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Abstract—ODbstructive Sleep Apnea (OSA) is a prevalent
disorder characterized by intermittent cessation of breathing
during sleep. The established gold standard for OSA diagnosis,
Polysomnography (PSG), is uncomfortable for patients. This
paper proposes a user-friendly and fine-grained method for
detecting OSA events with millimeter-wave radar and oximeter.
To adequately fuse the two sensors, we introduce the multi-scale
feature extraction strategy and neighboring short-term feature
enhancement strategy (Ms&Ne). Key features are extracted at
long, medium, and short scales, capturing both long-term
characteristics and detailed variations of the signals, effectively
addresses the signal misalignment issue due to oxygen
desaturation delay. Short-scale features are further
incorporated to enhance short-term variation detection. The
eXtreme Gradient Boosting (XGBoost) is utilized for tree-based
feature interactions. Clinical trials involving 121 patients at
Shanghai Sixth People’s Hospital demonstrate that our method
achieves a highest F1-score of 0.7713 for OSA detection at the
second-by-second level.

Keywords—obstructive sleep apnea, millimeter-wave radar,
oxygen saturation, feature fusion

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common sleep disease
that causes daytime sleepiness, metabolic disorders,
hypertension, etc., and is closely related to the incidence of
cardiovascular diseases [1]. Currently, the gold standard for
diagnosing OSA is Polysomnography (PSG) [2]. It is difficult
for PSG to popularize due to its over-reliance on specialized
equipment and personnel [3], as well as the discomfort of the
diagnostic process [4], [5].

Driven by the demand for diagnostic comfort, the
contactless technique for detecting OSA, developed based on
infrared video [6], [7], piezoelectric sensors [8], [9], acoustic
sensors [10], [11], and radar, has gained increasing preference.
Compared with other sensors, millimeter-wave radar exhibits
superior anti-interference capabilities and can operate stably
in low-light conditions and noisy backgrounds [12], while
protecting the privacy of patients. Millimeter-wave radar
captures tiny thoracoabdominal movements of patients during
sleep, and detect OSA through either threshold-based methods
[13],[14] [15] or feature based methods [16], [17]. Zhuang et
al. [16] extracted empirical features from respiratory signals
obtained from FMCW radar and trained a random forest (RF)
model to classify signal segments into apnea and non-apnea

categories. Choi et al. [18] employed a recurrent neural
network (RNN) to extract features from the respiratory signals
automatically, reducing the need of prior knowledge.
However, radar signals are susceptible to body movements of
patients, and it is difficult to detect some special apneas that
airflow ceases while respiratory effort remains [19] or subtle
apnea types like hypopnea. The fusion of radar and oxygen
saturation (SpO2) can largely compensate for the
shortcomings of radars [20]. SpO2, as an internal
physiological parameters [21], helps the radar recall some
subtle sleep apnea events. Meanwhile, SpO2 collection may
be affected by poor peripheral arterial blood flow,
vasoconstriction and hypotension [22], as the respiratory
signals extracted from radar compensate for these limitations.
Toften et al. [23] are the first to integrate radar and SpO2
signals, who conducted a comparative experiment on 14
patients and demonstrated that the fused signals improved the
classification accuracy of apnea event types. However, the
authors did not provide a detailed description of the methods
used in [23]. Ma et al. [ 19] employed the combination of CNN
and long short-term memory (LSTM) to extract features from
radar and SpO2 signals, and performed fusion at both the
feature level and decision level respectively, achieving an F1-
score of 0.76 for classifying apnea and non-apnea segments.
However, the method in [19] is based on segment analysis,
where continuous radar and SpO2 signals are divided into 30-
second segments for classification. Each segment is analyzed
in isolation with a limited receptive field of 30 seconds,
lacking contextual information between neighboring
segments, which is crucial in OSA detecting. The limited
receptive field causes the key features of SpO2 and radar to be
fragmented into different segments due to the delay of oxygen
desaturation, leading to fusion failure. Wang et al. [20]
utilized radar spectrograms to detect OSA at the event level,
ensuring event integrity, and ultimately fused SpO2
information at the decision level. However, the decision-level
fusion method was unable to integrate the features of radar and
SpO2 signals adequately, and more fine-grained comparisons
beyond event-level results are required in [20].

