
Nested Graph Neural Networks

Muhan Zhang1,2,∗ Pan Li3,†
1Institute for Artificial Intelligence, Peking University
2Beijing Institute for General Artificial Intelligence

3Department of Computer Science, Purdue University

Abstract

Graph neural network (GNN)’s success in graph classification is closely related to
the Weisfeiler-Lehman (1-WL) algorithm. By iteratively aggregating neighboring
node features to a center node, both 1-WL and GNN obtain a node representation
that encodes a rooted subtree around the center node. These rooted subtree rep-
resentations are then pooled into a single representation to represent the whole
graph. However, rooted subtrees are of limited expressiveness to represent a non-
tree graph. To address it, we propose Nested Graph Neural Networks (NGNNs).
NGNN represents a graph with rooted subgraphs instead of rooted subtrees, so
that two graphs sharing many identical subgraphs (rather than subtrees) tend to
have similar representations. The key is to make each node representation encode
a subgraph around it more than a subtree. To achieve this, NGNN extracts a local
subgraph around each node and applies a base GNN to each subgraph to learn
a subgraph representation. The whole-graph representation is then obtained by
pooling these subgraph representations. We provide a rigorous theoretical analysis
showing that NGNN is strictly more powerful than 1-WL. In particular, we proved
that NGNN can discriminate almost all r-regular graphs, where 1-WL always fails.
Moreover, unlike other more powerful GNNs, NGNN only introduces a constant-
factor higher time complexity than standard GNNs. NGNN is a plug-and-play
framework that can be combined with various base GNNs. We test NGNN with
different base GNNs on several benchmark datasets. NGNN uniformly improves
their performance and shows highly competitive performance on all datasets.

1 Introduction

Graph is an important tool to model relational data in the real world. Representation learning over
graphs has become a popular topic of machine learning in recent years. While network embedding
methods, such as DeepWalk [1], can learn node representations well, they fail to generalize to
whole-graph representations, which are crucial for applications such as graph classification, molecule
modeling, and drug discovery. On the contrary, although traditional graph kernels [2–7] can be
used for graph classification, they define graph similarity often in a heuristic way, which is not
parameterized and lacks some flexibility to deal with features.

In this context, graph neural networks (GNNs) have regained people’s attention and become the
state-of-the-art graph representation learning tool [8–17]. GNNs use message passing to propagate
features between connected nodes. By iteratively aggregating neighboring node features to the center
node, GNNs learn node representations encoding their local structure and feature information. These
node representations can be further pooled into a graph representation, enabling graph-level tasks
such as graph classification. In this paper, we will use message passing GNNs to denote this class

∗Corresponding author: Muhan Zhang (muhan@pku.edu.cn).
†Pan Li contributes Sec. 3.3 that proves the Theorem 1 and some implementation ideas.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

21
𝑣!

2

4

1

3

𝑣"

21
𝑣!

2

𝑣!

2
1

1
21

𝑣!

2
4

1
3

𝑣"

Original graphs Rooted subtrees around 𝑣! and 𝑣" Rooted subgraphs around 𝑣! and 𝑣"

Height=1

Height=2

Height=1

Height=2

21
𝑣"Height=1

Height=2

𝑣! 𝑣!

2

𝑣!
1

2

𝑣"

3
1

4

Height=1

Height=2

𝑣" 𝑣"

2

𝑣"
1

𝐺!

𝐺"

Figure 1: The two original graphs G1 and G2 are non-isomorphic. G1 is composed of two triangles, while G2 is
a hexagon. However, both 1-WL and message passing GNNs cannot differentiate them, since all nodes in the
two graphs share identical rooted subtrees at any height (see the rooted subtrees around v1 and v2 in the middle
block for example). In comparison, we can discriminate the two graphs by comparing their height-1 rooted
subgraphs around any nodes. For example, the height-1 rooted subgraph around v1 is a closed triangle, but the
height-1 rooted subgraph around v2 is an open triangle (see the red boxes in the right block).

of GNNs based on repeated neighbor aggregation [18], in order to distinguish them from some
high-order GNN variants [19–21] where the effective message passing happens between high-order
node tuples instead of nodes.

GNNs’ message passing scheme mimics the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm [22],
which iteratively refines a node’s color according to its current color and the multiset of its neighbors’
colors. This procedure essentially encodes a rooted subtree around each node into its final color,
where the rooted subtree is constructed by recursively expanding the neighbors of the root node. One
critical reason for GNN’s success in graph classification is because two graphs sharing many identical
or similar rooted subtrees are more likely classified into the same class, which actually aligns with
the inductive bias that two graphs are similar if they have many common substructures [23].

Despite this, rooted subtrees are still limited in terms of expressing all possible substructures that
can appear in a graph. It is likely that two graphs, despite sharing a lot of identical rooted subtrees,
are not similar at all because their other substructure patterns are not similar. Take the two graphs
G1 and G2 in Figure 1 as an example. If we apply 1-WL or a message passing GNN to them, the
two graphs will always have the same representation no matter how many iterations/layers we use.
This is because all nodes in the two graphs have identical rooted subtrees across all tree heights.
However, the two graphs are quite different from a holistic perspective. G1 is composed of two
triangles, while G2 is a hexagon. The intrinsic reason for such a failure is that rooted subtrees have
limited expressiveness for representing general graphs, especially those with cycles.

To address this issue, we propose Nested Graph Neural Networks (NGNNs). The core idea is, instead
of encoding a rooted subtree, we want the final representation of a node to encode a rooted subgraph
(local h-hop subgraph) around it. The subgraph is not restricted to be of any particular graph type such
as tree, but serves as a general description of the local neighborhood around a node. Rooted subgraphs
offer much better representation power than rooted subtrees, e.g., we can easily discriminate the two
graphs in Figure 1 by only comparing their height-1 rooted subgraphs.

