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Abstract—Boostlets are spatiotemporal functions that decom-
pose nondispersive wavefields into a collection of localized
waveforms parametrized by dilations, hyperbolic rotations, and
translations. We study the sparsity properties of boostlets and
find that the resulting decompositions are significantly sparser
than those of other state-of-the-art representation systems, such
as wavelets and shearlets. This translates into improved denoising
performance when hard-thresholding the boostlet coefficients.
The results suggest that boostlets offer a natural framework for
sparsely decomposing wavefields in unified space–time.

Index Terms—wavefields, sparse reconstruction, denoising,
multi-scale representations, boostlets.

I. INTRODUCTION

In 1946, Dennis Gabor developed a theory for time-
frequency analysis [1], envisioning that a family of “atoms”
could detect transient events more effectively than Fourier
transforms. This work inspired the development of the wavelet
transform by Grossmann, Morlet, Daubechies, and Meyer [2]–
[4]. What is striking about wavelets is their natural, physi-
cal relationship to localized singularities in high-dimensional
spaces. Indeed, wavelets are fundamental mathematical objects
that transcend applications in problems ranging from gravita-
tional wave detection [5] to JPEG2000 compression [6].

Building on this foundation, many other multi-scale direc-
tional representation systems have been developed to sparsely
represent signal classes with characteristic features, such as
point singularities, edges, wavefronts, etc. These represen-
tation systems can be learned from data [7]–[9] or can be
handcrafted in accordance with certain characteristics of the
signals in question, such as the case of isotropic [3] and
directional wavelets [10], ridgelets [11], curvelets [12], [13],
contourlets [14], shearlets [15], and α-molecules [16].

In the field of acoustics, this development has been par-
ticularly beneficial in combination with compressed sensing
techniques [17], [18], which has resulted in a valuable reduc-
tion in the number of sensors (e.g., microphones) required
for various data acquisition and signal processing tasks. This
has led to dictionaries specifically adapted to acoustic sig-
nals, such as virtual monopole sources [19], [20] as well as
modal [21], [22], and plane-wave expansions [23]–[26]. In
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this direction, researchers have employed curvelets [27] and
shearlets [28] to interpolate wavefields in space–time. Others
have addressed sampling and interpolating wavefields in the
spatial domain [23], [29]–[33]. There are also recent works
on seismology [34] and dynamic tomography [35] applied to
signals in space–time.

One important contribution in this line of research is that
of the directional filter banks introduced by Pinto and Vet-
terli [30], whereby Gabor’s works on time–frequency analysis
are extended to space–time–frequency analysis. The under-
lying idea of such a transform is to apply a spatiotemporal
window to signals recorded with a uniform microphone array.
These windows are then designed to capture the directionality
(i.e., phase speed) of far- and near-field waves in space–time
using a collection of directional filter banks.

A central aspect of these filter banks is the bandlimitedness
of phase velocities in acoustic wavefront data and the sep-
aration between far-field and near-field spectral components.
However, they do not account for the frequency-dependent
behavior exhibited by the spectral attributes of the sources
and boundary conditions in the measurement environment.
How to sparsely model such a frequency behavior together
with the phase velocities has motivated the development of
the continuous boostlet transform [9], [36], which leverages
the application of groups used in relativity theory to form
a natural dictionary for decomposing acoustic wavefields in
space–time. Boostlets share the mathematical structure of
Poincaré-based wavelet systems [37]–[39], having the same
admissibility condition [40]. However, in contrast to Poincaré
wavelets, boostlets (i) are not defined as wave packets, (ii)
have a scaling function that accounts for finite dilations and
boosts, and (iii) have been experimentally observed in sparse
features learned from natural wavefields [9].

In this work, we study the sparsity properties of the resulting
boostlet decomposition and compare it to other multi-scale
decomposition methods, such as Daubechies45 wavelets and
shearlets. We see that, for acoustic wavefields, the boostlets
yield a more compact representation, providing a higher-
accuracy reconstruction from fewer coefficients. This results
in improved denoising performance via hard thresholding of
the boostlet coefficients. These results suggest that boostlets
are natural representations of wavefields in unified space–time.



