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Abstract

Prediction-powered inference (PPI) enables valid
statistical inference by combining experimental
data with machine learning predictions. When a
sufficient number of high-quality predictions is
available, PPI results in more accurate estimates
and tighter confidence intervals than traditional
methods. In this paper, we propose to inform
the PPI framework with prior knowledge on the
quality of the predictions. The resulting method,
which we call frequentist, assisted by Bayes, PPI
(FAB-PPI), improves over PPI when the observed
prediction quality is likely under the prior, while
maintaining its frequentist guarantees. Further-
more, when using heavy-tailed priors, FAB-PPI
adaptively reverts to standard PPI in low prior
probability regions. We demonstrate the benefits
of FAB-PPI in real and synthetic examples.

1. Introduction
Statistical inference crucially relies on the availability of
high-quality labelled data to draw actionable conclusions.
As the scale of machine learning models keeps growing,
their increasingly accurate predictions become a tempting
alternative to labelled data in fields where the latter are tra-
ditionally scarce, such as proteomics (Jumper et al., 2021).
However, blindly using potentially biased predictions as a
surrogate for labelled data voids the statistical validity of
the conclusions drawn. To address this, prediction-powered
inference (Angelopoulos et al., 2023a) provides a general
framework for statistical inference in the presence of a large
number of black-box predictions by combining them with a
smaller number of labelled observations, which are used to
correct for the discrepancy between the predictions and the
true labels. The estimators and confidence intervals (CIs)
resulting from PPI are statistically valid regardless of the ma-
chine learning model used. Moreover, when the predictions
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are good, PPI results in more accurate estimates and shorter
CIs than traditional methods that rely solely on labelled data.

More formally, for an input/output pair (X,Y ) ∼ P =
PX × PY |X and a convex loss function Lθ(x, y), where
θ ∈ Rd, we wish to estimate

θ⋆ = argmin
θ∈Rd

E[Lθ(X,Y )]. (1)

For instance, if Lθ(x, y) = (θ − y)2/2 is the squared
loss, then θ⋆ = E[Y ]. We assume that we have n labelled
observations {(Xi, Yi)}ni=1 iid from P and N unlabelled
observations {X̃i}Ni=1 iid from PX , which are also
independent of the labelled data. The number of unlabelled
observations is typically much larger than the number of
labelled ones, N ≫ n. Additionally, we are provided with
a machine learning prediction rule f , that can be used to
predict an output f(x) at any input x. PPI aims to obtain
an estimator θ̂ and a (1 − α) confidence interval Cppα for
θ⋆, which take advantage of f . Under mild assumptions,
θ⋆ can be expressed as the solution to

gθ⋆ := E[L′
θ⋆(X,Y )] = 0, (2)

where L′
θ is a subgradient of Lθ with respect to θ. It is

easy to see that the quantity above can be decomposed as
gθ = mθ +∆θ, where

mθ := E[L′
θ(X, f(X))], (3)

∆θ := E[L′
θ(X,Y )− L′

θ(X, f(X))]. (4)

In this setting, mθ represents a measure of fit of the
predictor, whereas ∆θ, called the rectifier, accounts for the
discrepancy between the predicted outputs f(X) and the
true outputs Y , effectively quantifying prediction quality.
For example, under the squared loss, ∆θ = E[f(X)− Y ]
and a good predictor f is one such that ∆θ is close to zero,
i.e. f(x) ≃ E[Y |X = x]. Note that, while in this case ∆θ

does not depend on θ, this is not true in general.

By estimating the two quantities mθ and ∆θ, Angelopoulos
et al. (2023b) derive an estimator and a CI for θ⋆, which
use both labelled and unlabelled data. The resulting CI is
shorter than the classical confidence interval based solely on
the labelled data when N ≫ n and f is accurate because,
in this case, mθ can be estimated with low variance using
the unlabelled data, while ∆θ is close to zero.
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Standard PPI employs off-the-shelf estimation and CI pro-
cedures for ∆θ, which do not take advantage of any prior
knowledge on the quality of the machine learning model f .
However, in many applications, we expect the latter’s predic-
tions to be (i) usually very good, but (ii) sometimes prone to
large errors and hallucinations. We propose to encode such
an inductive bias with a horseshoe prior πθ on ∆θ (Carvalho
et al., 2010), which accommodates the aforementioned prop-
erties by exhibiting (i) an infinitely tall spike at the origin,
and (ii) Cauchy-like tails at infinity. In order to construct
valid confidence regions for ∆θ using the horseshoe prior,
we resort to the frequentist-assisted by Bayes (FAB) frame-
work (Pratt, 1961; 1963; Yu & Hoff, 2018). This approach
provides confidence regions such that their expected length
is lower for rectifiers ∆θ that have high probability under
πθ, and larger otherwise. While the resulting confidence
regions have exact coverage for any prior πθ, the horseshoe
prior is particularly well-suited for PPI. Being concentrated
around the origin, it produces shorter confidence regions
when the predictions are good, i.e. ||∆θ|| ≃ 0. At the same
time, its heavy tails ensure robustness when the predictions
are poor. Indeed, as shown by Cortinovis & Caron (2024),
if ||∆θ|| ≫ 0, the FAB procedure with the horseshoe prior
reverts to the traditional CI based on the sample mean.

In this work, we introduce FAB-PPI, a Bayes-assisted ap-
proach for PPI that encodes prior information on the quality
of the machine learning predictions by specifying a prior
for the rectifier ∆θ. FAB-PPI is:

• Statistically valid, as its confidence regions have cor-
rect coverage for any choice of prior;

• Efficient, as its confidence regions have smaller ex-
pected length when the predictions are good;

• Robust, as it reverts to standard PPI when the predic-
tions are poor, if the horseshoe prior is used;

• Modular, as it can be used in conjunction with power
tuning (Angelopoulos et al., 2023b).

The remainder of the paper is organised as follows. Sec-
tion 2 reviews related work. Section 3 provides background
on control variates, PPI, and FAB confidence regions. Sec-
tion 4 describes our novel approach for PPI, called FAB-PPI.
Section 5 demonstrates the benefits of FAB-PPI on synthetic
and real data. Finally, Section 6 discusses limitations and
further extensions of our approach.

2. Related Work
PPI (Angelopoulos et al., 2023a) was introduced to obtain
shorter CIs for the parameters of interest by leveraging ma-
chine learning predictions in semi-supervised settings. PPI
has since been extended in multiple directions. PPI++ (An-
gelopoulos et al., 2023b) proposes a different, loss-based for-

mulation of PPI, leading to a more computationally efficient
procedure, along with an additional power tuning parameter
to enhance PPI’s performance. Stratified PPI (Fisch et al.,
2024) improves upon PPI by employing a data stratification
strategy. Cross PPI (Zrnic & Candès, 2024b) demonstrates
how the training of f can be included in the PPI pipeline. Ac-
tive statistical inference (Zrnic & Candès, 2024a) applies an
active learning approach to select which inputs from the un-
labelled set should be labelled. Closer to our work, Bayesian
PPI (Hofer et al., 2024) considers an alternative PPI estima-
tor motivated by Bayesian ideas. However, their approach
provides Bayesian credible intervals, which do not offer fre-
quentist guarantees. Additionally, their approach achieves
similar experimental performance to PPI, while we demon-
strate that FAB-PPI may significantly improve upon PPI.

As discussed in Angelopoulos et al. (2023a;b), PPI has close
ties with control variates for variance reduction (Glasserman,
2003, §4.1). In the case of mean estimation, the form of
the PPI estimator is similar to the one proposed by Zhang
et al. (2019). PPI is also related to work in semiparametric
inference with missing data (Robins & Rotnitzky, 1995).

The concept of Bayes-optimal confidence regions originates
from the work of Pratt (1961; 1963). Pratt’s approach, which
has been given the name FAB by Yu & Hoff (2018), has
since been extended in multiple directions (Brown et al.,
1995; Farchione & Kabaila, 2008; Kabaila & Giri, 2013;
Kabaila & Farchione, 2022; Yu & Hoff, 2018; Hoff & Yu,
2019; Hoff, 2023). In particular, Cortinovis & Caron (2024)
show that, when combined with priors with power-law tails,
FAB provides robust confidence regions that revert to clas-
sical ones in the presence of outliers. Hoff (2023) applied
FAB in a predictive supervised context, showing that it can
lead to more accurate predictions than standard methods.

3. Background
3.1. Control Variates

The method of control variates is a standard variance-
reduction technique in Monte Carlo approximation (Glasser-
man, 2003, §4.1). For simplicity, we present the method
in the scalar case, but extensions to the multivariate setting
are available. Let (Z, Y ) be a pair of real-valued random
variables, and assume we are interested in estimating E[Y ]
based on an iid sample {(Zi, Yi)}ni=1. Assuming µ = E[Z]
is known, one defines the control-variate estimator (CVE)

Ŷ cv
λ = Y − λ(Z − µ) = 1

n

n∑
i=1

(Yi − λ(Zi − µ)) , (5)

where λ ∈ R is a tuning coefficient and Z and Y are
the sample means of (Zi) and (Yi), respectively. The
centred random variable Zi − µ serves as a control
variate to estimate E[Y ]. The CVE is a consistent and
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unbiased estimator of E[Y ] with var(Ŷ cv
λ ) = (var(Y ) −

2λcov(Z, Y ) + λ2var(Z))/n, while var(Y ) = var(Y )/n.
Therefore, the CVE has smaller variance than Y whenever
λ ∈ (min{0, 2λ⋆}, max{0, 2λ⋆}), where the optimal
coefficient is λ⋆ = cov(Z, Y )/var(Z). In this case,
var(Ŷ cv

λ⋆ ) = (1 − ρ2Z,Y )var(Y ), where ρZ,Y is the corre-
lation between Z and Y . The more correlated Z and Y , the
larger the variance reduction. By plugging the estimator

λ̂ =

∑n
i=1(Zi − Z)(Yi − Y )∑n

i=1(Zi − Z)2
(6)

for λ in Equation (5), one has

Ŷ cv
λ̂
− E[Y ]

s/
√
n

→ N (0, 1)

as n → ∞, where s is the sample standard deviation of
{(Yi − λ̂Zi)}i=1,...,n. Hence, Ŷ cv

λ̂
± z1−α/2s/

√
n is an

asymptotically valid (1−α) CI for E[Y ], whose asymptotic

width is 2z1−α/2
√
1− ρ2Z,Y

√
var(Y )/

√
n.

3.2. Prediction-Powered Inference

PPI (Angelopoulos et al., 2023a) defines an estimator θ̂ and a
CI Cppα for a parameter of interest θ⋆ satisfying Equation (2).
In particular, let m̂θ and ∆̂θ be some estimators of mθ and
∆θ. Using Equation (2), the estimator θ̂ is defined as the
solution, in θ, to the equation

m̂θ + ∆̂θ = 0. (7)

Similarly, letRδ and Tα−δ be 1− δ and 1− (α− δ) CIs for
∆θ and mθ, respectively. Then, the PPI confidence interval
Cppα is defined as

Cppα = {θ | 0 ∈ Rδ + Tα−δ} , (8)

where + denotes the Minkowski sum. Typical choices for
m̂θ and Tα−δ are the sample mean of the unlabelled data,

m̂θ =
1

N

N∑
i=1

L′
θ(X̃i, f(X̃i)), (9)

and classical CIs for sample means, respectively. Different
choices for ∆̂θ have been proposed in the literature, leading
to different PPI estimators.