To represent a graph with rooted subgraphs, NGNN uses two levels of GNNs: base (inner) GNNs
and an outer GNN. By extracting a local rooted subgraph around each node, NGNN first applies a
base GNN to each node’s subgraph independently. Then, a subgraph pooling layer is applied to each
subgraph to aggregate the intermediate node representations into a subgraph representation. This
subgraph representation is used as the final representation of the root node. Rather than encoding a
rooted subtree, this final node representation encodes the local subgraph around it, which contains
more information than a subtree. Finally, all the final node representations are further fed into an
outer GNN to learn a representation for the entire graph. Figure 2 shows one NGNN implementation
using message passing GNNs as the base GNNs and a simple graph pooling layer as the outer GNN.

One may wonder that the base GNN seems to still learn only rooted subtrees if it is message-passing-
based. Then why is NGNN more powerful than GNN? One key reason lies in the subgraph pooling

2

E

B
C

D

A

F

B
A

F

B
CA

F

B
C

DF

E

C

D
E

DF
E

B
CA

F

E

B
C

D

A

F
Perform message passing within each subgraph

Extract a rooted
subgraph around
each node

Graph
classification

Use the outputs from inner GNNs as
the final node representations of roots

Apply subgraph pooling

Inner (base) GNNs Outer GNN

Graph
regression

Apply graph pooling to get a graph representation

Figure 2: A particular implementation of the NGNN framework. It first extracts (copies) a rooted subgraph
(height=1) around each node from the original graph, and then applies a base GNN with a subgraph pooling layer
to each rooted subgraph independently to learn a subgraph representation. The subgraph representation is used
as the root node’s final representation in the original graph. Then, a graph pooling layer is used to summarize the
final node representations into a graph representation.

layer. Take the height-1 rooted subgraphs (marked with red boxes) around v1 and v2 in Figure 1 as an
example. Although v1 and v2’s height-1 rooted subtrees are still the same, their neighbors (labeled by
1 and 2) have different height-1 rooted subtrees. Thus, applying a one-layer message passing GNN
plus a subgraph pooling as the base GNN is sufficient to discriminate G1 and G2.

The NGNN framework has multiple exclusive advantages. Firstly, it allows freely choosing the
base GNN, and can enhance the base GNN’s representation power in a plug-and-play fashion.
Theoretically, we proved that NGNN is more powerful than message passing GNNs and 1-WL by
being able to discriminate almost all r-regular graphs (where 1-WL always fails). Secondly, by
extracting rooted subgraphs, NGNN allows augmenting the initial features of a node with subgraph-
specific structural features such as distance encoding [24] to improve the quality of the learned node
representations. Thirdly, unlike other more powerful graph neural networks, especially those based
on higher-order WL tests [19–21, 25], NGNN still has linear time and space complexity w.r.t. graph
size like standard message passing GNNs, thus maintaining good scalability. We demonstrate the
effectiveness of the NGNN framework in various synthetic/real-world graph classification/regression
datasets. On synthetic datasets, NGNN demonstrates higher-than-1-WL expressive power, matching
very well with our theorem. On real-world datasets, NGNN consistently enhances a wide range of
base GNNs’ performance, achieving highly competitive results on all datasets.

2 Preliminaries

2.1 Notation and problem definition

We consider the graph classification/regression problem. Given a graph G = (V,E) where V =
{1, 2, . . . n} is the node set and E ⊆ V × V is the edge set, we aim to learn a function mapping G to
its class or target value y. The nodes and edges in G can have feature vectors associated with them,
denoted by xi (for node i) and eij (for edge (i, j)), respectively.

2.2 Weisfeiler-Lehman test

The Wesfeiler-Lehman (1-WL) test [22] is a popular algorithm for graph isomorphism checking. The
classical 1-WL works as follows. At first, all nodes receive a color 1. Each node collects its neighbors’
colors into a multiset. Then, 1-WL will update each node’s color so that two nodes get the same new
color if and only if their current colors are the same and they have identical multisets of neighbor
colors. Repeat this process until the number of colors does not increase between two iterations.
Then, 1-WL will return that two graphs are non-isomorphic if their node colors are different at some
iteration, or fail to determine whether they are non-isomorphic. See [7, 26] for more details.

1-WL essentially encodes the rooted subtrees around each node at different heights into its color
representations. Figure 1 middle shows the rooted subtrees around v1 and v2. Two nodes will have
the same color at iteration h if and only if their height-h rooted subtrees are the same.

3

3 Nested Graph Neural Network

In this section, we introduce our Nested Graph Neural Network (NGNN) framework and theoretically
demonstrate its higher representation power than message passing GNNs.

3.1 Limitations of the message passing GNNs

Most existing GNNs follow the message passing framework [18]: given a graph G, each node’s
hidden state ht+1

v is updated based on its previous state htv and the messages mt+1
v from its neighbors

ht+1
v = Ut(h

t
v,m

t+1
v), where mt+1

v =
∑

u∈N(v|G)

Mt(h
t
v,h

t
u, evu). (1)

Here Mt, Ut are the message and update functions at time stamp t, evu is the feature of edge (v, u),
and N(v|G) is the set of v’s neighbors in graph G. The initial hidden states h0

v are given by the raw
node features xv . After T time stamps (iterations), the final node representations hTv are summarized
into a whole-graph representation with a readout (pooling) function R (e.g., mean or sum):

hG = R({hTv |v ∈ G}). (2)

Such a message passing (or neighbor aggregation) scheme iteratively aggregates neighbor information
into a center node’s hidden state, making it encode a local rooted subtree around the node. The
final node representations will contain both the local structure and feature information around nodes,
enabling node-level tasks such as node classification. After a pooling layer, these node representations
can be further summarized into a graph representation, enabling graph-level tasks. When there is
no edge feature and the node features are from a countable space, it is shown that message passing
GNNs are at most as powerful as the 1-WL test for discriminating non-isomorphic graphs [27, 19].

For an h-layer message passing GNN, it will give two nodes the same final representation if they have
identical height-h rooted subtrees (i.e., both the structures and the features on the corresponding
nodes/edges are the same). If two graphs have a lot of identical (or similar) rooted subtrees, they will
also have similar graph representations after pooling. This insight is crucial for the success of modern
GNNs in graph classification, because it aligns with the inductive bias that two graphs are similar if
they have many common substructures. Such insight has also been used in designing the WL subtree
kernel [7], a state-of-the-art graph classification method before GNNs.

