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Abstract

Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes
from a single 2D measurement, enabling diverse applications like video and hyper-
spectral imaging to go beyond standard techniques in terms of acquisition speed
and efficiency. In this paper, we focus on SCI recovery algorithms that employ
untrained neural networks (UNNs), such as deep image prior (DIP), to model
source structure. Such UNN-based methods are appealing as they have the po-
tential of avoiding the computationally intensive retraining required for different
source models and different measurement scenarios. We first develop a theoretical
framework for characterizing the performance of such UNN-based methods. The
theoretical framework, on the one hand, enables us to optimize the parameters of
data-modulating masks, and on the other hand, provides a fundamental connection
between the number of data frames that can be recovered from a single measure-
ment to the parameters of the untrained NN. We also employ the recently proposed
bagged-deep-image-prior (bagged-DIP) idea to develop SCI Bagged Deep Video
Prior (SCI-BDVP) algorithms that address the common challenges faced by stan-
dard UNN solutions. Our experimental results show that in video SCI our proposed
solution achieves state-of-the-art among UNN methods, and in the case of noisy
measurements, it even outperforms supervised solutions. Code is publicly available
at https://github.com/Computational-Imaging-RU/SCI-BDVP.

1 Introduction

Snapshot Compressive Imaging (SCI) refers to imaging systems that optically encode a three-
dimensional (3D) data cube into a two-dimensional (2D) image and computationally recover the 3D
data cube from the 2D projection. As a novel approach in computational imaging, SCI has attracted
significant attention in recent years. Initially proposed for spectral imaging [1], its application has
since expanded to various fields, including video recording [2], depth imaging [3], and coherence
tomography [4] (Refer to [5] for a comprehensive review).

The key advantage of SCI systems lies in significantly accelerating the data acquisition process.
Traditional hyperspectral imaging methods, for example, often encounter bottlenecks due to their
reliance on spatial or wavelength scanning, leading to time-consuming operations. In contrast,
hyperspectral SCI systems capture measurements across multiple pixels and wavelengths in a single
snapshot, effectively bypassing this limitation [6].

The optical encoding process in SCI systems can be mathematically modeled as a linear measurement
system, characterized by a sparse and structured sensing matrix, commonly referred to as a ‘mask’.
Consequently, SCI recovery algorithms aim to reconstruct high-dimensional (HD) 3D data from a
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highly underdetermined system of linear equations. A wide range of SCI recovery methods has been
proposed in the literature, which can broadly be categorized into:

Classic approaches: These methods model source structure using convex regularization functions
and employ convex optimization techniques (e.g., [7, 8, 9, 10]). While robust to measurement and
source distribution non-idealities, they are typically limited to simpler structures and challenging to
extend to 3D HD data cubes central to SCI applications. DNN-based methods: These approaches
use deep neural networks (DNNs) to capture complex source structures, learning from training
data. They can be further categorized as: i) End-to-end solutions (e.g., [11, 12, 13, 14, 15, 16]); ii)
Iterative plug-and-play solutions (e.g., [17, 18]); iii) Unrolled methods (e.g., [19, 20, 21, 22, 23, 24]).
While these methods extend beyond simple structures to model intricate source patterns, they require
extensive training data, often struggle with generalization, and are computationally intensive.

An alternative approach to SCI recovery involves using UNNs, such as deep image prior (DIP) [25]
or deep decoder [6], to model the source structure. These methods capture complex source structures
without requiring any training data. Existing UNN-based SCI solutions either recover the image
end-to-end in one shot [26] or employ iterative methods akin to projected gradient descent (PGD) [27].
Despite their advantages, these approaches often exhibit lower performance compared to pre-trained
methods and may require additional data processing steps for enhancement.

In this work, we focus on leveraging UNNs to address the SCI problem. We begin by establishing
a theoretical framework for analyzing UNN-based methods, providing insights into optimizing the
adjustable SCI masks, under both noise-free and noisy measurements. We then explore DIP-based
algorithms and introduce SCI-BDVP solutions. Our results demonstrate the robustness of these
solutions to measurement noise and their competitive performance across diverse datasets, using a
consistent set of parameters.

1.1 Contributions of this Work

Theoretical: We theoretically characterize the performance of DIP-based SCI recovery optimization
for both noise-free and noisy measurements. Using our theoretical results, we establish an upper
bound on the number of frames that can be recovered from a single 2D measurement, as a function of
the dimensions of the DIP. Furthermore, we show how the developed theoretical results enable us to
optimize the parameters of the masks for both noisy and noise-free cases, enhancing the performance
of the recovery process.

Algorithmic: Inspired by the newly proposed bagged-DIP algorithm for the problem of coherent
imaging [28], developed to address common shortcomings of DIP-based solutions for inverse prob-
lems, we explore the application of bagged-DIP for SCI recovery. We conduct extensive experimental
evaluations, demonstrating the following: i) Confirmation of our theoretical results on the optimized
masks for both noise-free and noisy measurements. ii) The proposed SCI-BDVP solution robustly
achieves state-of-the-art performance among UNN-based solutions in the case of noise-free mea-
surements. iii) In scenarios with noisy measurements, our proposed method achieves state-of-the-art
performance among both end-to-end supervised and untrained methods.

1.2 Notations

Vectors are represented by bold characters like x and y. ∥x∥2 denotes the ℓ2 norm of x. For
X ∈ Rn1×n2 , Vec(X) ∈ Rn denotes the vectorized version of X, where n = n1n2. This vector
is created by concatenating the columns of X. Given A,B ∈ Rn1×n2 , Y = A ⊙ B denotes
the Hadamard product of A and B, such that Yij = AijBij , for all i, j. Sets are represented
by Calligraphic letters, like A,B. For a finite set A, |A| denotes the number of elements in A.
Throughout the paper, log refers to the logarithm in base 2, while ln denotes the natural logarithm.

2 Related Work

UNNs for SCI. While the majority of SCI recovery algorithms developed for various applications fall
under classic optimization-based methods (e.g., [8, 9, 10]) or supervised DNN-based methods [24],
in recent years, there has been increasing interest in leveraging UNNs in solving inverse problems. In
SCI recovery, this trend has been motivated by the diversity of applications and datasets encountered
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in various SCI applications, necessitating the availability of pre-trained denoising networks tailored
to different resolutions and noise levels for various datasets. Another challenge with these traditional
solutions is their robustness to various problem settings, such as measurement noise. These challenges
have spurred a notable interest in developing solutions that harness the ability of DNNs to capture
complex source models while not relying on training data.

While deep image priors (DIPs) have been applied to various inverse problems [29, 30, 31], their
application to SCI recovery has been limited. The authors in [27] developed an iterative DIP-based
solution for hyperspectral SCI. To enhance the performance and address the challenges faced by
DIP-based methods in terms of falling into local minimas, they initialize the algorithm by the solutions
obtained by GAP-TV [9]. In [26], the authors propose Factorized Deep Video Prior (DVP), which is a
DIP-based SCI recovery algorithm for videos, which is based on separating the video into foreground
and background and treating them separately. [32] develops a DIP-based solution for compressed
ultrafast photography (CUP), where in addition to the normal SCI 2D measurement and additional
side information consisting of the integral of all the frames (referred to as the time-unsheared view in
[32]) is also collected. The video is reconstructed using an end-to-end approach using the DIP to
enforce the source model. In [33], the authors leverage the concept of video snapshot compressive
imaging (SCI) reconstruction to develop an algorithm for snapshot temporal compressive microscopy.
They propose an iterative algorithm that utilizes UNNs to incorporate the source structure.

In the context of image recovery from underdetermined measurements corrupted by speckle noise, the
authors in [28] recently proposed the idea of bagged-DIP, which is based on independently training
multiple DIPs operating at different frame sizes and averaging the results. In this paper, we extend the
idea to videos and construct a bagged-DVP, which as we show in our experimental results robustly
achieves state-of-the-art performance among all UNN-based SCI video recovery methods.

Mask optimization. In various SCI applications, one can design the masks, which are typically
binary-valued, and used for modulating the input 3D data cube. This naturally raises the question
of optimizing the masks to improve the performance. To address this problem, several empirical
works have designed solutions that simultaneously solve the SCI recovery problem and optimize the
masks. In [34], the authors design an end-to-end autoencoder network to train the reconstruction and
mask simultaneously for video data and find the trained mask has some distribution such as non-zero
probability around 0.4 and varies smooth spatially and temporally. Similarly, in [35], deep unfolding
style networks are trained to simultaneously reconstruct 3D images and also optimize the binary
masks. They show that for the empirically jointly optimized masks have a non-zero probability of
around 0.4. The authors in [16] design an end-to-end VIT-based SCI video recovery solution that
simultaneously learns the reconstruction signal and the mask. They consider a special type of mask
that constrained by their hardware design.

Due to the highly non-convex nature of the described joint optimization problem, empirically-jointly-
optimized solutions are likely to converge to suboptimal results. Furthermore, the optimized solution,
inherently dependent on the training data, lacks theoretical guarantees. To address these limitations,
[36] employed a compression-based framework to theoretically optimize the binary-valued masks in
the case of noiseless measurements and showed that in that case the optimized probability of non-zero
entries is always smaller than 0.5. Here, we theoretically characterize the performance of UNN-
based SCI recovery methods and show a consistent result in the case of noise-free measurements.
Interestingly, as shown in our experiments, for noisy measurements, the optimized probability can be
larger than 0.5. We derive novel theoretical results explaining this phenomenon.

3 DIP for SCI inverse problem

3.1 SCI inverse problem

The objective of a SCI system is to reconstruct a three-dimensional (3D) data cube from its two-
dimensional (2D) compressed measurement. Specifically, let X ∈ Rn1×n2×B represent the target
3D data cube. In an SCI system, X is mapped to a singular measurement frame Y ∈ Rn1×n2 . This
mapping, particularly as implemented in hyperspectral SCI and video SCI [2], can be modeled as
a linear system as follows [2, 37]: Y =

∑B
i=1 Ci ⊙Xi + Z. Here, C ∈ Rn1×n2×B represents the

sensing kernel (or mask), and Z ∈ Rn1×n2 denotes the additive noise. The terms Ci = C(:, :, i) and
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Xi = X(:, :, i) ∈ Rn1×n2 correspond to the b-th sensing kernel (mask) and the associated signal
frame, respectively.

