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Abstract

Dense retrieval methods have shown great promise over sparse retrieval methods in
a range of NLP problems. Among them, dense phrase retrieval—the most fine-grained
retrieval unit—is appealing because phrases can be directly used as the output for question
answering and slot filling tasks.! In this work, we follow the intuition that retrieving
phrases naturally entails retrieving larger text blocks and study whether phrase retrieval
can serve as the basis for coarse-level retrieval including passages and documents. We
first observe that a dense phrase-retrieval system, without any retraining, already achieves
better passage retrieval accuracy (43-5% in top-5 accuracy) compared to passage retrievers,
which also helps achieve superior end-to-end QA performance with fewer passages. Then,
we provide an interpretation for why phrase-level supervision helps learn better fine-grained
entailment compared to passage-level supervision, and also show that phrase retrieval can
be improved to achieve competitive performance in document-retrieval tasks such as entity
linking and knowledge-grounded dialogue. Finally, we demonstrate how phrase filtering
and vector quantization can reduce the size of our index by 4-10x, making dense phrase
retrieval a practical and versatile solution in multi-granularity retrieval.?

1. Introduction

Dense retrieval aims to retrieve relevant contexts from a large corpus, by learning dense
representations of queries and text segments. Recently, dense retrieval of passages [Lee et al.,
2019, Karpukhin et al., 2020, Xiong et al., 2021] has been shown to outperform traditional
sparse retrieval methods such as TF-IDF and BM25 in a range of knowledge-intensive NLP
tasks [Petroni et al., 2021], including open-domain question answering (QA) [Chen et al.,
2017], entity linking [Wu et al., 2020], and knowledge-grounded dialogue [Dinan et al., 2019].

One natural design choice of these dense retrieval methods is the retrieval unit. For
instance, the dense passage retriever (DPR) [Karpukhin et al., 2020] encodes a fixed-size
text block of 100 words as the basic retrieval unit. On the other extreme, recent work [Seo
et al., 2019, Lee et al., 2021] demonstrates that phrases can be used as a retrieval unit.
In particular, Lee et al. [2021] show that learning dense representations of phrases alone
can achieve competitive performance in a number of open-domain QA and slot filling tasks.
This is particularly appealing since the phrases can directly serve as the output, without
relying on an additional reader model to process text passages.

In this work, we draw on an intuitive motivation that every single phrase is embedded
within a larger text context and ask the following question: If a retriever is able to locate

1. Following previous work [Seo et al., 2018, 2019], the term phrase denotes any contiguous text segment
up to L words, which is not necessarily a linguistic phrase (see Section 2).
2. Our code and models are available at https://github.com/princeton-nlp/DensePhrases.
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Figure 1: Comparison of passage representations from DPR [Karpukhin et al., 2020] and
DensePhrases [Lee et al., 2021]. Unlike using a single vector for each passage, DensePhrases
represents each passage with multiple phrase vectors and the score of a passage can be
computed by the maximum score of phrases within it.

phrases, can we directly make use of it for passage and even document retrieval as well?
We formulate phrase-based passage retrieval, in which the score of a passage is determined
by the maximum score of phrases within it (see Figure 1 for an illustration). By evaluating
DensePhrases [Lee et al., 2021] on popular QA datasets, we observe that it achieves compet-
itive or even better passage retrieval accuracy compared to DPR, without any re-training or
modification to the original model. The gains are especially pronounced for top-k accuracy
when k is smaller (e.g., 5), which helps achieve strong open-domain QA accuracy with a
much smaller number of passages as input to a generative model [Izacard and Grave, 2021a].

To better understand the nature of dense retrieval methods, we carefully analyze the
training objectives of phrase and passage retrieval methods. While the in-batch negative
losses in both models encourage them to retrieve topically relevant passages, we find that
phrase-level supervision in DensePhrases provides a stronger training signal than using hard
negatives from BM25, and helps DensePhrases retrieve correct phrases, and hence passages.
Following this positive finding, we further explore whether phrase retrieval can be extended
to retrieval of coarser granularities, or other NLP tasks. Through fine-tuning of the query
encoder with document-level supervision, we are able to obtain competitive performance on
entity linking [Hoffart et al., 2011] and knowledge-grounded dialogue retrieval [Dinan et al.,
2019] in the KILT benchmark [Petroni et al., 2021].