However, message passing GNNs have several limitations. Firstly, rooted subtree is only one specific
substructure. It is not general enough to represent arbitrary subgraphs, especially those with cycles
due to the natural restriction of tree structure. Secondly, using rooted subtree as the elementary
substructure results in a discriminating power bounded by the 1-WL test. For example, all n-node
r-regular graphs cannot be discriminated by message passing GNNs. Thirdly, standard message
passing GNNs do not allow using root-node-specific structural features (such as the distance between
a node and the root node) to improve the quality of the learned root node’s representation. We might
need to break through such limitations in order to design more powerful GNNs.

3.2 The NGNN framework

To address the above limitations, we propose the Nested Graph Neural Network (NGNN) framework.
NGNN no longer aims to encode a rooted subtree around each node. Instead, in NGNN, each node’s
final representation encodes the general local subgraph information around it more than a subtree, so
that two graphs sharing a lot of identical or similar rooted subgraphs will have similar representations.

Definition 1. (Rooted subgraph) Given a graph G and a node v, the height-h rooted subgraph Ghv
of v is the subgraph induced from G by the nodes within h hops of v (including h-hop nodes).

To make a node’s final representation encode a rooted subgraph, we need to compute a subgraph
representation. To achieve this, we resort to an arbitrary GNN, which we call the base GNN of NGNN.
For example, the base GNN can be simply a message passing GNN, which performs message passing
within each rooted subgraph to learn an intermediate representation for every node of the subgraph,
and then uses a pooling layer to summarize a subgraph representation from the intermediate node
representations. This subgraph representation is used as the final representation of the root node in

4

the original graph. Take root node w as an example. We first perform T rounds of message passing
within node w’s rooted subgraph Ghw. Let v be any node appearing in Ghw. We have

ht+1
v,Gh

w
= Ut(h

t
v,Gh

w
,mt+1

v,Gh
w

), where mt+1
v,Gh

w
=

∑
u∈N(v|Gh

w)

Mt(h
t
v,Gh

w
,htu,Gh

w
, evu). (3)

Here Mt, Ut are the message and update functions of the base GNN at time stamp t, N(v|Ghw)
denotes the set of v’s neighbors within w’s rooted subgraph Ghw, and ht+1

v,Gh
w

and mt+1
v,Gh

w
denote

node v’s hidden state and message specific to rooted subgraph Ghw at time stamp t + 1. Note that
when node v attends different nodes’ rooted subgraphs, its hidden states and messages will also be
different. This is in contrast to standard GNNs where a node’s hidden state and message at time t is
the same regardless of which root node it contributes to. For example, ht+1

v and mt+1
v in Eq. 1 do

not depend on any particular rooted subgraph.

After T rounds of message passing, we apply a subgraph pooling layer to summarize a subgraph
representation hGh

w
from the intermediate node representations {hTv,Gh

w
|v ∈ Ghw}.

hw : = hGh
w

= R0({hTv,Gh
w
|v ∈ Ghw}), (4)

where R0 is the subgraph pooling layer. This subgraph representation hGh
w

will be used as root
node w’s final representation hw in the original graph. Note that the base GNNs are simultaneously
applied to all nodes’ rooted subgraphs to return a final node representation for every node in the
original graph, and all the base GNNs share the same parameters. With such node representations,
NGNN uses an outer GNN to further process and aggregate them into a graph representation of the
whole graph. For simplicity, we let the outer GNN be simply a graph pooling layer denoted by R1:

hG := R1({hw|w ∈ G}). (5)

The Nested GNN framework can be understood as a two-level GNN, or a GNN of GNNs—the
inner subgraph-level GNNs (base GNNs) are used to learn node representations from their rooted
subgraphs, while the outer graph-level GNN is used to return a whole-graph representation from the
inner GNNs’ outputs. The inner GNNs all share the same parameters which are trained end-to-end
with the outer GNN. Figure 2 depicts the implementation of the NGNN framework described above.

Compared to message passing GNNs, NGNN changes the “receptive field” of each node from a
rooted subtree to a rooted subgraph, in order to capture better local substructure information. The
rooted subgraph is read by a base GNN to learn a subgraph representation. Finally, the outer GNN
reads the subgraph representations output by the base GNNs to return a graph representation.

Note that, when we apply the base GNN to a rooted subgraph, this rooted subgraph is extracted
(copied) out of the original graph and treated as a completely independent graph from the other rooted
subgraphs and the original graph. This allows the same node to have different representations within
different rooted subgraphs. For example, in Figure 2, the same node B appears in four different
rooted subgraphs. Sometimes it is the root node, while other times it is a 1-hop neighbor of the root
node. NGNN enables learning different representations for the same node when it appears in different
rooted subgraphs, in contrast to standard GNNs where a node only has one single representation at
one time stamp (Eq. 1). Similarly, NGNN also enables using different initial features for the same
node when it appears in different rooted subgraphs. This allows us to customize a node’s initial
features based on its structural role within a rooted subgraph, as opposed to using the same initial
features for a node across all rooted subgraphs. For example, we can optionally augment node B’s
initial features with the distance between node B and the root—when node B is the root node, we
give it an additional feature 0; and when B is a k-hop neighbor of the root, we give it an additional
feature k. Such feature augmentation may help better capture a node’s structural role within a rooted
subgraph. It is an exclusive advantage of NGNN and is not possible in standard GNNs.

3.3 The representation power of NGNN

We theoretically characterize the additional expressive power of NGNN (using message passing
GNNs as base GNNs) as opposed to standard message passing GNNs. We focus on the ability to
discriminate regular graphs because they form an important category of graphs which standard GNNs
cannot represent well. Using 1-WL or message passing GNNs, any two n-sized r-regular graphs will
have the same representation, unless discriminative node features are available. In contrast, we prove
that NGNN can distinguish almost all pairs of n-sized r-regular graphs regardless of node features.

