
 

A Lightweight Obstructive Sleep Apnea Detection 

Method with Millimeter-Wave Radar and Oximeter  

Long Pu 

Department of Electronic Engineering 
Tsinghua University, 

Beijing, China 

pl23@mails.tsinghua.edu.cn 

 

Zhaoxi Chen 

Beijing Tsingray Technology Co., Ltd. 

Beijing, China 
chenzhaoxi@qingleitech.com 

 Xueqian Wang 

Department of Electronic Engineering, 
and also with the State Key Laboratory 

of Space Network and Communications 

Tsinghua University 

Beijing, China 

wangxueqian@mail.tsinghua.edu.cn 

Jian Guan 

Shanghai Sixth People's Hospital 
Affiliated to Shanghai Jiao Tong 

University School of Medicine 

Shanghai, China 
guanjian0606@sina.com

 Zetao Wang 

Beijing Tsingray Technology Co., Ltd. 
Beijing, China 

wangzetao@qingleitech.com 

 

Gang Li 
Department of Electronic Engineering, 

and also with the State Key Laboratory 

of Space Network and Communications 
Tsinghua University 

Beijing, China 

gangli@mail.tsinghua.edu.cn  

 
Abstract—Obstructive Sleep Apnea (OSA) is a prevalent 

disorder characterized by intermittent cessation of breathing 

during sleep. The established gold standard for OSA diagnosis, 

Polysomnography (PSG), is uncomfortable for patients. This 
paper proposes a user-friendly and fine-grained method for 

detecting OSA events with millimeter-wave radar and oximeter. 

To adequately fuse the two sensors, we introduce the multi-scale 
feature extraction strategy and neighboring short-term feature 

enhancement strategy (Ms&Ne). Key features are extracted at 

long, medium, and short scales, capturing both long-term 
characteristics and detailed variations of the signals, effectively 

addresses the signal misalignment issue due to oxygen 

desaturation delay. Short-scale features are further 

incorporated to enhance short-term variation detection. The 
eXtreme Gradient Boosting (XGBoost) is utilized for tree-based 

feature interactions. Clinical trials involving 121 patients at 

Shanghai Sixth People’s Hospital demonstrate that our method 
achieves a highest F1-score of 0.7713 for OSA detection at the 

second-by-second level. 

Keywords—obstructive sleep apnea, millimeter-wave radar, 

oxygen saturation, feature fusion 

I. INTRODUCTION  

Obstructive sleep apnea (OSA) is a common sleep disease 
that causes daytime sleepiness, metabolic disorders, 
hypertension, etc., and is closely related to the incidence of 
cardiovascular diseases [1]. Currently, the gold standard for 
diagnosing OSA is Polysomnography (PSG) [2]. It is difficult 
for PSG to popularize due to its over-reliance on specialized 
equipment and personnel [3], as well as the discomfort of the 
diagnostic process [4], [5]. 

Driven by the demand for diagnostic comfort, the 
contactless technique for detecting OSA, developed based on 
infrared video [6], [7], piezoelectric sensors [8], [9], acoustic 
sensors [10], [11], and radar, has gained increasing preference. 
Compared with other sensors, millimeter-wave radar exhibits 
superior anti-interference capabilities and can operate stably 
in low-light conditions and noisy backgrounds [12], while 
protecting the privacy of patients. Millimeter-wave radar 
captures tiny thoracoabdominal movements of patients during 
sleep, and detect OSA through either threshold-based methods 
[13], [14] [15] or feature based methods [16], [17]. Zhuang et 
al. [16] extracted empirical features from respiratory signals 
obtained from FMCW radar and trained a random forest (RF) 
model to classify signal segments into apnea and non-apnea 