Standard PPI. Angelopoulos et al. (2023a) propose to
use the sample mean

∆̂PP
θ =

1

n

n∑
i=1

(
L′
θ(Xi, Yi)− L′

θ(Xi, f(Xi))
)

(10)

as an estimator for ∆θ and the associated classical CIs to
constructRδ . For the squared loss, the estimator θ̂PP solving
m̂θ + ∆̂θ = 0 takes the control variate form

θ̂PP = Y −

 1

n

n∑
i=1

f(Xi)−
1

N

N∑
j=1

f(X̃j)

 (11)

with control variate f(Xi)− 1
N

∑N
j=1 f(X̃j) and λ = 1.

PPI++. Angelopoulos et al. (2023b) extend standard PPI
by introducing an additional control-variate parameter λ,
which they call power tuning parameter. The chosen m̂θ is
still the sample mean (9), while ∆̂PP+

θ now takes the control
variate form

∆̂PP+
θ =

1

n

n∑
i=1

(L′
θ(Xi, Yi)− L′

θ(Xi, f(Xi))) (12)

− (λ̂− 1)

(
1

n

[
n∑
i=1

L′
θ(Xi, f(Xi))

]
− m̂θ

)
,

where λ̂ is estimated from the data. In this case, the centred
control variate is L′

θ(Xi, f(Xi))− m̂θ, which depends only
on the machine learning predictions. For the squared loss,
we obtain

θ̂PP+ = Y − λ̂

 1

n

n∑
i=1

f(Xi)−
1

N

N∑
j=1

f(X̃j)

 (13)

with plug-in estimator

λ̂ =
cn

(1 + n
N )vn+N

, (14)

where cn is the sample covariance of (Yi, f(Xi))
n
i=1 and

vn+N is the sample variance of ((f(Xi))
n
i=1, (f(X̃j))

N
j=1).

The estimator (13) is closely related (though slightly differ-
ent) to the one introduced by Zhang et al. (2019) for mean
estimation in semi-supervised inference.

CLT-based CIs. While the definition of the PPI confi-
dence interval (8) allows for merging any CIsRδ and Tα−δ
for ∆θ and mθ, in practice these are often chosen to be
CLT-based CIs that, once combined into Cppα give exact
asymptotic coverage,

lim inf
n,N→∞

Pr(θ⋆ ∈ Cppα ) ≥ 1− α.

Such CLT-based CIs rely on the following standard assump-
tion on the estimators m̂θ and ∆̂θ.

Assumption 3.1 (CLT assumption for PPI and PPI++). Let
m̂θ be the sample mean (9) and consider some estimator
(σ̂fθ )

2 of var(m̂θ), with (σ̂fθ )
2/var(m̂θ)→ 1 almost surely.
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Let ∆̂θ be either the PPI estimator (10) or the PPI++ esti-
mator (12) and consider some estimator σ̂θ of var(∆̂θ) with
σ̂θ/var(∆̂θ)→ 1 a.s. Assume that, as min(n,N)→∞,

(m̂θ −mθ)/σ̂
f
θ → N (0, 1) (15)

(∆̂θ −∆θ)/σ̂θ → N (0, 1). (16)

3.3. Bayes-Optimal Confidence Regions

The FAB framework (Pratt, 1961; 1963; Yu & Hoff, 2018)
aims to construct valid confidence regions with smaller ex-
pected volume. Let W | β ∼ N (β, σ2) with some prior
π0(β) and denote by π(w) =

∫
p(w | β)π0(β)dβ the cor-

responding marginal likelihood. For α ∈ (0, 1), let Cα(w)
be an exact (1 − α) confidence region for β based on the
data w. That is, for any fixed β0,

Pr(β ∈ Cα(W ) | β = β0) = 1− α. (17)

Let vol(Cα(w)) =
∫
β′∈Cα(w)

dβ′ be the volume of Cα(w),
and consider its expected value under the marginal likeli-
hood π,

E[vol(Cα(W ))] =

∫
vol(Cα(w))π(w)dw. (18)

Definition 3.2. For α ∈ (0, 1), σ > 0 and a prior π0(β),
the FAB confidence region Cα for the mean parameter β of
the normal model Y | β ∼ N (β, σ2), is the minimiser of
the (Bayesian) expected volume

Cα = argmin
C̃α

E[vol(C̃α(W ))] (19)

subject to the (frequentist) coverage constraint (17). We
write Cα(w) = FAB-CR(w;π0, σ2, α).

The solution to Equation (19), which exists and is unique if
π0(β) is not degenerate (Cortinovis & Caron, 2024, Theo-
rem 3.3), may be found numerically as long as the marginal
likelihood π(w) can be evaluated pointwise. Additional
details are provided in Section S1.2. Intuitively, the FAB
confidence region Cα(w) constructed through Equation (19)
will be smaller for values of w that are likely under the
marginal likelihood, and larger otherwise. As a result of
this, while FAB guarantees the right coverage for any prior,
one that assigns high probability to the value of β that gener-
ated the data is required to achieve smaller expected volume
compared to the standard CI (w ± σz1−α/2), whose width
does not depend on w.

Bayes-Assisted Estimator. A natural estimator to use
alongside the FAB confidence region Cα(w) is the posterior
mean β̂(W ) = E[β | W ]. As shown by (Cortinovis &
Caron, 2024, Theorem 3.3), it is always contained within
the confidence region: β̂(w) ∈ Cα(w) for any w ∈ R and
any α ∈ (0, 1). We refer to β̂(W ) as the Bayes-assisted
estimator.

4. FAB-PPI
Our approach, which we call FAB-PPI, combines the PPI
framework with the FAB construction of confidence regions
by specifying a prior on the rectifier ∆θ. To ease the pre-
sentation, here we describe the method for Y, θ ∈ R. The
general multivariate case is discussed in Section S4.

As in PPI, we use the sample mean (9) as the estimator of
mθ. For ∆θ, we start by considering a consistent estimator
∆̂θ, such as the sample mean (10) used in PPI, or the con-
trol variate estimator (12) used in PPI++. Throughout this
section, we assume that Assumption 3.1 is satisfied. That is,
a CLT holds for m̂θ and ∆̂θ with respect to some estimators
(σ̂fθ )

2 and σ̂2
θ of var(m̂θ) and var(∆̂θ), respectively. In this

setting, let π0(∆θ; τn) be a prior on ∆θ with scale parame-
ter τn, which may depend on the labelled data through σ̂θ.
Denote by ℓ(w;σ, τ) the log-marginal likelihood, evaluated
at w, of a Gaussian likelihood model with mean ∆ and
variance σ2 under the prior π0(∆; τ),

ℓ(w;σ, τ) = log

∫
R
N (w; ∆, σ2)π0(∆; τ)d∆.

4.1. Bayes-Assisted PPI Estimators

Consider the Bayes-assisted estimator

∆̂FABPP
θ = ∆̂θ + σ̂2

θℓ
′
(
∆̂θ; σ̂θ, τn

)
(20)

for the rectifier ∆θ. By Tweedie’s formula (Efron, 2011), the
above estimator is the posterior mean of the mean parameter
of a Gaussian likelihood model under the prior π0. Note
however that we do not assume here that ∆̂θ is normally
distributed for a fixed n.

The FAB-PPI estimator of θ⋆, denoted by θ̂FABPP, is then
obtained as the solution, in θ, to the equation

m̂θ + ∆̂FABPP
θ = 0.

4.2. FAB-PPI Confidence Regions

As in PPI, let Tα−δ(m̂θ) denote a standard 1 − (α − δ)
confidence interval for mθ. For ∆θ, we apply the FAB
framework with the prior π0 to obtain a 1− δ confidence re-
gion RFABPP

δ (∆̂θ) = FAB-CR(∆̂θ;π0(· ; τn), σ̂θ, δ). Then,
the FAB-PPI confidence region CFABPPα is obtained as

CFABPPα =
{
θ | 0 ∈ RFABPP

δ (∆̂θ) + Tα−δ(m̂θ)
}
. (21)

Algorithm 1 summarises the steps of the FAB-PPI approach
in a general convex estimation problem.

4.3. Choosing the Prior

FAB-PPI is motivated by applications in which the PPI pre-
dictor f is expected to be generally accurate, as measured
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Algorithm 1 FAB-PPI for convex estimation
Input: labelled {(Xi, Yi)}ni=1, unlabelled
{X̃j}Nj=1, predictor f , prior π0(· ; τn), error levels
α, δ

Set λ̂ = 1 (FAB-PPI) or estimate λ̂ from data (FAB-
PPI++) as in Angelopoulos et al. (2023b).
for θ ∈ Θgrid do
m̂θ ← 1

N

∑N
i=1 L′

θ(X̃i, f(X̃i))

ξ̂ ← 1
n

∑n
i=1

(
L′
θ(Xi, Yi)− λ̂L′

θ(Xi, f(Xi))
)

∆̂θ ← ξ̂ + (λ̂− 1)m̂θ

σ̂2
m ← 1

N−1

∑N
i=1

(
L′
θ(X̃i, f(X̃i))− m̂θ

)2
σ̂2
ξ ← 1

n−1

∑n
i=1

(
L′
θ(Xi, Yi)− λ̂L′

θ(Xi, f(Xi))− ξ̂
)2

σ̂2
θ ← 1

n σ̂
2
ξ +

(λ̂−1)2

N σ̂2
m

Tα−δ(m̂θ)←
(
m̂θ ± σ̂m√

N
z1−(α−δ)/2

)
RFABPP
δ (∆̂θ)← FAB-CR(∆̂θ;π0(· ; τn), σ̂θ, δ)

∆̂FABPP
θ ← ∆̂θ + σ̂2

θℓ
′
(
∆̂θ; σ̂θ, τn

)
end for

Outputs: estimator θ̂FABPP = argminΘgrid

∣∣∣m̂θ + ∆̂FABPP
θ

∣∣∣
and CR CFABPPα =

{
θ | 0 ∈ RFABPP

δ (∆̂θ) + Tα−δ(m̂θ)
}

by the rectifier ∆θ. Such a property may be encoded in
π0(∆θ; τn) by choosing a prior that concentrates around
zero. As mentioned in Section 3.3, the FAB construction
of RFABPP

δ (∆̂θ) will exhibit smaller volume compared to
the classical CI, and hence result in downstream efficiency
gains over standard PPI, if the true rectifier ∆θ is likely
under π0. In particular, the prior scale τn controls the size
of the potential efficiency gains and losses of FAB-PPI over
PPI: the smaller τn, the more the resulting CR will shrink
(resp. grow) when ∆θ ≃ 0 (resp. |∆θ| ≫ 0). Experimen-
tally, we find that the choice τn = σ̂θ results in a parameter-
free approach that strikes a good compromise. More general
choices of τn are briefly mentioned in Section 6.