5

Definition 2. If the message passing (Eq. 3) and the two-level graph pooling (Eqs. 4,5) are all
injective given input from a countable space, then the NGNN is called proper.

A proper NGNN always exists due to the representation power of fully-connected neural networks
used for message passing and Deep Set for graph pooling [28]. For all pairs of graphs that 1-WL
can discriminate, there always exists a proper NGNN that can also discriminate them, because two
graphs discriminated by 1-WL means they must have different multisets of rooted subtrees at some
height h, while a rooted subtree is always included in a rooted subgraph with the same height.

Now we present our main theorem.

Theorem 1. Consider all pairs of n-sized r-regular graphs, where 3 ≤ r < (2 log n)1/2. For any
small constant ε > 0, there exists a proper NGNN using at most d(1

2 + ε) logn
log(r−1−ε)e-height rooted

subgraphs and dε logn
log(r−1−ε)e-layer message passing, which distinguishes almost all (1− o(1)) such

pairs of graphs.

We include the proof in Appendix A. Theorem 1 has three implications. Firstly, since NGNN can
discriminate almost all r-regular graphs where 1-WL always fails, it is strictly more powerful
than 1-WL and message passing GNNs. Secondly, it implies that NGNN does not need to extract
subgraphs with a too large height (about 1

2
logn

log (r−1)) to be more powerful. Moreover, NGNN is

already powerful with very few layers, i.e., an arbitrarily small constant ε times logn
log (r−1) (as few as 1

layer). This benefit comes from the subgraph pooling (Eq. 4), freeing us from using deep base GNNs.
We further conduct a simulation experiment in Appendix D to verify Theorem 1 by testing how well
NGNN discriminates r-regular graphs in practice. The results match almost perfectly with our theory.

Although NGNN is strictly more powerful than 1-WL and 2-WL (1-WL and 2-WL have the same
discriminating power [20]), it is unclear whether NGNN is more powerful than 3-WL. Our early-stage
analysis shows both NGNN and 3-WL cannot discriminate strongly regular graphs with the same
parameters [29]. We leave the exact comparison between NGNN and 3-WL to future work.

3.4 Discussion

Base GNN. NGNN is a general plug-and-play framework to increase the power of a base GNN. For
the base GNN, we are not restricted to message passing GNNs as described in Section 3.2. For
example, we can also use GNNs approximating the power of higher-dimensional WL tests, such as
1-2-3-GNN [19] and PPGN/Ring-GNN [20, 21], as the base GNN. In fact, one limitation of these
high-order GNNs is their O(n3) complexity. Using the NGNN framework we can greatly alleviate
this by applying the higher-order GNN to multiple small rooted subgraphs instead of the whole graph.
Suppose a rooted subgraph has at most c nodes, then by applying a high-order GNN to all n rooted
subgraphs, we can reduce the time complexity from O(n3) to O(nc3).

Complexity. We compare the time complexity of NGNN (using message passing GNNs as base
GNNs) with a standard message passing GNN. Suppose the graph has n nodes with a maximum
degree d, and the maximum number of nodes in a rooted subgraph is c. Each message passing
iteration in a standard message passing GNN takes O(nd) operations. In NGNN, we need to perform
message passing over all n nodes’ rooted subgraphs, which takes O(n · cd). We will keep c small
(which can be achieved by using a small h) to improve NGNN’s scalability. Additionally, a small c
enables the base GNN to focus on learning local subgraph patterns.

In Appendix B, we discuss some other design choices of NGNN.

4 Related work

Understanding GNN’s representation power is a fundamental problem in GNN research. Xu et al.
[27] and Morris et al. [19] first proved that the discriminating power of message passing GNNs is
bounded by the 1-WL test, namely they cannot discriminate two non-isomorphic graphs that 1-WL
fails to discriminate (such as r-regular graphs). Since then, there is increasing effort in enhancing
GNN’s discriminating power beyond 1-WL [19, 21, 20, 30, 24, 31–33, 25]. Many GNNs have been
proposed to mimic higher-dimensional WL tests, such as 1-2-3-GNN [19], Ring-GNN [21] and
PPGN [20]. However, these models generally require learning the representations of all node tuples

6

of certain cardinality (e.g., node pairs, node triples and so on), thus cannot leverage the sparsity of
graph structure and are difficult to scale to large graphs. Some works study the universality of GNNs
for approximating any invariant or equivariant functions over graphs [34, 21, 35–37]. However,
reaching universality would require polynomial(n)-order tensors, which hold more theoretical value
than practical applicability. Dasoulas et al. [38] propose to augment nodes of identical attributes with
different colors, which requires exhausting all the coloring choices to reach universality. Similarly,
Relational Pooling (RP) [30] uses the ensemble of permutation-aware functions over graphs to reach
universality, which requires exhausting all n! permutations to achieve its theoretical power. Its local
version Local Relational Pooling (LRP) [39] applies RP over subgraphs around nodes, which is
similar to our work yet still requires exhausting node permutations in local subgraphs and even more
loses RP’s theoretical power. In contrast, NGNN maintains a controllable cost by only applying a
message passing GNN to local subgraphs, and is guaranteed to be more powerful than 1-WL.

Because of the high cost of mimicking high-dimensional WL tests, several works have been proposed
to increase GNN’s representation power within the message passing framework. Observing that
different neighbors are indistinguishable during neighbor aggregation, some works propose to add
one-hot node index features or random features to GNNs [40, 41]. These methods work well when
nodes naturally have distinct identities irrespective of the graph structure. However, although making
GNNs more discriminative, they also lose some of GNNs’ generalization ability by not being able to
guarantee nodes with identical neighborhoods to have the same embedding; the resulting models are
also no longer permutation invariant. Repeating random initialization helps with avoiding such an
issue but gets much slower convergence [42]. An exception is structural message-passing (SMP) [43],
which propagates one-hot node index features to learn a global n× d feature matrix for each node.
The feature matrix is further pooled to learn a permutation-invariant node representation.