To simplify the mathematical representation of the system, we vectorize each frame as xi =
Vec(Xi) ∈ Rn with n = n1n2. Then, we vectorize the data cube X by concatenating the B

vectorized frames into a column vector x ∈ RnB as x =
[
x⊤
1 , . . . ,x

⊤
B

]⊤
. Similarly, we define

y = Vec(Y) ∈ Rn and z = Vec(u) ∈ Rn. Using these definitions, the measurement process can
also be expressed as

y = Hx+ z. (1)

The sensing matrix H ∈ Rn×nB , is a highly sparse matrix that is formed by the concatenation of B
diagonal matrices as

H = [D1, ...,DB ], (2)

where, for i = 1, . . . B, Di = diag(Vec(Ci)) ∈ Rn×n. Using this notation, the measurement vector
can be written as y =

∑B
i=1 Dixi The goal of a SCI recovery algorithm is to recover the data cube x

from undersampled measurements y, while having access to the sensing matrix (or mask) H.

3.2 Theoretical analysis of DIP-based SCI recovery

The Deep Image Prior (DIP) [25] hypothesis provides a framework for understanding the potential of
UNNs in capturing the essence of complex source structures without requiring training data. Define
Q ⊆ Rn as the class of signals of interest (e.g., class of video signals consisting of B frames.). Also,
let gθ : Rp → Rn represent a UNN parameterized by θ ∈ Rk. Informally, DIP hypothesis states that
any signal in Q can be presented as the output of the DIP parameterized by parameters θ ∈ Rk. This
can be represented more formally as follows.

DIP hypothesis: Assume that u ∈ Rp is sampled i.i.d. from a uniform distribution U(0, 1). For
any x ∈ Q, the DIP hypothesis states that for any x ∈ Rk, there exists θ ∈ [0, 1]k, such that
∥gθ(u)− x∥2 ≤ δ, almost surely.

This hypothesis underscores the capability of UNNs to function as powerful priors, capturing intricate
data structures inherent in natural images and other complex datasets, thereby bridging the gap
between classical analytic methods and modern machine learning techniques.

Given SCI measurements y = Hx+ z, as described in (1) with H defined in (2), a DIP represented
by gθ : Rp → Rn can be used to recover x from measurements y as follows: Step 1) Randomly
sample u (independent of y and H), as required by the DIP. Step 2) Solve the DIP-SCI optimization:

x̂ = argmin ∥y −Hc∥2, subject to c = gθ(u), θ ∈ [0, 1]k. (3)

Before describing our proposed approach to solving DIP-SCI optimization in Section 4, we the-
oretically characterize the performance of (3), under noise-free and noisy measurements and use
our theoretical results to i) bound the number of frames that can be recovered from a single 2D
measurement, and ii) optimize the parameters of the mask H that is used for modulating the data.

3.2.1 Noise-free measurements

The following theorem characterizes the performance of (3) in case where the measurements are
noise-free and connects its performance (∥x− x̂∥2) to the ambient dimension n, number of frames
B, number of parameters of the DIP k, the distortion δ and the Lipschitz coefficient L.

Theorem 3.1. Let x ∈ Q, where Q denotes a compact subset of Rn, such that ∥x∥∞ ≤ ρ
2 , for all

x ∈ Q. Assume that gθ(u) : [0, 1]N → RnB is L-Lipschitz as a function of θ. Let y = Hx, where
H = [D1, . . . ,DB ], where Di = diag(Di,1, . . . , Di,n), i = 1, . . . , B, are independently generated
with Di,1, . . . , Di,n i.i.d. Bern(p). Given randomly generated u, let x̂ denote the solution of (3).
Then, if minc: c=gθ(u),θ∈[0,1]k

1
nB ∥x− c∥2 ≤ δ, we have

1√
nB

∥x− x̂∥2 ≤
√

1 + Bp
1−pδ +

2ρ√
p(1−p)

(
kB2 log logn

n

) 1
4

+ L
logn

√
k
nB ( B√

p(1−p)
+ 1), (4)

with a probability larger than 1− 2−0.5k log logn+1.

4



The bound in (4) consists of multiple terms. The first term, i.e.,
√
1 + Bp

1−pδ, accounts for the effect
of the DIP representation error. For instance if x is directly selected from the output space of DIP,
then δ = 0. The goal of the following two corollaries to shed light on the interplay of the three terms
in (4) and highlight their implications on the performance of DIP-SCI optimization. First, Corollary
3.2 characterizes an upper bound on the number of frames B that are to be recovered from a single
2D measurement.
Corollary 3.2. Consider the same setup as in Theorem 3.1. If

B ≤
√

n
k(logn)(log logn) , (5)

then 1√
n
∥x− x̂∥2 ≤

√
1 + Bp

1−pδ +
cn√

p(1−p)
, where cn = O(1/(log n)

1
4 ) does not depend on p.

Next, Corollary 3.3 states that in the case where the measurements are not corrupted by noise, the
value of p, the probability of a mask entry being non-zero, that minimizes the upper bound in (4) is
always less than 0.5. This is consistent with the results established i) empirically in the literature [16]
and ii) theoretically in [36] using a compression-based framework.
Corollary 3.3. Consider the same setup as in Theorem 3.1. The upper bound in (4) is minimized at
p∗ ∈ (0, 0.5).

3.2.2 Noisy measurements

In many practical SCI applications, the measurements are corrupted by additive noise. This raises the
following natural question: How does the inclusion of noise in the model affects the optimized mask
parameters? To address this question, we develop two theoretical results: Theorem 3.4 characterizing
the reconstruction error ∥x− x̂∥2 and Theorem 3.5 bounding the error in estimating the mean of the
input frames x̄ = 1

B

∑B
i=1 xi. As we explain later, the combination of these two results provide a

theoretical understanding on the performance of SCI recovery methods in the presence of noise and
the corresponding optimized masks.

Theorem 3.4. Consider the same setup as in Theorem 3.1. For x ∈ Q, let y =
∑B

i=1 Dixi + z,
where z ∈ Rn denotes the additive noise and z ∼ N (0, σ2

zIn), for some σz ≥ 0. Let x̂ denote the
solution of DIP-SCI optimization (3). If B satisfies the bound in (5), then

1√
nB

∥x− x̂∥2 ≤δ
√
1 + Bp

1−p + 3σz

p(1−p)

√
1

logn

+ ( 8
logn )

1
4

√
δσz

p(1−p) (1 + αn) +
√

1
p(1−p)

ρ

(logn)
1
8
(1 + βn) + γn, (6)

with a probability larger than 1 − (2−0.5k log logn+3 + e−0.3n). Here, αn = O( 1√
logn

), βn =

o( 1

(logn)
1
4
) and γn = o( 1

logn ) do not depend on σz and p.

Theorem 3.5. Consider the same setup as in Theorem 3.4. Assuming that B satisfies the bound in
(5), then with probability larger than 1− (2−0.5k log logn+3 + e−0.3n),

1√
n
∥ 1
B

∑B
i=1(xi − x̂i)∥2 ≤ δ

√
1 + 1

pB + 1
p

√
2ρσz

B

(
k log logn

n h(p)
) 1

4

+ 1
p
√
B
υn + L

logn

√
k
nB ,

where υn = O((log n)−
1
8 ) and does not depend on p.

To shed light on the implications of these two theorems, the following corollary characterizes the
value of p optimizing each bound.
Corollary 3.6. Consider the same setting as Theorem 3.4. The upper bound in Theorem 3.4 is always
optimized at p∗ < 0.5. On the other hand, the upper bound in Theorem 3.5 is a decreasing function
of p and is minimized at p∗ = 1.

Let x̄B = [x̄⊤, . . . , x̄⊤]⊤ ∈ RnB , i.e., the reconstruction signal derived by repeating the average
frame x̄ = 1

B

∑B
i=1 xi. Then, using the triangle inequality, we have

∥x− x̂∥2 ≤ ∥x− x̄B∥2 + ∥x̄B − x̂∥2.
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Figure 1: PSNR, shown as y-axis, of ∥x− x̂∥2, ∥x̂− x̄B∥2 and ∥x− x̄B∥2: masks are generated as
Bern(p), p shown as x-axis,. Blue, orange and green lines represent noise levels of σ = 0, 10 and
25, respectively. Solid black line shows ∥x − x̄B∥2. Solid colored lines and dashed colored lines
represent ∥x− x̂∥2 and ∥x̂− x̄B∥2, respectively.

Figure 1 shows ∥x− x̂∥2, ∥x− x̄B∥2, and ∥x̄B − x̂∥2, for different video test samples. Here are our
key observations: 1) ∥x̄B − x̂∥2 is an increasing function of p, which is consistent with Corollary
3.6. 2) The optimal value of p∗ that minimizes ∥x − x̂∥2, is an increasing function of σz , for all
test videos. 2) In cases where the difference between x̄B and x is relatively large, e.g. Traffic, the
optimized p∗ stays smaller than 0.5, even for large values of σz , as predicted by Theorem 3.4. 3)
On the other hand, in cases where x̄B provides a high-fidelity representation of x and ∥x̄B − x∥2
is relatively small (e.g., Drop), for large values of noise power, the optimal value of p∗ can move
beyond 0.5, as predicted by Theorem 3.5. In other words, in such cases, the algorithm moves toward
estimating the mean of the frames, which is a good representation of the actual data frame.