In this work, we adopt the multi-scale feature extraction
and neighboring short-term feature enhancement (Ms&Ne)
strategy and second-by-second analysis to address the issues
of SpO2 latency-induced feature misalignment, and coarse
granularity limitations inherent in prior study.



II. MATERIALS AND METHODS

A. Data collection

Participants in this study were monitored by oximeter
(from PSG) and millimeter-wave radar simultaneously. Fig.
la illustrates the placement of the experimental equipment.
PSG sleep monitoring was performed on Philips Alice 6. The
millimeter-wave radar used in this study is QSA600,
developed by Beijing Tsingray Technology Co., Ltd., see Fig.
1b. QSA600 is a sleeping breathing monitoring system
developed based on Infineon BGT60TR13C, an FMCW radar,
see Fig. 1c. FMCW radar offers high resolution and low power
consumption, making it suitable for monitoring vital signals
[14]. The key parameters of BGT60TR13C are shown in
TABLE L. QSA600 is installed 1 meter above the head of the
bed, allowing the radar beam to effectively cover the thorax
and abdomen of subjects, see Fig. 1a.
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Fig. 1. Schematic diagram of experimental equipment and scene. (a) the
positions of the patients, PSG equipment and millimeter-wave radar, (b)
QSA600, (c) Infineon BGT60TR13C.

TABLE I
KEY PARAMETERS OF BGT60TR13C
Parameters Values
Start frequency 58 GHz
Bandwidth 3.75 GHz
Frame rate 250 Hz
Slope 15 MHz/us
Sampling frequency 1 MHz
Chirp period 750 us
Chirps per frame 1
Range resolution 0.04m

Clinical data were collected at Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School
of Medicine. Of 168 initially collected recordings, 121
qualified for analysis after excluding: 23 due to sensor
detachment, 5 for signal interruption, 4 with SpO2 artifacts,
and 15 for other technical failures. Among the 121 patients
(mean age 37.5 & 13.1 years, range from 19 to 76; mean BMI
24.5 + 3.6; 67.8% male), 23 were healthy (AHI <5), 32 had
mild OSA (5 < AHI< 15), 17 had moderate OSA (15 < AHI
< 30), and 49 had severe OSA (AHI = 30). The overall mean
AHI was 30.0 = 27.5. Sleep monitoring revealed a mean
recorded time of 9.7 hours per night and a mean sleep time of
7.1 hours, with apnea time (positive sample) accounting for
16.1% of total recorded time. All valid PSG recordings were
annotated with a consensus result from two certified sleep
technicians, following American Academy of Sleep Medicine
(AASM) v2.6 recommendations [24]. This study was
conducted in accordance with the principles of the Declaration
of Helsinki and the Good Clinical Practice for Medical Device
Trials. It received ethical approval from the Ethics Committee

of Shanghai Sixth People’s Hospital Affiliated to Shanghai
Jiao Tong University School of Medicine (2023-030-[1]), and
has been registered with the U.S. Clinical Trials Registry
(NCT06038006).

B. Extracting respiratory signal from radar

We preprocess the raw radar echo data into respiratory
signals [16], as shown in Fig. 2. The intermediate frequency
(IF) signal is converted from analog to digital, at a sampling
rate of SOHz. Then, we perform range fast Fourier transform
(FFT) to obtain movement information of patients over time
in different range bins, contained in a range-time domain

matrix X € C**™ | where 64 is the number of range bins and
N, is the number of sampling points. And we perform the

moving target indicator (MTI) process to eliminate
background clutter. We extract the background clutter

X, ey Using the time accumulation strategy, which can be
expressed as a recursion,

xclu,(k,n) =a- x(k,n) + (1 - a) : xclu,(k,nfl) (1)
where x, ~ denotes the element in X , and x, .,

represents the clutter (assumingx,, ,, =0), kis the index

of range bin for £ =1,...,64, and n represents the index of
sampling points. We set & to 0.01, helping the accumulation
pay more attention to static clutter. Accumulation operation
in (1) enhances the static target signals, and finally we obtain
the static clutter X, . We remove X, from X, then we can
get the moving target signal X,,,, € C*" |

Xom = X=Xy, (2)
After MTI, we resample the signal to 10 Hz and calculate the
phase difference A along the time dimension,

X1tk ony < XpTr (ke ons1) ) (3)

\/|xMTI,(k,n)

denotes the element in X, , .