On the contrary, some works propose to use structural features to augment GNNs without hurting
the generalization ability of GNNs. SEAL [44, 45], IGMC [46] and DE [24] use distance-based
features, where a distance vector w.r.t. the target node set to predict is calculated for each node as its
additional features. Our NGNN framework is naturally compatible with such distance-based features
due to its independent rooted subgraph processing. GSN [31] uses the count of certain substructures
to augment node/edge features, which also surpasses 1-WL theoretically. However, GSN needs a
properly defined substructure set to incorporate domain-specific inductive biases, while NGNN aims
to learn arbitrary substructures around nodes without the need to predefine a substructure set.

Concurrent to our work, You et al. [32] propose Identity-aware GNN (ID-GNN). ID-GNN uses
different weight parameters between each root node and its context nodes during message passing. It
also extracts a rooted subgraph around each node, and thus can be viewed as a special case of NGNN
with: 1) the number of message passing layers equivalent to the subgraph height, 2) directly using
the root node’s intermediate representation as its final representation without subgraph pooling, and
3) augmenting initial node features with 0/1 “identity”. However, the extra power of ID-GNN only
comes from the “identity” feature, while the power of NGNN comes from the subgraph pooling—
without using any node features, NGNN is still provably more discriminative than 1-WL. Another
similar work to ours is natural graph network (NGN) [47]. NGN argues that graph convolution
weights need not be shared among all nodes but only (locally) isomorphic nodes. If we view our
distance-based node features as refining the graph convolution weights so that nodes within a center
node’s neighborhood are no longer treated symmetrically, then our NGNN reduces to an NGN.

The idea of independently performing message passing within k-hop neighborhood is also explored in
k-hop GNN [48] and MixHop [49]. However, MixHop directly concatenates the aggregation results
of neighbors at different hops as the root representation, which ignores the connections between
other nodes in the rooted subgraph. k-hop GNN sequentially performs message passing for k-hop,
k − 1-hop, ..., and 0-hop node (the update of (i−1)-hop nodes depend on the updated states of i-hop
nodes), while NGNN simultaneously performs message passing for all nodes in the subgraph thus
is more parallelizable. Both MixHop and k-hop GNN directly use the root node’s representation
as its final node representation. In contrast, NGNN uses a subgraph pooling to summarize all node
representations within the subgraph as the final root representation, which distinguishes NGNN from
other k-hop models. As Theorem 1 shows, the subgraph pooling enables using a much smaller number
of message passing layers l (as small as 1) than the depth k of the subgraph, while MixHop and k-hop
GNN always require l ≥ k. MixHop and k-hop GNN also do not have the strong theoretical power of
NGNN to discriminate r-regular graphs. Like SEAL and k-hop GNN, G-Meta [50] is another work
extracting subgraphs around nodes/links. It focuses specifically on a meta-learning setting.

7

Table 1: Statistics and evaluation metrics of the QM9 and OGB datasets.

Dataset #Graphs Avg. #nodes Avg. #edges Split ratio #Tasks Task type Metric
QM9 129,433 18.0 18.6 80/10/10 12 Regression MAE
ogbl-molhiv 41,127 25.5 27.5 80/10/10 1 Classification ROC-AUC
ogbl-molpcba 437,929 26.0 28.1 80/10/10 128 Classification AP

5 Experiments

In this section, we study the effectiveness of the NGNN framework for graph classification and
regression tasks. In particular, we want to answer the following questions:

Q1 Can NGNN reach its theoretical power to discriminate 1-WL-indistinguishable graphs?
Q2 How often and how much does NGNN improve the performance of a base GNN?
Q3 How does NGNN perform in comparison to state-of-the-art GNN methods in open benchmarks?
Q4 How much extra computation time does NGNN incur?

We implement the NGNN framework based on the PyTorch Geometric library [51]. Our code is
available at https://github.com/muhanzhang/NestedGNN.

5.1 Datasets

To answer Q1, we use a simulation dataset of r-regular graphs and the EXP dataset [42] contain-
ing 600 pairs of 1-WL-indistinguishable but non-isomorphic graphs. To answer Q2, we use the
QM9 dataset [52, 53] and the TU datasets [54]. QM9 contains 130K small molecules. The task
here is to perform regression on twelve targets representing energetic, electronic, geometric, and
thermodynamic properties, based on the graph structure and node/edge features. TU contains five
graph classification datasets including D&D [55], MUTAG [56], PROTEINS [55], PTC_MR [57],
and ENZYMES [58]. We used the datasets provided by PyTorch Geometric [51], where for QM9
we performed unit conversions to match the units used by [19]. The evaluation metric is Mean
Absolute Error (MAE) for QM9 and Accuracy (%) for TU. To answer Q3, we use two Open Graph
Benchmark (OGB) datasets [59], ogbg-molhiv and ogbg-molpcba. The ogbg-molhiv dataset
contains 41K small molecules, the task of which is to classify whether a molecule inhibits HIV virus
or not. ROC-AUC is used for evaluation. The ogbg-molpcba dataset contains 438K molecules with
128 classification tasks. The evaluation metric is Average Precision (AP) averaged over all the tasks.
We include the statistics for QM9 and OGB datasets in Table 1.

5.2 Models

QM9. We use 1-GNN, 1-2-GNN, 1-3-GNN, and 1-2-3-GNN from [19] as both the baselines and the
base GNNs of NGNN. Among them, 1-GNN is a standard message passing GNN with 1-WL power.
1-2-GNN is a GNN mimicking 2-WL, where message passing happens among 2-tuples of nodes.
1-3-GNN and 1-2-3-GNN mimic 3-WL, where message passing happens among 3-tuples of nodes.
1-2-GNN and 1-3-GNN use features computed by 1-GNN as initial node features, and 1-2-3-GNN
uses the concatenated features from 1-2-GNN and 1-3-GNN. We additionally include numbers
provided by [53] and Deep LRP [39] as baselines. Note that we omit more recent methods [60–62]
using advanced physical representations calculated from angles, atom coordinates, and quantum
mechanics, which may obscure the comparison of models’ pure graph representation power. For
NGNN, we uniformly use height-3 rooted subgraphs. For a fair comparison, the base GNNs in NGNN
use exactly the same hyperparameters as when they are used alone, except for 1-GNN where we
increase the number of message passing layers from 3 to 5 to make the number of layers larger than
the subgraph height, similar to [63]. For subgraph pooling and graph pooling layers, we uniformly
use mean pooling. All other settings follow [19].