Finally, we draw connections to multi-vector passage encoding models [Khattab and
Zaharia, 2020, Luan et al., 2021], where phrase retrieval models can be viewed as learning
a dynamic set of vectors for each passage. We show that a phrase filtering strategy learned
from QA datasets gives us a control over the trade-off between the number of vectors
per passage and the retrieval accuracy. Since phrase retrievers encode a larger number
of vectors, we also propose a quantization-aware fine-tuning method based on Optimized
Product Quantization [Ge et al., 2013], reducing the size of the phrase index from 307GB
to 69GB (or under 30GB with more aggressive phrase filtering) for full English Wikipedia,
without performance degradation. This matches the index size of passage retrievers and
makes dense phrase retrieval a practical and versatile solution for multi-granularity retrieval.

2. Background

Passage retrieval Given a set of documents D, passage retrieval aims to provide a set of
relevant passages for a question q. Typically, each document in D is segmented into a set of
disjoint passages and we denote the entire set of passages in D as P = {p1,...,par}, where
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each passage can be a natural paragraph or a fixed-length text block. A passage retriever
is designed to return top-k passages Pr C P with the goal of retrieving passages that are
relevant to the question. In open-domain QA, passages are considered relevant if they
contain answers. However, many other knowledge-intensive NLP tasks (e.g., knowledge-
grounded dialogue) provide human-annotated evidence passages or documents.

While traditional passage retrieval models rely on sparse representations such as
BM25 [Robertson and Zaragoza, 2009], recent methods show promising results with dense
representations of passages and questions, and enable retrieving passages that may have low
lexical overlap with questions. Specifically, Karpukhin et al. [2020] introduce DPR that has
a passage encoder E,(-) and a question encoder E4(-) trained on QA datasets and retrieves
passages by using the inner product as a similarity function:

F(p.a) = Ep(p) " Eq(q). (1)

For open-domain QA where a system is required to provide an exact answer string a, the
retrieved top k passages Py are subsequently fed into a reading comprehension model such
as a BERT model [Devlin et al., 2019].

Phrase retrieval While passage retrievers require another reader model to find an answer,
Seo et al. [2019] introduce the phrase retrieval approach that encodes phrases in each doc-
ument and performs similarity search over all phrase vectors to directly locate the answer.
Following previous work [Seo et al., 2018, 2019], we use the term ‘phrase’ to denote any
contiguous text segment up to L words (including single words), which is not necessarily
a linguistic phrase and we take phrases up to length L = 20. Given a phrase s from a
passage p, their similarity function f is computed as:

F(s%),q) = By(sP) T Eq(q), (2)

where E(-) and E4(-) denote the phrase encoder and the question encoder, respectively.
Since this formulates open-domain QA purely as a maximum inner product search (MIPS),
it can drastically improve end-to-end efficiency. While previous work [Seo et al., 2019, Lee
et al., 2020] relied on a combination of dense and sparse vectors, Lee et al. [2021] demonstrate
that dense representations of phrases alone are sufficient to close the performance gap with
retriever-reader systems. For more details on how phrase representations are learned, we
refer interested readers to Lee et al. [2021].

3. Phrase Retrieval for Passage Retrieval

Phrases naturally have their source texts from which they are extracted. Based on this
fact, we define a simple phrase-based passage retrieval strategy, where we retrieve passages
based on the phrase-retrieval score:
f(p,q) = max Ey(sP)TE,(q), (3)
sPeS(p)
where S(p) denotes the set of phrases in the passage p. In practice, we first retrieve a
slightly larger number of phrases, compute the score for each passage, and return top k