4 SCI-BDVP: Bagged-DVP for video SCI

Recall the DIP-SCI optimization described in (3), i.e., x̂ = argminc ∥y −Hc∥2, where c = gθ(u),
θ ∈ [0, 1]k and u generated independently and randomly according to a pre-specified distribution.
To solve this optimization, one straightforward approach is to solve minθ f(θ), with f(θ) = ∥y −
Hgθ(u)∥22, by directly applying gradient descent to the differentiable function f(θ). However,
given the highly non-linearity and non-convexity of f(θ), this approach is prone to readily getting
trapped into local a minima and achieving considerably sub-optimal performance. Generally, a
better approach to is to write the DIP-SCI optimization as x̂ = argminc∈C(u) ∥y −Hc∥22, where
C(u) ≜ {c = gθ(u) : θ ∈ [0, 1]k}. This alternative presentation of the problems leads to minimizing
a convex cost function over a non-convex set. A classic approach to solve this optimization is
projected gradient descent (PGD), which while in general is not guaranteed to converge to the global
minima is more apt to recover a solution in the vicinity of the desired signal.
Remark 4.1. Theoretical feasibility of SCI recovery was first established in [38] using a compression-
based framework for modeling source structure. There, the authors considered x̂ = argminc∈C ∥y−
Hc∥22, where C denotes a discrete set of the codewords of a compression code. They theoretically
proved that in that case, despite the non-convexity of the problem, PGD is able to converge to the
vicinity of the desired signal.

The PGD applied to x̂ = argminc∈C(u) ∥y −Hc∥22 proceeds as follows: Start form an initialization
point x0. For t = 1, 2, . . . , T , perform the following two steps i) Gradient descent: xG

t+1 =

xt + µH⊤(y −Hxt), and ii) Projection: xt+1 = argminc∈C(u) ∥c− st+1∥2, or

θ̂t+1 = argminθ ∥gθ(u)− xG
t+1∥2, xt+1 = gθ̂t+1

(u) (7)

To solve the non-convex optimization required at the projection step, one can again employ gradient
descent. However, in addition to the non-convexity of the cost function, another common known issue
with projection into the domain of a DIP is overfitting [25, 6, 39, 40]. Moreover, in PGD, ideally
one needs to set the resolution of the projection step adaptively, such that during the initial steps the
DIP has a coarser resolution and as it proceeds it becomes finer and finer. This poses the following
question: Which DIP structure should one use to optimize the final performance?

To address this question, the authors in [28] have proposed, bagged-DIP, which consists of employing
multiple DIP with different structures in parallel, for the DIP projection step and averaging the outputs.
They show that this approach provides a robust projection module which consistently outperforms
the performance achievable by each individual DIP network, and also provides, at least partially, the
flexibility and adaptability required by PGD.
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Figure 2: The structure of SCI-BDVP. There are K estimates generated, each using a different patch
size. The blue dot denotes averaging the K estimates, the orange dot denotes averaging xP

t and xG
t

with weight α, the red dot denotes the loss function used for training the DIP parameters, requiring
xG
t , y and H. The red lines denote using 3D gradient descent result xG

t , which is used for training
the parameters of the k-th DIP (red dot), and averaging with projection output xP

t (orange dot). The
green lines denote using 2D measurement y and 3D binary mask H for training parameters of DIPs in
different estimate k.

Bagged-DIP, essentially employs bagging idea to mitigate overfitting. As the DIP projection iterations
proceeds (within each step of PGD), overfitting tends to occur after a certain threshold. However, due
to the variance reduction facilitated by bagging, the bagged estimate can demonstrate less overfitting.
In other words, the bagged estimate is less sensitive to the stopping time of the DIP training. In
essence, each DIP is not required to produce the best estimate at every iteration of PGD.

Inspired by the bagged-DIP solution, here we propose the bagged-DVP for SCI (SCI-BDVP), as
shown in Figure 3. SCI-BDVP, in addition to the standard gradient descent (GD) step, defined as
xG
t+1 = xt + µHT (y − Hxt), consists of two main additional components: i) The bagged-DVP

module that simultaneously projects the output of the GD step onto the domain of multiple DVP
networks operating at varying patch sizes (refer to Figure 2 and then averages their outputs, and ii) a
skip connection that computes a weighted average of the output of the GD step and the bagged-DVP
step. Next, we briefly explain the detailed construction of each component.

SCI-BDVP. Figure 2 schematically shows the structure of a bagged-DVP consisting of K individual
DVPs, each operating at a different scale and trained separately. More specifically, for each k,
k = 1, · · · ,K, the 3D video is partitioned into non-overlapping video cubes of dimensions (hk, wk).
For each video cube of dimension (hk, wk, B), we train a separate DVP. In other words, at scale k,
we need to train Nk = H/hk ×W/wk separate DVPs. (The total aggregate number of DVPs that are
trained is going to be

∑K
k=1 Nk.) At each scale, the separately projected video cubes are concatenated

to form xP
t+1,k, a video frame of the same dimensions as the desired video. At scale k, let gkθ (·)

denote a DVP that generates an output video frame of dimensions hk × wk ×B. To cover the whole
video frame at scale k, we need to train Nk separate DVPs gk,iθ (·), each having an independently
drawn input, uk,i. i denotes the index of partitioned video cube. To train each of these Nk DVPs,
we first extract the corresponding parts from xG

t+1, y and H and denote them as xG
t+1,i, yi and Hi,

respectively.2 Then, to train the corresponding DVP to form reconstruction xP
t+1,k,i, we minimize

2Note that given the special structure of the sensing matrix H in SCI, given a part of the input video frame of
the same depth B, one can readily extract the corresponding mask portion and measurements.
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Gradient Descent

xG
t+1 = xt + μHT(y − Hxt)

xG
t+1

xG
t+1 = clip(xG

t+1, 0, 1)

Projection

Bagged-DVP gθ(u)

̂θ ← argminθ ∥gθ(u) − xG
t+1∥22

xt+1 = αxG
t+1 + (1 − α)xP

t+1

xP
t+1 ← g ̂θ(u)

PGD Bagged-DVP

u ∼ U(0,1)

xG
t+1

Figure 3: SCI-BDVP (GD): Iterative PGD-type algorithm. Each step consists of GD and BDVP
projection, with an additional skip-connection.

∥xG
t+1,i − gk,iθ (uk,i)∥22 + ω∥yi −Hig

k,i
θ (uk,i)∥22, where ω > 0 denotes the regularization parameter.

Unlike classic DIP cost function, here we use the measurements y as an additional regularizer. After
recovering xP

t+1,k,i, i = 1, . . . , Nk, we concatenate them based on their locations to form xP
t+1,k.

We repeat the same process, for each k = 1, . . . ,K to find xP
t+1,1, . . . ,x

P
t+1,K . Finally, we use the

idea of bagging and define xP
t+1 = 1

K

∑K
k=1 x

P
t+1,k.

Skip connection. After obtaining xP
t+1 and xG

t+1, we define xt+1 as their weighted average: xt+1 =

αxG
t+1 + (1− α)xP

t+1, where α ∈ (0, 1). (See Figure 3.) In the experiments in Appendix C.3, we
show how the addition of this skip connection consistently improves the achievable performance.

5 Experiments
We evaluate the performance of SCI-BDVP and compare it with existing SCI methods, for σz = 0
and σz > 0. Our experimental results are consistent with our theoretical results on mask optimization.
To evaluate the performance we use peak-signal-to-noise-ratio (PSNR) and structured similarity index
metrics (SSIM) [41]. All the tests are performed on a single NVIDIA RTX 4090 GPU.

Datasets and baselines. We compare our method against the baselines on 6 gray-scaled benchmark
videos including Kobe, Runner, Drop, Traffic, Aerial, Vehicle [18], where the spatial
resolution is 256× 256, and B = 8. We choose 5 representative baseline methods i) GAP-TV [9] :
the Plug-and-play (PnP) method that employs a total-variation denoiser; ii) PnP-FFDnet [17] and
PnP-FastDVDnet [18] : PnP methods that employ pre-trained deep denoisers, iii) PnP-DIP [27]: DIP-
based iterative method; iv) Factorized-DVP [26]: Untrained End-to-End (E2E) network. Baseline
setups follows that exactly stated in the respective papers. The details of proposed SCI-BDVP can be
found in Appendix B.

Masks for noiseless and noisy measurements. For the case of SCI without noise, we obtain
the measurements from equation (1), where we randomly sample mask values from Bern(p) with
p = 0.2, 0.3, . . . , 0.8. For the noisy setup, zero-mean Gaussian noise with variance (σ2), σ = 10,
σ = 25 and σ = 50, is added to the measurements. For the results reported in Tables 1 and 2, the
masks are randomly and independently generated as as Bern(0.5).

5.1 Reconstruction results for video SCI

Noiseless measurement. In Table 1 we compare the performance of SCI-BDVP against baselines.
To highlight the effectiveness of the bagged DVP idea, we also implemented two versions of our
proposed method: i) SCI-BDVP (E2E), an end-to-end BDVP-based solution and 2) SCI-BDVP
(GAP): an iterative algorithm that employs generalized alternative projection (GAP) update rule and
BDVP projection (Refer to Appendix B.1 for a description of GAP and GD and our rationale for
the choice of each method.). It can be observed that both SCI-BDVP (E2E) and SCI-BDVP (GAP)
outperform existing untrained methods. Specifically, SCI-BDVP (GAP) achieves state-of-the-art
performance and on average improves about 1 dB in PSNR compared to other methods.

Noisy measurement. Table 2 compares the performance of SCI-BDVP (E2E) and SCI-BDVP (GD)
with baseline methods. As explained in Appendix B.1, unlike noise-free measurements, in the case of
noisy measurements, especially when noise variance grows, GAP update rule is no longer a reasonable
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Table 1: Reconstruction results on Noise-free measurements. PSNR (dB) (left entry) and SSIM
(right entry) of different algorithms. Best results are in bold, second-best results are underlined.