TU. We use four widely adopted GNNs as the baselines and the base GNNs of NGNN: GCN [12],
GraphSAGE [64], GIN [27], and GAT [15]. Since TU datasets suffer from inconsistent evaluation
standards [65], we uniformly use the 10-fold cross validation framework provided by PyTorch
Geomtric [66] for all the models to ensure a fair comparison. For GNNs, we search the number of
message passing layers in {2, 3, 4, 5}. For NGNNs, we similarly search the subgraph height h in
{2, 3, 4, 5}, so that both NGNNs and GNNs can have equal-depth local receptive fields. For NGNNs,
we always use h+ 1 message passing layers instead of searching it together with h, because that will

8

https://github.com/muhanzhang/NestedGNN

make NGNNs have more hyperparameters to tune. All models have 32 hidden dimensions, and are
trained for 100 epochs with a batch size of 128. For each fold, we record the test accuracy with the
hyperparameters chosen based on the best validation performance of this fold. Finally, we report the
average test accuracy across all the 10 folds.

OGB. We use GNNs achieving top places on the OGB graph classification leaderboard3 (at the time
of submission) as the baselines, including GCN [12], GIN [27], DeeperGCN [67], Deep LRP [39],
PNA [68], DGN [33], GINE [69], and PHC-GNN [70]. Note that those high-order GNNs [19–21, 25]
are not included here, because despite being theoretically more discriminative, these GNNs are not
among the GNNs with the best empirical performance on modern large-scale graph benchmarks, and
their O(n3) complexity also raises a scalability issue. For NGNN, we use GIN as the base GNN
(although GIN is not among the strongest baselines here). Some baselines additionally use the virtual
node technique [18, 11, 71], which are marked by “*”. For NGNN, we search the subgraph height
h in {3, 4, 5}, and the number of layers in {4, 5, 6}. We train the NGNN models for 100 and 150
epochs for ogbg-molhiv and ogbg-molpcba, respectively, and report the validation and test scores
at the best validation epoch. We also find that our models are subject to high performance variance
across epochs, likely due to the increased expressiveness. Thus, we save a model checkpoint every
10 epochs, and additionally report the ensemble performance by averaging the predictions from all
checkpoints. The final hyperparameter choices and more details about the experimental settings are
included in Appendix C. All results are averaged over 10 independent runs.

In the following, we uniformly use “Nested GNN” to denote an NGNN model using “GNN” as the
base GNN. For example, Nested GIN denotes an NGNN model using GIN [27] as the base GNN.
For the NGNN models in QM9, TU and OGB datasets, we augment the initial features of a node
with Distance Encoding (DE) [24], which uses the (generalized) distance between a node and the
root as its additional feature, due to DE’s successful applications in link-level tasks [44, 46]. Note
that such feature augmentation is not applicable to the baseline models as discussed in Section 3.2.
An ablation study on the effects of the DE features is included in Appendix E.

5.3 Results and discussion

To answer Q1, we first run a simulation to test NGNN’s power for discriminating r-regular graphs.
The results are presented in Appendix D. They match almost perfectly with Theorem 1, demonstrating
that a practical NGNN can fulfil its theoretical power for discriminating r-regular graphs.

Table 2: Results (%) on EXP.

Method Test Accuracy
GCN-RNI [42] 98.0±1.85
PPGN [20] 50.0±0.00
1-2-3-GNN [19] 50.0±0.00
3-GCN [42] 99.7±0.004

Nested GIN 99.9±0.26

We also test NGNN’s expressive power using the EXP dataset pro-
vided by [42], which contains 600 carefully constructed 1-WL in-
distinguishable but non-isomorphic graph pairs. Each pair of graphs
have different labels, thus a standard message passing GNN cannot
predict them both correctly, resulting in an expected classification
accuracy of only 50%. We exactly follow the experimental settings
and copy the baseline results in [42]. In Table 2, our Nested GIN
model achieves a 99.9% classification accuracy, which outperforms

all the baselines and distinguishes almost all the 1-WL indistinguishable graph pairs. These results
verified that NGNN’s expressive power is indeed beyond 1-WL and message passing GNNs.

To answer Q2, we adopt the QM9 and TU datasets. We show the QM9 results in Table 3. If the Nested
version of a base GNN achieves a better result than the base GNN itself, we color that cell with light
green. As we can see, NGNN brings performance gains to all base GNNs on most targets, sometimes
by large margins. We also show the results on TU in Table 4. NGNNs also show improvement
over their base GNNs in most cases. These results indicate that NGNN is a general framework for
improving a GNN’s power. We further compute the maximum reduction of MAE for QM9 and
maximum improvement of accuracy for TU before and after applying NGNN. NGNN reduces the
MAE by up to 7.9 times for QM9, and increases the accuracy by up to 14.3% for TU. These results
answer Q2, indicating that NGNN can bring steady and significant improvement to base GNNs.

To answer Q3, we compare Nested GIN with leading methods on the OGB leaderboard. The results
are shown in Table 5. Nested GIN achieves highly competitive performance with these leading
GNN models, albeit using a relatively weak base GNN (GIN). Compared to GIN alone, Nested GIN
shows clear performance gains. It achieves test scores up to 79.86 and 30.07 on ogbg-molhiv and

3https://ogb.stanford.edu/docs/leader_graphprop/

9

https://ogb.stanford.edu/docs/leader_graphprop/

Table 3: MAE results on QM9 (smaller the better). A colored cell means NGNN is better than the base GNN.

