to or greater than the long-term expected value of selecting an action
that deviates from the optimal policy.

Taking a Bayesian approach to IRL, our goal is to infer the posterior distribution over
the reward function R given n demonstrations of the expert policy {(sei , aei )}ni=1. We call
this dataset the set of expert demonstrations. The posterior density is proportional to the
product of the prior distribution on the rewards, p(R), and the likelihood of the expert
demonstrations given the reward:

p (R | {(sei , aei )}
n
i=1) ∝ p(R)

n∏
i=1

p(sei , a
e
i |R). (1)

In the original Bayesian IRL framework (Ramachandran and Amir, 2007), the form of
the “likelihood” is

p(s, a |R) ∝ eαQ?(s,a,R)
, (2)

where Q?(si, ai, R) is the optimal Q-value function computed with reward R and α > 0 is an
inverse temperature parameter. Equation (2) is a loss-based function instead of a likelihood,
and the resulting posterior is the Gibbs posterior instead of a true posterior (Shawe-Taylor
and Williamson, 1997). Additionally, the likelihood above depends on the Q-value function,
which is expensive to recompute for each sampled reward function.
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4. Kernel density Bayesian inverse reinforcement learning

We propose kernel density Bayesian inverse reinforcement learning (KD-BIRL), which uses
a nonparametric conditional kernel density estimator (CKDE) with Gaussian kernels to
estimate the likelihood in the IRL posterior (Equation 1). CKDEs have been well-studied,
with known asymptotic behaviors (van der Vaart, 2000).

To fit the KDE, we propose sampling another set of demonstrations to augment the
observed expert demonstrations. Specifically, we sample m demonstrations from agents
whose behaviors are optimal for reward functions distinct from the expert reward function.
This dataset, which we call the training dataset, consists of 3-tuples {(sj , aj , Rj)}mj=1, where
Rj is the reward functions generating (sj , aj). Using the training dataset, the conditional
density for a state-action pair (s, a) given a reward function R is

p̂m(s, a |R) ∝
m∑
j=1

e−ds((s,a),(sj ,aj))
2/(2h)e−dr(R,Rj)

2/(2h′)∑m
`=1 e

−dr(R,R`)2/(2h′)
,

where ds : (S × A) × (S × A) → R is a distance metric to compare (s, a) tuples, dr :
R×R → R is a distance metric to compare reward functions, and h, h′ > 0 are smoothing
hyperparameters. We can now estimate the likelihood p(sei , a

e
i |R) by p̂n(sei , a

e
i |R), where

(sei , a
e
i ) is a single sample from the dataset of expert demonstrations:

p̂m(sei , a
e
i |R) ∝

m∑
j=1

e−ds((s
e
i ,a

e
i ),(sj ,aj))

2/(2h)e−dr(R,Rj)
2/(2h′)∑m

`=1 e
−dr(R,R`)2/(2h′)

.

The estimated posterior is then

p̂m(R|{sei , aei}ni=1) ∝ p(R)
n∏
i=1

m∑
j=1

e−ds((s
e
i ,a

e
i ),(sj ,aj))

2/(2h)e−dr(R,Rj)
2/(2h′)∑m

`=1 e
−dr(R,R`)2/(2h′)

. (3)

Importantly, note that once the conditional density p̂m is obtained, it is not necessary
to perform value iteration to evaluate the posterior for a given reward function R. This
drastically reduces the computational complexity compared to existing BIRL algorithms
and opens the door for performing Bayesian IRL in complex environments with large state
spaces. Additionally, as m → ∞, p̂m converges to the true likelihood and the posterior
converges to the true posterior (van der Vaart, 2000).

5. Experiments

In this section, we perform a series of experiments to test the accuracy and robustness of
KD-BIRL and compare it to AVRIL (Chan and van der Schaar, 2021), a competing method.
We perform these experiments in a modified Gridworld environment with a linear reward
function, and we specify a uniform prior on the reward function parameters. Gridworld
has a two-dimensional discrete state space made up of tiles on an `× ` grid. The MDP is:
S = [`]× [`], A = {[0, 0], [0, 1], [1, 0], [−1, 0], [0,−1]}, R : S → R, where we choose a grid size
of ` = 4, and the actions correspond to not moving ([0, 0]), moving up ([0, 1]), moving right
([1, 0]), moving left ([−1, 0]), and moving down ([0,−1]). A grid contains a target state (or
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(a) Reward = y − x (b) Demonstration
Density

