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Abstract

The advancement of novel combinatorial CRISPR screening technologies enables
the identification of synergistic gene combinations on a large scale. This is crucial
for developing novel and effective combination therapies, but the combinatorial
space makes exhaustive experimentation infeasible. We introduce NAIAD, an
active learning framework that efficiently discovers optimal gene pairs capable of
driving cells toward desired cellular phenotypes. NAIAD leverages single-gene
perturbation effects and adaptive gene embeddings that scale with the training
data size, mitigating overfitting in small-sample learning while capturing complex
gene interactions as more data is collected. Evaluated on four CRISPR combi-
natorial perturbation datasets totaling over 350,000 genetic interactions, NAIAD,
trained on small datasets, outperforms existing models by up to 40% relative to
the second-best. NAIAD’s recommendation system prioritizes gene pairs with
the maximum predicted effects, resulting in the highest marginal gain in each
AI-experiment round and accelerating discovery with fewer CRISPR experimen-
tal iterations. Our NAIAD framework (https://github.com/NeptuneBio/NAIAD)
improves the identification of novel, effective gene combinations, enabling more
efficient CRISPR library design and offering promising applications in genomics
research and therapeutic development.

1 Introduction

Targeting multiple genes through drug combinations or polypharmacology offers a transformative
therapeutic approach for developing effective treatments across diverse medical fields, including
oncology (Al-Lazikani, Banerji, and Workman 2012; Mokhtari et al. 2017), infectious diseases
(Hammond et al. 2022; Shyr et al. 2021), and metabolic disorders (Samms, Coghlan, and Sloop 2020;
Jastreboff et al. 2023). Combinatorial gene perturbations can yield additive or synergistic effects,
enhancing therapeutic outcomes beyond what is achievable with single-gene targeting (“Rationalizing
Combination Therapies” 2017; Hwangbo et al. 2023). One of the most notable successes in
transitioning cellular phenotype is the discovery of the Yamanaka factors—a specific combination of
four transcription factors capable of reprogramming differentiated cells back to a pluripotent state
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(Takahashi and Yamanaka 2006). This groundbreaking achievement demonstrates the significant
potential within the combinatorial perturbation space to engineer cellular phenotypes.

The critical question now is how to systematically identify additional effective combinatorial pertur-
bations that can transform cells to achieve desired phenotypes. Comprehensively exploring this huge
space presents an inherent mathematical challenge due to the exponential growth of the number of
possible combinations. With approximately 20,000 protein-coding genes in the human genome, the
total number of two-gene combinations approaches 200 million, and four-gene combinations exceeds
6 quadrillion (1015). Experimentally testing all possible combinations is infeasible. Therefore, devel-
oping computational models that can predict the most effective gene combinations is essential for the
efficient identification of the most potent combinatorial perturbations. However, the combinatorial
space makes it infeasible to obtain sufficient data points to train effective models through experiments
alone. Active learning frameworks (Eisenstein 2020), such as the AI + Experiment Loop (Rood,
Hupalowska, and Regev 2024) offer a promising solution by enabling efficient exploration of this
space. In our proposed framework we initially train a model on a small dataset from experiments,
which enables it to predict unseen combinatorial perturbations effects across the entire combinatorial
space. These predictions guide the design of subsequent CRISPR screening libraries for targeted
experiments, thus allowing us to iteratively refine the model and converge on identifying the most
effective gene combinations (Figure 1A).

In this work, we focus on the effects of 2-gene combinations and introduce a novel active learn-
ing framework, NAIAD, to accelerate the discovery of optimal gene pairs (Figure 1B). Our key
contributions are:

(1) A novel combinatorial perturbation model which incorporates adaptive gene embeddings that scale
with the training data size, along with an overparametrized representation of single-gene perturbation
effects.

(2) Maximum Predicted Effects (MPE)-based recommendation system that suggests gene combina-
tions for subsequent CRISPR library design, facilitating the discovery of synergistic and effective
gene combinations.

(3) An AI + Lab active learning framework that effectively identifies optimal gene combinations,
significantly reducing the number of experimental iterations needed to achieve robust results

2 Related Work

CRISPR combinatorial perturbation technologies can be broadly classified into two main categories
(Norman et al. 2019): single-cell combinatorial perturbation and bulk combinatorial perturbation.
Single-cell combinatorial perturbation measures the entire transcriptome, capturing comprehensive
gene expression changes in individual cells, but with a limited number of gene combinations. In
contrast, bulk combinatorial perturbation focuses on measuring a single phenotype, enabling the
investigation of a much broader range of gene combinations.