Dataset Kobe Traffic Runner Drop Crash Aerial Average

GAP-TV 22.38, 0.666 19.60, 0.609 28.15, 0.884 32.49, 0.949 24.46, 0.842 25.65, 0.835 25.46, 0.798
PnP-FFD 30.39, 0.924 23.89, 0.830 32.66, 0.935 39.82, 0.986 24.18, 0.819 24.57, 0.836 25.46, 0.798

PnP-FastDVD 32.79, 0.948 27.89, 0.929 37.52, 0.967 42.35, 0.989 26.76, 0.921 27.92, 0.897 32.54, 0.942

PnP-DIP 22.52, 0.627 20.27, 0.617 29.54, 0.878 31.23, 0.908 24.33, 0.751 25.45, 0.790 25.56, 0.762
Factorized-DVP 25.54, 0.740 23.38, 0.760 30.76, 0.890 36.69, 0.970 26.05, 0.850 26.84, 0.860 28.21, 0.845
SCI-DVP (E2E) 25.24, 0.741 18.89, 0.503 26.92, 0.852 35.00, 0.958 21.82, 0.653 21.31, 0.684 24.87, 0.732

SCI-BDVP (E2E) 27.76, 0.866 22.00, 0.741 32.86, 0.939 39.67, 0.985 23.59, 0.805 23.98, 0.809 28.31, 0.857
SCI-BDVP (GAP) 28.42, 0.886 22.84, 0.779 34.32, 0.954 40.76, 0.986 24.96, 0.851 25.16, 0.837 29.41, 0.882

Table 2: Reconstruction Results on Noisy Measurements. PSNR (dB) (left entry) and SSIM (right
entry) of different algorithms. Best results are highlighted in bold, second-best results are underlined.

Explicit Regularizor Learning-based supervised methods Learning-based unsupervised methods

Dataset σ GAP-TV FFD FastDVD (GAP) FastDVD (PGD) PnP-DIP SCI-BDVP (E2E) SCI-BDVP (GD)

Kobe
10 22.16, 0.580 25.68, 0.706 28.94, 0.811 22.96, 0.595 22.47, 0.562 25.76, 0.741 26.39, 0.805
25 21.65, 0.461 21.37, 0.436 24.44, 0.564 22.62, 0.606 21.34, 0.404 22.24, 0.511 25.89, 0.775
50 20.29, 0.297 16.04, 0.188 19.59, 0.241 20.87, 0.524 19.52, 0.238 16.99, 0.242 23.34, 0.640

Traffic
10 19.50, 0.565 20.56, 0.684 26.11, 0.855 22.65, 0.769 19.95, 0.562 21.06, 0.649 22.66, 0.740
25 19.23, 0.498 18.23, 0.524 22.77, 0.692 21.64, 0.740 19.24, 0.464 18.94, 0.484 22.23, 0.718
50 18.42, 0.385 13.90, 0.310 18.00, 0.367 18.76, 0.552 17.97, 0.344 15.14, 0.295 20.56, 0.611

Runner
10 27.40, 0.766 26.69, 0.739 32.21, 0.845 27.92, 0.844 27.22, 0.663 27.85, 0.764 31.15, 0.916
25 25.99, 0.610 22.18, 0.518 27.63, 0.650 28.33, 0.856 24.93, 0.497 21.93, 0.410 30.31, 0.895
50 23.14, 0.398 15.74, 0.280 22.31, 0.361 27.04, 0.807 21.74, 0.322 16.31, 0.183 25.11, 0.693

Drop
10 30.75, 0.802 29.52, 0.765 33.81, 0.837 31.54, 0.932 29.12, 0.761 31.45, 0.870 35.03, 0.962
25 28.11, 0.614 23.36, 0.527 29.13, 0.646 32.52, 0.940 26.42, 0.842 23.46, 0.480 34.17, 0.954
50 24.09, 0.384 16.73, 0.298 23.40, 0.350 30.48, 0.856 26.46, 0.823 17.56, 0.233 29.86, 0.889

Crash
10 24.12, 0.728 21.83, 0.649 25.61, 0.799 24.70, 0.790 23.46, 0.647 22.54, 0.655 25.57, 0.835
25 23.40, 0.577 19.67, 0.458 24.09, 0.609 24.54, 0.795 22.11, 0.492 19.96, 0.379 25.33, 0.821
50 21.58, 0.376 15.33, 0.255 20.92, 0.342 23.35, 0.706 20.28, 0.294 15.79, 0.178 23.43, 0.693

Aerial
10 25.21, 0.717 21.62, 0.641 26.51, 0.763 23.07, 0.626 24.74, 0.671 22.84, 0.686 25.62, 0.817
25 24.31, 0.570 19.66, 0.447 24.58, 0.586 23.99, 0.737 24.19, 0.613 20.39, 0.410 25.47, 0.796
50 22.16, 0.375 15.18, 0.237 21.49, 0.336 23.51, 0.713 21.07, 0.315 15.82, 0.179 22.97, 0.638

Average
10 25.21, 0.717 21.62, 0.641 26.51, 0.763 25.47, 0.760 24.49, 0.644 25.25, 0.727 27.73, 0.846
25 24.31, 0.570 19.66, 0.447 24.58, 0.586 25.61, 0.779 24.19, 0.613 21.15, 0.446 27.23, 0.827
50 22.16, 0.375 15.18, 0.237 21.49, 0.336 24.00, 0.693 21.17, 0.389 16.27, 0.218 24.21, 0.694

choice. Therefore, for noisy data, we replace the GAP update rule with GD. For completeness, for
PnP-FastDVDnet [18], we report both GAP-based version (as implemented in [18]) and GD-based
version (newly implemented here). We observe SCI-BDVP (GD) considerably outperforms PnP-DIP
[27]3. Additionally, SCI-BDVP (GD) in most cases outperforms pre-trained method [18], across
noise levels, while showing a robust performance on different datasets and noise levels.

Time/computational complexity. The proposed SCI-BDVP method relies on the bagging of multiple
DIP projections. These DIP projections, which vary depending on the patch size, involve different
levels of computational complexity. Table 3 shows the average time required to perform each
DIP projection for each patch size. As observed, the time increases considerably as the patch size
decreases. This is expected because the number of networks that need to be trained grows significantly.
(Refer to Figure 2 for a pictorial representation.) Additional computational complexity analysis of
our proposed method and its comparisons with other methods is included in Appendix B.3.

5.2 Mask optimization

We consider masks that are generated independent of the data as i.i.d.∼ Bern(p). The question is
what value of p optimizes the reconstruction performance? Figures 4 and 5 show the achieved recon-
struction PSNR as a function of p, for the cases of noiseless and noisy measurements, respectively.
For noiseless measurements, the results are shown both for SCI-BDVP (GAP) and PnP-FastDVDnet
(GAP). It can be that for both methods, the optimized value of p is smaller than 0.5 (around 0.4) and

3Since the code of Factorized-DVP [26] is not available online, we could only compare our results with the
results reported for noise-free measurements.
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Table 3: Time complexity of our proposed SCI-BDVP was evaluated on various patch sizes (64, 128,
256) of video blocks, using a standard 1000 DVP iterations for training.

Patch size # of patches Time (min.)

64 16 1.5
128 4 0.28
256 1 0.12

consistent with empirical observations reported in [35, 34]. For the noisy measurements, we see that
p∗ is an increasing function of σz , consistent with our theoretical results discussed earlier in Section
3. (Refer to Appendix C.1 for further results.)
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Figure 4: Reconstruction PSNR (∥x− x̂∥2) and SSIM as a function of p, using SCI-BDVP (GAP)
(two leftmost figures) and PnP-FastDVDnet (GAP) (two rightmost figures). For each value of p, the
masks are independently generated i.i.d.∼ Bern(p).
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Figure 5: Reconstruction PSNR (∥x− x̂∥2) of SCI-BDVP (GD), y-axis, as a function of p, x-axis.
For each value of p, the masks are independently generated i.i.d.∼ Bern(p).

6 Conclusion

We have studied application of UNNs SCI recovery. We propose an iterative solution with bagged
DVP (multiple, separately trained DVPs with averaged outputs), achieving state-of-the-art perfor-
mance among unsupervised solutions for noise-free measurements and robustly outperforming both
supervised and UNN methods for noisy measurements. Additionally, we provide a theoretical frame-
work analyzing the performance of UNN-based methods, characterizing achievable performance and
guiding hardware parameter optimization. Simulations validate our theoretical findings.

An important application of SCI is hyperspectral snapshot imaging (HSI). Our results in this paper
provide a theoretical foundation to understand HSI systems and optimize their hardware. Additionally,
the developed theoretical framework can be used to explore aspects specific to HSI, such as masks
being shifted versions of each other. We also expect our algorithm to effectively address overfitting in
HSI tasks, enhancing reconstruction performance. We plan to explore these aspects further in our
future research.

Several other aspects remain for future work. Theoretically, we only considered i.i.d. Bernoulli masks,
while practical SCI systems typically are more constrained. Additionally, deriving information-
theoretic lower bounds on SCI recovery is an open problem. Experimentally, we focused on classic
baseline videos; exploring a richer set of samples and studying noise models beyond additive Gaussian
noise are interesting directions for future research. We also plan to enhance the algorithm’s efficiency
by parallelizing the projections required by the bagged solution.
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A Proofs

A.1 Preliminary results and definitions

Lemma A.1 (Concentration of χ2 [42]). If Z1, Z2, . . . , Zn are i.i.d. N (0, 1) random variables, then
for any t > 0,

P(

n∑
i=1

Z2
i ≥ m(1 + t)) ≤ e−

m
2 (t−log(1+t)).

Definition A.1. f : Rk → R is called an L-Lipschitz function (or L-Lipschitz continuous) if there
exists a constant L > 0 such that for all x1,x2 ∈ Rk:

|f(x1)− f(x2)| ≤ L||x1 − x2||2.

The constant L is called the Lipschitz constant of f.