categories. Choi et al. [18] employed a recurrent neural 
network (RNN) to extract features from the respiratory signals 
automatically, reducing the need of prior knowledge. 
However, radar signals are susceptible to body movements of 
patients, and it is difficult to detect some special apneas that 
airflow ceases while respiratory effort remains [19] or subtle 
apnea types like hypopnea. The fusion of radar and oxygen 
saturation (SpO2) can largely compensate for the 
shortcomings of radars [20]. SpO2, as an internal 
physiological parameters [21], helps the radar recall some 
subtle sleep apnea events. Meanwhile, SpO2 collection may 
be affected by poor peripheral arterial blood flow, 
vasoconstriction and hypotension [22], as the respiratory 
signals extracted from radar compensate for these limitations. 
Toften et al. [23] are the first to integrate radar and SpO2 
signals, who conducted a comparative experiment on 14 
patients and demonstrated that the fused signals improved the 
classification accuracy of apnea event types. However, the 
authors did not provide a detailed description of the methods 
used in [23]. Ma et al. [19] employed the combination of CNN 
and long short-term memory (LSTM) to extract features from 
radar and SpO2 signals, and performed fusion at both the 
feature level and decision level respectively, achieving an F1-
score of 0.76 for classifying apnea and non-apnea segments. 
However, the method in [19] is based on segment analysis, 
where continuous radar and SpO2 signals are divided into 30-
second segments for classification. Each segment is analyzed 
in isolation with a limited receptive field of 30 seconds, 
lacking contextual information between neighboring 
segments, which is crucial in OSA detecting. The limited 
receptive field causes the key features of SpO2 and radar to be 
fragmented into different segments due to the delay of oxygen 
desaturation, leading to fusion failure. Wang et al. [20] 
utilized radar spectrograms to detect OSA at the event level, 
ensuring event integrity, and ultimately fused SpO2 
information at the decision level. However, the decision-level 
fusion method was unable to integrate the features of radar and 
SpO2 signals adequately, and more fine-grained comparisons 
beyond event-level results are required in [20].  

In this work, we adopt the multi-scale feature extraction 
and neighboring short-term feature enhancement (Ms&Ne) 
strategy and second-by-second analysis to address the issues 
of SpO2 latency-induced feature misalignment, and coarse 
granularity limitations inherent in prior study. 



II. MATERIALS AND METHODS 

A. Data collection 

Participants in this study were monitored by oximeter 
(from PSG) and millimeter-wave radar simultaneously. Fig. 
1a illustrates the placement of the experimental equipment. 
PSG sleep monitoring was performed on Philips Alice 6. The 
millimeter-wave radar used in this study is QSA600, 
developed by Beijing Tsingray Technology Co., Ltd., see Fig. 
1b. QSA600 is a sleeping breathing monitoring system 
developed based on Infineon BGT60TR13C, an FMCW radar, 
see Fig. 1c. FMCW radar offers high resolution and low power 
consumption, making it suitable for monitoring vital signals 
[14]. The key parameters of BGT60TR13C are shown in 
TABLE I. QSA600 is installed 1 meter above the head of the 
bed, allowing the radar beam to effectively cover the thorax 
and abdomen of subjects, see Fig. 1a. 

 

Fig. 1. Schematic diagram of experimental equipment and scene. (a) the 
positions of the patients, PSG equipment and millimeter-wave radar, (b) 

QSA600, (c) Infineon BGT60TR13C. 

 
TABLE I  

KEY PARAMETERS OF BGT60TR13C 

Parameters Values 

Start frequency 

Bandwidth 

Frame rate 

Slope 

Sampling frequency 

Chirp period 

Chirps per frame 

Range resolution 

58 GHz 

3.75 GHz 

250 Hz 

15 MHz/us 

1 MHz 

750 us 

1 

0.04m 

 

Clinical data were collected at Shanghai Sixth People’s 
Hospital Affiliated to Shanghai Jiao Tong University School 
of Medicine. Of 168 initially collected recordings, 121 
qualified for analysis after excluding: 23 due to sensor 
detachment, 5 for signal interruption, 4 with SpO2 artifacts, 
and 15 for other technical failures. Among the 121 patients 