A seemingly natural proposal for π0 that meets the require-
ments above is the Gaussian prior

πN(∆θ; σ̂θ) = N (∆θ; 0, σ̂θ). (22)

However, as we will discuss in Section 4.4, πN exhibits
undesirable properties for FAB-PPI. Instead, we propose to
use the horseshoe prior (Carvalho et al., 2010)

πHS(∆θ; σ̂θ) =

∫ ∞

0

N (∆θ; 0, ν
2σ̂2
θ)C

+(ν; 0, 1)dν, (23)

where C+(ν; 0, 1) denotes the pdf of the half-Cauchy dis-
tribution with location parameter 0 and scale parameter 1.
In the case of πHS, the choice of scaling τn = σ̂θ is further

motivated by Piironen & Vehtari (2017, §3.3). Furthermore,
the horseshoe prior has power-law tails, making it a particu-
larly robust choice for FAB-PPI, as discussed in Section 4.4.
Crucially, for both priors πN and πHS, the marginal likeli-
hood under a Gaussian model with standard deviation σ̂θ
can be expressed in terms of standard functions (see Sec-
tion S1.1 for the horseshoe), enabling us to compute ∆̂FABPP

θ

andRFABPP
δ (∆̂θ) in Algorithm 1.

4.4. Theoretical Properties

As shown by the following result, proved in Section S3.1,
the FAB-PPI CR has exact asymptotic coverage.

Theorem 4.1 (Asymptotic coverage). For α ∈ (0, 1), let
CFABPPα be the FAB-PPI confidence region (21) under the
Gaussian prior (22) or the horseshoe prior (23). Then,
under Assumption 3.1,

lim inf
min(n,N)→∞

Pr(θ⋆ ∈ CFABPPα ) ≥ 1− α.

The proof of Theorem 4.1 crucially relies on showing exact
asymptotic coverage of the FAB CR RFABPP

δ (∆̂θ). While
the latter holds for both priors introduced in the previous sec-
tions, the two limits behave very differently. In particular, as
discussed in Remark S3.4, the volume ofRFABPP

δ (∆̂θ) van-
ishes asymptotically under πHS, while it does not under πN.

The behaviour of RFABPP
δ (∆̂θ) under the two priors also

differs for large values of observed ∆̂θ. In case of increas-
ing disagreement between the prior and the data, Gaussian
FAB confidence regions are known to become arbitrarily
large (Yu & Hoff, 2018). On the other hand, thanks to its
power-law tails, the horseshoe results in confidence regions
that revert to the corresponding standard CI (Cortinovis &
Caron, 2024). Here, we state the implication of this prop-
erty on FAB-PPI informally, and provide a formal proof in
Section S3.2.

Proposition 4.2 (Robustness under the horseshoe, informal).
For α ∈ (0, 1), let CFABPPα and CPPα denote, respectively, the
FAB-PPI confidence region (21) under the horseshoe prior
(23) and the standard CLT-based PPI CI for θ, both viewed
as functions of ∆̂θ. If |∆̂θ| ≫ 0, then

CFABPPα ≃ CPPα .

In practice, this means that, in the presence of heavily biased
predictors, FAB-PPI with the horseshoe prior reverts to
standard PPI. In a sense, this represents a form of robustness
to prior misspecification of FAB-PPI under the horseshoe.

Overall, Remark S3.4 and Proposition 4.2 provide strong
support for preferring πHS over πN within the FAB-PPI
framework.
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4.5. FAB-PPI for Mean Estimation

To provide a concrete example, a specialised version of Al-
gorithm 1 under the squared loss is derived in Section S2.1.
Here, we briefly discuss the differences between the
FAB-PPI mean estimator and its standard PPI counterpart,
as well as the asymptotic behaviour of the former. Under
the squared loss, the rectifier ∆ := ∆θ does not depend on
θ and the FAB-PPI estimator θ̂FABPP corresponding to the
chosen estimator ∆̂ (PPI or PPI++) is given by

θ̂FABPP = θ̂ − σ̂2ℓ′(∆̂; σ̂, τn) (24)

= Y − λ̂

 1

n

n∑
i=1

f(Xi)−
1

N

N∑
j=1

f(X̃j)


− σ̂2ℓ′

(
∆̂; σ̂, τn

)
,

where σ̂2 is an estimator of var(∆̂), θ̂ is the PPI estimator
corresponding to ∆̂, and λ̂ is set either to one (PPI) or (14)
(PPI++). In both cases, the estimator θ̂FABPP takes the form

Classic Estimator + PPI correction + Bayes correction,

where the last component depends on the chosen prior.
The following proposition, proved in Section S3.3, further
differentiates between the priors presented in Section 4.3
in favour of the horseshoe.

Proposition 4.3 (Consistency of FAB-PPI mean estimators).
Let θ̂FABPPHS and θ̂FABPPN be the FAB-PPI estimators (24) under
the horseshoe (23) and Gaussian (22) priors, respectively.
If the PPI estimator θ̂ is a consistent estimator of θ⋆, then
θ̂FABPPHS is a consistent estimator of θ⋆, while θ̂FABPPN is not.

Intuitively, this is due to the fact that the influence of πHS
vanishes asymptotically, while for πN it does not.

5. Experiments
We compare FAB-PPI and power-tuned FAB-PPI (FAB-
PPI++) to classical inference, PPI and power-tuned PPI
(PPI++) on both synthetic and real estimation problems.
For FAB-PPI, we use (HS) and (N) to indicate the use of the
horseshoe and Gaussian priors defined in Section 4.3. As
already mentioned, PPI is motivated by settings in which
labelled data are scarce, while unlabelled data are abundant.
Moreover, the application of FAB to PPI specifically targets
the estimation of the rectifier ∆θ. For these reasons, we
choose to focus on cases where N ≫ n is large enough to
rule out any uncertainty in the measure of fit mθ, which we
estimate using the sample mean m̂θ (9). As a result of this,
given a 1− δ confidence interval (FAB or not)Rδ for ∆θ,
the corresponding 1 − α CI for θ⋆ is obtained simply by
setting δ = α and shiftingRδ by m̂θ. This simplification al-
lows us to evaluate the direct effect of FAB on the procedure,

eliminating concerns about the loss of tightness in the CI on
θ⋆ due to the Minkowski sum in Equation (21). In all experi-
ments, we check empirically that N is large enough to make
this assumption by monitoring the coverage of the resulting
intervals against both the nominal level 1−α and the cover-
age of PPI intervals that also consider the uncertainty in mθ

(denoted with PPI (full) and PPI++ (full) in Section S6).

5.1. Synthetic Data

The simulated experiments below have a common struc-
ture. We sample two datasets, n labelled observations
{(Xi, Yi)}ni=1 iid from P and N unlabelled observations
{X̃i}Ni=1 iid from PX . We use a prediction rule f to obtain
predictions {f(Xi)}ni=1 and {f(X̃i)}Ni=1. We apply the dif-
ferent procedures to obtain estimates and 1− α confidence
regions for the mean θ⋆ = E[Y ]. For all experiments, we set
α = 0.1 and report the average mean squared error (MSE),
interval volume, and coverage over 1000 repetitions.

Biased Predictions. We sample Xi
iid∼ N (0, 1) and Yi =

Xi+ϵi with ϵi
iid∼ N (0, 1), so that θ⋆ = E[Y ] = 0. The pre-

diction rule is defined as f(Xi) = Xi+γ, where γ ∈ R. For
this choice, the bias of f is controlled by γ, since MSE(f) =
γ2+1. For this experiment, we assume thatN is infinite, set
n = 200, and vary γ between−1.5 and 1.5. Figure 1 shows
the average interval volume as a function of γ for classical
inference, PPI++, and FAB-PPI++ with both a horseshoe
and a Gaussian prior. Results for the non power-tuned meth-
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0.5

v
o
lu

m
e

classical

PPI++

FAB-PPI++ (HS)

FAB-PPI++ (N)

Figure 1. Biased predictions study. The panel shows the average
CI volume as the bias level γ varies.

ods, as well as MSE and coverage plots, are reported in Fig-
ure S6. Except for the version with the Gaussian prior, all
the PPI procedures outperform classical inference for every
bias level γ, but the behaviour exhibited by PPI++ deserves
attention, as its CI volume is approximately constant across
values of γ. This is due to the fact that, since N is taken to
be infinite and n is fairly large, λ̂ ≃ cov(Y, f(X)) = 1 and
the rectifier is accurately estimated with similar variance

6



FAB-PPI

across all values of γ. On the other hand, the CI volume for
the FAB-PPI methods varies greatly with γ. When the bias
is small (γ ≃ 0), the observed rectifier has a value close to 0,
leading to smaller CIs. As the bias increases, the volume of
the confidence intervals grows, until it surpasses that of the
PPI intervals. At this point, the two FAB-PPI procedures be-
have differently: the volume of the Gaussian intervals grows
without bound, whereas the horseshoe intervals eventually
revert to the PPI ones. This example clearly shows that FAB-
PPI with a horseshoe prior allows to obtain smaller CIs when
the predictions are good, while ensuring robustness as the
quality of the predictions decreases (Proposition 4.2).

Noisy Predictions. We consider the mean estimation ex-
ample of Angelopoulos et al. (2023b, §7.1.1), which does
not involve any covariate X . We sample Yi

iid∼ N (0, 1),
so that θ⋆ = E[Y ] = 0. The prediction rule is defined as
f(Xi) = Yi + σY ϵi, where ϵi

iid∼ N (0, 1) and σY is suc-
cessively set to 0.1, 1, and 2. For this experiment, we set
N = 106 and vary n from 100 to 1000. Figure 2 shows the
average interval volume as a function of n for the different
methods as the noise level σY varies, while similar plots for
the MSE and coverage are reported in Figure S7. In this
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0.6

v
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lu

m
e
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500 1000
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σY = 2.0

classical

FAB-PPI (HS)

PPI

FAB-PPI++ (HS)

PPI++

Figure 2. Noisy predictions study. The left, middle and right panels
show the average CI volume for noise levels σY = 0.1, 1, 2.

case, the effect of power tuning matches the observations
of Angelopoulos et al. (2023b): as the noise level increases,
λ̂ decreases and less weight is given to the predicted labels.
When the noise is small, all PPI procedures perform simi-
larly, and much better than classical inference. When the
noise is large, the power-tuned procedures perform similarly
to or better than classical inference, whereas the non-tuned
alternatives lose ground. At the intermediate noise level,
the power-tuned methods clearly outperform the other base-
lines. Crucially, FAB-PPI outperforms the PPI counterpart
at all noise levels, with FAB-PPI++ being the best performer
overall. This is because, in this setting, while predictions
exhibit increasing variance with σY , they remain unbiased.

As a result of this, regardless of the value of λ used, any
additional shrinkage performed on the rectifier by FAB-PPI
is beneficial. This example shows that FAB-PPI++ retains
the benefits of power tuning, while also taking advantage of
the adaptive shrinkage provided by the FAB procedure.

5.2. Real Data

We consider several estimation experiments using the
datasets presented in Angelopoulos et al. (2023a) and briefly
described in Section S5.1. Each dataset comes with covari-
ate/label/prediction triples {Xi, Yi, f(Xi)}Ni=1, which we
randomly split into two subsets with n labelled and N − n
unlabelled observations, for varying values of n. For all
experiments and methods, we report the average estimation
MSE, CI volume and coverage across multiple repetitions.

We begin with four experiments, where the machine learning
predictions provided are of high quality, and whose goals
are as follows. Two of them are mean estimation tasks per-
formed on the GALAXIES and FOREST datasets. The third
one, performed on the ALPHAFOLD dataset, is an odds ratio
estimation task, for which the construction of confidence in-
tervals also indirectly involves mean estimation as detailed
in Section S5.1. The fourth one, involving the HEALTH-
CARE dataset, is a logistic regression task. Figure 3 shows
the results for classical inference, PPI++, and FAB-PPI++
applied to the datasets involving mean estimation.