A.2 Proof of Theorem 3.1

Let x̃ = argminc=gθ(u): θ∈Rk ∥x − c∥2. By assumption 1√
nB

∥x − x̃∥2 ≤ δ. On the other hand,
since x̂ = argminc=gθ(u): θ∈Rk ∥ y−Hc∥22, ∥y−Hx̂∥2 ≤ ∥y−Hx̃∥2, where y = Hx. Therefore,

∥H(x− x̂)∥2 ≤ ∥H(x− x̃)∥2 (8)

Let x̂q = g[θ̂]q (u), i.e., the reconstruction corresponding to the q-bit quantized version of parameters
θ. By the triangle inequality,

∥H(x− x̂)∥2 = ∥H(x− x̂q + x̂q − x̂)∥2 ≥ ∥H(x− x̂q)∥2 − ∥H(x̂q − x̂)∥2. (9)

Combining (8) with 9, it follows that

∥H(x− x̂q)∥2 ≤ ∥H(x̂q − x̂)∥2 + ∥H(x− x̃)∥2 (10)

Given our assumption about the L-Lipschitz continuity of gθ as a function of θ, it follows that

∥x̂q − x̂∥2 = ∥g[θ̂]q (u)− gθ̂(u)∥2 ≤ L∥θ̂ − θ∥2 ≤ L2−q
√
k. (11)

For u ∈ RnB , using Cauchy-Schwartz inequality, ∥Hu∥22 =
∑n

j=1(
∑B

i=1 Dijuij)
2 ≤∑n

j=1(
∑B

i=1 D
2
ij

∑B
i=1 u

2
ij) ≤ B(maxi,j D

2
ij)∥u∥22 ≤ B∥u∥22, which follows since Di,j ∈ {0, 1}.

Therefore,

∥H(x̂q − x̂)∥2 ≤ B∥x̂q − x̂∥2 ≤ BL2−q
√
k. (12)

For a fixed random initialization z ∈ Rp, define the set of reconstructions derived from q-bit quantized
parameters as Cq(u), i.e.,

Cq(u) = {g[θ]q (u) : θ ∈ [0, 1]k}.
Note that |Cq(u)| ≤ 2qk. Given ϵ1 > 0, ϵ2 > 0, and x, x̃ ∈ RnB , define events E1 and E2 as

E1 = { 1
n
∥H(x− x̃)∥22 ≤ p2

n
∥

B∑
i=1

(xi − x̃i)∥22 +
p− p2

n
∥x− x̃∥22 +Bρ2ϵ1}, (13)

E2 = { 1
n
∥H(x− c)∥22 ≥ p2

n
∥

B∑
i=1

(xi − ci)∥22 +
p− p2

n
∥x− c∥22 −Bρ2ϵ2 : ∀c ∈ Cq(u)}. (14)

respectively. Then, conditioned on E1 ∩ E2 and noting that i) ∥
∑B

i=1(xi − x̃i)∥22 ≤ B∥x− x̃∥22 and
ii) 1√

nB
∥x− x̃∥2 ≤ δ and iii) for any a, b ≥ 0,

√
a+ b ≤

√
a+

√
b, from (10)- (12), we have√

p− p2

nB
∥x− x̂q∥2 ≤

√
p+ (B − 1)p2δ + ρ(

√
ϵ1 +

√
ϵ2) +

√
BL2−q

√
k

n
, (15)
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or

1√
nB

∥x− x̂q∥2 ≤

√
1 + (B − 1)p

1− p
δ +

ρ√
p(1− p)

(
√
ϵ1 +

√
ϵ2) +

√
BL2−q

√
k

p(1− p)n
.

(16)
On the other hand, by the triangle inequality, ∥x − x̂∥2 ≤ ∥x − x̂q∥2 + ∥x̂q − x̂∥2. Therefore,
combining (11) and (16), it follows that

1√
nB

∥x− x̂∥2 ≤

√
1 + (B − 1)p

1− p
δ +

ρ√
p(1− p)

(
√
ϵ1 +

√
ϵ2)

+
√
BL2−q

√
k

p(1− p)n
+ L2−q

√
k

nB
. (17)

To finish the proof, we need to set the parameters (q, ϵ1, ϵ2) and bound P (Ec
1 ∪ Ec

2). For a fixed
u ∈ RnB , ∥Hu∥22 =

∑n
j=1 Uj , where Uj = (

∑B
i=1 Dijuij)

2. Note that

E[Uj ] = E[

B∑
i=1

B∑
i′=1

DijDi′juijui′j ] = p2(

B∑
i=1

ui,j)
2 + (p− p2)

B∑
i=1

u2
i,j . (18)

Moreover, by the Cauchy-Schwartz inequality, Uj ≤ (
∑B

i=1 D
2
ij)

∑B
i=1 u

2
ij ≤ B

∑B
i=1 u

2
ij ≤

B2(∥u∥∞)2.

Therefore, since by assumption for all x ∈ Q, ∥x∥∞ ≤ ρ
2 , using the Hoeffding’s inequality, we have

P(Ec
1) ≤ exp(−2nϵ21

B2
). (19)

Similarly, combining the Hoeffding’s inequality and the union bound, we have

P(Ec
2) ≤ 2qk exp(−2nϵ22

B2
). (20)

Finally, given free parameters η ∈ (0, 1), setting the parameters as

ϵ1 = B

√
ηqk ln 2

2n
, ϵ2 = B

√
qk(1 + η) ln 2

2n
, and q = ⌈log log n⌉,

we have
P ((E1 ∩ E2)c) ≤ 2−ηqk+1 ≤ 2−ηk log logn+1.

For the selected parameters, setting η = 0.5 and using ln 2
2 < 1 and (η

1
4 + (1 + η)

1
4 ) ≤ 2, from (17),

it follows that

1√
nB

∥x− x̂∥2 ≤

√
1 +

Bp

1− p
δ +

2ρ√
p(1− p)

(kB2 log log n

n

) 1
4

+
L

log n

√
k

nB
(

B√
p(1− p)

+ 1).

(21)

A.3 Proof of Corollary 3.3

Let f(p) denote the upper bound in Theorem 3.1. That is,

f(p) =

√
1 +

Bp

1− p
δ +

1√
p(1− p)

υ1 + υ2,

where ϵ1 and ϵ2 are defined as

υ1 = 2ρ
(kB2 log log n

n

) 1
4

+
L

log n

√
kB

n
, υ2 =

L

log n

√
k

nB
,

and do not depend on p. On the other hand, f(0) = f(1) = ∞. Let p∗ denote the value of p ∈ (0, 1)
that minimizes f(p), note that

f ′(p) = (1 +
Bp

1− p
)−1.5 Bδ

(1− p)2
− 1

2
(1− 2p)(p− p2)−1.5υ1. (22)

Note that on one hand limp→0 f
′(p) = −∞ and on the other hand f ′( 12 ) > 0, which implies that p∗

where f ′(p∗) = 0 belongs to (0, 1
2 ).
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A.4 Proof of Theorem 3.4

Let x̃ = argminc=gθ(u): θ∈Rk ∥x− c∥2 and

x̂ = gθ̂(u) = argmin
c=gθ(u): θ∈Rk

∥yv −Hc∥22, x̂q = g[θ̂]q (u).

That is, x̂q denotes the reconstruction corresponding to the q-bit quantized version of θ̂. Following
the same argument as the one used in the proof of Theorem 3.1, since y = Hx+ z, it follows that
1√
n
∥x− x̃∥2 ≤ δ and ∥H(x− x̂)+z∥2 ≤ ∥H(x− x̃)+z∥2. On the other hand, ∥H(x− x̂)+z∥22 =

∥H(x−x̂)∥2+2⟨z,H(x−x̂)⟩+∥z∥2, and ∥H(x−x̃)+z∥22 = ∥H(x−x̃)∥2+2⟨z,H(x−x̃)⟩+∥z∥2.
Therefore,

∥H(x− x̂)∥2 ≤ ∥H(x− x̃)∥2 + 2|⟨z,H(x− x̂)⟩|+ 2|⟨z,H(x− x̃)⟩|. (23)

Moreover, using the triangle inequality,

|⟨z,H(x− x̂)⟩| ≤ |⟨z,H(x− x̂q)⟩|+ |⟨z,H(x̂q − x̂)⟩|
(a)

≤ |⟨z,H(x− x̂q)⟩|+ ∥z∥2∥H(x̂q − x̂)∥2,

where (a) follows from Cauchy-Schwartz inequality. Therefore,

∥H(x− x̂)∥2 ≤ ∥H(x− x̃)∥2 + 2|⟨z,H(x− x̂q)⟩|+ 2|⟨z,H(x− x̃)⟩|+ ∥z∥2∥H(x̂q − x̂)∥2.
(24)

Note that, by the triangle inequality, ∥H(x − x̂)∥2 ≥ ∥H(x − x̂q)∥2 − ∥H(x̂q − x̂)∥2, which
implies that ∥H(x − x̂)∥22 ≥ ∥H(x − x̂q)∥22 − 2H(x − x̂q)∥2∥H(x̂q − x̂)∥2 + ∥H(x̂q − x̂)∥22 ≥
∥H(x− x̂q)∥22 − 2∥H(x− x̂q)∥2∥H(x̂q − x̂)∥2. Therefore, combining this inequality with (24), it
follows that

∥H(x− x̂q)∥2 ≤∥H(x− x̃)∥2 + 2|⟨z,H(x− x̂q)⟩|+ 2|⟨z,H(x− x̃)⟩|
+ (∥z∥2 + 2∥H(x− x̂q)∥2)∥H(x̂q − x̂)∥2. (25)

Similar to the proof of Theorem 3.1, for a fixed random initialization u ∈ Rp, define Cq(u) =
{g[θ]q (u) : θ ∈ [0, 1]k}. Also, given ϵ1, ϵ2, ϵ3 > 0, and x, x̃ ∈ RnB , define events E1 and E2 as (13)
and (14), respectively. Moreover, define event E3 as

E3 = { 1
n
∥H(x− c)∥22 ≤ p2

n
∥

B∑
i=1

(xi − ci)∥22 +
p− p2

n
∥x− c∥22 +Bρ2ϵ3 : ∀c ∈ Cq(u)}, (26)

Compared to the proof of Theorem 3.1, (24) involves three terms that involve Gaussian noise z. For
c ∈ Cq(u), define ϕ(c) as

ϕ(c) ≜ ⟨z,H(x− c)⟩.
Conditioned on the mask D, ϕ(c) is a zero-mean Gaussian random variable with

E[(ϕ(c))2] = σ2
z

n∑
j=1

[( B∑
i=1

Dij(xij − cij
)2]

= σ2
z∥

∑
Di(xi − ci)∥22.