(mean age 37.5 ± 13.1 years, range from 19 to 76; mean BMI 

24.5 ± 3.6; 67.8% male), 23 were healthy (AHI < 5), 32 had 

mild OSA (5 ≤ AHI < 15), 17 had moderate OSA (15 ≤ AHI 

< 30), and 49 had severe OSA (AHI ≥ 30). The overall mean 

AHI was 30.0 ± 27.5. Sleep monitoring revealed a mean 
recorded time of 9.7 hours per night and a mean sleep time of 
7.1 hours, with apnea time (positive sample) accounting for 
16.1% of total recorded time. All valid PSG recordings were 
annotated with a consensus result from two certified sleep 
technicians, following American Academy of Sleep Medicine 
(AASM) v2.6 recommendations [24]. This study was 
conducted in accordance with the principles of the Declaration 
of Helsinki and the Good Clinical Practice for Medical Device 
Trials. It received ethical approval from the Ethics Committee 

of Shanghai Sixth People’s Hospital Affiliated to Shanghai 
Jiao Tong University School of Medicine (2023-030-[1]), and 
has been registered with the U.S. Clinical Trials Registry 
(NCT06038006). 

B. Extracting respiratory signal from radar 

We preprocess the raw radar echo data into respiratory 

signals [16], as shown in Fig. 2. The intermediate frequency 

(IF) signal is converted from analog to digital, at a sampling 

rate of 50Hz. Then, we perform range fast Fourier transform 

(FFT) to obtain movement information of patients over time 

in different range bins, contained in a range-time domain 

matrix 064 N
X , where 64 is the number of range bins and 

0N  is the number of sampling points. And we perform the 

moving target indicator (MTI) process to eliminate 

background clutter. We extract the background clutter 

,( , )clu k nx  using the time accumulation strategy, which can be 

expressed as a recursion, 

,( , ) ( , ) ,( , 1)(1 )clu k n k n clu k nx x x  −=  + −             (1) 

where 
( , )k nx  denotes the element in X , and 

,( , )clu k nx  

represents the clutter (assuming
,( ,0) 0clu kx = ), k is  the index 

of range bin for 1,...,64k = , and n  represents the index of 

sampling points. We set   to 0.01, helping the accumulation 

pay more attention to static clutter. Accumulation operation 

in (1) enhances the static target signals, and finally we obtain 

the static clutter cluX . We remove cluX from X , then we can 

get the moving target signal 064 N

MTI


X , 

MTI clu= −X X X                            (2) 

After MTI, we resample the signal to 10 Hz and calculate the 

phase difference   along the time dimension, 

*

,( , ) ,( , 1)

( , )
*

,( , ) ,( , 1)

( )
MTI k n MTI k n

k n

MTI k n MTI k n

x x
angle

x x


+

+


 =            (3) 

where 
,( , )MTI k nx  denotes the element in MTIX , *.  represents 

conjugate, | . |  means calculating the magnitude, and 

(.)angle  is used to calculate the phase angle of the complex 

number. Then we obtain the final phase difference matrix 
64 NΔΦ , 

( , )[ , ] k nk n = ΔΦ                        (4) 

Patients are not in a fixed range bin during sleep. Therefore, 

we selected multiple range bins between 0.5m~1.5m, and 

performed a weighted summation based on energy of range 

bins. The weighting matrix W  and weighted phase 

difference matrix WΔΦ  can be represented as 

2

( , )

2

( , )

[ , ]
k n

i n

i

k n





=


W                        (5) 

W =ΔΦ ΔΦ W                            (6) 

where  denotes Hadamard product. Then, WΦ is 

summed along the range bin, yielding weighted phase vector
N

W Δφ , 



(:, )W W

j

j=Δφ ΔΦ                        (7) 

The energy-based weighted summation effectively resisting 

the maladaptation of the fixed range bin method caused by 

different sleeping positions of different subjects. 
 