Predicting combinatorial perturbations has been a significant challenge due to non-linearity of
certain gene combinations. Various machine learning approaches have been proposed to address
this problem using single-cell combinatorial perturbation data. Variational Autoencoders (VAEs)
(Kingma and Welling 2013) have been employed to model genetic and chemical combinatorial
perturbations by simultaneously learning embeddings of single perturbations and capturing non-linear
interactions in methods such as CPA (Lotfollahi et al. 2023), ComβVAE (Geiger-Schuller et al. 2023),
sVAE+ (Lopez et al. 2022), and SAMS-VAE (Bereket and Karaletsos 2023). These approaches
facilitate the modeling of complex relationships between genes or compounds within the latent
space of embeddings. Methods such as sVAE+ (Lopez et al. 2022) and SAMS-VAE (Bereket and
Karaletsos 2023) have been developed to model sparsity in the latent variable intervention effects. By
disentangling the perturbation-related sparse latent space, these models effectively identify critical
features and interactions within high-dimensional biological data. SALT&PEPER implemented a
method to separately learn linear and non-linear effects of gene perturbations (Gaudelet et al. 2024).
By using gene-embedding-based autoencoder models, they effectively decomposed the interactions,
enabling more interpretable models of gene effects. Recently, several single-cell foundation models,
such as scGPT (Cui et al. 2024) and scFoundation (Hao et al. 2024), trained on all publicly
available observational data, have demonstrated their ability to predict cellular responses following
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perturbations after model fine tuning. Additionally, GEARS leverages graph neural networks (GNNs)
(Kipf and Welling 2016) to incorporate prior biological knowledge into the network architecture
(Roohani, Huang, and Leskovec 2023). GNNs facilitate the inference of gene-gene interactions by
leveraging known pathways and interaction networks, thus enhancing the prediction of combinatorial
effects.

However, most of these methods primarily focus on predicting gene expression profiles resulting from
given perturbations and do not extend to the prediction of phenotypic outcomes. Also, the number
of gene combinations from single-cell combinatorial perturbations dataset is very limited (100-200
gene combinations), so it is difficult to evaluate if those deep learning models are generalizable in the
entire combinatorial perturbation space and can outperform linear models (Ahlmann-Eltze, Huber,
and Anders 2024).

Some existing methods (i.e. GEARS (Roohani, Huang, and Leskovec 2023) and CPA (Lotfollahi
et al. 2023)), are capable of predicting combinatorial perturbations from single-cell transcriptomic
profiles, as well as from single measurements derived from bulk screens (i.e. cell viability). However,
these approaches generally assume the availability of sufficient data that would allow for a substantial
portion to be used for training. In practice, we are often limited by the number of training samples due
to the exponential growth of possible combinations in combinatorial perturbation data. This limitation
necessitates having methods that can perform well with minimal data. Active learning frameworks
offer a solution by optimizing model performance while using the least amount of training data
possible. RECOVER utilized an active learning framework that iteratively selects the most promising
drug combinations for testing through the AI + Lap loop (Bertin et al., 2023). RECOVER applies
a bilinear operator to create permutation-invariant representations that integrate multiple single
perturbation effects, learning the non-linear components of drug combinations. It leverages ensemble
models to estimate uncertainty in the predictions through deep ensembles (Lakshminarayanan, Pritzel,
and Blundell 2016), guiding the selection of experiments for subsequent rounds based on both
predicted effects and associated uncertainties.

3 Methods

In this section, we present the architecture of our model for predicting the effects of combinatorial
perturbations, along with our AI + Lab active learning framework (Figure 1A). Our NAIAD framework
addresses two key objectives: (1) achieving predictive accuracy with limited training data from the
initial experimental round; and (2) implementing a recommendation strategy to select additional gene
pairs that maximize information gain, thereby accelerating convergence with fewer AI + experimental
iterations. Ultimately, our approach aims to optimize the use of limited experimental resources,
reducing the need for exhaustive testing of all possible combinations and efficiently identifying
effective gene combinations that drive cells toward desired cellular phenotypes.

3.1 Model design

Let Xgene ∈ Rk×p be the learnable gene embedding matrix, where k is the number of genes
simultaneously perturbed and p is the dimension of the gene embeddings, which is adapted to the
number of training samples. In this work, we focus on the case where k = 2 . Let Yi be a scalar
value representing the effects of a single-gene (i) perturbation. The value Yi+j denotes the combined
effect of the two-gene (i+ j) perturbation. The target variable Y is a scalar that can represent various
biological outcomes, such as cell fitness, marker enrichment levels, or projected gene signatures
derived from single-cell transcriptomic data.