3. This is called the retriever-reader approach [Chen et al., 2017].
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Natural Questions TriviaQA
Retriever Top-1 Top-5 Top-20 MRR@20 P@20 Top-1 Top-5 Top-20 MRR@20 P@20
DPR® 46.0 681  79.8 55.7 16.5 54.4% - 79.4% - -
DPR* 44.2 66.8 79.2 54.2 17.7 54.6 70.8 79.5 61.7 30.3
DensePhrases®  50.1 69.5 79.8 58.7 20.5 - - - - -
DensePhrases® 51.1  69.9 78.7 59.3 22.7 62.7 75.0 80.9 68.2 38.4

Table 1: Open-domain QA passage retrieval results. We retrieve top k passages from
DensePhrases using Eq. (3). We report top-k passage retrieval accuracy (Top-k), mean
reciprocal rank at k& (MRRQ@E), and precision at k (P@k). ©: trained on each dataset
independently. ®: trained on multiple open-domain QA datasets. See §3.1 for more details.
f: [Yang and Seo, 2020]. ¥: [Karpukhin et al., 2020].

unique passages.* Based on our definition, phrases can act as a basic retrieval unit of any
other granularity such as sentences or documents by simply changing S(p) (e.g., s € S(d)
for a document d). Note that, since the cost of score aggregation is negligible, the inference
speed of phrase-based passage retrieval is the same as for phrase retrieval, which is shown to
be efficient in Lee et al. [2021]. In this section, we evaluate the passage retrieval performance
of phrase-based passage retrieval and how it can contribute to end-to-end open-domain QA.

3.1 Experiment: Passage Retrieval

Datasets We use two open-domain QA datasets: Natural Questions [Kwiatkowski et al.,
2019] and TriviaQA [Joshi et al., 2017], following the standard train/dev/test splits for the
open-domain QA evaluation. For both models, we use the 2018-12-20 Wikipedia snapshot.
To provide a fair comparison, we use Wikipedia articles pre-processed for DPR, which are
split into 21-million text blocks and each text block has exactly 100 words. Note that while
DPR is trained in this setting, DensePhrases is trained with natural paragraphs.’®

Models For DPR, we use publicly available checkpoints® trained on each dataset (DPRQ)
or multiple QA datasets (DPR*), which we find to perform slightly better than the ones
reported in Karpukhin et al. [2020]. For DensePhrases, we train it on Natural Questions
(DensePhrases®) or multiple QA datasets (DensePhrases®) with the code provided by the
authors.” Note that we do not make any modification to the architecture or training meth-
ods of DensePhrases and achieve similar open-domain QA accuracy as reported. For phrase-
based passage retrieval, we compute Eq. (3) with DensePhrases and return top k passages.

Metrics Following previous work, we measure the top-k passage retrieval accuracy (Top-
k), which denotes the proportion of questions whose top k retrieved passages contain at least
one of the gold answers. To further characterize the behavior of each system, we include

. Retrieving 2k phrases is often sufficient for obtaining k unique passages. If not, we try 4k and so on.

. We expect DensePhrases to achieve even higher performance if it is re-trained with 100-word text blocks.
. https://github.com/facebookresearch/DPR.

DPR® is trained on NaturalQuestions, TriviaQA, CuratedTREC [Baudis and Sedivy, 2015], and We-
bQuestions [Berant et al., 2013]. DensePhrases® additionally includes SQuAD [Rajpurkar et al., 2016],
although it does not contribute to Natural Questions and TriviaQA much.

N o ot
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the following evaluation metrics: mean reciprocal rank at & (MRR@Qk) and precision at k
(P@k). MRR@QE is the average reciprocal rank of the first relevant passage (that contains
an answer) in the top k passages. Higher MRR@Fk means relevant passages appear at higher
ranks. Meanwhile, PQF is the average proportion of relevant passages in the top k passages.
Higher P@QE denotes that a larger proportion of top k passages contains the answers.

Results Asshown in Table 1, DensePhrases achieves competitive passage retrieval accuracy
with DPR, while having a clear advantage on top-1 or top-5 accuracy for both Natural
Questions (4+6.9% Top-1) and TriviaQA (48.1% Top-1). Although the top-20 (and top-
100, which is not shown) accuracy is similar across different models, MRR@20 and P@20
reveal interesting aspects of DensePhrases—it ranks relevant passages higher and provides a
larger number of correct passages. Our results suggest that DensePhrases can also retrieve
passages very accurately, even though it was not explicitly trained for that purpose. For the
rest of the paper, we mainly compare the DPR® and DensePhrases® models, which were
both trained on multiple QA datasets.