 
Fig. 2. The preprocessing method of radar echo data: extracting respiratory 
signals. 

 

Subsequently, we obtain the thoracoabdominal motion[25] 
NΔd  and the respiratory signal N

es r , 

[ ] [ ]
4

Wn n



=Δd Δφ                       (8) 

[ ]es n=r Δd                              (9) 

where   is the wavelength of the radar beam. 

C. Feature engineering 

1) Feature selection 

Respiratory signals from radar and SpO2 signals from 
PSG are both time sequences, containing rich time and 
frequency features. In this study, we first extract 473 relevant 
features for respiratory signals and SpO2 signals from a 
machine learning (ML) feature library called tsfresh [16] 
respectively. Tsfersh contains rich time series features from 
both time and frequency domain. We selected features with 
the Pearson correlation coefficients feature screening method 
in [26], and finally retained 40 features for respiratory signals 
and SpO2 signals respectively. All 80 selected features and 
their descriptions are listed in TABLE II. 

2) Multi-scale feature extraction (Ms) 

According to the guidelines established by AASM, 

technicians need to take into account contextual information 

when annotating an apnea event. It is necessary to widen the 

receptive field when detecting apnea events. In this study, we 

extract features at three scales using different windows that 

are comprehensive to encompass most of the useful 

contextual information around each second, thereby 

expanding the receptive field of the model.  

As shown in Fig. 3, windows at three different scales, are 

utilized to extract features. Compared to a single window 

[19], multi-scale windows allow for the capture of short-term, 

medium-term, and long-term characteristics in the respiratory 

and SpO2 signals. And the delayed SpO2 features will not be 

split into the next segment. The sliding step for multi-scale 

windows is set to 1 second. After multi-scale feature 

extraction, we can obtain the feature matrix 120

1

N
0

H  for 

respiratory signals and 120

2

N
0

H  for SpO2 signals. 

3) Neighboring short-term feature enhancement (Ne) 

Fig. 4 shows the process of neighboring short-term 

feature enhancement (Ne). Short-term features can directly 

reflect the intrinsic characteristics of current second. 

Therefore, we concatenate the short-term features of each 

second with those of the seconds located 15 seconds apart 

from it, further complementing the characteristics of the 

neighboring seconds to better capture the variation within the 

signals, as shown in Fig. 4b. 

TABLE II  

Selected features of respiratory/SpO2 Signals 

Features of respiratory signal Features of SpO2 signal 

1 Kurtosis 1 absolute sum of changes 

2 binned entropy 2~23 change quantiles 

3~10 linear trend 24 
sum of reoccurring 

values 

11~12 change quantiles 25~26 
reversal asymmetry 

statistic 

13 autocorrelation 27 mean abs change 

14~19 permutation entropy 28~33 FFT coefficient 

20 absolute maximum 34~37 FFT aggregated 

21 minimum 38 std 

22 energy ratio by chunks 39 variation coefficient 

23 spkt welch density 40 variance 

24~25 FFT coefficient   

26~28 peak number   

29 Fourier entropy   

30~35 quantile index   

36 large std   

37 mean of absolute max   

38~40 ration beyond r   

Note: some features possess more than one, due to their adjustable 

parameters. 

 

The respiratory signals from the radar fluctuate in real 

time when an apnea event occurs, whereas the SpO2 signals 

often exhibit a delay of approximately 15 seconds [27]. 

Therefore, we designed mode 2 for SpO2 signals by 

concatenating the short-term features of each second with 

those from the 15th and 30th seconds following the current 

second, to better fit the delay characteristics of   

 

 
Fig. 3. Multi-scale feature extraction strategy versus single scale feature extraction. 



SpO2 signals. The 200

2

NH  contains all the features of 

SpO2 signals, as shown in Fig. 4c. Finally, 
1

H  and 
2

H  are 

concatenated along the time dimension and the combined 

feature matrix 400

2

N
1

H  are obtained.  