Our model is formulated as:

Yi+j = ϕ([Yi, Yj ]W1)A
T
1 + f(ϕ(W2X

i
gene), ϕ(W2X

j
gene))A

T
2

where ϕ is an activation function (ReLU or GeLU), and W,A are learnable matrix parameters.
Xi

gene and Xj
gene are the row-vectors for gene i and j in Xgene. ϕ([Yi, Yj ]W1)A

T
1 models the over-

parameterized single-gene effects, and f(ϕ(W2X
i
gene), ϕ(W2X

j
gene))AT

2 models the genetic interac-
tion contributions between i and j, where f applies a permutation-invariant function to capture the
interactions of genes i and j through their embeddings Xgene.
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Figure 1: Illustration of active learning framework in CRISPR combinatorial perturbation (A) and our
NAIAD model architecture with overparameterized single-gene effects and adaptive gene embedding
modules (B).

By explicitly incorporating single-gene effects as input parameters, we condition combinatorial
predictions on the known single-gene effects, which substantially enhances the model’s performance.
The parameter W1 acts as an over-parameterized encoder, projecting the data from k dimensions
to a much higher-dimensional space Rm , where m ≫ k . The projection of this data into a high-
dimensional (though finite) space allows us to capture intricate patterns that are not discernible in the
original low-dimensional space.

To model genetic interactions, we sum the gene embeddings of the perturbed gene combinations
in the latent space to obtain a single combined embedding. This summation is a permutation-
invariant operation, and thus independent of the order of the multiple perturbations. The combined
embedding is then passed through an encoder that compresses it into a singular interaction value.
This compression reduces the dimensionality of the data while retaining the essential information
needed to predict nonlinear interaction of genes. Finally, the compressed representations from both
the overparameterized single-gene effect and combined-gene embeddings are used to predict the
phenotype. This also allows our model to learn higher-order interactions among gene combination
perturbations, leading to improved predictive performance.

We can interpret the model as follows: the overparameterized single-gene perturbation effects tell
the model how any pair of genes additively would impact the cellular phenotype, and the gene
embeddings provide gene relation information to model the synergistic or buffering interactions
between gene pairs.

3.2 Small sample learning as an important initial step for active learning

Unlike most existing models, we propose modeling gene embeddings within a latent space with
varying dimensionality tailored to the training-data size. Training large models on small datasets
can lead to overfitting. To mitigate this, we initialize the dimension p of the latent space to a small
value at the beginning of training. As active learning iteratively incorporates new data, the size
of the training dataset continually increases, and we and correspondingly increase p following a
predetermined schedule based on the average number of times each gene is seen in the dataset. As the
training dataset expands, the increased dimensionality of the latent space enables the model to capture
more complex patterns and interactions among genes without overfitting to noisy experimental
measurements. By controlling the model complexity based on the available data, this adaptability
allows the gene embeddings to effectively leverage both small and large training datasets, optimizing
model performance across different data sizes.

3.3 Recommendation system of NAIAD

A critical component of our active learning framework is the recommendation system for selecting
gene combinations in subsequent experiment rounds to acquire new data (Figure 1A). We evaluated
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an ensemble-based uncertainty estimation, where multiple models with different initializations are
aggregated to estimate prediction uncertainty through measures like variance and entropy (Laksh-
minarayanan, Pritzel, and Blundell 2016). This ensemble approach not only improves predictive
performance and enhances interpretability, but also quantifies epistemic uncertainty arising from
limited data. We investigated uncertainty calculation by maximizing the likelihood P (Y |µ̂, σ̂) under
the assumption of a conditional Gaussian distribution (Lahlou et al. 2021) as well. However, we
noted that the experimental uncertainty estimated from the ensemble method was more stable. Thus,
in this work, we adopted the variance of ensemble predictions as the ensemble-based uncertainty
estimator.

In addition to sampling gene pairs with high uncertainty, we incorporate maximum-predicted-effect
(MPE) and residual-based sampling strategies to diversify our experimental selection. The MPE
sampling focuses on gene pairs with strong predicted effects, identifying combinations that may yield
substantial biological insights or therapeutic benefits. Additionally, to balance the exploitation of
known MPE areas with the exploration of uncertain regions, we also combined ensemble prediction
uncertainty with residual-based sampling. Residual-based sampling targets areas where the model’s
predictions deviate most strongly from a linear model baseline, allowing exploration of complex
interactions that the model has not yet captured and helping to uncover gene interactions that might be
missed by linear models. Combining residual-based sampling with uncertainty estimation corresponds
to the Upper Confidence Bound (UCB) sampling method used in RECOVER.

4 Experiments

4.1 Datasets

We evaluated our models across four bulk combinatorial CRISPR perturbation screening datasets
with cell viability measurements from two cell types (Norman et al. 2019; Simpson et al. 2023;
Horlbeck et al. 2018). We treat each gene combination as one sample. Detailed descriptions of these
datasets are provided in Appendix A.