II. BOOSTLET PRELIMINARIES

A. Continuous boostlets

Boostlets are wavelet-based functions parametrized with
isotropic dilations, hyperbolic rotations, and translations in
space-time. The powerful machinery behind this parametriza-
tion is the action of the Poincaré group with isotropic dilations,
also known as the Weyl group in the theory of conformal
fields [41]. Let us make this parametrization mathematically
precise with the following definitions.

Definition 1 (Dilation and boost matrices): Define a dilation
matrix Da and a boost matrix Bθ acting on space–time vectors
ς = (x, t)T ∈ R2 as

Da =

(
a 0
0 a

)
, Bθ =

(
cosh θ − sinh θ
− sinh θ cosh θ

)
, (1)

with dilation parameter a ∈ R+, and Lorentz boost (hyperbolic
rotation) parameter θ ∈ R. It is often convenient to combine
these two transformations into a single dilation–boost matrix
Ma,θ given by

Ma,θ = DaBθ = BθDa =

(
a cosh θ −a sinh θ
−a sinh θ a cosh θ

)
. (2)

While the dilation performs a simple scaling in both time and
space, the boost operator performs a hyperbolic rotation in
space–time. In terms of acoustic waves, the latter can be seen
as modifying its phase velocity.

Given a space–time wavefield y : R2 → R, we define its
Fourier transform as

ŷ(ξ) =

∫
R2

y(ς)e−2πiξTςdς, (3)

where ξ is a wavenumber–frequency vector and decomposes
into a wavenumber k and frequency ω through ξ = (k, ω)T.

The action of Ma,θ in the wavenumber–frequency domain
is illustrated in Figure 1. Note that these mappings naturally
divide the wavenumber–frequency plane into two (double)
cones: one for which |ω| < |k|, called the near-field cone,
and one for which |ω| > |k|, called the far-field cone. In
acoustics, the near- and far-field cones contain evanescent and
propagating waves, i.e., phase speeds smaller or greater than
the sound speed [42]. Indeed, by applying Ma,θ to a point in
one of these cones, we can reach all other points in that cone.

We are now prepared to define the continuous boostlet
function.

Definition 2 (Continuous boostlet): Given a space–time
translation vector τ ∈ R2, a dilation factor a ∈ R+, and
a boost parameter θ ∈ R, we define the boostlet function
ψa,θ,τ (ς) ∈ L2(R2) as [36]

ψa,θ,τ (ς) = a−1ψ
(
M−1

a,θ (ς − τ)
)
, (4)

for some mother boostlet ψ ∈ L2(R2).
The Fourier transform of the boostlet function is then given
by [36]

ψ̂a,θ,τ (ξ) = a e−2πiτTξψ̂(MT
a,θξ). (5)
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Fig. 1. The action of the Weyl group on a 2D Fourier coordinate ξ0 in the
positive far-field cone. A dilation operator Da scales the coordinate isotrop-
ically to ξ1, and a boost operator Bθ scales the coordinate anisotropically
via hyperbolic rotations (boosts), resulting in the coordinate ξ2. Note that the
cone boundary can only be reached with an infinite boost θ → ∞.

The mother boostlet ψ is chosen as a tensor product of Meyer-
like wavelets parametrizing the near-field cone into dilations
and boosts [36].

Given that dilation–boost matrices preserve the near- and
far-field cone, a near-field mother boostlet ψ will result in a
family of boostlets all in the near field. We will therefore adopt
the convention that ψ̂(ξ) is supported in the near-field cone,
i.e. ψ̂(ξ) = 0 for ξ = (k, ω) such that |k| < |ω|. This near-
field mother boostlet can then be transformed into a far-field
mother boostlet by defining

ψ∗(x, t) = ψ(t, x). (6)

This function will then have the property that ψ̂∗(ξ) = 0 for
all |k| > |ω|, and is thus supported in the far field. We can
now define a family of far-field boostlets as in the near-field
case by taking

ψ∗
a,θ,τ (ς) = a−1ψ∗

(
M−1

a,θ (ς − τ)
)
. (7)

The group defined in Definition 1 maps interior points of the
cone to its boundary only in the asymptotic regime θ → ∞,
thus necessitating the introduction of a scaling function to
cover the remaining points in R2 [36] (see Sec. II-B).