D. Feature interaction with XGBoost 

1) Data balance and feature normalization: We applied 

random oversampling to the apnea samples in the training 

dataset to balance the apnea and non-apnea sample ratio 

[28].In addition, we applied min-max normalization to each 

feature column of 
12

Η  to scale the elements in 
12

Η  to range 

[0,1] , helping the model converge faster [29]. 

2) Feature interaction with XGBoost 

XGBoost is an efficient gradient boosting decision tree 

(GBDT) algorithm [30]. Previous studies show that XGBoost 

performs well in tabular data processing without elaborate 

tuning [31]. The objective function of XGBoost ( )L θ  can be 

written as: 

 
1

ˆ( ) ( , ) ( )
M

i i

i

L y y f
=

= +θ       (10) 

where,  represents the logistic loss, iy  is the true value, ˆ
iy  

is the predicted value, M refers to the total number of 

samples, and ( )f  is the regularization term. ( )f  is 

designed to control the complexity of the trees to prevent 

overfitting: 

 2

1

1
( )

2

T

j

j

f T  
=

 = +                      (11) 

where T  is the number of leaf nodes, 
j  is the weight of the 

leaf node,   and   are regularization hyperparameters. 

Through feature splitting process, the XGBoost captures 

interaction embedded in these features with tree-based 

structure [32]. XGBoost employs iterative learning between 

trees, which allows each tree to interact with higher-order 

features learned by the previous tree, enabling more complex 

feature interactions and fusion.  

III. RESULTS 

When dealing with unbalanced samples, accuracy (Acc) 
alone cannot accurately evaluate the performance of a model. 
In this study, we utilize recall (Rec), precision (Pre), and the 
macro comprehensive metric F1-score to comprehensively 
measure the diagnostic performance. 

A. Ablation study 

To validate the effectiveness of our proposed strategy, the 
ablation experiments are conducted on our collected dataset. 
We employ four-fold cross-validation to assess the 
effectiveness of the proposed Ms&Ne. The data are grouped 
at the subject level to ensure that samples from the same 
patient will not appear in the training and testing datasets 
simultaneously, thereby avoiding information leakage [34].  

TABLE III indicates that at the second-by-second level, 
the simple fusion of respiratory signal and SpO2 can improve 
the F1-score 0.1188 ,compared with either single signal. 
Moreover, the proposed Ms&Ne strategy increase the F1-
score by another 0.0730 to 0.7713, acquiring a more reliable 
result. Furthermore, both the Ms and Ne strategies 
demonstrate significant enhancements in fusion performance, 
while their combined application achieves optimal results. 

We visualize the detection results to elucidate the specific 
advantages of Ms&Ne, as shown in Fig. 5.The event marked 
in box 1 in Fig. 5a2 shows that Ms&Ne can recall the missed 
events with the help of multi-scale information. These 
advantages are also evident in the area marked in box 2 in Fig. 
5b2, where Ms&Ne eliminated the false positive. 

 

 
Fig. 4. Neighboring short-term feature enhancement (where mode1 is designed for radar and, mode2 for SpO2 signals, respectively) 

 

TABLE III 

APNEA EVENT DETECTION OF 4-FOLD CROSS VALIDATION AT SECOND-BY-SECOND LEVEL (MEAN ± STANDARD DEVIATION) 

  Acc Pre Rec F1-score 

Ms&Ne Radar+SpO2 0.9302(±0.0084) 0.8038(±0.0304) 0.7416(±0.0156) 0.7713(±0.0217) 

Ms Radar+SpO2 0.9258(±0.0077) 0.7905(±0.0339) 0.7237(±0.0220) 0.7555(±0.0272) 

Ne Radar+SpO2 0.9282(±0.0082) 0.8025(±0.0309) 0.7275(±0.0158) 0.7631(±0.0222) 