3.2 Experiment: Open-domain QA

Recently, Izacard and Grave [2021a] pro-

. . . NaturalQ TriviaQA
posed the Fusion-in-Decoder (FiD) ap-

Model Dev  Test Test
proach where they feed top 100 passages ORQA [Lee ct al., 2019] ~ 333 15.0
from DPR into a generative model T5 [Raf-  REALM [Guu et al, 2020] - 404 -
fel et al., 2020] and achieve the state-of- ~ DFR (reader: BERT-base) - 415 56.8
the-art on open-domain QA benchmarks. DensePhrases - 43 53.5
Since their generative model computes the —_FiD with DPR [Izacard and Grave, 2021a)
hidden states of all tokens in 100 pas-  Reader: To-base k=5 37.8 - -
it ros 1 GPU ( k=10 423 - -
sages, it requires large ~memory (e.g., b_95 453 . )
64 Tesla V100 32GB for training T5 [Izac- E=50 457 - B
ard and Grave, 2021a]). k=100 465 48.2  65.0
We use our phrase-based passage re-  FiD with DensePhrases (ours)
trieval with DensePhrases to replace DPR ~ Reader: T5-base k=5  44.2 459 59.5
in FiD and see if we can use a much smaller k=10 455 45.9 61.0
. k=25 46.4 47.2 63.4
number of passages to achieve comparable k=50 47.2 479 645

performance, which can greatly reduce the

computational requirements. We train our
model with 4 24GB RTX GPUs for training
T5-base,® which are more affordable with

Table 2: Open-domain QA results. We report
exact match (EM) of each model by feeding
top k passages into a T5h-base model.

academic budgets.”

Results As shown in Table 2, using DensePhrases as a passage retriever achieves compet-
itive performance to DPR-based FiD and significantly improves upon the performance of
original DensePhrases. Its better retrieval quality at top-k for smaller k£ indeed translates
to better open-domain QA accuracy, achieving +6.4% gain compared to DPR-based FiD

8. Note that training T5-base with 5 or 10 passages can also be done with 11GB GPUs.
9. We also keep all the hyperparameters the same as in Izacard and Grave [2021a] except that we accumulate
gradients for 16 steps to match the effective batch size of the original work.



Lee, WETTIG, & CHEN
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Question Question
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* Obama is an American politician and attorney a—is-an American politician and attorney Passage
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Figure 2: Comparison of training objectives of DPR and DensePhrases. While both models
use in-batch negatives, DensePhrases use in-passage negatives (phrases) compared to BM25
hard-negative passages in DPR. Note that each phrase in DensePhrases can directly serve
as an answer to open-domain questions.

when k = 5. To obtain similar performance with using 100 passages in FiD, DensePhrases
needs fewer passages (k = 25 or 50), which can fit in GPUs with smaller RAM.

4. A Unified View of Dense Retrieval

As shown in the previous section, phrase-based passage retrieval is able to achieve competi-
tive passage retrieval accuracy, despite that the models were not explicitly trained for that.
In this section, we compare the training objectives of DPR and DensePhrases in detail and
explain how DensePhrases learns passage retrieval.

4.1 Training Objectives

Both DPR and DensePhrases set out to learn a similarity function f between a passage or
phrase and a question. Passages and phrases differ primarily in characteristic length, so we
refer to either as a retrieval unit z.'© DPR and DensePhrases both adopt a dual-encoder
approach with inner product similarity as shown in Eq. (1) and (2), and they are initialized
with BERT [Devlin et al., 2019] and SpanBERT [Joshi et al., 2020], respectively.
These dual-encoder models are then trained with a negative log-likelihood loss for dis-
criminating positive retrieval units from negative ones:
ef (@)
L=—log of @) & D of@a)’ (4)
- EX™
where x" is the positive phrase or passage corresponding to question ¢, and X~ is a set
of negative examples. The choice of negatives is critical in this setting and both DPR and
DensePhrases make important adjustments.