4.2 Data splitting

We split the data differently depending on the experiment and dataset used. In our downsampling
experiments in Section 5.2, we used [100, 200, 350, 500, 750, 1000, 1250, and 1500] samples during
training for the Norman dataset (6,328 combinations), and [100, 500, 1000, 2000, 3000, 4000, 5000,
6000] samples for training on the Simpson (147,658 combinations) and Horlbeck datasets (100,576
combinations for K562; 95,703 combinations for Jurkat T), along with 10% for validation and 30%
for testing for each dataset.

To mimic an active learning scenario, in Section 5.3 we started with 100 samples from the Norman
dataset in the first round, and incrementally included an additional 100 samples each active learning
round, for a total of 4 rounds. For the Simpson and two Horlbeck datasets, we began with 500
samples in the first round, and incrementally included 500 more each round, for a total of 4 rounds.
The data for the first round is selected uniformly, and the incremental data added in each subsequent
round is selected via an acquisition function (see Appendix C for description of different acquisition
functions used). The iterative data selection process allowed us to progressively improve the models
by incorporating more data based on the active learning strategy.

5 Results

5.1 Small sample learning and adaptive gene embeddings

One of the primary challenges in active learning is that it typically begins with a small training
dataset (Chandra et al. 2020). When the amount of training data is limited, linear models consistently
outperform deep learning models. We observed similar patterns in our case particularly when
the training data size is below a certain threshold (e.g., 10% in the (Norman et al. 2019) dataset,
corresponding to 20 observations per gene during training). As the training data size increases
beyond this threshold, the Multi-Layer Perceptron (MLP) begins to surpass the linear model in
performance (Figure 2).
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Figure 2: Performance on test data of different gene embedding settings in NAIAD using the
Norman dataset (4429 training combinations) across varying training data sizes, reported as
log(Mean Square Error). The models without gene embeddings or with low-dimensional embeddings
perform well with small training data but do not improve as more data are added. In contrast, the
MLP model with larger gene embeddings outperforms these models when the training data exceeds
30%. The adaptive embedding approach achieves the best performance across all training data sizes.

We investigated different gene embedding configurations: an over-parameterized single-gene effect
model without embeddings, NAIAD with fixed 4-dimensional gene embeddings, and NAIAD with
training-data-size adaptive embeddings ranging from 2 to 128 dimensions. The results suggest that
adaptive embeddings consistently achieve superior performance in most cases, regardless of the
training data size (Figure 2) in the Norman dataset. This adaptability allows the model to effectively
leverage the strengths of both embedding representations and combining single-gene effects. Of note,
we observed that the compressed scalar values from the single-gene components strongly correlate
with the linear-model predicted results, demonstrating that the NAIAD model leverages the strong
baseline performance of linear models. Moreover, the correlation between the scalar values from
the gene embedding components and the linear residuals becomes stronger as the training data size
increases (Appendix Figure 5).

5.2 Benchmark analysis in small sample learning

We benchmarked NAIAD against the linear model, MLP, GEARS, and RECOVER on the previously-
described four bulk combinatorial perturbation datasets that cover 6,328; 147,658; 100,576; and
95,703 gene combinations (detailed information of benchmark models is described in Appendix B).
NAIAD consistently outperformed all other models, particularly in situations with a limited number
of observed gene pairs, as measured by log(Mean Square Error), Pearson correlation coefficient, and
true positive rate from the held-out test data (Figure 3, Appendix Figure 6).

Due to variations in the total number of gene pairs measured across these datasets, we also analyzed
model performance based on the average frequency of each gene’s occurrence among the training
data combinations. Gene occurrence was approximated as Gene Occurrence = 2N

M , where N is the
number of gene combinations in the training set (the factor of 2 assumes a symmetrical screen), and
M is the number of unique genes covered in the screen. We observed that when each gene was seen
on average four times, NAIAD’s performance was consistently the best—over 40% better than the
second-best model on average across the four datasets (Table 1) based on root mean square error
(RMSE). As the frequency of gene occurrence increased, the performance difference among the
models gradually decreased (Table 1, Appendix Table 4). When each gene appeared 20 times within
different gene combinations in the training dataset, all models achieved comparable performance
levels (Table 1). This suggests that as more data becomes available, the gene embeddings learned
from different deep learning models can all largely capture the genetic interactions that dominate
performance. Notably, because gene occurrence depends on the number of unique genes included in
the screen, achieving a high frequency of observations per gene becomes increasingly challenging
when the aim is to cover a wide range of genes. For example, screening 20,000 genes across
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Figure 3: Benchmark analysis comparing the NAIAD model with GEARS and RECOVER models,
evaluated using test data log(MSE) across different numbers of gene combinations in training data.
Error bars are SE across three cross-fold replicates.