Target Method (Ne. for Nested)

DTNN MPNN Deep LRP 1-GNN 1-2-GNN 1-3-GNN 1-2-3-GNN Ne. 1-GNN Ne. 1-2-GNN Ne. 1-3-GNN Ne. 1-2-3-GNN Max. reduction
µ 0.244 0.358 0.364 0.493 0.493 0.473 0.476 0.428 0.437 0.436 0.433 1.2×
α 0.95 0.89 0.298 0.78 0.27 0.46 0.27 0.29 0.278 0.261 0.265 2.7×
εHOMO 0.00388 0.00541 0.00254 0.00321 0.00331 0.00328 0.00337 0.00265 0.00275 0.00265 0.00279 1.2×
εLUMO 0.00512 0.00623 0.00277 0.00355 0.00350 0.00354 0.00351 0.00297 0.00271 0.00269 0.00276 1.3×
∆ε 0.0112 0.0066 0.00353 0.0049 0.0047 0.0046 0.0048 0.0038 0.0039 0.0039 0.0039 1.8×
〈R2〉 17.0 28.5 19.3 34.1 21.5 25.8 22.9 20.5 20.4 20.2 20.1 1.7×
ZPVE 0.00172 0.00216 0.00055 0.00124 0.00018 0.00064 0.00019 0.00020 0.00017 0.00017 0.00015 6.2×
U0 2.43 2.05 0.413 2.32 0.0357 0.6855 0.0427 0.295 0.252 0.291 0.205 7.9×
U 2.43 2.00 0.413 2.08 0.107 0.686 0.111 0.361 0.265 0.278 0.200 5.8×
H 2.43 2.02 0.413 2.23 0.070 0.794 0.0419 0.305 0.241 0.267 0.249 7.3×
G 2.43 2.02 0.413 1.94 0.140 0.587 0.0469 0.489 0.272 0.287 0.253 4.0×
Cv 0.27 0.42 0.129 0.27 0.0989 0.158 0.0944 0.174 0.0891 0.0879 0.0811 1.8×

Table 4: Accuracy results (%) on TU datasets.
D&D MUTAG PROTEINS PTC_MR ENZYMES

#Graphs 1178 188 1113 344 600
Avg. #nodes 284.32 17.93 39.06 14.29 32.63

GCN 71.6±2.8 73.4±10.8 71.7±4.7 56.4±7.1 27.3±5.5
GraphSAGE 71.6±3.0 74.0±8.8 71.2±5.2 57.0±5.5 30.7±6.3
GIN 70.5±3.9 84.5±8.9 70.6±4.3 51.2±9.2 38.3±6.4
GAT 71.0±4.4 73.9±10.7 72.0±3.3 57.0±7.3 30.2±4.2

Nested GCN 76.3±3.8 82.9±11.1 73.3±4.0 57.3±7.7 31.2±6.7
Nested GraphSAGE 77.4±4.2 83.9±10.7 74.2±3.7 57.0±5.9 30.7±6.3
Nested GIN 77.8±3.9 87.9±8.2 73.9±5.1 54.1±7.7 29.0±8.0
Nested GAT 76.0±4.4 81.9±10.2 73.7±4.8 56.7±8.1 29.5±5.7

Max. improvement 10.4% 13.4% 4.7% 5.7% 14.3%

Table 5: Results (%) on OGB datasets (* virtual node).
ogbg-molhiv (AUC) ogbg-molpcba (AP)

Method Validation Test Validation Test
CCN* 83.84±0.91 75.99±1.19 24.95±0.42 24.24±0.34
GIN* 84.79±0.68 77.07±1.49 27.98±0.25 27.03±0.23
Deep LRP 82.09±1.16 77.19±1.40 – –
DeeperGCN* – – 29.20±0.25 27.81±0.38
HIMP – 78.80±0.82 – –
PNA 85.19±0.99 79.05±1.32 – –
DGN 84.70±0.47 79.70±0.97 – –
GINE* – – 30.65±0.30 29.17±0.15
PHC-GNN 82.17±0.89 79.34±1.16 30.68±0.25 29.47±0.26

Nested GIN* 83.17±1.99 78.34±1.86 29.15±0.35 28.32±0.41
Nested GIN* (ens) 80.80±2.78 79.86±1.05 30.59±0.56 30.07±0.37

ogbg-molpcba, respectively, which outperform all the baselines. In particular, for the challenging
ogbg-molpcba, our Nested GIN can achieve 30.07 and 28.32 test AP with and without ensemble,
respectively, outperforming the plain GIN model (with 27.03 test AP) significantly. These results
demonstrate the great empirical performance and potential of NGNN even compared to heavily tuned
open leaderboard models, despite using only GIN as the base GNN.

To answer Q4, we report the training time per epoch for GIN and Nested GIN on OGB datasets. On
ogbg-molhiv, GIN takes 54s per epoch, while Nested GIN takes 183s. On ogbg-molpcba, GIN
takes 10min per epoch, while Nested GIN takes 20min. This verifies that NGNN has comparable time
complexity with message passing GNNs. The extra complexity comes from independently learning
better node representations from rooted subgraphs, which is a trade-off for the higher expressivity.

In summary, our experiments have firmly shown that NGNN is a theoretically sound method which
brings consistent gains to its base GNNs in a plug-and-play way. Furthermore, NGNN still maintains
a controllable time complexity compared to other more powerful GNNs.

Finally, we point out one memory limitation of the current NGNN implementation. Currently, NGNN
does not scale to graph datasets with a large average node number (such as REDDIT-BINARY) or
datasets with a large average node degree (such as ogbg-ppa) due to copying a rooted subgraph for
each node to the GPU memory. Reducing batch size or subgraph height helps, but at the same time
leads to performance degradation. One may wonder why materializing all the subgraphs into GPU
memory is necessary. The reason is that we want to batch-process all the subgraphs simultaneously.
Otherwise, we have to sequentially extract subgraphs on the fly, which results in a much higher
latency. We leave the exploration of memory efficient NGNN to the future work.