(c) Posterior Mean (d) Posterior Std

(e) Reward = x+ y (f ) Demonstration
Density

(g) Posterior Mean (h) Posterior Std

Figure 1: Linear reward functions and learned results using KD-BIRL on a Gridworld map.
KD-BIRL returns an accurate estimate on a linear function with parameters
[−1, 1] (top row) and [1, 1] (bottom row). We also visualize the associated demon-
stration density (Panel b, f), posterior estimate mean (Panel c, g), and standard
deviation (Panel d, h).

goal state). The reward observed in a state depends on the coordinates of the state, with
the maximum reward received at the target state. KD-BIRL requires that we define two
distance metrics: one associated with the distance between reward functions (dr), and one
associated with the distance between state-action pairs (ds). In this setting, for dr, we use
the cosine distance for linear rewards and the Euclidean distance for nonlinear rewards, and
for ds, we use the Euclidean distance. We choose n = 30, m = 1000, h = 0.03, h′ = 0.03,
and ` is between 4 and 8.

We first validate that our algorithm is able to recover the posterior distribution of a
simple linear reward function R(s) = β>s, where β ∈ R2 is a coefficient vector. We fit KD-
BIRL for expert demonstrations generated from two linear reward functions: β = [−1, 1]
and β = [1, 1] (Figure 1). In these results, we also visualize the demonstration density, a
measure of the relative state occupancy of the expert demonstrations. We also visualize
the posterior distribution over reward functions by evaluating the posterior (Equation 3) on
a grid of reward parameters to understand how uncertain our estimates are, and whether
their mass tends to be situated around the functions used to generate the data. We find
that KD-BIRL is confident about reward parameters that most effectively characterize the
expert demonstrations, and its posterior centers around the true reward function (Figure 2).

Finally, we consider non-linear reward functions. Here, we use a function where the
reward is 0 in all states except the target state, which receives a reward of 1 (Figure 3). In
this experiment, we specify the set of possible reward functions to be fully nonparametic,
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(a) β = (−1, 1) (b) β = (1, 1)

Figure 2: Visualization of the expert posterior distributions on a grid of reward parameters
β = [−1, 1] (Panel a) and β = [1, 1] (Panel b). The KD-BIRL posteriors are
the most confident about parameters that reflect the same signs and relative
magnitude.

(a) Reward = δ(3,0) (b) Demonstration
density

(c) KD-BIRL (d) AVRIL

Figure 3: Comparison of KD-BIRL and AVRIL for a nonlinear reward function. The scaled
mean reward estimate of KD-BIRL (Panel c) recovers a reward estimate that
better reflects the ground truth than mean reward estimate of AVRIL (Panel d).

and allow each of the 16 possible states to have its own estimated scalar reward. We also
compare our estimate to that of AVRIL (Chan and van der Schaar, 2021). We find that
KD-BIRL’s posterior has a sharp peak at the target state, and much lower mass elsewhere.
Collectively, our experiments suggest that KD-BIRL can recover posterior estimates over
linear and non-linear reward functions in a Gridworld environment. We find that while
the AVRIL algorithm is more computationally efficient than earlier approaches, it can still
return inaccurate posterior estimates (Figure 3).

6. Discussion and future directions

In this work, we introduce KD-BIRL, a novel approach to inverse reinforcement learning
using conditional kernel density estimators. We demonstrate that this approach to Bayesian
IRL removes much of the computational complexity associated with similar algorithms and
does not need to repeatedly solve an MDP using value iteration to calculate the likelihood
of a given set of reward parameters.
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Several future directions remain. This work is currently well-suited for on-policy (i.e.,
simulation) environments, and we believe that additional work must be done to apply it on
off-policy environments such as medical or clinical decision making settings. The particular
choice of distance metrics used in the conditional density estimate is also likely to depend
on the environment and reward function type; we pick metrics that are most suitable to
the Gridworld environment in this paper, and we believe that additional experimentation
must be done to adapt this to different environments. The same is true for the hyperpa-
rameters h and h′; we currently use rule-of-thumb hyperparameters (Silverman, 1986), but
additional work could further optimize these values. Furthermore, our current calculation
of the conditional density is most suitable for environments with a low-dimensional state
space. To extend this to a higher dimensional state space, like in clinical environments, we
anticipate using a Gaussian process could be beneficial.
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