Table 1: Root mean square error (RMSE) of five models on test data when each gene is approximately
observed in training data 4 and 20 times. Error is SE across three cross-fold replicates.

Dataset RMSE (×10−2 )
Gene Frequency Model Norman Simpson Horlbeck K562 Horlbeck Jurkat

4 Linear 6.2 (1.7) 3.3 (0.3) 6.4 (0.9) 3.9 (0.6)
MLP 7.7 (0.9) 4.3 (0.9) 7.8 (2.5) 5.5 (2.1)
GEARS 16.6 (19.8) 5.4 (3.4) 13.0 (11.6) 13.5 (16.1)
RECOVER 7.1 (2.8) 3.9 (0.4) 7.9 (2.0) 5.0 (0.7)
NAIAD 5.1 (1.8) 2.2 (0.1) 6.1 (1.9) 3.0 (0.6)

20 Linear 6.1 (1.1) 3.3 (0.2) 6.4 (0.9) 3.8 (0.6)
MLP 5.0 (1.4) 2.0 (0.3) 5.9 (0.1) 3.0 (0.4)
GEARS 10.7 (12.1) 3.5 (2.0) 14.0 (14.0) 20.7 (24.0)
RECOVER 4.7 (0.5) 1.9 (0.4) 5.6 (1.0) 3.0 (0.4)
NAIAD 4.7 (0.1) 1.9 (0.2) 5.4 (0.6) 2.8 (0.6)

the genome to obtain an average of 20 observations per gene would require measuring 200,000
combinations in the initial training dataset. This represents a substantial experimental cost and even
exceeds the size of the current largest screen involving over 145,000 combinations (Simpson et al.
2023).

These results demonstrate the robustness of NAIAD in handling both small and large training datasets,
making it a valuable tool for exploring vast combinatorial spaces. This highlights its potential for
discovery of effective gene combinations in settings with constrained experimental resources.

5.3 Effectiveness of maximum predicted effect sampling in identifying effective gene pairs

The second challenge in active learning frameworks is the design of the recommendation system or
acquisition function. We explored multiple acquisition functions—including uncertainty sampling,
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Maximum Predicted Effects (MPE) sampling, and Upper Confidence Bound (UCB) sampling from
RECOVER (Bertin et al. 2023), which combines residual and uncertainty sampling—to evaluate
their impact on overall performance (Figure 4). To simulate the active learning process using current
publicly available symmetrical screening data, we started with the same uniformly sampled gene
pairs for all acquisition functions and trained a baseline ensemble of NAIAD models. We then used
the trained model ensemble to infer unseen combinations across the entire combinatorial space and
applied different acquisition functions on the corresponding ensemble metric (e.g. MPE or ensemble
uncertainty) to select gene pairs for measurement as the additional training data for the next round.
We repeated the sampling and retraining process across four iterations.

We found that MPE sampling outperforms other sampling methods by identifying a higher fraction
of the globally strongest gene pairs (Figure 4). The advantage of MPE sampling becomes larger with
each additional iteration, even though all approaches show improved performance over iterations.
By the fourth iteration, across the four datasets, we were able to uncover over twice as many strong
perturbations using MPE sampling compared to uniform sampling, and nearly 1.5 times as many
as UCB, the second-best method (Table 2). Specifically, the MPE method identified approximately
150 out of the top 200 strongest gene pairs in three of the datasets, achieving the highest marginal
gain in each dataset (Table 3). Although MPE sampling exhibited worse overall performance based
on the test data MSE (Appendix Figure 7), this discrepancy is likely due to the distribution of the
sampled training data. The MPE sampling method skews the distribution toward strong-effect gene
pairs, leading to more accurate predictions for these pairs but less accuracy across the entire dataset,
thus affecting the overall MSE (Appendix Figure 8).

The primary goal of NAIAD is not to accurately predict all gene pair interactions but to effectively
select the strongest gene pairs that induce significant phenotypic changes. Therefore, the superior
performance of MPE sampling in identifying potent gene combinations aligns well with our objectives.
By prioritizing the discovery of those strongest gene pairs, we can accelerate the identification of
gene combinations that are most relevant for therapeutic development.

6 Discussion and conclusion

In this work, we introduced NAIAD, an active learning framework designed to efficiently identify
effective gene pairs from the huge combinatorial perturbation space by utilizing single-gene perturba-
tion effects, adaptive gene embeddings, and an MPE acquisition function. Our framework leverages
the principles of Bayesian optimization (Frazier 2018), employing sequential experimentation and
learning to enable effective decision-making with limited data. Whereas traditional Bayesian opti-
mization employ a fixed surrogate model, our framework adapts to learn different surrogate functions
at varying sizes of training data. This adaptability enables NAIAD to adjust its modeling complexity
based on the available data, effectively bridging the gap between linear models and deep learning
techniques.