In-batch negatives In-batch negatives are a common way to define X', since they are
available at no extra cost when encoding a mini-batch of examples. Specifically, in a mini-

10. Note that phrases may overlap, whereas passages are usually disjoint segments with each other.
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batch of B examples, we can add B — 1 in-batch negatives for each positive example. Since
each mini-batch is randomly sampled from the set of all training passages, in-batch negative
passages are usually topically negative, i.e., models can discriminate between z™ and X'~
based on their topic only.

Hard negatives Although topic-related features are useful in identifying broadly relevant
passages, they often lack the precision to locate the exact passage containing the answer in a
large corpus. Karpukhin et al. [2020] propose to use additional hard negatives which have a
high BM25 lexical overlap with a given question but do not contain the answer. These hard
negatives are likely to share a similar topic and encourage DPR to learn more fine-grained
features to rank xt over the hard negatives. Figure 2 (left) shows an illustrating example.

In-passage negatives While DPR is limited to use positive passages ™ which contain
the answer, DensePhrases is trained to predict that the positive phrase =1 is the answer.
Thus, the fine-grained structure of phrases allows for another source of negatives, in-passage
negatives. In particular, DensePhrases augments the set of negatives X~ to encompass all
phrases within the same passage that do not express the answer.!! See Figure 2 (right)
for an example. We hypothesize that these in-passage negatives achieve a similar effect
as DPR’s hard negatives: They require the model to go beyond simple topic modeling
since they share not only the same topic but also the same context. A phrase-based passage
retriever might benefit from this phrase-level supervision, which has been shown to be useful
in the context of distilling knowledge from reader to retriever [Izacard and Grave, 2021b].

4.2 Topical vs. Hard Negatives

To address our hypothesis, we would like to study how these different types of negatives
used by DPR, and DensePhrases affect their reliance on topical and fine-grained entailment
cues. We characterize their passage retrieval based on two losses: Liopic and Lparqa. We use
Eq. (4) to define both Liopic and Lpard, but use different sets of negatives X~. For Liopic,
X~ contains passages that are topically different from the gold passage—In practice, we
randomly sample passages from English Wikipedia. For Ly,.q, X~ uses negatives containing
topically similar passages, such that Ly,.q estimates how accurately models locate a passage
that contains the exact answer among topically similar passages. From a positive passage
paired with a question, we create a single hard negative by removing the sentence that
contains the answer.'? In our analysis, both metrics are estimated on the Natural Questions
development set, which provides a set of questions and (gold) positive passages.

Results Figure 3 shows the comparison of DPR and DensePhrases trained on NQ with the
two losses. For DensePhrases, we compute the passage score as described in Eq. (3). First,
we observe that in-batch negatives are highly effective at reducing Lyopic as DensePhrases
trained with only in-passage negatives has a relatively high Liopic. Furthermore, we observe
that using in-passage negatives in DensePhrases (+in-passage) significantly lowers Lyarq,

11. Technically, DensePhrases treats start and end representations of phrases independently and use start
(or end) representations other than the positive one as negatives.

12. While Lyparq with this type of hard negatives might favor DensePhrases, using BM25 hard negatives
for Lhara would favor DPR since DPR was directly trained on BM25 hard negatives. Nonetheless, we
observed similar trends in Lyarq regardless of the choice of hard negatives.
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Figure 3: Analysis of DPR and DensePhrases
on NQ (dev) with Liopic and Lparg. Start-
ing from a model trained with in-batch neg-
atives (in-batch), we show the effect of using
hard negatives (+BM25), in-passage nega-
tives (+in-passage), as well as training on
multiple datasets (4+multi. dataset). The
z-axis is in log-scale for better visualization.

Type D={p} D= Dsman
DensePhrases 71.8 61.3
+ BM25 neg. 71.8 60.6
+ Same-phrase neg. 72.1 60.9

Table 3: Effect of using hard negatives in
DensePhrases on the NQ development set.
We report EM when a single gold passage is
given (D = {p}) or 6K passages are given by
gathering all the gold passages from NQ de-
velopment set (D = Dgpan). The two hard
negatives do not give any noticeable improve-
ment in DensePhrases.