Ay = angle(

#

X1 (kne1)

where x

MTI (k1) represents

conjugate, |.| means -calculating the magnitude, and

angle(.) is used to calculate the phase angle of the complex
number. Then we obtain the final phase difference matrix
AD c RV ,

A®[k,n]= A, ,, 4)
Patients are not in a fixed range bin during sleep. Therefore,
we selected multiple range bins between 0.5m~1.5m, and
performed a weighted summation based on energy of range
bins. The weighting matrix W and weighted phase
difference matrix A®,, can be represented as

2
A
Wik,n]= 1a0unl - )
Z|A¢(i,n)
AD, =ADOW (6)

where © denotes Hadamard product. Then, A®, is

summed along the range bin, yielding weighted phase vector
Ag, €R",



Agy =2 AD, (. ) (7)

The energy-based weighted summation effectively resisting
the maladaptation of the fixed range bin method caused by
different sleeping positions of different subjects.
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Fig. 2. The preprocessing method of radar echo data: extracting respiratory
signals.

Subsequently, we obtain the thoracoabdominal motion[25]
Ad € R" and the respiratory signal r, € R",

Ad[n] = %Aw[n] ®)
T
r, =Ad[n] 9

where A is the wavelength of the radar beam.

C. Feature engineering

1) Feature selection

Respiratory signals from radar and SpO2 signals from
PSG are both time sequences, containing rich time and
frequency features. In this study, we first extract 473 relevant
features for respiratory signals and SpO2 signals from a
machine learning (ML) feature library called tsfresh [16]
respectively. Tsfersh contains rich time series features from
both time and frequency domain. We selected features with
the Pearson correlation coefficients feature screening method
in [26], and finally retained 40 features for respiratory signals
and SpO2 signals respectively. All 80 selected features and
their descriptions are listed in TABLE 1II.

2) Multi-scale feature extraction (Ms)

According to the guidelines established by AASM,
technicians need to take into account contextual information
when annotating an apnea event. It is necessary to widen the
receptive field when detecting apnea events. In this study, we
extract features at three scales using different windows that
are comprehensive to encompass most of the useful
contextual information around each second, thereby
expanding the receptive field of the model.

As shown in Fig. 3, windows at three different scales, are
utilized to extract features. Compared to a single window
[19], multi-scale windows allow for the capture of short-term,
medium-term, and long-term characteristics in the respiratory
and SpO2 signals. And the delayed SpO2 features will not be
split into the next segment. The sliding step for multi-scale
windows is set to 1 second. After multi-scale feature
extraction, we can obtain the feature matrix H,, € R"'** for

respiratory signals and H,, € R"'* for SpO2 signals.

3) Neighboring short-term feature enhancement (Ne)

Fig. 4 shows the process of neighboring short-term
feature enhancement (Ne). Short-term features can directly
reflect the intrinsic characteristics of current second.
Therefore, we concatenate the short-term features of each
second with those of the seconds located 15 seconds apart
from it, further complementing the characteristics of the
neighboring seconds to better capture the variation within the
signals, as shown in Fig. 4b.

TABLE II
Selected features of respiratory/SpO2 Signals

Features of respiratory signal Features of SpO2 signal

1 Kurtosis 1 absolute sum of changes
2 binned entropy 2~23 change quantiles
3~10 linear trend 24 sum of reoccurring

values
reversal asymmetry

11~12 change quantiles 25~26 statistic
13 autocorrelation 27 mean abs change
14~19 permutation entropy 28~33 FFT coefficient
20 absolute maximum 34~37 FFT aggregated
21 minimum 38 std
22 energy ratio by chunks 39 variation coefficient
23 spkt welch density 40 variance
24~25 FFT coefficient
26~28 peak number
29 Fourier entropy
30~35 quantile index
36 large std
37 mean of absolute max
38~40 ration beyond r

Note: some features possess more than one, due to their adjustable
parameters.