Table 2: Number of top 200 gene combinations correctly discovered at round 4

Norman Simpson Horlbeck K562 Horlbeck Jurkat

Uniform 92 66 39 79
MPE 144 144 94 161
UCB 97 111 55 117
Uncertainty 92 74 45 84

Table 3: Marginal gain of correctly discovered top 200 gene combinations at round 4

Norman Simpson Horlbeck K562 Horlbeck Jurkat

Uniform 1 7.5 0.5 2.5
MPE 14 27 14.25 23
UCB 2.25 18.75 4.5 12
Uncertainty 1 9.5 2 3.75
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Figure 4: Comparison of different acquisition functions evaluated by top N prediction accuracy for
the top N perturbations across four iteration rounds (see Appendix D for full description of accuracy
metric). Error bars are SE from three cross-fold replicates.

By incorporating adaptive gene embeddings, NAIAD mitigates overfitting in small-sample training
and captures complex interactions as more data becomes available. The MPE acquisition function
further enhances the model’s efficiency by prioritizing gene pairs with significant predicted effects,
accelerating the discovery process with fewer experimental iterations. As a result, NAIAD outper-
forms existing approaches, particularly in scenarios with limited training data when using the MPE
acquisition function. We demonstrate its effectiveness in small-sample learning and its high discovery
rate for identifying the top N strongest combinations across the entire search space.

Despite its advantages, there are areas where the NAIAD model could be further enhanced. Currently,
NAIAD does not support predicting gene expression profiles resulting from single-cell combinatorial
perturbation data. However, when projecting single-cell expression data into one relevant phenotype
value, the NAIAD framework can still be adapted to predict that specific phenotype. Another
limitation is that our model assumes information of each gene’s individual effect on the phenotype.
For unseen individual genes, the current NAIAD model cannot predict the effects of combinations
involving these genes, especially when both genes in a pair are unseen. Incorporating properly
pre-trained gene embeddings could potentially allow us to predict such unseen situations (Cui et
al. 2024). By incorporating pre-trained gene embeddings, we can obtain prior knowledge of the
similarities between unseen and known genes within relevant latent spaces. Assuming that these
gene relationships are conserved across different domains, the model can leverage this information to
infer the single-gene effects of unseen genes, even to predict the outcomes of combinations involving
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two previously unseen genes. Additionally, refining the acquisition score function to be a learnable
component—such as employing a monotonic submodular regularization (Alieva et al. 2020; Wei,
Iyer, and Bilmes 2015; Golovin and Krause 2010)—could enable the model to adaptively prioritize
experiments that maximize information gain, rather than relying on a fixed heuristic.

Our model also holds significant potential for higher-order combinatorial perturbation data. With
the advancement of combinatorial CRISPR technologies, higher-order gene combination datasets
are becoming increasingly common (Tieu et al. 2024; Hsiung et al. 2024). NAIAD is theoretically
well-suited and can be easily adapted to accommodate interactions beyond gene pairs. Handling
higher-order CRISPR combinatorial perturbations would allow for the exploration of more complex
genetic interactions, potentially leading to a more effective induction of desired cellular phenotypes.
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A Dataset summary

We utilized four bulk combinatorial perturbation datasets in our study:

Combinatorial CRISPRa on K562 cells (Norman et al. 2019): This dataset was generated using com-
binatorial CRISPR activation (CRISPRa), involving 112 genes and 6,328 unique gene combinations.

Large-scale combinatorial CRISPRi on K562 cells (Simpson et al. 2023): This dataset was generated
using CRISPR interference (CRISPRi), involving 543 genes and 147,658 unique gene combinations.

Combinatorial CRISPRi on K562 cells (Horlbeck et al. 2018): This dataset was generated using
combinatorial CRISPRi, involving 448 genes and 100,576 unique gene combinations.

Combinatorial CRISPRi on Jurkat T Cells (Horlbeck et al. 2018): This dataset was generated using
combinatorial CRISPRi, involving 437 genes and 95,703 unique gene combinations.

For the bulk cell viability datasets, we calculated the log-fold change in cell viability for each gene
combination compared to negative control treatments. This normalization allows for the quantification
of the effect size of each perturbation on cell survival. For a deeper explanation of calculating cell
viability (also referred to as γ), we refer the reader to (Simpson et al. 2023).

B Benchmark models

Linear model: We employed a simple linear regression model using the effects of two single-
gene perturbations as independent variables to predict their joint effect. This model involved three
parameters: two coefficients for the individual gene effects and an intercept term.