For both metrics, lower numbers are better.

even lower than DPR that uses BM25 hard negatives (+BM25). Using multiple datasets
(+multi. dataset) further improves Lyaq for both models. DPR has generally better
(lower) Lyiopic than DensePhrases, which might be due to the smaller training batch size
of DensePhrases (hence a smaller number of in-batch negatives) than DPR. The results
suggest that DensePhrases relies less on topical features and is better at retrieving passages
based on fine-grained entailment cues. This might contribute to the better ranking of the
retrieved passages in Table 1, where DensePhrases shows better MRR@20 and P@Q20 while
top-20 accuracy is similar.

Hard negatives for DensePhrases? We test two different kinds of hard negatives in
DensePhrases to see whether its performance can further improve in the presence of in-
passage negatives. For each training question, we mine for a hard negative passage, either
by BM25 similarity or by finding another passage that contains the gold-answer phrase, but
possibly with a wrong context. Then we use all phrases from the hard negative passage as
additional hard negatives in X~ along with the existing in-passage negatives. As shown in
Table 3, DensePhrases obtains no substantial improvements from additional hard negatives,
indicating that in-passage negatives are already highly effective at producing good phrase
(or passage) representations.

5. Improving Coarse-grained Retrieval

While we showed that DensePhrases implicitly learns passage retrieval, Figure 3 indicates
that DensePhrases might not be very good for retrieval tasks where topic matters more
than fine-grained entailment, for instance, the retrieval of a single evidence document for
entity linking. In this section, we propose a simple method that can adapt DensePhrases
to larger retrieval units, especially when the topical relevance is more important.
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Method We modify the query-side fine-tuning proposed by Lee et al. [2021], which dras-
tically improves the performance of DensePhrases by reducing the discrepancy between
training and inference time. Since it is prohibitive to update the large number of phrase
representations after indexing, only the query encoder is fine-tuned over the entire set of
phrases in Wikipedia. Given a question ¢ and an annotated document set D*, we minimize:

zseg(q) ,d(s)eD* ef(&q)

Laeso “

where S (¢) denotes top k phrases for the question ¢, out of the entire set of phrase vectors.
To retrieve coarse-grained text better, we simply check the condition d(s) € D*, which
means d(s), the source document of s, is included in the set of annotated gold documents
D* for the question. With Lgoc, the model is trained to retrieve any phrases that are
contained in a relevant document. Note that d(s) can be changed to reflect any desired
level of granularity such as passages.

Lioec = — log

Datasets We test DensePhrases trained with Lgo. on entity linking [Hoffart et al., 2011,
Guo and Barbosa, 2018] and knowledge-grounded dialogue [Dinan et al., 2019] tasks in
KILT [Petroni et al., 2021]. Entity linking contains three datasets: AIDA CoNLL-YAGO
(AY2) [Hoffart et al., 2011], WNED-WIKI (WnWi) [Guo and Barbosa, 2018], and WNED-
CWEB (WnCw) [Guo and Barbosa, 2018]. Each query in entity linking datasets contains a
named entity marked with special tokens (i.e., [START_ENT], [END_ENT]), which need to be
linked to one of the Wikipedia articles. For knowledge-grounded dialogue, we use Wizard of
Wikipedia (WoW) [Dinan et al., 2019] where each query consists of conversation history, and
the generated utterances should be grounded in one of the Wikipedia articles. We follow the
KILT guidelines and evaluate the document (i.e., Wikipedia article) retrieval performance
of our models given each query. We use R-precision, the proportion of successfully retrieved
pages in the top R results, where R is the number of distinct pages in the provenance
set. However, in the tasks considered, R-precision is equivalent to precision@1, since each
question is annotated with only one document.