6 Conclusions

We have proposed Nested Graph Neural Network (NGNN), a general framework for improving
GNN’s representation power. NGNN learns node representations encoding rooted subgraphs instead
of rooted subtrees. Theoretically, we prove NGNN can discriminate almost all r-regular graphs where
1-WL always fails. Empirically, NGNN consistently improves the performance of various base GNNs
across different datasets without incurring the O(n3) complexity like other more powerful GNNs.

Acknowledge

The authors greatly thank the actionable suggestions from the reviewers to improve the manuscript.
Li is partly supported by the 2021 JP Morgan Faculty Award and the National Science Foundation
(NSF) award HDR-2117997.

10

References
[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[2] David Haussler. Convolution kernels on discrete structures. Technical report, Citeseer, 1999.

[3] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, volume 5, pages 488–495,
2009.

[4] Risi Kondor, Nino Shervashidze, and Karsten M Borgwardt. The graphlet spectrum. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages 529–536.
ACM, 2009.

[5] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In 5th IEEE
International Conference on Data Mining, pages 8–pp. IEEE, 2005.

[6] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation
kernels: efficient graph kernels from propagated information. Machine Learning, 102(2):
209–245, 2016.

[7] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):
2539–2561, 2011.

[8] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

[11] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[12] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pages 3837–3845, 2016.

[14] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for
structured data. In Proceedings of The 33rd International Conference on Machine Learning,
pages 2702–2711, 2016.

[15] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[16] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, pages 4438–4445, 2018.

[17] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems, pages 4800–4810, 2018.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

11

[19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019.

[20] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Advances in Neural Information Processing Systems, pages 2156–2167,
2019.

[21] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems, pages 15894–15902, 2019.

[22] Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

[23] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

[24] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design provably
more powerful gnns for structural representation learning. arXiv preprint arXiv:2009.00142,
2020.

[25] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. 2020.

[26] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 575–583. ACM, 2017.

[27] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[28] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems,
pages 3391–3401, 2017.

[29] Andries E Brouwer and Willem H Haemers. Strongly regular graphs. In Spectra of Graphs,
pages 115–149. Springer, 2012.

[30] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019.

[31] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

[32] Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. arXiv preprint arXiv:2101.10320, 2021.

[33] Dominique Beaini, Saro Passaro, Vincent Létourneau, William L Hamilton, Gabriele Corso,
and Pietro Liò. Directional graph networks. arXiv preprint arXiv:2010.02863, 2020.

[34] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. arXiv preprint arXiv:1812.09902, 2018.

[35] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pages 4363–4371. PMLR, 2019.

[36] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
arXiv preprint arXiv:1905.04943, 2019.

[37] Waïss Azizian and Marc Lelarge. Characterizing the expressive power of invariant and equivari-
ant graph neural networks. arXiv preprint arXiv:2006.15646, 2020.

12

[38] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph
neural networks for node disambiguation. arXiv preprint arXiv:1912.06058, 2019.

[39] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 2020.

[40] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

[41] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. arXiv preprint arXiv:2002.03155, 2020.

[42] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The sur-
prising power of graph neural networks with random node initialization. arXiv preprint
arXiv:2010.01179, 2020.

[43] Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant
graph neural networks with structural message-passing. arXiv e-prints, pages arXiv–2006,
2020.

[44] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems, pages 5165–5175, 2018.

[45] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Revisiting graph neural networks
for link prediction. arXiv preprint arXiv:2010.16103, 2020.

[46] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=ByxxgCEYDS.

[47] Pim de Haan, Taco Cohen, and Max Welling. Natural graph networks. arXiv preprint
arXiv:2007.08349, 2020.

[48] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020.

[49] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine
learning, pages 21–29. PMLR, 2019.

[50] Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. Advances in Neural
Information Processing Systems, 33, 2020.

[51] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[52] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014.

[53] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[54] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neu-
mann. Benchmark data sets for graph kernels, 2016. URL http://graphkernels.cs.
tu-dortmund.de.

[55] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology, 330(4):771–783, 2003.

13

https://openreview.net/forum?id=ByxxgCEYDS
https://openreview.net/forum?id=ByxxgCEYDS
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

[56] Asim Kumar Debnath, de Compadre RL Lopez, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786–797, 1991.

[57] Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma.
Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):
1183–1193, 2003.

[58] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, 32(suppl_1):D431–D433, 2004.

[59] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[60] Brandon Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. arXiv preprint arXiv:1906.04015, 2019.

[61] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. arXiv preprint arXiv:2003.03123, 2020.

[62] Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R Manby, and Thomas F
Miller III. Orbnet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital
features. The Journal of Chemical Physics, 153(12):124111, 2020.

[63] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Deep graph neural networks with shallow
subgraph samplers. arXiv preprint arXiv:2012.01380, 2020.

[64] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1025–1035, 2017.

[65] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

[66] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[67] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to
train deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

[68] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

[69] Rémy Brossard, Oriel Frigo, and David Dehaene. Graph convolutions that can finally model
local structure. arXiv preprint arXiv:2011.15069, 2020.

[70] Tuan Le, Marco Bertolini, Frank Noé, and Djork-Arné Clevert. Parameterized hypercomplex
graph neural networks for graph classification. arXiv preprint arXiv:2103.16584, 2021.

[71] Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph warp module: an auxiliary
module for boosting the power of graph neural networks. arXiv preprint arXiv:1902.01020,
2019.

[72] Hongyang Gao and Shuiwang Ji. Graph u-nets. arXiv preprint arXiv:1905.05178, 2019.

[73] Douglas J Klein and Milan Randić. Resistance distance. Journal of Mathematical Chemistry,
12(1):81–95, 1993.

14

	Introduction
	Preliminaries
	Notation and problem definition
	Weisfeiler-Lehman test

	Nested Graph Neural Network
	Limitations of the message passing GNNs
	The NGNN framework
	The representation power of NGNN
	Discussion

	Related work
	Experiments
	Datasets
	Models
	Results and discussion

	Conclusions