B. Decomposition and reconstruction

To decompose a wavefield y ∈ L2(R2), we simply compute
its inner products with the near-and far-field boostlets

Ba,θ,τy = ⟨y, ψa,θ,τ ⟩ and B∗
a,θ,τy = ⟨y, ψ∗

a,θ,τ ⟩ (8)

for all a ∈ R+, θ ∈ R, and τ ∈ R2. We call these the
boostlet coefficients of y. If the Fourier transform ψ̂ of the
mother boostlet is band-limited in the near-field cone, it can
be shown that y may be recovered from its boostlet coefficients
through [36]

y(ς) =

∫
R+ × R × R2

Ba,θ,τ y ψa,θ,τ (ς)+B
∗
a,θ,τ y ψ

∗
a,θ,τ (ς)

dadθdτ

a3
. (9)

Note that in the above, we have decomposed the original
signal y over all scales a ∈ R+. For practical purposes, it is
often useful to limit the maximum scale to some value A > 0
and, therefore, limit the decomposition to scales in the interval



(0, A]. The remaining information can then be recovered by a
scaling function ϕ which satisfies by

|ϕ̂(ξ)|2 = 1−
∫

[0, A] × R

|ψ̂a,θ,0(ξ)|2 + |ψ̂∗
a,θ,0(ξ)|2

dadθ

a
, (10)

which is translated to yield ϕτ (ς) = ϕ(ς−τ) and decomposes
y into the scaling coefficients

Sy(τ) = ⟨y, ϕτ ⟩ (11)

for τ ∈ R2. The original signal can then be recovered by the
formula

y(ς) =

∫
R2

Sy(τ)ϕτ (ς)dτ

+

∫
[0, A] × R × R2

Ba,θ,τ y ψa,θ,τ (ς) +B∗
a,θ,τ y ψ

∗
a,θ,τ (ς)

dadθdτ

a3

(12)

In practice, the boostlet and scaling coefficients are sampled
on a finite set of parameters a, θ, and τ . The original function
is then approximated by sums that approximate the above
integrals. Examples of boostlet functions can be found in [36].

III. STATISTICS OF n-TERM APPROXIMATIONS

To study the sparsity properties of the boostlet transform,
we consider the n-term approximations generated by this
transform, as well as two other representations: Daubechies45
wavelets [3] and cone-adapted shearlets [43]. In other words,
for each representation, we sort the coefficients ak by de-
creasing magnitude, truncate the sequence to n coefficients,
resulting in the sequence a1:n, and use these to reconstruct
a signal (e.g., using Eq. (12) in the case of the boostlet
representation). All three methods use Na = 2 decomposition
scales, and the boostlets have Nθ = 7 decomposition boosts
per scale.

The analysis is performed on three wavefields measured
in three different rooms at KTH with an omnidirectional
microphone moved 100 times and an omnidirectional sound
source. The sound pressure field is sampled every 3 cm
with a sampling frequency of 11.25 kHz. More details on
the measurement experiment can be found in [28]. Of these
three room datasets, we pick 1000 space–time windows of
dimensions 100× 100 by choosing a random starting time at
all microphone positions (i.e., shifting the sound field across
various time windows).

For each wavefield y, we let yn denote its n-term approx-
imation in some representation. Let us first consider the ℓ1-
norm ∥a1:n∥1 of these reconstructions, seen in Figure 2(top).
The ℓ1-norms of the n-term boostlet approximations are lower
than those of the corresponding wavelet and shearlet approx-
imations.

Another perspective is offered by considering the recon-
struction error of the n-term approximations. Figure 2(bottom)
shows the the relative ℓ2 error en = ∥y− yn∥22/∥y∥22 × 100%
for the different representations. Here, we see that the boost-
let representation achieves higher accuracy with significantly

Fig. 2. Statistics of ℓ1-norms and approximation errors, mean µ• with 95%
confidence intervals, of n-term reconstructions using Daubechies45 wavelets
(• = db45), shearlets (• = st), and boostlets (• = bt) for 1000 wavefields.
(Top) ℓ1-norms against number of truncated coefficients n. (Bottom) Relative
n-term approximation error en against number of truncated coefficients n.

fewer coefficients than shearlets and wavelets. It is important
to note here, however, that the cone-adapted shearlets perform
better than the wavelets, indicating that they provide a more
natural representation for these types of signals.