The mean estimation results for the non power-tuned meth-
ods are reported in Figure S8, whereas the ones for the
logistic regression experiment are reported in Figure S11.
In all cases, FAB-PPI/FAB-PPI++ outperform classical in-
ference and the corresponding PPI methods, both in terms of
MSE and CI volume, while achieving comparable coverage.
These examples suggest that the quality of the predictions
of existing machine learning models on several real datasets
may fall into the regime where the adaptive shrinkage pro-
vided by the FAB framework leads to a further improvement
over standard PPI. In these settings, as the predictions are
good, FAB-PPI under the horseshoe and Gaussian priors
exhibit similar gains, as already seen in Figure 1.

However, the same is not true in the presence of bad pre-
dictions. For instance, Figure S12 shows the results of a
quantile estimation experiment on the GENES dataset, where
predictions are heavily biased. In this case, the behaviour
of the FAB-PPI methods under the horseshoe and Gaussian
priors differs significantly: the former matches the perfor-
mance of the PPI methods, which outperform classical in-
ference, whereas the latter leads to much larger MSE and
CIs. As previously discussed, such desirable behaviour of
FAB-PPI under the horseshoe prior is due to its robustness
against large bias levels (Proposition 4.2). Similarly, Fig-
ure S13 reports the results of a linear regression experiment
on the CENSUS dataset. For one of the two parameters con-
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Figure 3. Real data mean estimation study. The left, middle, and right panels correspond to the ALPHAFOLD, GALAXIES, and FOREST

datasets. The top, middle, and bottom rows show average MSE, CI volume, and CI coverage over 1000 repetitions for α = 0.1.

sidered (panel (a)), FAB-PPI underperforms the alternatives
under both priors for small n. However, as n increases, the
performance under the horseshoe prior improves and even-
tually matches that of the PPI methods, while the Gaussian
prior does not. This example shows another facet of the
horseshoe’s robustness: even for moderate bias levels, as
the available labelled sample size grows, disagreements be-
tween the prior and the data become apparent (i.e. var(∆̂θ)
decreases), eventually leading Proposition 4.2 to take ef-
fect.

6. Discussion and Extensions
We proposed FAB-PPI as a Bayes-informed method to sig-
nificantly improve the performance of PPI in the presence
of high-quality predictions. In doing so, we showed that the
horseshoe represents a sensible default prior for FAB-PPI,
contrary to the seemingly natural choice of a Gaussian prior.
However, several options may be worth exploring.

In particular, the horseshoe prior was chosen due to its pop-
ularity and key properties: (i) its spike at zero (ii) power-law
tails and (iii) the closed-form expression for the marginal
density π(y). However, many other scale-mixture of Gaus-

sians models share these properties. For example, the family
of priors with a beta prime (aka inverted beta) prior over the
variance (Polson & Scott, 2012), which includes the horse-
shoe, normal-exponential-gamma (Griffin & Brown, 2011)
and other robust priors (Berger, 1980; Strawderman, 1971)
as special cases, shares the same three properties. On the
other hand, some other standard priors such as the Laplace
prior (Park & Casella, 2008) or normal-gamma prior (Caron
& Doucet, 2008; Griffin & Brown, 2010) do not have power-
law tails and therefore do not offer the same robustness
guarantees. Other priors, such as the Student-t, lack an an-
alytical expression for π(y), therefore requiring additional
numerical approximation to be applied to FAB-PPI.

Furthermore, we used the scale σ of the noise in the genera-
tive model as the scale for both the horseshoe and Gaussian
priors, as this allows us to obtain a simple, parameter-free
approach, which generally performs well. Alternatively,
one could consider a prior scale of ησ, where η is a
hyperparameter to be tuned using a validation set. However,
in the case of the horseshoe, this renders the marginal
likelihood intractable. While using a rescaled horseshoe
prior for FAB-PPI remains feasible through numerical
integration, as shown in Figure S10, this increases the
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computational cost of the method. By contrast, a rescaled
Gaussian prior would not encounter this issue. Furthermore,
we conjecture that choosing a scale that does not depend
on σ may resolve the inconsistency of the estimator based
on a Gaussian prior, which was discussed in Section 4.5.

As a potential drawback, FAB-PPI shares the computational
limitations of the PPI approach (Angelopoulos et al., 2023a),
which are discussed in Angelopoulos et al. (2023b). In
particular, except for special cases such as mean estimation
and linear regression, the method requires evaluating m̂θ +
∆̂θ over a grid of values of θ. This can be computationally
expensive, especially in high-dimensional settings.

Supplementary Material and Code. The supplementary
material contains additional background, proofs, and exper-
iments. All sections, figures, and equations in the supple-
mentary material are prefixed with ‘S’ for clarity. Code
for reproducing the experiments is available at https:
//github.com/stefanocortinovis/fab-ppi.
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S1. Additional Background Material
S1.1. Horseshoe Prior

Consider the Gaussian likelihood model
Y | β ∼ N (β, σ2)

with standard deviation σ > 0 and mean parameter β ∈ R. The horseshoe prior (Carvalho et al., 2010) with density πHS can
be represented as a scale mixture of normals (Andrews & Mallows, 1974)

β | ν2 ∼ N (0, η2σ2ν2) (S25)

ν ∼ C+(0, 1), (S26)

where η > 0 and C+(0, 1) is the half-Cauchy distribution with location parameter 0 and scale parameter 1. Throughout this
section and the main text, we assume η = 1. The rationale for this choice, along with a discussion of the general case η ̸= 1,
is provided at the end of this section.

The marginal likelihood is given by

π(y) =

∫ ∞

−∞
N (y | β, σ2)πHS(β)dβ

=
1√
2πσ2

∫ ∞

0

1√
1 + ν2

e
− y2

2σ2(1+ν2) p(ν)dν

=
2

π
√
2πσ2

∫ ∞

0

e
− y2

2σ2(1+ν2)
1

(1 + ν2)3/2
dν.

Using the change of variable u = 1
1+ν2 , we obtain

π(y) =
1

π
√
2πσ2

∫ 1

0

e−
uy2

2σ2 (1− u)−1/2du

=
2

π
√
2πσ2

1F1

(
1,

3

2
,− y2

2σ2

)
,

where 1F1 is (Kummer’s) confluent hypergeometric function of the first kind, with integral representation

1F1(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1dt.

Alternatively, the marginal can be expressed in function of the imaginary error function (erfi) or Dawson function (aka
Dawson integral) as

π(y) =
1

π
√
2σ2

e−y
2/(2σ2) erfi(|y|/

√
2σ2)

|y|/(
√
2σ2)

=
2

π3/2

1

|y|D
( |y|√

2σ2

)
where Dawson’s function is defined as

D(z) = e−z
2

∫ z

0

et
2

dt.

The marginal likelihood exhibits power-law tails

π(y) ∼ C 1

|y|2 as |y| → ∞

for some constant C > 0. Let ℓ(y) = log π(y) denote the log-marginal likelihood. Kummer’s function has the derivative

d

dz
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z).
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It follows that

ℓ′(y) =
π′(y)
π(y)

= −2

3

y

σ2

1F1

(
2, 52 ,−

y2

2σ2

)
1F1

(
1, 32 ,−

y2

2σ2

) .
Applying Tweedie’s formula (Efron, 2011), we obtain the posterior mean

E[β | y] = y + σ2ℓ′(y;σ) = (1− κ(y))y, (S27)

where the shrinkage function κ(y) ∈ (0, 1) is given by

κ(y) =
2

3

1F1

(
2, 52 ,−

y2

2σ2

)
1F1

(
1, 32 ,−

y2

2σ2

) .
Using the asymptotic expansion (Slater, 1960, Chapter 4, Eq. (4.I.3))

1F1(a, b,−z) ∼ z−a
Γ(b)

Γ(b− a)

as z →∞, we find

κ(y) ∼ 2σ2

y2

|E[β | y]− y| = σ2|ℓ′(y)| ∼ 2σ2

|y|

as |y| → ∞.

The horseshoe prior πHS has two key properties: an infinite spike at zero, inducing strong shrinkage near y = 0, and
Cauchy-like tails, ensuring that strong signals remain largely unshrunk (κ(y) → 0 and |E[β | y] − y| → 0 as |y| → ∞).
This is illustrated in Figure S4.
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y
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0.75

1.00

κ
(y

)

Figure S4. Shrinkage function κ(y) for the horseshoe prior when σ2 = 0.1.

Remark S1.1 (Parameterisation). In this section and in the main text, we focused on the specific parameterisation η = 1.
For a general η, similar expressions can be derived for the marginal likelihood and posterior mean, replacing Kummer’s
1F1 function with the more general degenerate hypergeometric function of two variables, Φ1 (see (Carvalho et al., 2010,
Equations (4) in the main text and (A1) in the appendix)). While Kummer’s 1F1 function is implemented in many standard
scientific libraries, such as SciPy, Φ1 is not. Consequently, computing the marginal likelihood when η ̸= 1 requires
numerical integration. Since the evaluation of the marginal likelihood is crucial to our approach, it is therefore reasonable to
set η = 1 here.
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S1.2. FAB Framework

In this section, we provide additional background on the FAB framework (Pratt, 1961; 1963; Yu & Hoff, 2018).

Let Y | β ∼ N (β, σ2) with some prior π0(β). Denote by π(y) =
∫
R p(y | β)π0(β)dβ the corresponding marginal

likelihood. For α ∈ (0, 1), let Cα be the confidence procedure that solves the constrained optimisation problem

Cα = argmin
C̃α

E[vol(C̃α(Y ))]

under the constraints Pr(β ∈ Cα(Y ) | β = β′) = 1− α for all fixed β′,

where vol(Cα(y)) =
∫
β′∈Cα(y)

dβ′ is the volume of Cα(y) and

E[vol(Cα(Y ))] =

∫
R
vol(Cα(y))π(y)dy (S28)

is the expected volume under the marginal distribution π(y). By the Ghosh-Pratt identity (Ghosh, 1961; Pratt, 1961),

E[vol(Cα(Y ))] =

∫
R
vol(Cα(y))π(y)dy

=

∫
R

∫
R
1β′∈Cα(y)dβ

′π(y)dy

=

∫
R
Pr(β′ ∈ Cα(Y ))dβ′.

That is, minimising E[vol(Cα(Y ))] is equivalent to minimising Pr(β′ ∈ Cα(Y )) for each β′ ∈ R. Define the acceptance
region

Aα(β
′) = {y | β′ ∈ Cα(y)}.

The constrained optimisation problem above then reduces to solving, for each β′,

Aα(β
′) = argmax

Ãα

Pr(Y /∈ Ãα(β′))

such that Pr(Y /∈ Aα(β) | β = β′) = α.

The term Pr(Y /∈ Aα(β′)) may be interpreted as the power of a size-α test

H0 : β = β′ vs H1 : β ∼ π0,

where Y | β ∼ N (β, σ2). By the Neyman-Pearson lemma, the most powerful test is of the form

Aα(β
′) =

{
y | π(y)

p(y | β′)
≤ kα(β′)

}
where kα(β′) is such that Pr(Y ∈ Aα(β) | β = β′) = 1 − α. The acceptance region is an interval [Aα(β

′), Aα(β′)]
(Cortinovis & Caron, 2024, Theorem 3.3). Defining

wα(β
′) =

1

α
Φ

(
Aα(β

′)− β′

σ

)
,

the confidence region is given by

Cα(y) = {β′ | Aα(β′) = β′ − σz1−αwα(β′) ≤ y ≤ β′ + σz1−α(1−wα(β′)) = Aα(β
′)}. (S29)

The function wα(β′) ∈ [0, 1] is called the spending function or tail function (Puza & O’Neill, 2006; Yu & Hoff, 2018), and
represents the proportion of the α rejection budget allocated to the left tail of the acceptance interval [Aα(β

′), Aα(β′)].