Let t(c) ≜ σz∥
∑

Di(xi − ci)∥2. Then, for any given ϵz > 0,

P
(
|ϕ(c)| ≥

√
2nϵzt(c)

)
=

∑
d

P
(
ϕ(c) ≥

√
2nϵzt(c) | D = d

)
P(D = d)

(a)

≤ 2
∑
d

P(D = d) exp(−2nϵ2zt
2(c)

2t2(c)
)

≤ 2
∑
d

P(D = d) exp(−nϵ2z)

≤ 2 exp(−nϵ2z), (27)
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where (a) follows because for any Gaussian random variable G ∼ N (0, σ2), applying the Chernoff
bound, we have P(|G| > t) ≤ 2e−t2/2σ2

. Given ϵz1, ϵz2, ϵz3 > 0, define events Ez1, Ez2 and Ez3 as

Ez1 =
{∣∣⟨z,H(x− x̃)⟩

∣∣
2
≤ ϵz1

√
2nBσz∥H(x− x̃)∥2

}
, (28)

Ez2 =
{∣∣⟨z,H(x− c)⟩

∣∣ ≤ ϵz2
√
2nBσz∥H(x− c)∥2 : ∀c ∈ Cq(u)

}
, (29)

and

Ez3 =
{
∥z∥22 ≤ nσ2

z(1 + ϵz3)
}
, (30)

respectively. From (27), noting that |Cq(u)| ≤ 2qk, it follows that

P
(
Ec
z1

)
≤ 2 exp(−nBϵ2z1), (31)

and

P
(
Ec
z2

)
≤ 2qk+1 exp(−nBϵ2z2). (32)

Define event E as E = E1 ∩ E2 ∩ E3 ∩ Ez1 ∩ Ez2 and

h(p) ≜ p+ (B − 1)p2.

Conditioned on E , since by assumption 1√
nB

∥x− x̃∥2 ≤ δ, we have

∣∣∣⟨z, B∑
i=1

Di(xi − x̃i)⟩
∣∣∣ ≤ ϵz1

√
2nσ2

z((p+ (B − 1)p2)nBδ2 + nBρ2ϵ1),

or

1

nB

∣∣∣⟨z, B∑
i=1

Di(xi − x̃i)⟩
∣∣∣ ≤ ϵz1σz

√
2h(p)δ + σzρϵz1

√
2ϵ1, (33)

where the last line follows because for any a, b > 0,
√
a+ b ≤

√
a+

√
b. Define

∆q ≜
1√
nB

∥x− x̂q∥2.

Then, similar to (33), conditioned on E , since x̂q ∈ Cq(u), it follows that

1

nB

∣∣∣⟨z,H(x− x̂q)⟩
∣∣∣ ≤ ϵz2

nB

√
2nBσ2

z((p+ (B − 1)p2)∥x− x̂q∥22 + nBρ2ϵ3)

≤ ϵz2σz

√
2h(p)∆q + σzρϵz2

√
2ϵ3, (34)

Conditioned on E , combining (25), (33), and (34) it follows that

(p− p2)∆2
q − ρ2ϵ2 ≤h(p)δ2 + ρ2ϵ1 + 2

√
2ϵz2σz(

√
h(p)∆q + ρ

√
ϵ3)

+ 2
√
2ϵz1σz(

√
h(p)δ + ρ

√
ϵ1)

+ (σz

√
1 + ϵz3 + 2

√
B(

√
h(p)∆q + ρ

√
ϵ3))L2

−q

√
k

n
, (35)

where we have used ∥H(x̂q − x̂)∥2 ≤ BL2−q
√
k derived in (12). Note that since ∆q ≤ ρ and

h(p) ≤ B, the last term in (35) that corresponds to the quantization error can be bounded as

(σz

√
1 + ϵz3 + 2

√
B(

√
h(p)∆q + ρ

√
ϵ3))

BL2−qk√
n

≤ cn,

where

cn ≜ (σz

√
1 + ϵz3 + 2

√
Bρ(

√
B +

√
ϵ3))L2

−q

√
k

n
,
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and does not depend on ∆q . Rearranging the terms in (11) and letting

ϵo ≜ ρ2(ϵ1 + ϵ2) + 2
√
2ρσz(ϵz1

√
ϵ1 + ϵz2

√
ϵ3).

it follows that

(p− p2)∆2
q − σzϵz2

√
8h(p)∆q ≤ h(p)δ2 + ϵz1

√
8h(p)δσz + ϵo + cn. (36)

Therefore,

(p− p2)
(
∆q −

σzϵz2
√
2h(p)

p(1− p)

)2

≤ σ2
zϵ

2
z2h(p)

2p(1− p)
+ h(p)δ2 + ϵz1

√
8h(p)δσz + ϵo + cn. (37)

This implies that

∆q ≤
σzϵz2

√
2h(p)

p(1− p)
+

√
1

p(1− p)

(σ2
zϵ

2
z2h(p)

2p(1− p)
+ h(p)δ2 + ϵz1

√
8h(p)δσz + ϵo + cn

)
. (38)

Therefore, since i) ∥x− x̂∥2 ≤ ∥x− x̂q∥2 + ∥x̂q − x̂∥2 and ii) from (11), ∥x̂q − x̂∥2 ≤ L2−q
√
k,

we have

1√
nB

∥x− x̂∥2 ≤
σzϵz2

√
2h(p)

p(1− p)
+

√
1

p(1− p)

(σ2
zϵ

2
z2h(p)

2p(1− p)
+ h(p)δ2 + ϵz1

√
8h(p)δσz + ϵo + cn

)
+ L2−q

√
k

nB
. (39)

Using
√
1 + α ≤ 1 + 2α, for α > 0, and noting that h(p)

p(1−p) = 1 +Bp/(1− p), we have

1√
nB

∥x− x̂∥2 ≤
σzϵz2

√
2h(p)

p(1− p)
+ δ

√
1 +

Bp

1− p

(
1 +

σ2
zϵ

2
z2

p(1− p)δ2
+ 4ϵz1σz

√
2

h(p)δ2
+

2(ϵo + cn)

δ2h(p)

)
+ L2−q

√
k

nB
. (40)

Next we set the parameters by analyzing the probability event E . Applying the union bound,

P(Ec) =P((E1 ∩ E2 ∩ E3 ∩ Ez1 ∩ Ez2 ∩ Ez3)c)

≤ exp(−2nϵ21
B2

) + 2qk
(
exp(−2nϵ22

B2
) + exp(−2nϵ23

B2
)
)
+ e−

n
2 (ϵz3−log(1+ϵz3))

+ 2 exp(−nBϵ2z1) + 2qk+1 exp(−nBϵ2z2)), (41)

where we have used Lemma A.1 to bound P(Ec
z3). Similar to the proof of Theorem 3.1, given free

parameters η1, η2 ∈ (0, 1), let

ϵ1 = B

√
η1qk ln 2

2n
, ϵ2 = ϵ3 = B

√
qk(1 + η1) ln 2

2n
, and q = ⌈log log n⌉.

Also, set

ϵz1 =

√
η2qk ln 2

nB
, ϵz2 =

√
(1 + η2)qk ln 2

nB
, and ϵz3 = 1.

Following a similar argument as the one used in the proof of Theorem 3.1, it follows that

P (Ec) ≤ 2−η1qk+2 + 2−η2qk+1 + e−0.3n ≤ 2−η1k log logn+2 + 2−η2k log logn+1 + e−0.3n.

Setting η1 = η2 = 0.5, it is straight forward to see that

ϵo ≤ ρ2
√

qkB2

n
+ ρσz(

q3k3

B2n3
)

1
4

(a)

≤ ρ2
1

(log n)0.25
+ ρσz(

k3

B2(n log n)3
)

1
4 , (42)

where (a) follows from (5). Also, for the selected parameters and noting that B ≥ 1,

cn ≤ (σz

√
2 + 2Bρ(1 + (

qk

n
)0.25)

L

log n

√
k

n
≤ (σz

√
2 + 4Bρ)

L

log n
, (43)

18



Therefore, cn = O( 1
logn ). Moreover,

ϵz1 ≤
√

k log log n

nB
, ϵz2 ≤

√
2k log log n

nB
.

Therefore, from (39), and using i)
√∑

i ai ≤
∑

i

√
ai, for ai ≥ 0, ii) h(p) ≤ B for all p ∈ [0, 1]

and iii) B ≥ 1 (which implies from our assumption that k(log n)(log log n) < n), it follows that

1√
nB

∥x− x̂∥2 ≤δ

√
1 + (B − 1)p

1− p
+

3σz

p(1− p)

√
1

log n
+ (

8

log n
)

1
4

√
δσz

p(1− p)

+

√
1

p(1− p)

(
ρ

1

(log n)
1
8

+
√
ρσz(

1

B(log n)3
)

1
4 +

√
cn

)
+ o(

1

log n
),

or, rearranging the term in (1), we have

1√
nB

∥x− x̂∥2 ≤δ

√
1 +

Bp

1− p
+

3σz

p(1− p)

√
1

log n

+ (
8

log n
)

1
4

√
δσz

p(1− p)

(
1 +

1

B81/4
√
log n

)
+

√
1

p(1− p)
(ρ

1

(log n)
1
8

+
√
cn) + o(

1

log n
), (44)

which yields the desired result.

A.5 Proof of Theorem 3.5

Following the steps of the proof of Theorem 3.4, we can derive (25), i.e., ∥H(x− x̂q)∥2 ≤ ∥H(x−
x̃)∥2+2|⟨z,H(x− x̂q)⟩|+2|⟨z,H(x− x̃)⟩|+(∥z∥2+2∥H(x− x̂q)∥2)∥H(x̂q− x̂)∥2. We defined
events E1, E2, E3, Ez1, Ez2 and Ez3 as before. Note that conditioned on E2,

1

n
∥H(x− x̂q)∥22 ≥ p2

n
∥

B∑
i=1

(xi − x̂i)∥22 +
p− p2

n
∥x− x̂∥22 −Bρ2ϵ2.