The respiratory signals from the radar fluctuate in real
time when an apnea event occurs, whereas the SpO2 signals
often exhibit a delay of approximately 15 seconds [27].
Therefore, we designed mode 2 for SpO2 signals by
concatenating the short-term features of each second with
those from the 15th and 30th seconds following the current
second, to better fit the delay characteristics of
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Fig. 3. Multi-scale feature extraction strategy versus single scale feature extraction.



SpO2 signals. The H, € R"*” contains all the features of
SpO2 signals, as shown in Fig. 4c. Finally, H, and H, are

concatenated along the time dimension and the combined
feature matrix H,, € R"** are obtained.

D. Feature interaction with XGBoost

1) Data balance and feature normalization: We applied
random oversampling to the apnea samples in the training
dataset to balance the apnea and non-apnea sample ratio
[28].In addition, we applied min-max normalization to each
feature column of H,, to scale the elements in H,, to range

[0,1], helping the model converge faster [29].

2) Feature interaction with XGBoost

XGBoost is an efficient gradient boosting decision tree
(GBDT) algorithm [30]. Previous studies show that XGBoost
performs well in tabular data processing without elaborate
tuning [31]. The objective function of XGBoost L(0) can be

written as:

L(9)=Zf(y,~sf/,~)+9(f) (10)

where, ( represents the logistic loss, y, is the true value, ,

is the predicted value, M refers to the total number of
samples, and Q(f) is the regularization term. Q(f) is

designed to control the complexity of the trees to prevent
overfitting:

Q(f)zyT+%/1iwj2 (11)

where T is the number of leaf nodes, , is the weight of the
leaf node, y and A are regularization hyperparameters.

Through feature splitting process, the XGBoost captures

interaction embedded in these features with tree-based
structure [32]. XGBoost employs iterative learning between
trees, which allows each tree to interact with higher-order
features learned by the previous tree, enabling more complex
feature interactions and fusion.

III. RESULTS

When dealing with unbalanced samples, accuracy (Acc)
alone cannot accurately evaluate the performance of a model.
In this study, we utilize recall (Rec), precision (Pre), and the
macro comprehensive metric Fl-score to comprehensively
measure the diagnostic performance.

A. Ablation study

To validate the effectiveness of our proposed strategy, the
ablation experiments are conducted on our collected dataset.
We employ four-fold cross-validation to assess the
effectiveness of the proposed Ms&Ne. The data are grouped
at the subject level to ensure that samples from the same
patient will not appear in the training and testing datasets
simultaneously, thereby avoiding information leakage [34].

TABLE III indicates that at the second-by-second level,
the simple fusion of respiratory signal and SpO2 can improve
the Fl-score 0.1188 ,compared with either single signal.
Moreover, the proposed Ms&Ne strategy increase the F1-
score by another 0.0730 to 0.7713, acquiring a more reliable
result. Furthermore, both the Ms and Ne strategies
demonstrate significant enhancements in fusion performance,
while their combined application achieves optimal results.

We visualize the detection results to elucidate the specific
advantages of Ms&Ne, as shown in Fig. 5.The event marked
in box 1 in Fig. 5a2 shows that Ms&Ne can recall the missed
events with the help of multi-scale information. These
advantages are also evident in the area marked in box 2 in Fig.
5b2, where Ms&Ne eliminated the false positive.
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Fig. 4. Neighboring short-term feature enhancement (where model is designed for radar and, mode2 for SpO2 signals, respectively)

APNEA EVENT DETECTION OF 4-FOLD CROSS VALIDATIOii}?IéSCI(I)IND-B Y-SECOND LEVEL (MEAN £ STANDARD DEVIATION)