Multi-layer perceptron (MLP): We implemented an MLP model where each gene was represented by
a 128-dimensional embedding. For each two-gene perturbation, we created a joint embedding for the
two genes by summing their embeddings along each dimension and passing it through a MLP layer
that projects from 128 dimensions down to a single dimension corresponding to the phenotype value.
The MLP captured non-linear interactions between gene embeddings.

GEARS: For the GEARS model, we adhered to the original settings as specified in their supplementary
materials (Roohani, Huang, and Leskovec 2023) for cell viability prediction. This included their
specific network architecture and parameters used in their tutorial. For bulk-combinatorial datasets
lacking single-cell experiments expected for GEARS, we generated synthetic Pertub-seq datasets
of normalized gene expression matrices, with a separate Gaussian N (0, 1) used for sampling the
expression of each gene.

RECOVER adaptation: RECOVER was originally developed for drug perturbations involving small
molecule embeddings and bilinear operations to combine drugs (Bertin et al. 2023). The models
were trained to predict Bliss synergy scores, which capture the non-linear components of phenotypic
outcomes, instead of directly modeling the phenotypic outcomes themselves. We adapted RECOVER
for gene perturbations by incorporating a bilinear projection module to combine 128-dimensional
gene embeddings. This adaptation allowed us to model gene-gene interactions using the same
principles applied to drug combinations in the original RECOVER framework. We train the model
to predict the gene-equivalent of Bliss scores, which is the difference between measured viability
and the product of the viability of single-gene perturbations. We then convert the gene-Bliss-score
predictions back to overall cell viability predictions by re-adding the product of the viability of the
single-gene perturbations.

C Active learning sampling strategies

In our active learning framework, we employ several sampling strategies to select the most informative
experiments for subsequent rounds. Below, we provide the mathematical formulations for these
strategies.

Uncertainty-based sampling

We use an ensemble of models {Mi}Ni=1, each initialized randomly. For a candidate gene combination
x, each model provides a prediction yi = Mi(x). We estimate the prediction uncertainty using the
variance of the ensemble predictions:
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Var(y) =
1

N

N∑
i=1

(yi − ȳ)
2

where ȳ is the mean prediction across the ensemble:

ȳ =
1

N

N∑
i=1

yi.

The acquisition function for uncertainty-based sampling is defined as:

auncertainty(x) = Var(y).

We select the candidate combinations with the highest auncertainty(x) values, as they represent samples
where the model is most uncertain and additional data could significantly improve the model.

Maximum predicted effect (MPE) sampling

This strategy targets gene combinations predicted to have strong effects. The acquisition function is:

aMPE(x) = ŷ,

where ŷ is the mean prediction as defined above. We select candidates with the highest absolute pre-
dicted effects ŷ , prioritizing experiments likely to yield substantial biological insights or therapeutic
benefits.

Residual-based sampling

To identify areas where nonlinear interactions are significant and the model may not have fully
captured them, we compute the residual between predictions from a non-linear model and a linear
model. Let N(x) be the prediction from the non-linear model and L(x) be the prediction from a
linear approximation. The residual is calculated as:

r(x) = |N(x)− L(x)| .

The acquisition function for residual-based sampling is:

aresidual(x) = r(x).

We select candidate combinations with the highest residuals aresidual(x), focusing on samples where
the non-linear effects are most pronounced and the model’s predictions differ significantly from linear
expectations.

Upper Confidence Bound (UCB) sampling

We perform UCB sampling following the strategy provided by RECOVER (Bertin et al. 2023):

aUCB(x) = aresidual(x) + κ ∗ auncertainty(x)

Where κ is a hyperparameter set to κ = 1 based on the recommendation from the RECOVER paper.

By combining these sampling strategies, we aim to efficiently explore the combinatorial space of
gene interactions. The goal is to maximize information gain with each experimental round, ultimately
using a minimal number of experiments to identify effective gene combinations that can induce
desired cellular phenotypes.

D Model evaluation metrics

We use several metrics to evaluate the performance of our models.

MSE: Mean Square Error
1

Npairs

∑
i,j∈genes

(ypred
i+j − ytruth

i+j )
2
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Fraction Discovered: Through active learning, we want to identify how many of the top P strong
perturbations have been identified by our model of interest. Let M be the total number of rounds of
active learning, and let N = [n0, n1, . . . , nM ] be the list that defines how many samples ni are used
for each active learning round i = 0, 1, . . . ,M .

In each round of learning, we train on the ni unmasked samples chosen depending on the acquisition
function. After training, we make predictions for the entire unseen dataset. We concatenate the
predictions on the unseen data with the unmasked measured values from the seen data, and call this
combined set of predictions and measurements Xi for each round i.