In the proof of Theorems 3.1 and 3.4, to apply this inequality and bound the error, we ignored the
positive term p2

n ∥
∑B

i=1(xi − x̂i)∥22 and used 1
n∥H(x − x̂q)∥22 ≥ p−p2

n ∥x − x̂∥22 − Bρ2ϵ2. Here,

instead we ignore p−p2

n ∥x− x̂∥22 and conditioned on E2, we use

1

n
∥H(x− x̂q)∥22 ≥ p2

n
∥

B∑
i=1

(xi − x̂i)∥22 −Bρ2ϵ2. (45)

Define E = E1 ∩ E2 ∩ E3 ∩ Ez1 ∩ Ez2 similar to the proof of Theorem 3.4. Following the steps used
in deriving (36) in the proof of Theorem 3.4, and applying i) the lower bound in (45) and ii) ∆q ≤ ρ,
it follows that, conditioned on E ,

p2

nB
∥

B∑
i=1

(xi − x̂q,i)∥22 ≤ h(p)δ2 + (ϵz1δ + ρϵz2)σz

√
8h(p) + ϵo + cn. (46)

Let

x̄ =
1

B

B∑
i=1

xi, ˆ̄xq =
1

B

B∑
i=1

x̂q,i, and ˆ̄x =
1

B

B∑
i=1

x̂i,

and

∆̄2
q =

1

n
∥x̄− ˆ̄xq∥22, ∆̄2 =

1

n
∥x̄− ˆ̄x∥22.
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Using these definitions, (46) can be written as

∆̄2
q ≤ 1

p2B

(
h(p)δ2 + (ϵz1δ + ρϵz2)σz

√
8h(p) + ϵo + cn

)
. (47)

Noting that 1
p2Bh(p) = B−1

B + 1
pB ≤ 1 + 1

pB ,

∆̄2
q ≤ (1 +

1

pB
)δ2 +

1

p2B

(
(ϵz1δ + ρϵz2)σz

√
8h(p) + ϵo + cn

)
. (48)

Using Cauchy-Schwarz inequality, ∥
∑B

i=1(x̂i − x̂q,i)∥22 ≤ B∥x̂− x̂q∥22 and combining it with (11),
it follows that

∥
B∑
i=1

(x̂i − x̂q,i)∥22 ≤ B(L2−q
√
k )2. (49)

or

1√
n
∥ˆ̄x− ˆ̄xq∥2 ≤ L2−q

√
k

nB
. (50)

Therefore, using the triangle inequality as ∥x̄− ˆ̄x∥2 ≤ ∥x̄− ˆ̄xq∥2 + ∥ˆ̄xq − ˆ̄x∥2, it follows from (48)
and (50) that

1√
n
∥x̄− ˆ̄x∥2 ≤ L2−q

√
k

nB
+

√
(1 +

1

pB
)δ2 +

1

p2B

(
(ϵz1δ + ρϵz2)σz

√
8h(p) + ϵo + cn

)
≤ L2−q

√
k

nB
+ δ

√
1 +

1

pB
+

1

p
√
B

√(
(ϵz1 + ϵz2)ρσz

√
8h(p) + ϵo + cn

)
(51)

where the last line follows from δ ≤ ρ, and
√
a+ b ≤

√
a+

√
b, for a, b ≥ 0. We set the parameters

as in the proof of Theorem 3.5 as

ϵ1 = B

√
0.5qk ln 2

2n
, ϵ2 = ϵ3 = B

√
1.5qk ln 2

2n
, and q = ⌈log log n⌉.

Also, set

ϵz1 =

√
0.5qk ln 2

nB
, ϵz2 =

√
1.5qk ln 2

nB
, and ϵz3 = 1.

Then, using the bounds in (42) and (43), it follows from (51)

1√
n
∥x̄− ˆ̄x∥2 ≤ δ

√
1 +

1

pB
+

1

p

√
2ρσz

B

(k log log n
n

h(p)
) 1

4

+
1

p
√
B
υn +

L

log n

√
k

nB
, (52)

where υn = O( 1

(logn)
1
8
) and does not depend on p.

B Setup of SCI-BDVP

B.1 SCI-BDVP: Descent step

As explained in the paper, to solve the optimization described in (3), we employ the PGD algorithm,
with an additional skip connection. The details of the projections step using bagged-DVP and also
the skip connection are described in Section 4. Here, we review the descent step, as we employ two
different operators depending on whether the measurements are noisy or noiseless.

Descent step:

• For noise-free measurements, we use GAP update rule [43]:

xG
t+1 = xt + µH⊤(HH⊤)

−1
(y −Hxt), (53)
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• For nosiy measurement, we use gradient descent (GD):

xG
t+1 = xt + µH⊤(y −Hxt), (54)

In both cases µ denotes the step size.

Compared to the GD, if µ = 1, GAP, at each iteration, projects the current estimate x(t) onto the
y = Hx hyperplane. Note that due to the special structure of the sensing matrix H, HH⊤ is a
diagonal matrix and therefore it is straightforward to compute its inverse, as required by GAP.

In our experiments, we found that in the case of noise-free measurements, the GAP update rule
consistently showed better convergence compared to GD. Therefore, we adopted GAP update rule for
the case of noise-free measurements. However, for noisy measurements, even the true signal does
not lie on y = Hx hyperplane, and therefore, application of GAP is no longer theoretically founded.
Hence, for all experiments done for noisy measurements, we use the classic GD update rule.

In summary, Algorithm 1 below shows the steps of SCI-BDVP.

Algorithm 1 SCI-BDVP
Require: measurement y, mask H

1: Initial x0 = H⊤y.
2: for t = 1, . . . , T do
3: Descent step
4: Update xG

t with Eq. (53) or (54).
5: Projection step
6: Generate xP

t as the output of bagged-DVP (refer to Fig. 2)
7: Update xt with xt = αxG

t + (1− α)xP
t

8: end for
9: Output: Reconstructed signal x̂ = xT .
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Figure 6: Network structure of DVP we use in SCI-BDVP.

B.2 Implementation details

In the projection step, we use the same structure design for bagged-DVP, for both noiseless and noisy
measurements. Inspired by deep decoder structure [6], we design the neural nets, using three DVP
blocks and one video output block shown in Figure 6. Each DVP block is composed of Upsample,
ReLU and Conv blocks. The output block only contains the Conv block. Here, we use Conv 3× 3 and
the number of channels are fixed to 128. Lastly, the input u of each DVP (described in DVP function
gθ(u)) is generated independently using a Uniform distribution, U(0, 1).

Since the input video consists of B 256 × 256 frames, we choose three DVP structures, one with
16 64× 64×B patches, one with 4 128× 128×B patches, and one with a single 256× 256×B
frame. For each size of the patches, we perform mirror padding to augment the each patch with the
size of h/8, since it is square patch, where h represent the height of the padded patch. And for each
patch of each estimate, we train the separate DVP module.

The hyperparameters are set as follows: the learning rate of the DVPs is set to 0.01; weight ω = 0.1

for measurement loss term ω∥yi −Hig
k,i
θ (uk,i)∥22 in Figure 2. For noise free case, GAP, we set the

step size µ = 1.0, and µ = 0.1 for the noisy simple GD case.
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Table 4: Number of inner and outer iterations for training SCI-BDVP for different datasets and
different estimates.

Iterations Kobe Traffic Runner Drop Crash Aerial

No noise

Inner iteration-64 2000 700 2000 2000 700 700
Inner iteration-128 2000 700 2000 2000 700 700
Inner iteration-256 4000 1400 4000 4000 1400 1400

Outer iteration 75 35 75 75 35 35

Noisy

Inner iteration-64 900 900 900 900 900 900
Inner iteration-128 900 900 900 900 900 900
Inner iteration-256 1800 1800 1800 1800 1800 1800

Outer iteration 35 35 35 35 35 35

Table 5: Time complexity over different methods on one 8-frame benchmark video block.

Methods Time (min.)

No noise

PnP-DIP [27] 18
Factorized-DVP [26] 15
Simple-DVP(E2E) 10

SCI-BDVP 35 or 220

No noise

PnP-DIP [27] 18
Factorized-DVP [26] −
Simple-DVP(E2E) 10

SCI-BDVP 40

B.3 Time/computational complexity

Implementing SCI-BDVP involves outer loop iterations (described in Algorithm 1) and also inner
loop iterations for training DIPs. Table 4 presents average number of inner loop iterations used
for different patch sizes (64, 128, 256) of various videos, and the number of outer loop iterations.
Detailed time consumption for each patch level computation is recorded in Table 3. A comparison
across different UNN-based methods is provided in Table 5. All comparisons are performed on
a single NVIDIA RTX 4090. It is important to note that training a bagged DIP requires training
multiple separate DIPs. This process can be readily parallelized, which is expected to significantly
speed up the algorithm. We plan to explore this direction to optimize the algorithm’s efficiency in
future work. Lastly, making a direct comparison among all methods is challenging because, for
supervised methods, the main time is spent in training, whereas, for unsupervised methods, the main
time is spent on training the UNNs. This is an expected trade-off for requiring no training data and
achieving a robust solution.

C Additional studies

C.1 Mask optimization

In this paper, we explored binary masks that are generated i.i.d. Bern(p). Figures 4 and 5 show
the effect of probability p on the performance of SCI-BDVP (GAP) (noiseless measurements) and
SCI-BDVP (GD) (noisy measurements), respectively. In this section, we perform similar investigation
of the effect of p on the performance of other SCI methods, namely, PnP-FastDVD [18] and PnP-DIP
[27]. Figure 7 shows the results corresponding to PnP-FastDVD. It can be observed that the trends are
consistent with the performance of our proposed SCI-BDVP (GAP): i) for noiseless measurements,
the optimal performance is achieved at p∗ < 0.5, ii) for noisy measurements, p∗ is an increasing
function of σz .