The spending function wα satisfies several key properties, which will be useful for our asymptotic analysis. Most of these
originate from Cortinovis & Caron (2024). Under mild assumptions on the prior, satisfied for the models considered in this
paper, wα(β) is continuous in β. If the prior π0 is symmetric around zero, we have

wα(−β′) = 1− wα(β′). (S30)
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Figure S5. Comparison of the FAB procedures under a Gaussian (τ2 = 1) and a horseshoe (η = 1) priors when σ2 = 1 and α = 0.1.

Additionally, if the prior π0(β) := π0(β;σ) admits σ as a scale parameter, writing wα(β;σ) for the corresponding tail
function, we have

wα(β;σ) = wα

(
β

σ
; 1

)
. (S31)

We now describe other properties of the spending function in the case of a Gaussian prior and of a prior with power-law
tails, such as the horseshoe.

Proposition S1.2 (FAB with a Gaussian prior (Pratt, 1963; Yu & Hoff, 2018)). If the prior π0(β) = N (β; 0, τ2σ2) is

Gaussian, the spending function is given by wα(β) = g−1
α

(
2β
στ2

)
, where gα : (0, 1)→ R is the one-to-one function

gα(ω) = Φ−1(αω)− Φ−1(α(1− ω)). (S32)

wα is strictly increasing and
lim
β→∞

wα(β) = 1.

Proposition S1.3 (FAB with a prior with power-law tails (Cortinovis & Caron, 2024, Lemma S1.1)). Let π0(β;σ) be a
symmetric prior on β such that the marginal density π(y) has power-law tails, i.e.

π(y) ∼ Cσ|y|−δ as |y| → ∞

for some constant Cσ and some exponent δ > 1. Then, wα(β;σ) is bounded away from 0 and 1, and

lim
β→∞

wα(β) = lim
β→−∞

wα(β) =
1

2
.

The difference between the spending functions of the two priors greatly affects the resulting FAB confidence regions. In
particular, while both priors lead to confidence regions that are shorter than the classical one when the observed y is close to
zero, their behaviour differs as the disagreement between the prior and the data increases. In particular, the FAB confidence
regions under the Gaussian prior become unbounded as |y| grows, while the horseshoe prior leads to confidence regions that
eventually revert to the classical confidence interval. This is illustrated in Figure S5.

S2. Derivations
S2.1. FAB-PPI for Mean Estimation

Here, we outline the steps to derive the FAB-PPI mean estimator presented in Equation (24), as well as the corresponding
FAB-PPI confidence region.

The convex loss function that corresponds to estimating θ⋆ = E[Y ] is the squared loss Lθ(x, y) = 1
2 (θ − y)

2. In this case,
the subgradient of Lθ with respect to θ is given by L′

θ(x, y) = θ − y. As a result of this, the measure of fit mθ and the

14



FAB-PPI

rectifier ∆θ take the form

mθ = E[L′
θ(X, f(X))] = θ − E[f(X)],

∆θ = E[L′
θ(X,Y )− L′

θ(X, f(X))] = E[f(X)− Y ].

In particular, under the squared loss, the rectifier ∆θ does not depend on θ, and we indicate this by dropping the subscript θ
and writing ∆ := ∆θ.

In order to apply FAB-PPI to this setting, we follow the steps outlined in Section 4. In particular, we use the sample mean of
the unlabelled data (9) as the estimator m̂θ of mθ,

m̂θ =
1

N

N∑
i=1

L′
θ(X̃i, f(X̃i)) = θ − 1

N

N∑
i=1

f(X̃i),

and either the sample mean (10) or the control variate estimator (12) as the estimator ∆̂ of ∆, as in PPI and PPI++,
respectively. To avoid repetitions, in this section we write ∆̂ as the following general control variate estimator with tuning
parameter λ ∈ R,

∆̂ =
1

n

n∑
i=1

(L′
θ(Xi, Yi)− L′

θ(Xi, f(Xi)))− (λ− 1)

(
1

n

[
n∑
i=1

L′
θ(Xi, f(Xi))

]
− m̂θ

)

=
1

n

n∑
i=1

(L′
θ(Xi, Yi)− λL′

θ(Xi, f(Xi))) + (λ− 1)m̂θ

= −Y + λ

 1

n

n∑
i=1

f(Xi)−
1

N

N∑
j=1

f(X̃j)

+
1

N

N∑
j=1

f(X̃j).

The sample mean estimator (10) and the control variate estimator (12) under the squared loss are recovered by setting λ to 1

and λ̂ as in Equation (14), respectively. From this, the standard PPI mean estimators (11) and (13) are obtained by solving
the equation m̂θ + ∆̂ = 0 for θ.

Instead, we first define the Bayes-assisted estimator (20) under the chosen prior π0(∆; τn),

∆̂FABPP = ∆̂ + σ̂2ℓ′
(
∆̂; σ̂, τn

)
,

where σ̂2 is an estimator of var(∆̂) and ℓ′θ(z;σ, τ) is the derivative of the log-marginal likelihood of a Gaussian likelihood
model with mean ∆ and variance σ2 under the prior π0(∆, τ). Then, the FAB-PPI mean estimator θ̂FABPP under π0 is given
by the solution to the equation

m̂θ + ∆̂FABPP = 0

in θ, that takes the form

θ̂FABPP = Y − λ

 1

n

n∑
i=1

f(Xi)−
1

N

N∑
j=1

f(X̃j)

− σ̂2ℓ′
(
∆̂; σ̂, τn

)
,

which matches the expression in Equation (24). Furthermore, by recognising that the first two terms in the above expression
match (13), we can alternatively write the FAB-PPI mean estimator as

θ̂FABPP = θ̂ − σ̂2ℓ′
(
∆̂; σ̂, τn

)
,

where θ̂ is the corresponding standard PPI mean estimator.

Given α ∈ (0, 1), we construct the FAB-PPI confidence region CFABPPα for the mean as described in Section 4.2. In particular,
let Tα−δ(m̂θ) denote a standard 1− (α− δ) confidence interval for mθ,

Tα−δ(m̂θ) = [m̂θ ± σ̂fz1−(α−δ)/2] =
[
θ − θ̂f ± σ̂fz1−(α−δ)/2

]
,

15



FAB-PPI

where θ̂f := 1
N

∑N
i=1 f(X̃i) for conciseness, and (σ̂f )2 is an estimator of var(m̂θ). Then, we apply the FAB framework

under the prior π0(∆; τn) to obtain a 1− δ confidence region for ∆,

RFABPP
δ (∆̂) = FAB-CR(∆̂;π0(· ; τn), σ̂, δ),

where, again, σ̂2 is an estimator of var(∆̂). Finally, to avoid making assumptions on the specific form ofRFABPP
δ (∆̂), we

use [infRFABPP
δ ), sup(RFABPP

δ )] ⊇ RFABPP
δ (∆̂) in the definition of CFABPPα (21) to obtain the FAB-PPI interval

CFABPPα =
{
θ | 0 ∈

[
θ − θ̂f ± σ̂fz1−(α−δ)/2

]
+ [inf(RFABPP

δ ), sup(RFABPP
δ )]

}
=
{
θ | 0 ∈

[
θ − θ̂f − σ̂fz1−(α−δ)/2 + inf(RFABPP

δ ), θ − θ̂f + σ̂fz1−(α−δ)/2 + sup(RFABPP
δ )

]}
=
[
θ̂f − σ̂fz1−(α−δ)/2 − sup(RFABPP

δ ), θ̂f + σ̂fz1−(α−δ)/2 − inf(RFABPP
δ )

]
.

Algorithm 2 summarises the FAB-PPI approach under the squared loss, where ξ̂ is defined for notational convenience and
the corresponding sample variances are used as (σ̂f )2 and σ̂2.

Algorithm 2 FAB-PPI for mean estimation

Input: labelled {(Xi, Yi)}ni=1, unlabelled {X̃j}Nj=1, predictor f , prior π0(· ; τn), error levels α, δ

Set λ̂ = 1 (FAB-PPI) or estimate λ̂ from data (FAB-PPI++) using Equation (14)
θ̂f ← 1

N

∑N
j=1 f(X̃j)

ξ̂ ← 1
n

∑n
i=1(λ̂f(Xi)− Yi)

∆̂← ξ̂ − (λ̂− 1)θ̂f

(σ̂f )2 ← 1
N(N−1)

∑N
j=1(f(X̃j)− θ̂f )2

σ̂2
ξ = 1

n−1

∑n
i=1(λ̂f(Xi)− Yi − ξ̂)2

σ̂2 ← 1
n σ̂

2
ξ + (λ̂− 1)2(σ̂f )2

RFABPP
δ ← FAB-CR(∆̂;π0(· ; τn), σ̂, δ)

Outputs: estimator θ̂FABPP = θ̂f − ∆̂ − σ̂2ℓ′(∆̂; σ̂, τn) and CR CFABPPα = [θ̂f − σ̂fz1−(α−δ)/2 − sup(RFABPP
δ ), θ̂f +

σ̂fz1−(α−δ)/2 − inf(RFABPP
δ )]

S3. Proofs
Some of the results discussed in this section, such as Lemma S3.2 and Corollary S3.5, are concerned with the convergence
of closed sets with respect to the Hausdorff distance, which we recall here for completeness. Given two closed subsets C1

and C2 of R, their Hausdorff distance dH is defined as

dH(C1, C2) = max

{
sup
x∈C1

inf
y∈C2

|x− y|, sup
y∈C2

inf
x∈C1

|x− y|
}
.

Then, for a collection of closed subsets (C1(y))y∈R and a closed subset C2 of R, (C1(y))y∈R converges in Hausdorff
distance to C2 if limy→∞ dH(C1(y), C2) = 0. In particular, if C2 = [a, b] is a closed interval for some a < b,
limy→∞ dH(C1(y), C2) = 0 if and only if, for all ϵ ∈ (0, b−a2 ), there exists y0 such that [a+ϵ, b−ϵ] ⊆ C1(y) ⊆ [a−ϵ, b+ϵ]
for all y > y0. In the sequel, we write limy→∞ C1(y) = C2 for limy→∞ dH(C1(y), C2) = 0.

S3.1. Theorem 4.1 - Asymptotic Coverage of FAB-PPI under the Gaussian and Horseshoe Priors

Under the prior π0(·; σ̂θ), the FAB confidence region for the rectifier ∆θ is

RFABPP
δ (∆̂θ; σ̂θ) = {∆θ | ∆θ − σ̂θz1−δwδ(∆θ;σ̂θ) ≤ ∆̂θ ≤ ∆θ + σ̂θz1−δ(1−wδ(∆θ;σ̂θ))}, (S33)

where wδ(·; σ̂θ) is the FAB spending function. The proof of asymptotic coverage is organised as follows. First, we show that
RFABPP
δ (∆̂θ; σ̂θ) is asymptotically a 1− δ confidence interval. This is established via Lemma S3.1 for the Gaussian prior,
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and via Lemma S3.2 for the horseshoe prior. This result is then combined with the asymptotic coverage of the standard
sample mean estimator for mθ to conclude the asymptotic coverage of the FAB-PPI estimator of θ⋆.