Acc Pre Rec F1-score
Ms&Ne RadartSpO2 0.9302(+0.0084) 0.8038(+0.0304) 0.7416(+0.0156) 0.7713(x0.0217)
Ms Radar+SpO2 0.9258(+0.0077) 0.7905(+0.0339) 0.7237(+0.0220) 0.7555(+0.0272)
Ne Radart+SpO2 0.9282(+0.0082) 0.8025(+0.0309) 0.7275(+0.0158) 0.7631(+0.0222)
Radar+SpO2 0.9109(x0.0088) 0.7539(+0.0442) 0.6503(+0.0272) 0.6983(+0.0346)
I\\/)I?t()}lro;t: SpO2 0.8727(x0.0135) 0.6098(+0.0543) 0.5528(+0.0322) 0.5795(x0.0410)
Radar 0.8765(x0.0154) 0.6580(+0.0623) 0.4700(£0.0274) 0.5480(+0.0374)




2.5 |
| | "1C
(al) 0.0+
—55 ] Respiratory signal . Sp02 ju
T
(a2) | i r I
|
100
2.5 i
(b1) ;| [ 1 | I 1
F 8 I !
B! ‘ . . | B0,
0 100 200 300 400 ! ' !

Fig. 5. Predicted apnea distribution with corresponding respiratory and SpO2 signals. (al ) Respiratory and SpO2 signals of one patient, (a2) predicted results
for al, the same below, (b1) zoomed-in view of respiratory signal and SpO2 at 100s scale, (b2) predicted results for b1(Colored areas indicate the presence of
apnea events, otherwise, the state is considered normal. T— True label, R—Radar without Ms&Ne, S—SpO2 without Ms&Ne, RS—Radar+SpO2 without

Ms&Ne, MN—Radar+SpO2 with Ms&Ne strategy.

TABLE IV
COMPARISON WITH CURRENT STATE-OF-THE-ART RESEARCH (MEAN + STANDARD DEVTATION)
OSA detection
Reference Method
Granularity F1-score Kappa
Toften et al[23] LST™M 1s 0.5762(x0.0366) 0.5105@0.0337)
30s segment (decision fusion) 0.7099(=0.0052) 0.6583(+0.0056)
Ma etal.[19] CNN-LSTM

30s segment (feature fusion) 0.7255(0.0078) 0.6757(0.0074)
Wang et al. [20] R-CNN-based event—1s 0.7601(+0.0102) 0.7142(+0.0120)
Ourwork Ms&Ne 1s 0.7713(0.0217) 0.7300(x0.0191)

Note: The abnormal segments detected by the segment-level method in [19] are inconsistent with the strict definition of apnea events. Here, we convert the event-level
results from [20] to the second-by-second level and performthe calculation by merging the multi-class apnea types into a binary classification.

B. Comparative experiments

We compare our method with state-of-the-art studies for
OSA diagnosis using millimeter-wave radar and SpO2 signals
on our dataset, and the key results are listed in TABLE IV.
The segment-based method divides the original data into
equal-length segments and classify each segment into apnea
and non-apnea (or more apnea types), while the 1s-based
method classifies apnea and non-apnea (or more apnea types)
at each second. The latter retains the integrity of apnea events
and has higher granularity.

n [23], data collection was performed using the Home
Sleep Apnea Test (HSAT) [35] method, from 14 individuals,
which is a simplified version of PSG testing. It appears to
show some incompatibility when using more standard and
complicated PSG recordings, achieving an F1-score of only
0.5762 for the second-by-second results. In [19], radar and
SpO2 were fused at both the feature level and decision level,
and the feature-level fusion method achieved a better F1-score
of 0.7255 on our dataset. However, the results are acquired at
30s segment-level, which offers lower granularity, leading to
the truncation of complete apnea events. The results in [20] are
event-level results, which is efficient for apnea hypopnea
index (AHI) calculation. We converted the event-level results
into second-by-second results for a more fine-grained
comparison. The results indicate that our work achieved the
highest F1-score of 0.7713 and a kappa of 0.7300.

IV. CONCLUSION

This study proposes Ms&Ne, i.e., the multi-scale feature
extraction and neighboring short-term feature enhancement
strategy designed for OSA detection using millimeter-wave
radar and SpO2 signals. Ms&Ne overcomes the limitations
associated with limited receptive fields and misalignment
between the key features of millimeter-wave radar signals
and SpO2 signals, and effectively mitigates the
misdiagnosis and missed diagnosis. Experimental results
demonstrate that Ms&Ne strategy achieves promising
results in apnea event detection, providing substantial
support for clinical OSA screening.
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