On the other hand, Figure 8 shows the performance achieved by PnP-DIP proposed in [27]. It can
be observed that the reconstruction performance is not longer a smooth function of p, unlike the
performance of SCI-BDVP and PnP-FastDVD. We believe that the reason lies in the the limitations
of UNNs (or DIP) explained before, such as overfitting and instability. In the next section, we further
explore this issue and explain how bagging can address the problem.
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Also, we include the detailed PSNR and SSIM results using SCI-BDVP on different measurement
noise level in Table 6. We can find when σ = 50, the effect of the mask optimization will improve
the overall result around 1 dB in PSNR, 0.1 in SSIM. Here, all the algorithm settings are kept intact,
and the only variation is in the mask non-zero probability p varies between 0.5 to 0.7. This further
highlights the stability of the proposed SCI-BDVP solution.
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Figure 7: PSNR of ∥x− x̂∥ under different mask generated from Bern(p) of different measurement
noise level using baseline method (PnP-FastDVD[18] with GAP gradient descent algorithm).
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Figure 8: PSNR of ∥x− x̂∥ under different mask generated from Bern(p) of different measurement
noise level using baseline method (PnP-DIP[27] with ADMM gradient descent algorithm).

C.2 Effect of bagging

We discussed how bagging can help address the DIP (or DVP) overfitting issue and provide a robust
projection module, which can robustly capture the source structure, without any training data. Figure 9
shows the impact of bagging on the performance of SCI-BDVP in Section 4, by comparing it with the
performances of different SCI-DVP solutions, where instead of a bagged version, we used a simple
DVP for projection.

Figure 10 shows the qualitative reconstruction results of our proposed SCI-BDVP in comparision
with the non-bagged version, SCI-DVP. An expected, the results show that using bagging improves
the reconstruction quality, in both noise-free and noisy cases.
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Table 6: Detailed mask optimization effect on reconstruction with SCI-BDVP. PSNR (dB) (left
entry) and SSIM (right entry) of the reconstruction results on different videos. (Reg.) represent
reconstruction on using fixed regular binary mask, Dij ∼ Bern(0.5). (OPT.) represents model tested
on fixed optimized mask.

Noise Level Mask Choice Kobe Traffic Runner Drop Crash Aerial Average

σ = 0
B-DVP (GAP) Reg. 28.42, 0.886 22.84, 0.779 34.32, 0.954 40.76, 0.986 24.96, 0.851 25.16, 0.837 29.41, 0.882
B-DVP (GAP) Opt. 28.73, 0.891 23.47, 0.791 35.00, 0.958 41.33, 0.988 25.66, 0.860 25.52, 0.841 29.95, 0.888

σ = 10
B-DVP (PGD) Reg. 26.39, 0.805 22.66, 0.740 31.15, 0.916 35.03, 0.962 25.57, 0.835 25.62, 0.817 27.73, 0.846
B-DVP (PGD) Opt. 26.48, 0.812 22.72, 0.743 31.25, 0.914 35.30, 0.963 25.50, 0.831 25.47, 0.814 27.78, 0.846

σ = 25
B-DVP (PGD) Reg. 25.89, 0.775 22.23, 0.718 30.31, 0.895 34.17, 0.954 25.33, 0.821 25.47, 0.796 27.23, 0.827
B-DVP (PGD) Opt. 25.89, 0.775 22.23, 0.718 30.31, 0.895 34.17, 0.954 25.33, 0.821 25.47, 0.796 27.23, 0.827

σ = 50
B-DVP (PGD) Reg. 23.34, 0.640 20.56, 0.611 25.11, 0.693 29.86, 0.889 23.43, 0.693 22.97, 0.638 24.21, 0.694
B-DVP (PGD) Opt. 23.71, 0.685 21.02, 0.649 26.52, 0.812 31.85, 0.930 24.26, 0.772 24.10, 0.735 25.24, 0.764
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Figure 9: Effect of bagging. Reconstruction PSNR of SCI-BDVP vs. SCI-DVP, where in each
SCI-DVP a separate DVP is employed (noise-free measurements).

Finally, to further highlight the impact of the bagging operation, here we explore the performance
of the proposed bagged DVP solution for the classic inverse problem of denoising from additive
Gaussian noise. Figure 12 shows the denoising performance of the proposed bagged-DVP solution
(refer to Figure 2) in denoising x from measurements y = x+z, where z is generated i.i.d. N (0, σ2

z).
We compare the performance of bagged-DVP with the three DVP structures that are used as the
building components of our bagged-DVP. As explained earlier, each of these DVPs operates at a
different patch size. It can be observed that BDVP consistently outperforms the individual DVPs and
shows a much more smooth convergence behaviour. Given that BDVP only averages the outputs of
the three individual DVPs, the observed gain suggests the independence of the estimates (at least
partially), which leads to the observed gain.

C.3 Effect of averaging coefficient

We explore the effect of coefficient α used in combining the outputs from gradient descent and
projection steps at time t,

xt = αxG
t + (1− α)xP

t ,

In Figure 11 left panel, it can be observed that without the skip connection, the performance drops by
around 4 dB. However, for α ∈ [0.1, 0.7] the performance is stable and does not vary considerably
as α changes. On the other extreme case when α = 1, when there is no projection, as expected, the
performance severely degrades.
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C.4 Effect of reconstruction loss coefficient

We explore the effect of coefficient in reconstruction measurement loss, the second term of the loss
function in Figure 2

ω∥y −Agθ(u)∥2.

In the middle and right panel of Figure 11, we can find that for noise-free case the reconstruction
results is not sensitive to the change of ω. However, in the noisy case, when we increase the ω the
reconstruction will drop and if not including the measurement loss term, ω = 0, the results will also
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Figure 10: Reconstruction results of SCI-BDVP vs. SCI-DVP. (leftmost images are clean frames).

drop. This is due to in noisy case, the measurement y is no longer the actual measurement, but we
still need some information from corrupted y to boost the reconstruction results.
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Figure 11: (Left) Effect of skip connection coefficient α (noiseless measurements). (Middle) Effect
of reconstruction loss coefficient ω (noiseless measurements). (Right) Effect of reconstruction loss
coefficient ω effect (noisy measurements) (σ = 25).
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Figure 12: Unsupervised video denoising – Effect of bagging. Reconstruction PSNR corresponding
to denoising using BDVP versus different DVP structures. (8 frames videos with additive Gaussian
noise level of σ = 25)

27



NeurIPS Paper Checklist

1. Claims
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paper’s contributions and scope?
Answer: [Yes]
Justification: In the following we list the claims made in the abstract and introduction
and references on how they are accurately addressed in the paper. (Section 1.1 lists the
contributions of the paper)
• (theoretic) Theoretical analysis of untrained-neural-net-based (UNN-based) SCI re-

covery methods: Sections 3.2 employs DIP hypothesis and theoretically analyzes
such DIP-based SCI methods, for both noisy and noiseless measurements. (Refer
to Theorems 3.1, 3.4 and 3.5 for the theoretical characterization of UNN-based SCI
recovery.)

• (theoretic) Theoretical statements on the optimization of binary-valued masks under
both noisy and noiseless measurements: Corollary 3.3 and Corollary 3.6 provide the
implications of our theoretical results on mask optimization.

• (theoretic) Theoretic upper bound on the number of frames that can be recovered as a
single encoded 2D measurement frame as a function of the parameters on the UNN:
Corollary 3.2 presents this result.

• (algorithmic) Introduction of a novel unsupervised SCI recovery algorithm: The pro-
posed method, SCI-BDVP, is introduced in Section 4.

• (experimental) We have implemented the proposed method (SCI-BDVP) and compared
its performance with both unsupervised and supervised SCI solutions, under both noisy
and noiseless measurements. (Refer to Section 5.)

• (experimental) We have claimed that the proposed method achieves state-of-the-art
performance among existing unsupervised methods. This is confirmed in the reported
results in Table 1 and Table 2.

2. Limitations
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Answer: [Yes]
Justification: The second paragraph in Section 6 reviews the theoretical and experimental
limitations of our results.
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Answer: [Yes]
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• Theorem 3.1: Proved in Section A.2.
• Corollary 3.2: Straightforward result following Theorem 3.1.
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Unfortunately we didn’t have enough space in the paper to provide highlights of the proofs
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification:

• We have released our codes.
• Our algorithm is clearly explained in the paper. We have also given a detailed descrip-

tion of the UNNs used in the our proposed bagged-DVP solution.
• We have clearly stated our choice of hyperparameters in the paper.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our code which includes all the parameter settings and
implementations. For data, we have used benchmark videos including Kobe, Runner,
Drop, Traffic, Aerial, Vehicle [18].

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

• Our proposed SCI-BDVP algorithm and the structure its main component, i.e., bagged
DVP, are presented in Section 4

• The descent step used by our proposed SCI-BDVP algorithm is explained in Section B.1
of the supplementary materials.

• The hyperparameter settings are explained in Section B.2 supplementary materials.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We have not provided error bars due to computational complexity of solving the
required NN training. We want to highlight two points: 1) Since our method is unsupervised,
its performance on each data cube is independent of any training data. 2) None of the cited
prior works on SCI recovery include error bars.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of our computation resources are presented in Section B.2, Sec-
tion B.3 and 5.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our proposed solution is an unsupervised method for SCI recovery, which
can enable recovery without any training data. Moreover, we provide theoretical under-
standing of the problem, which enable hardware optimization, without requiring extensive
computationally-intensive empirical optimizations. All the positive aspects are discussed in
the paper. The work does not have any negative societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the source of the benchmark videos and also the codes of
different algorithms used in our implementations.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:

• We have submitted an anonymized version of our code that implements our proposed
SCI-BDVP algorithm.

• We will later upload the code to GitHub and make it public.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

30


	Introduction
	Contributions of this Work
	Notations

	Related Work
	DIP for SCI inverse problem
	SCI inverse problem
	Theoretical analysis of DIP-based SCI recovery
	Noise-free measurements
	Noisy measurements


	SCI-BDVP: Bagged-DVP for video SCI
	Experiments
	Reconstruction results for video SCI
	Mask optimization

	Conclusion
	Proofs
	Preliminary results and definitions
	Proof of Theorem 3.1
	Proof of Corollary 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5

	Setup of SCI-BDVP
	SCI-BDVP: Descent step
	Implementation details
	Time/computational complexity

	Additional studies
	Mask optimization
	Effect of bagging
	Effect of averaging coefficient
	Effect of reconstruction loss coefficient