We first prove the following lemma for the Gaussian prior, demonstrating that the rectifier has the correct asymptotic
coverage.

Lemma S3.1. Let ∆̂θ be a consistent estimator of ∆θ such that a CLT holds for ∆̂θ, i.e.

∆̂θ −∆θ

σ̂θ
→ N (0, 1)

as min(n,N)→∞, where σ̂2
θ

var(∆̂θ)
→ 1 almost surely. Let π0(·; σ̂θ) be the Gaussian prior (22) for ∆θ and consider the

corresponding 1− δ FAB confidence region

RFABPP
δ (∆̂θ; σ̂θ) = FAB-CR

(
∆̂θ;π0 (· ; σ̂θ) , σ̂θ, δ

)
.

Then

lim infmin(n,N)→∞ Pr(∆θ ∈ RFABPP
δ (∆̂θ; σ̂θ) | ∆θ) ≥ 1− δ. (S34)

Proof. Using Proposition S1.2, for any x > 0, σ > 0,

2x

σ
= gδ(g

−1
δ (2x/σ))

= gδ(wδ(x;σ))

= z1−δ(1−wδ(x;σ)) − z1−δwδ(x;σ)

and

σz1−δ(1−wδ(x;σ)) = σz1−δ(1−wδ(x/σ;1))

= 2x+ σz1−δwδ(x/σ;1).

The FAB confidence region (S33) can therefore be written as

RFABPP
δ (∆̂θ; σ̂θ) = {∆θ > 0 | ∆θ − σ̂θz1−δwδ(∆θ;σ̂θ) ≤ ∆̂θ ≤ 3∆θ + σ̂θz1−δwδ(∆θ;σ̂θ)}

∪ {∆θ < 0 | 3∆θ − σ̂θz1−δ(1−wδ(∆θ;σ̂θ)) ≤ ∆̂θ ≤ ∆θ + σ̂θz1−δ(1−wδ(∆θ;σ̂θ))}
∪ {0 | |∆̂θ| ≤ σ̂θz1−δ/2}.

Consider first ∆θ = 0. By the CLT, Pr(0 ∈ RFABPP
δ (∆̂θ; σ̂θ) | ∆θ = 0) = Pr(|∆̂θ| ≤ σ̂θz1−δ/2 | ∆θ = 0) → 1 − δ as

min(n,N)→∞. Additionally, for any x > 0,

z1−δwδ(x;σ̂θ) → z1−δ
z1−δ(1−wδ(−x;σ̂θ)) → z1−δ

almost surely as min(n,N)→∞.

It follows from Equation (S33) that, for any ϵ ∈ (0, z1−δ), there exist N0 such that for all n,N with min(n,N) ≥ N0, the
FAB confidence regionRFABPP

δ (∆̂θ; σ̂θ) contains the set

Sδ(∆̂θ; σ̂θ) =
{
∆θ > 0 | ∆θ − σ̂θ(z1−δ − ϵ) ≤ ∆̂θ ≤ 3∆θ + σ̂θ(z1−δ − ϵ)

}
∪
{
∆θ < 0 | 3∆θ − σ̂θ(z1−δ − ϵ) ≤ ∆̂θ ≤ ∆θ − σ̂θ(z1−δ − ϵ)

}
∪ {0 | |∆̂θ| ≤ σ̂θz1−δ/2}.

For any fixed ∆θ > 0,

Pr(∆θ ∈ Sδ(∆̂θ; σ̂θ)) = Pr

(
−(z1−δ − ϵ) ≤

∆̂θ −∆θ

σ̂θ
≤ 2∆θ

σ̂θ
+ z1−δ − ϵ

)
. (S35)
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Noting that 2∆θ

σ̂θ
+ z1−δ − ϵ→∞ a.s. as min(n,N)→∞, we obtain that

lim infmin(n,N)→∞ Pr(∆θ ∈ RFABPP
δ (∆̂θ; σ̂θ) | ∆θ) ≥ lim infmin(n,N)→∞ Pr(∆θ ∈ Sδ(∆̂θ; σ̂θ) | ∆θ) ≥ 1− δ. (S36)

The proof proceeds similarly for ∆θ < 0.

Lemma S3.2. Let ∆̂θ be a consistent estimator of ∆θ such that a CLT holds for ∆̂θ, i.e.

∆̂θ −∆θ

σ̂θ
→ N (0, 1)

as min(n,N)→∞, where σ̂2
θ/var(∆̂θ)→ 1 almost surely. Let the prior π0(·; σ̂θ) on ∆θ be the horseshoe prior (23) with

scale parameter σ̂θ and consider the corresponding 1− δ FAB confidence region

RFABPP
δ (∆̂θ; σ̂θ) = FAB-CR

(
∆̂θ;π0 (· ; σ̂θ) , σ̂θ, δ

)
,

where wδ(∆θ; σ̂θ) is the associated weight function. Then, for ∆θ ̸= 0, the confidence regionRFABPP
δ (∆̂θ; σ̂θ) reverts to the

classical 1− δ z-interval for ∆θ, i.e., almost surely,

lim
min(n,N)→∞

RFABPP
δ (∆̂θ; σ̂θ)− ∆̂θ

σ̂θ
= [−z1−δ/2, z1−δ/2],

where the convergence is with respect to the Hausdorff distance on closed subsets of R. Moreover, for any ∆θ ∈ R,

limmin(n,N)→∞ Pr(∆θ ∈ RFABPP
δ (∆̂θ; σ̂θ) | ∆θ) = 1− δ. (S37)

Proof. Consider the case ∆θ ̸= 0. As described in Section S1.2, the spending function wδ is continuous and satisfies, for
any z ∈ R and σ > 0,

wδ (z;σ) = wδ

( z
σ
; 1
)
. (S38)

Moreover, by Proposition S1.3, wδ(·; 1) takes values in (0, 1) and satisfies

lim
z→∞

wδ(z; 1) = lim
z→−∞

wδ(z; 1) = wδ(0; 1) =
1

2
.

Define A(p) = −Φ−1(1− δ(1− p)) and B(p) = Φ−1(1− δp), where Φ(·) is the CDF of the standard normal distribution.
Then, from Equation (S33), we have that

RFABPP
δ (∆̂θ; σ̂θ)− ∆̂θ

σ̂θ
=
{
ψ ∈ R | A(wδ(σ̂θψ + ∆̂θ; σ̂θ)) ≤ ψ ≤ B(wδ(σ̂θψ + ∆̂θ; σ̂θ))

}
=
{
ψ ∈ R | A(wδ(ψ + ∆̂θ/σ̂θ; 1)) ≤ ψ ≤ B(wδ(ψ + ∆̂θ/σ̂θ; 1))

}
=: Cn,N ,

where the second equality follows from Equation (S38).

Assume that ∆θ > 0, which ensures ∆̂θ/σ̂θ →∞ almost surely as min(n,N)→∞. The case ∆θ < 0 follows similarly.

First, we show that there exists an M independent of n,N such that, for all n,N ≥ 1, if ψ ∈ Cn,N , then ψ > M . By the
boundedness of wδ(·; 1), there exists κ ∈ (0, 12 ) such that wδ(x; 1) ∈ [κ, 1− κ] for all x ∈ R. Since A(·) is decreasing,

A(wδ(ψ + ∆̂θ/σ̂θ; 1)) ≥ A(1− κ) := c > −∞

for all ψ ∈ R, n,N ≥ 1. Pick M < c. For all ψ ≤ M we have, for all n,N ≥ 1, ψ ≤ M < c ≤ A(wδ(ψ + ∆̂θ/σ̂θ; 1)).
Hence, ψ /∈ Cn,N . As a result, Cn,N ∩ [M,∞) = Cn,N .
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Second, we show that, almost surely, wδ(ψ+∆̂θ/σ̂θ; 1) converges to 1/2 uniformly on [M,∞) as min(n,N)→∞. Given
that wδ(·; 1) is bounded and converges pointwise to 1/2, we have that

g(t) := sup
y≥t

∣∣∣∣wδ(y; 1)− 1

2

∣∣∣∣→ 0

as t → ∞, where g(·) is continuous and nonincreasing. As a result of this, and since ∆̂θ/σ̂θ → ∞ almost surely as
min(n,N)→∞, we have that

sup
ψ≥M

∣∣∣∣wδ(ψ + ∆̂θ/σ̂θ; 1)−
1

2

∣∣∣∣ = g
(
∆̂θ/σ̂θ +M

)
→ 0 (S39)

almost surely as min(n,N)→∞.

Lastly, we combine the previous two steps to show the almost sure Hausdorff convergence of Cn,N . The functions A(·) and
B(·) are continuous with A(1/2) = −z1−δ/2 and B(1/2) = z1−δ/2. Hence, for every ϵ ∈ (0, z1−δ/2), there exists η > 0
such that ∣∣∣∣p− 1

2

∣∣∣∣ ≤ η ⇒ ∣∣A(p) + z1−δ/2
∣∣ ≤ ϵ and

∣∣B(p)− z1−δ/2
∣∣ ≤ ϵ

By Equation (S39), there exists N1 such that, for all min(n,N) ≥ N1,

sup
ψ≥M

∣∣∣∣wδ(ψ + ∆̂θ/σ̂θ; 1)−
1

2

∣∣∣∣ ≤ η.
Then, uniformly for ψ ≥M ,

A(wδ(ψ + ∆̂θ/σ̂θ; 1)) ∈ [−z1−δ/2 − ϵ,−z1−δ/2 + ϵ]

B(wδ(ψ + ∆̂θ/σ̂θ; 1)) ∈ [z1−δ/2 − ϵ, z1−δ/2 + ϵ]

and, for min(n,N) ≥ N1,[
−z1−δ/2 + ϵ, z1−δ/2 − ϵ

]
⊆ Cn,N ∩ [M,∞) ⊆ [−z1−δ/2 − ϵ, z1−δ/2 + ϵ],

which, combined with the first step, gives the desired result. Moreover, Equation (S37) then follows directly, which
completes the proof.

On the other hand, in the case ∆θ = 0, asymptotic coverage follows like in the proof of Lemma S3.1. In particular, from
Equation (S33), we have that

Pr(0 ∈ RFABPP
δ (∆̂θ; σ̂θ)|∆θ = 0) = Pr(|∆̂θ| ≤ σ̂θz1−δ/2)

thanks to the fact wδ(0;σ) = 1/2, and the result follows from the CLT as min(n,N) → ∞. While this is not necessary
to show asymptotic coverage, it is interesting to note that Cn,N does not converge to a deterministic limit almost surely
when ∆θ = 0. Instead, by showing continuity of the mapping ∆̂θ/σ̂θ 7→ Cn,N (∆̂θ/σ̂θ) and again exploiting the CLT, one
may prove that Cn,N converges in distribution to the random FAB confidence region C(Y )− Y , where C(y) is defined in
Equation (S29), for a unit scale and a horseshoe prior, and Y ∼ N (0, 1).

With the above two lemmas, we can now prove Theorem 4.1, which we restate here in extended form.