Let Xi,P be the set of top P values in the set Xi. Let Yi,P be the set of top P measured (ground truth)
values across all samples in round i. Let Pi = |Xi,P ∩ Yi,P | be the number of times a perturbation
from the top P predictions is also in the top P targets for round i. Fraction Discovered is then defined
as Pi

P .

Marginal Gain: The marginal gain at round 4 is P4(top=200)−P0(top=200)
4 , where P4(top = 200)

is the number of top-200 perturbations correctly identified in Round 4, and P0(top = 200) is the
number of top-200 perturbations correctly identified in Round 0.

TPR: True positive rate

Let Xtargets be the set of top N measured combinations, and Xpreds be the set of top N predicted
combinations. We find the number of matches Nmatch = |Xtargets ∩ Xpreds|, and calculate TPR as
Nmatch
N .

E Hardware Configuration

All model training was done on a single Paperspace A100-80G server with 100GB of RAM.

F Hyperparameter Selection

For all training of the NAIAD and MLP models, we use learning_rate = 10−2, and a batch_size =
1024. We also used a linear rate scheduler with 10% of training steps used for warm up, and
weight_decay = 0.

To identify these optimal hyperparameters, we testing hyperparameters across the following ranges:

n_epoch: [50, 100, 200, 500, 1000, 2000]

batch_size: [512, 1024, 2048, 4096]

learning_rate: [10−4, 10−3, 10−2, 10−1]

d_embed: [2, 4, 8, 16, 32, 64, 128, 256]

d_single-gene: [8, 16, 32, 64, 128, 256, 512]

weight_decay: [0, 10−4, 10−3]

For training the RECOVER model, we use a learning_rate = 10−1. For GEARS, we keep all
hyperparameters assigned by default from the package.

F.1 Adaptive Model Embedding Size Selection

For the NAIAD model, we choose the embedding size hyperparameter based roughly on the number
of times each gene was seen in the training set, following the schedule shown in Table 5 . We
determined these values using the idea that model size depends on the number of times each individual
gene is seen during training, and that these properties hold across all datasets.
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G Supplemental figures and tables

Figure 5: Evaluation of compressed single-gene effects and gene embeddings shows a strong
correlation between the compressed single-gene effects and the values predicted by the linear model.
As the training data increases, the correlation between gene embeddings and the residuals of the
linear model predictions gradually becomes stronger.

Figure 6: Benchmark analysis comparing the NAIAD model with GEARS and RECOVER models,
evaluated using test data correlation and true positive rate (for identifying the top 200 perturbations
of a 30% held-out test set) across different numbers of gene combinations in training data. Error bars
are SE across three cross-fold replicates.
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Figure 7: Comparison of different acquisition functions evaluated by MSE across four iteration
rounds. Error bars are SE across three cross-fold replicates.
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Figure 8: Comparison of training sample distribution changes across different iterations using four
acquisition functions. The X-axis represents the linear predicted values, while the Y-axis shows the
actual measured values. The plot highlights gene pairs belonging to the top 200 gene pairs with the
strongest effects in the entire dataset.
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Table 4: RMSE of five models on test data when each gene is approximately observed in training
data 10 times. Error is SE across three cross-fold replicates.

Dataset RMSE (×10−2)
Gene Frequency Model Norman Simpson Horlbeck K562 Horlbeck Jurkat

10 Linear 6.1 (1.3) 3.3 (0.2) 6.4 (0.9) 3.8 (0.6)
MLP 5.7 (1.3) 2.4 (0.4) 6.3 (1.1) 3.5 (1.0)
GEARS 15.5 (12.8) 8.7 (10.3) 12.0 (9.6) 24.2 (28.5)
RECOVER 5.9 (1.0) 2.5 (0.2) 6.1 (0.2) 3.7 (1.0)
NAIAD 4.7 (1.2) 2.0 (0.2) 5.7 (0.8) 3.0 (0.8)

Table 5: Training and model hyperparameters for each data set and data split

Dataset Train Epochs Avg. Times All Approx. Embed Single-Gene
Genes Seen Training Dataset Size Dim Dim

Norman 500 2 100 2 64
4 200 4 64

10 500 16 64
20 1000 16 64
30 1500 32 64
40 2000 64 64
60 3000 64 64
80 4000 128 64

100+ 5000+ 128 64

Simpson 200 2 500 2 256
4 1000 4 256

10 5000 16 256
20 10000 16 256
30 15000 32 256
40 20000 64 256
60 30000 64 256
80 40000 128 256

100+ 50000+ 128 256

Horlbeck 200 2 500 4 256
4 1000 16 256

10 5000 32 256
20 10000 32 256
30 15000 64 256
40 20000 64 256
60 30000 64 256
80 40000 128 256

100+ 50000+ 128 256
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