IV. DENOISING EXPERIMENTS VIA HARD THRESHOLDING

Given a clean wavefield signal y, we consider a noisy
observation yε = y + ε, where ε is some realization of a
zero-mean noise distribution. The goal is now to recover y
given yε. One way to achieve this is to decompose y in some
representation, obtaining coefficients ak and then thresholding
those coefficients, i.e., setting

bk =

{
ak, if |ak| ≥ γ,

0, if |ak| < γ,
(13)

for some threshold γ > 0 [44]. The idea here is that if the
representation is sparse for a certain class of signals (such
as acoustic wavefields), it will concentrate most of its energy
in a small number of coefficients, which will thus be large in
magnitude. However, the representation of the noise realization
ε is expected to be spread over many coefficients, which in
turn will be of smaller magnitude. As a result, the thresholding
process will mostly zero out coefficients due to noise while
preserving those in the desired class of signals.

In this study, we investigate the influence of the signal-to-
noise ratio (SNR) in dB, defined as SNR = 10 log10(S/N),
where S and N are the signal power and noise power,
respectively. The SNR is varied between 5 and 35 dB, and
100 randomly selected wavefields (see Sec. III) are thresholded
for each SNR value and for each representation: Daubechies45
wavelets, shearlets, and boostlets. A set of 100 thresholds γ is



Fig. 3. Denoising three spatiotemporal wavefields (rows) with SNR = 10 dB. Left-most column: Ground-truth (noise-free) wavefield, y. Center-left column:
Noisy wavefield, yε = y + ε. Center column: Denoised wavefield with Daubechies 45 wavelets, ydb45. Center-right column: Denoised wavefield with
cone-adapted shearlets, yst. Right-most column: Denoised wavefield with boostlets, ybt.

Fig. 4. Statistics of reconstruction errors, eγ⋆ , with mean µ• and 95%
confidence intervals, against signal-to-noise ratio (SNR) for hard-thresholded
reconstructions using Daubechies45 wavelets (• = db45), shearlets (• = st),
and boostlets (• = bt) for 100 wavefields.

chosen for wavelets [
√
N, 10

√
N ], shearlets [0.1

√
N, 5

√
N ],

and boostlets [0.5
√
N,

√
N ]. The optimal threshold, γ⋆, is

obtained via the L-curve [45] parameter selection method. The
L-curve is plotted as ρ(γ) = log ∥y(γ) − y∥2 vs. η(γ) =
log ∥b(γ)∥1, and its point of maximum curvature corresponds
to γ = γ⋆. Finally, the relative error for the thresholded recon-
struction is computed as eγ⋆ = ∥y − y(γ⋆)∥22/∥y∥22 × 100%.

The reconstruction of three wavefields with wavelets, shear-

lets, and boostlets is shown in Fig. 3 for SNR = 10 dB. The
reconstruction errors for each wavefield (row) are summarized
as follows. Daubechies45 wavelets yield relative reconstruc-
tion errors of 48.12%, 52.45%, and 50.34%, shearlets yield
errors of 46.07%, 50.43%, and 41.67%, and boostlets yield
errors of 31.09%, 31%, and 30.18%.

Finally, the relative reconstruction errors eγ⋆ against SNR
are plotted in Fig. 4 for 100 wavefields. It can be observed that
the relative error of the boostlets, µbt ± 2σ, is lower than that
of wavelets, µdb45±2σ, and shearlets, µst±2σ. Additionally,
the spread of the confidence intervals is wider for wavelets and
shearlets than for boostlets. This demonstrates that boostlets
offer a representation more natural to denoise wavefield data.

V. CONCLUSION

Our findings confirm that the boostlet decomposition offers
a more compact representation of acoustic wavefields com-
pared to conventional multi-scale transforms, such as wavelets
and shearlets. This manifests in higher-accuracy reconstruction
from fewer coefficients and robust denoising performance
through hard thresholding. Altogether, these results underscore
the natural role of boostlets for representing wavefields in
unified space–time.
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