Theorem S3.3. Consider a convex estimation problem whose solution can be expressed as in Equation (2). For all θ ∈ R,
define ∆̂θ and m̂θ as in Section 4 and let

RFABPP
δ (∆̂θ; σ̂θ) = FAB-CR

(
∆̂θ;π0 (· ; σ̂θ) , σ̂θ, δ

)
,

Tα−δ(m̂θ; σ̂
f
θ ) =

[
m̂θ ± σ̂fθ z1−(α−δ)/2

]
,
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where σ̂2
θ

var(∆̂θ)
→ 1 and (σ̂f

θ )
2

var(m̂θ)
→ 1 almost surely as min(n,N) → ∞. Then, the FAB-PPI confidence region CFABPPα ,

defined as

CFABPPα =
{
θ | 0 ∈ RFABPP

δ (∆̂θ; σ̂θ) + Tα−δ(m̂θ; σ̂
f
θ )
}
,

has correct asymptotic coverage, i.e. it satisfies

lim inf
min(n,N)→∞

Pr(θ⋆ ∈ CFABPPα ) = lim inf
min(n,N)→∞

Pr(0 ∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆) + Tα−δ(m̂θ⋆ ; σ̂

f
θ⋆)) ≥ 1− α.

Proof. By Lemma S3.1 (Gaussian prior) and Lemma S3.2 (horseshoe prior),RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆) is an asymptotically valid

1− δ confidence region for ∆θ⋆ , that is

lim inf
min(n,N)→∞

Pr(∆θ⋆ ∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆)) ≥ 1− δ.

Similarly, the CLT for m̂θ implies that

lim inf
min(n,N)→∞

Pr(mθ⋆ ∈ Tα−δ(m̂θ⋆ ; σ̂
f
θ⋆)) ≥ 1− (α− δ).

Consider the event
E = {∆θ⋆ ∈ RFABPP

δ (∆̂θ⋆ ; σ̂θ⋆)} ∩ {mθ⋆ ∈ Tα−δ(m̂θ⋆ ; σ̂
f
θ⋆)}.

By Boole’s inequality,

lim inf
n,N→∞

Pr(E) ≥ 1− lim sup
min(n,N)→∞

Pr({∆θ⋆ /∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆)} ∪ {mθ⋆ /∈ Tα−δ(m̂θ⋆ ; σ̂

f
θ⋆)})

≥ 1− lim sup
min(n,N)

Pr({∆θ⋆ /∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆)})− lim sup

N→∞
Pr({mθ⋆ /∈ Tα−δ(m̂θ⋆ ; σ̂

f
θ⋆)})

≥ 1− δ − (α− δ)
= 1− α.

Furthermore, on the event E, we have that

0 = ∆θ⋆ +mθ⋆ ∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆) + Tα−δ(m̂θ⋆ ; σ̂

f
θ⋆),

where the first equality follows from Equation (2). As a result of this,

lim inf
min(n,N)→∞

Pr(0 ∈ RFABPP
δ (∆̂θ⋆ ; σ̂θ⋆) + Tα−δ(m̂θ⋆ ; σ̂

f
θ⋆)) ≥ 1− α,

as desired.

Remark S3.4. With both the Gaussian and horseshoe priors, we obtain asymptotic coverage. However, the asymptotic confi-
dence regions differ significantly. In the Gaussian case, the volume of the confidence region does not vanish asymptotically.
Instead, the confidence region converges to (∆θ

3 ,∆θ), with volume of 2
3 |∆θ|. In contrast, when using the horseshoe prior

(23), we revert to the usual CLT-based confidence intervals, and the volume of the confidence region converges to zero
almost surely.

S3.2. Proposition 4.2 - Robustness of FAB-PPI under the Horseshoe Prior

Let π0 be the horseshoe prior (23), and consider the FAB confidence region RFABPP
δ (∆̂θ; σ̂θ) for ∆θ, as defined in

Equation (S33).

We first state a corollary of Cortinovis & Caron (2024, Theorem 3.4), which follows from the power-law tails of the marginal
likelihood under the horseshoe prior (see Section S1.1). The corollary states that, if |∆̂θ| is very large, then the standard
CLT-based confidence interval, [∆̂θ ± σ̂θz1−δ/2], is recovered.
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Corollary S3.5. (Cortinovis & Caron (2024, Theorem 3.4)) For any σ > 0,

lim
∆→±∞

RFABPP
δ (∆;σ)−∆ = [−σz1−δ/2, σz1−δ/2],

where the convergence is with respect to the Hausdorff distance on closed subsets of R.

Define

Sα,δ(∆̂θ, σ̂θ, m̂θ, σ̂
f
θ ) = RFABPP

δ (∆̂θ; σ̂θ) + Tα−δ(m̂θ; σ̂
f
θ ), (S40)

where
Tα−δ(m̂θ; σ̂

f
θ ) =

[
m̂θ − σ̂fθ z1−(α−δ)/2, m̂θ + σ̂fθ z1−(α−δ)/2

]
is the standard CLT-based confidence interval for mθ. From Corollary S3.5, for any fixed σ > 0, m ∈ R, σf > 0,

lim
∆→±∞

Sα,δ(∆, σ,m, σf )− (∆ +m) = [−σz1−δ/2 − σfz1−(α−δ)/2, σz1−δ/2 + σfz1−(α−δ)/2],

where, again, the convergence is with respect to the Hausdorff distance on closed subsets of R. Therefore, if |∆̂θ| ≫ 0, the
confidence region Sα,δ(∆̂θ, σ̂θ, m̂θ, σ̂

f
θ ) reverts to the standard interval

[∆̂θ + m̂θ ± (σ̂θz1−δ/2 + σ̂fθ z1−(α−δ)/2)].

It follows that, if infθ′∈R |∆̂θ′ | ≫ 0, the confidence region for θ⋆, defined as

CFABPPα =
{
θ | 0 ∈ RFABPP

δ (∆̂θ; σ̂θ) + Tα−δ(m̂θ; σ̂
f
θ )
}
,

reverts to the standard, CLT-based PPI confidence region

CPP
α =

{
θ ∈ R | −σ̂θz1−δ/2 − σ̂fθ z1−(α−δ)/2 ≤ ∆̂θ + m̂θ ≤ σ̂θz1−δ/2 + σ̂fθ z1−(α−δ)/2

}
.

S3.3. Proposition 4.3 - Consistency of FAB-PPI Mean Estimators

Below, we use BPP and BPP+ to distinguish between the estimators θ̂FABPP, θ̂, ∆̂ and σ̂ in the two cases of FAB-PPI and
FAB-PPI++. Then, the FAB-PPI and FAB-PPI++ mean estimators are given by

θ̂BPP = θ̂PP − (σ̂PP)2ℓ′
(
∆̂PP; σ̂PP, σ̂PP

)
,

θ̂BPP+ = θ̂PP+ − (σ̂PP+)2ℓ′
(
∆̂PP+; σ̂PP+, σ̂PP

)
,

where we recall that ℓ(y;σ, τ) = log
∫
RN (y; ∆, σ2)π0(∆; τ)d∆, where τ is a scale parameter of the prior π0. By

assumption, both PPI estimators, θ̂PP and θ̂PP+, are strongly consistent estimators of θ⋆. It remains to prove that

(σ̂PP)2ℓ′
(
∆̂PP; σ̂PP, σ̂PP

)
→ 0 (S41)

(σ̂PP+)2ℓ′
(
∆̂PP+; σ̂PP+, σ̂PP

)
→ 0 (S42)

almost surely, as min(n,N)→∞. For any σ > 0, we have ℓ′(y;σ, σ) = 1
σ ℓ

′(y/σ; 1, 1).

Under the horseshoe prior (23), ℓ′HS(y; 1, 1) is bounded. Therefore, (S41) and (S42) hold almost surely by sandwiching.

Under the Gaussian prior (22),
ℓ′N(y;σ, σ) = −

y

2σ2
.

Hence, since ∆̂PP → ∆ and ∆̂PP+ → ∆ almost surely, where we recall that ∆ = E[f(X)− Y ], we obtain

(σ̂PP)2ℓ′N
(
∆̂PP; σ̂PP, σ̂PP

)
→ −∆

2

(σ̂PP+)2ℓ′N
(
∆̂PP+; σ̂PP+, σ̂PP

)
→ −∆

2

almost surely as min(n,N)→∞, which implies that the FAB-PPI mean estimators under the Gaussian prior (22) are not
consistent.
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S4. Multivariate FAB-PPI
Here we extend FAB-PPI to the multivariate case, where θ,mθ,∆θ ∈ Rd. While most of the methodology remains the same
as in the univariate case, we now need to specify a multivariate prior for ∆θ, for which we consider independent horseshoe
priors on each dimension.

S4.1. Multivariate Bayesian PPI Estimators

As in the univariate case, we use the sample mean m̂θ as the estimator of mθ. Similarly, we consider some consistent
estimator ∆̂θ of ∆θ, such as the sample mean (10), as in PPI, or the control variate estimator (12), as in PPI++. Crucially,
we assume that a multivariate CLT holds for this estimator, that is

Σ̂
−1/2
θ

(
∆̂θ −∆θ

)
→ N (0, I)

as min(n,N)→∞, where Σ̂θ is an estimator of cov(∆̂θ). Again, this holds for both the PPI and PPI++ estimators (An-
gelopoulos et al., 2023a;b). We consider d independent priors, π0(∆θ,k; σ̂θ,k) for k = 1, . . . , d, on the components of
∆θ, where σ̂2

θ,k is the k-th diagonal element of Σ̂θ. The multivariate FAB-PPI estimator ∆̂FABPP
θ is formed by stacking the

individual estimators

∆̂FABPP
θ,k = ∆̂θ,k + σ̂2

θ,kℓ
′
(
∆̂θ,k; σ̂θ,k, σ̂θ,k

)
for each dimension k = 1, . . . , d. Importantly, note that the k-th dimension of ∆̂FABPP

θ only depends on the k-th dimension
of the observed (L′

θ(Xi, Yi)− L′
θ(Xi, f(Xi))) that are used to estimate ∆θ,k. The FAB-PPI estimator of θ⋆ then becomes

the solution, in θ, to the equation
m̂θ + ∆̂FABPP

θ = 0 ∈ Rd.

S4.2. Multivariate FAB-PPI Confidence Regions

As in the univariate case, let Tα−δ(m̂θ) denote a standard 1− (α− δ) confidence interval for mθ. For ∆θ, we apply the FAB
framework with independent horseshoe priors to each dimension ∆θ,k and use a union bound to obtain a 1− δ confidence
region for ∆θ. In particular, letRFABPP

δ/d (∆̂θ,k, σ̂θ,k) = FAB-CR(∆̂θ,k;π0(· ; σ̂θ,k), σ̂θ,k, δ/d) be a 1− δ/d FAB confidence
region for ∆θ,k under the horseshoe prior π0(· ; σ̂θ,k). Then,

RFABPP
δ (∆̂θ, σ̂θ) =

{
∆θ | ∆θ,k ∈ RFABPP

δ/d (∆̂θ,k, σ̂θ,k), k = 1, . . . , d
}

where ∆̂θ = (∆̂θ,1, . . . , ∆̂θ,d), σ̂θ = (σ̂θ,1, . . . , σ̂θ,d), is a 1 − δ multivariate FAB confidence region for ∆θ by a union
bound. With this, the multivariate FAB-PPI confidence region CFABPPα is given by

CFABPPα =
{
θ | 0 ∈ RFABPP

δ (∆̂θ, σ̂θ) + Tα−δ(m̂θ, σ̂
f
θ )
}
,

exactly as in the univariate case. Moreover, also multivariate FAB-PPI enjoys asymptotic coverage as min(n,N)→∞. In
particular, Theorem 4.1 can be easily extended to the multivariate case by applying a union bound over the dimensions of
∆θ.