Without  

Ms or Ne 

Radar+SpO2 0.9109(±0.0088) 0.7539(±0.0442) 0.6503(±0.0272) 0.6983(±0.0346) 

SpO2 0.8727(±0.0135) 0.6098(±0.0543) 0.5528(±0.0322) 0.5795(±0.0410) 

Radar 0.8765(±0.0154) 0.6580(±0.0623) 0.4700(±0.0274) 0.5480(±0.0374) 



 
Fig. 5. Predicted apnea distribution with corresponding respiratory and SpO2 signals. (a1) Respiratory and SpO2 signals of one patient, (a2) predicted results 

for a1, the same below, (b1) zoomed-in view of respiratory signal and SpO2 at 100s scale, (b2) predicted results for b1(Colored areas indicate the presence of 

apnea events, otherwise, the state is considered normal. T→True label, R→Radar without Ms&Ne, S→SpO2 without Ms&Ne, RS→Radar+SpO2 without 

Ms&Ne, MN→Radar+SpO2 with Ms&Ne strategy.  

 
TABLE IV 

 COMPARISON WITH CURRENT STATE-OF-THE-ART RESEARCH (MEAN ± STANDARD DEVIATION) 

Reference Method 

OSA detection  

Granularity F1-score Kappa  

Toften et al.[23] LSTM 1s 0.5762(±0.0366) 0.5105(±0.0337)  

Ma et al.[19] CNN-LSTM 
30s segment (decision fusion) 0.7099(±0.0052) 0.6583(±0.0056)  

30s segment (feature fusion) 0.7255(±0.0078) 0.6757(±0.0074)  

Wang et al. [20] R-CNN-based event→1s 0.7601(±0.0102) 0.7142(±0.0120)  

Our work Ms&Ne 1s 0.7713(±0.0217) 0.7300(±0.0191)  

Note: The abnormal segments detected by the segment-level method in [19] are inconsistent with the strict definition of apnea events. Here, we convert the event-level 
results from [20] to the second-by-second level and perform the calculation by merging the multi-class apnea types into a binary classification. 

 

B. Comparative experiments 

We compare our method with state-of-the-art studies for 

OSA diagnosis using millimeter-wave radar and SpO2 signals 

on our dataset, and the key results are listed in TABLE IV. 

The segment-based method divides the original data into 

equal-length segments and classify each segment into apnea 

and non-apnea (or more apnea types), while the 1s-based 

method classifies apnea and non-apnea (or more apnea types) 

at each second. The latter retains the integrity of apnea events 

and has higher granularity. 

In [23], data collection was performed using the Home 

Sleep Apnea Test (HSAT) [35] method, from 14 individuals, 

which is a simplified version of PSG testing. It appears to 

show some incompatibility when using more standard and 

complicated PSG recordings, achieving an F1-score of only 

0.5762 for the second-by-second results. In [19], radar and 

SpO2 were fused at both the feature level and decision level, 

and the feature-level fusion method achieved a better F1-score 

of 0.7255 on our dataset. However, the results are acquired at 

30s segment-level, which offers lower granularity, leading to 

the truncation of complete apnea events. The results in [20] are 

event-level results, which is efficient for apnea hypopnea 

index (AHI) calculation. We converted the event-level results 

into second-by-second results for a more fine-grained 

comparison. The results indicate that our work achieved the 

highest F1-score of 0.7713 and a kappa of 0.7300. 

IV. CONCLUSION 

This study proposes Ms&Ne, i.e., the multi-scale feature 
extraction and neighboring short-term feature enhancement 
strategy designed for OSA detection using millimeter-wave 
radar and SpO2 signals. Ms&Ne overcomes the limitations 
associated with limited receptive fields and misalignment 
between the key features of millimeter-wave radar signals 
and SpO2 signals, and effectively mitigates the 
misdiagnosis and missed diagnosis. Experimental results 
demonstrate that Ms&Ne strategy achieves promising 
results in apnea event detection, providing substantial 
support for clinical OSA screening. 
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