S5. Experimental Details
S5.1. Datasets

Here we provide a brief description of each dataset used for the real data experiments in Section 5.2. For additional details,
the reader may refer to Angelopoulos et al. (2023a). All of the datasets were downloaded from the examples provided as
part of the ppi-py package (Angelopoulos et al., 2023b).

AlphaFold. The ALPHAFOLD dataset contains the following features for N = 10 802 protein residues analysed by Bludau
et al. (2022): whether the residue is phosphorylated (Zi ∈ {0, 1}), whether the residue is part of an intrinsically disordered
region (IDR, Yi ∈ {0, 1}), and the prediction of the AlphaFold model (Jumper et al., 2021) for the probability of Yi being
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equal to one (f(Xi) ∈ [0, 1]). The goal is to estimate the odds ratio of a protein being phosphorylated and being part of an
IDR, i.e.

θ⋆ =
µ1/(1− µ1)

µ0/(1− µ0)
,

where µ1 = Pr(Y = 1 | Z = 1) and µ0 = Pr(Y = 1 | Z = 0). Following Angelopoulos et al. (2023a), given α ∈ (0, 1),
we construct 1 − α/2 confidence intervals C0 = [l0, u0] and C1 = [l1, u1] for µ0 and µ1, respectively. Then, by a union
bound, the interval

C =
{

c1
1− c1

· 1− c0
c0

: c0 ∈ C0, c1 ∈ C1
}

=

[
l1

1− l1
· 1− u0

u0
,

u1
1− u1

· 1− l0
l0

]
has coverage at least 1− α. Note that the union bound above may result in a conservative confidence interval, leading to
coverage significantly larger than 1− α in practice, as in the left panel of Figure 3.

Forest. The FOREST dataset contains the following features for N = 1596 parcels of land in the Amazon rainforest
examined during field visits (Bullock et al., 2020): whether the parcel has been subject to deforestation (Yi ∈ {0, 1}) and
the prediction of a gradient-boosted tree model for the probability of Yi being equal to one (f(Xi) ∈ [0, 1]). The goal is to
estimate the fraction of Amazon rainforest lost to deforestation, i.e. θ⋆ = E[Y ].

Galaxies. The GALAXIES dataset contains the following features for N = 16 743 images from the Galaxy Zoo 2 initiative
(Willett et al., 2013): whether the galaxy has spiral arms (Yi ∈ {0, 1}) and the prediction of a ResNet50 model (He et al.,
2016) for the probability of Yi being equal to one (f(Xi) ∈ [0, 1]). The goal is to estimate the fraction of galaxies with
spiral arms, i.e. θ⋆ = E[Y ].

Genes. The GENES dataset contains the following features for N = 61 150 gene promoter sequences: the expression level
of the gene induced by the promoter and the prediction of a transformer model for the same quantity (Vaishnav et al., 2022).
The goal is to estimate the median expression level across genes.

Census. The CENSUS dataset contains the following features for N = 380 091 individuals from the 2019 California
census: the individual’s age, sex, and yearly income, as well as the prediction of a gradient-boosted tree model trained on
the previous year’s raw data for the individual’s income. The goal is to estimate the ordinary least squares (OLS) regression
coefficients when regressing income on age and sex.

Healthcare. The HEALTHCARE dataset contains the following features for N = 318 215 individuals from the 2019
California census: the individual’s yearly income and whether they have health insurance (Yi ∈ {0, 1}), as well as the
prediction of a gradient-boosted tree model trained on the previous year’s raw data for the probability of Yi being equal to
one (f(Xi) ∈ [0, 1]). The goal is to estimate the logistic regression coefficient when regressing health insurance status on
income.

S5.2. Implementation

Code implementing the FAB-PPI method is written in Python and made available at https://github.com/
stefanocortinovis/fab-ppi. Comparisons with standard PPI are performed using the ppi-py package (An-
gelopoulos et al., 2023b). All of the experiments presented here were run locally on an Intel Core i7-11850H CPU.

S6. Additional Results
S6.1. Experiments with Synthetic Data

The complete results for the experiments discussed in Section 5 are presented here. The legend names for the figures are as
in Section 5.

S6.1.1. BIASED PREDICTIONS SIMULATION STUDY

Figure S6 shows the average MSE, CI volume, and CI coverage as a function of the bias level γ for the biased predictions
study in Section 5.1. Compared to Figure 1, we include results for the non power-tuned methods, as well as for the ones that
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Figure S6. Full results for the biased predictions study. The left, middle, and right panels show the average MSE, CI volume, and CI
coverage as the bias level γ varies.

take into account the uncertainty in the measure of fit mθ (i.e. PPI (full) and PPI++ (full)). In this example, power tuning
does not play a significant role and the same conclusions as in Section 5.1 hold. In particular, standard PPI induces shorter
CIs than classical inference with constant volume across bias levels. On the other hand, FAB methods induce shorter CIs
when the predictions are good. As the prediction bias increases, the volume of the FAB CIs with Gaussian prior grows
without bound, while the horseshoe prior eventually reverts to the PPI intervals. Furthermore, the coverage plot shows that
the methods tested achieve similar coverage to the nominal level and to PPI (full) and PPI++ (full).

S6.1.2. NOISY PREDICTIONS SIMULATION STUDY

Figure S7 shows the average MSE, CI volume, and CI coverage as a function of n for the values of σY considered in the
noisy predictions study of Section 5.1. Compared to Figure 2, we include results for the methods that use the Gaussian
prior (FAB-PPI (N) and FAB-PPI++ (N)) and those that take into account the uncertainty in the measure of fit mθ (i.e. PPI
(full) and PPI++ (full)). Like the CI volume plots in the main text, the MSE plots clearly show the benefits of both power
tuning and adaptive shrinkage through the horseshoe prior: as σY increases, the power-tuned methods clearly outperform
the standard alternatives, while shrinkage always helps compared to standard PPI because the predictions remain unbiased.
In this case, the Gaussian prior performs similarly to the horseshoe as the prediction rule f is unbiased. The coverage plots
confirm that all methods achieve comparable coverage across noise levels.

S6.2. Experiments with Real Data

S6.2.1. MEAN ESTIMATION

Full Comparison. Figure S8 shows the average MSE, CI volume, and CI coverage as a function of n for the three datasets
considered in Section 5.2. Compared to Figure 3, we include results for the non power-tuned methods, as well as for the ones
that take into account the uncertainty in the measure of fit mθ (i.e. PPI (full) and PPI++ (full)). The results are consistent
with those presented in Section 5.2. In particular, FAB methods outperform the standard PPI alternatives and classical
inference, while achieving comparable coverage. For the datasets and the values of n considered, power-tuned methods
perform similarly to the non-tuned ones. Among the FAB methods, the horseshoe and Gaussian priors achieve similar
performance.

Example Intervals. Figure S9 shows 10 randomly chosen intervals for the classical, PPI++, and FAB-PPI++ methods for
the three datasets considered in Section 5.2 and different choices of the number of labelled observations n.
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Figure S7. Full results for the noisy predictions study. The left, middle, and right panels correspond to noise levels σY = 0.1, 1, 2,
respectively. The top, middle, and bottom rows show average MSE, CI volume, and CI coverage, respectively.

Varying the Prior Scale. We repeat the mean estimation experiment on the FOREST dataset while varying the scale of
the horseshoe prior used for FAB-PPI++ in Section S6.2.1. In addition to the scale σ̂ used in the main text, we consider
the sample-independent scale 1/

√
n and the data-independent scale 1. As already mentioned, the computation of the

FAB-PPI confidence regions under a horseshoe prior with scale other than σ̂ involves numerical integration to compute
the corresponding marginal likelihood. Figure S10 shows the average MSE, CI volume, and CI coverage for each of these
choices, as well as for classical inference and PPI++. While the scale σ̂ achieves the best performance, the other scales also
provide shorter CIs than classical inference and PPI++. In particular, the sample independent scale 1/

√
n results in good

performance across all metrics without requiring the estimation of σ̂.

S6.2.2. LOGISTIC REGRESSION

Figure S11 shows the average MSE, CI volume, and CI coverage as a function of n for the logistic regression experiment on
the HEALTHCARE dataset mentioned in Section 5.2. As mentioned in the main text, FAB methods outperform the standard
PPI alternatives and classical inference, while achieving comparable coverage. Among the FAB methods, the horseshoe and
Gaussian priors achieve similar performance.
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Figure S8. Full results for mean estimation experiment on real data. The left, middle, and right panels correspond to the ALPHAFOLD,
GALAXIES, and FOREST datasets, respectively. The top, middle, and bottom rows show average MSE, CI volume, and CI coverage,
respectively, over 1 000 repetitions for α = 0.1.

S6.2.3. QUANTILE ESTIMATION

Figure S12 shows the average MSE, CI volume, and CI coverage as a function of n for the quantile estimation experiment on
the GENES dataset mentioned in Section 5.2. The predictions contained in this dataset are highly biased, and this is reflected
in the performance of the FAB-PPI methods. In particular, the Gaussian prior underperforms both classical inference and
standard PPI, while the horseshoe prior achieves similar performance to standard PPI thanks to its robustness against large
bias levels.

S6.2.4. LINEAR REGRESSION

Figure S13 shows the average MSE, CI volume, and CI coverage as a function of n for the linear regression experiment
on the CENSUS dataset mentioned in Section 5.2. More specifically, panels (a) and (b) correspond to the OLS parameters
associated with the age and sex covariates, respectively. On the one hand, FAB-PPI seems to perform well for the sex
covariate, with similar performance between the Gaussian and horseshoe priors, and slightly improved MSE and CI volume
compared to classical inference and standard PPI. On the other hand, the performance of FAB-PPI for the age covariate
seems to be affected by bias in the dataset predictions. In particular, FAB-PPI under the Gaussian prior underperforms the
alternatives for all n. On the other hand, while the horseshoe prior achieves worse performance than the other methods for
small n, its performance improves as n grows, and it eventually matches standard PPI. This suggests that, as n increases and
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Figure S9. Each subfigure includes 10 randomly chosen intervals for the classical, PPI++ and FAB-PPI++ methods. The left, middle, and
right panels refer to the ALPHAFOLD, GALAXIES, and FOREST datasets, respectively. The top, middle, and bottom rows correspond to
different values of n.

var(∆̂θ) decreases, the observed value of the rectifier is increasingly considered as extreme, causing the influence from the
horseshoe prior to eventually vanish thanks to its robustness to extreme bias levels.
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Figure S10. Mean estimation experiment on the FOREST dataset with varying horseshoe prior scale. The left, middle, and right panels
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Figure S12. Quantile estimation experiment on the GENES dataset. The left, middle, and right panels show average MSE, CI volume, and
CI coverage over 100 repetitions for α = 0.1.
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Figure S13. Linear regression experiment on the CENSUS dataset. The (a) and (b) panels correspond to the two covariates in the dataset.
The left, middle, and right panels show average MSE, CI volume, and CI coverage over 1000 repetitions for α = 0.1.
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