Models DensePhrases is trained with the Entity Linking Dialogue
original query-side fine-tuning loss (denoted _Model AY2 WnWi WnCw WoW
as Lphrase) Oor with Lgoc as described in —_fietricver Only
Eq. . hen DensePhr i rain ith TF-IDF 3.7 0.2 2.1 49.0
q. (5) W en DensePhrases is trained wit DPR T 03 05 ons
Lpnrases it labels any phrase that matches — DensePhrases-Lope 7.7 12,5 6.4 -
the title of gold document as positive. Af- ~ DemscPhrases-Looc 616 321 374 470
. DPR* 26.5 4.9 1.9 411
ter training, DensePhrases returns the doc-  DensePhrases-Looc* 684 47.5 47.5  55.7
ument that contains the top passage. For  Retricver + Additional Components
baseline retrieval methods, we report the per-  RAG 72.6 48.1 476  57.8
. BLINK + flai 81.5  80.2  68.8 -
formance of TF-IDF and DPR from Petroni + flair

et al. [2021]. We also include a multi-task ver- Table 4: Results on the KILT test set. We
sion of DPR and DensePhrases, which uses report page-level R-precision on each task,

the entire KILT training datasets.'”> While which is equivalent to precision@1 on these
not our main focus of comparison, we also re- Jatasets. ®: Multi-task models.
port the performance of other baselines from

13. We follow Petroni et al. [2021] for training the multi-task version of DensePhrases.
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Petroni et al. [2021], which uses generative models (e.g., RAG [Lewis et al., 2020]) or
task-specific models (e.g., BLINK [Wu et al., 2020], which has additional entity linking pre-
training). Note that these methods use additional components such as a generative model
or a cross-encoder model on top of retrieval models.

Results Table 4 shows the results on entity linking and knowledge-grounded dialogue tasks.
On all tasks, we find that DensePhrases-L4o. performs much better than DensePhrases-
Lphrase and also matches the performance of RAG that uses an additional large generative
model. Using Lpprase does very poorly since it focuses on phrase-level entailment, rather
than document-level relevance. Compared to the multi-task version of DPR (i.e., DPR"’),
DensePhrases-Lgo.® can be easily adapted to non-QA tasks like entity linking and gener-
alizes better on tasks without training sets (WnWi, WnCw).

6. DensePhrases as a Multi-Vector Passage Encoder

In this section, we demonstrate that DensePhrases can be interpreted as a multi-vector pas-
sage encoder, which has recently been shown to be very effective for passage retrieval [Luan
et al., 2021, Khattab and Zaharia, 2020]. Since this type of multi-vector encoding models
requires a large disk footprint, we show that we can control the number of vectors per pas-
sage (and hence the index size) through filtering. We also introduce quantization techniques
to build more efficient phrase retrieval models without a significant performance drop.

6.1 Multi-Vector Encodings

Since we represent passages not by a single vector, but by a set of phrase vectors (decom-
posed as token-level start and end vectors, see Lee et al. [2021]), we notice similarities to
previous work, which addresses the capacity limitations of dense, fixed-length passage en-
codings. While these approaches store a fixed number of vectors per passage [Luan et al.,
2021, Humeau et al., 2020] or all token-level vectors [Khattab and Zaharia, 2020], phrase
retrieval models store a dynamic number of phrase vectors per passage, where many phrases
are filtered by a model trained on QA datasets. Specifically, Lee et al. [2021] trains a binary
classifier (or a phrase filter) to filter phrases based on their phrase representations. This
phrase filter is supervised by the answer annotations in QA datasets, hence denotes candi-
date answer phrases. In our experiment, we tune the filter threshold to control the number
of vectors per passage for passage retrieval.

6.2 Efficient Phrase Retrieval

The multi-vector encoding models as well as ours are prohibitively large since they contain
multiple vector representations for every passage in the entire corpus. We introduce a vector
quantization-based method that can safely reduce the size of our phrase index, without
performance degradation.

Optimized product quantization Since the multi-vector encoding models are pro-
hibitively large due to their multiple representations, we further introduce a vector quantization-
based method that can safely reduce the size of our phrase index, without performance
degradation. We use Product Quantization (PQ) [Jegou et al., 2010] where the original
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vector space is decomposed into the Cartesian product of subspaces. Among different vari-
ants of PQ, we use Optimized Product Quantization (OPQ) [Ge et al., 2013], which learns
an orthogonal matrix R to better decompose the original vector space. See Ge et al. [2013]
for more details on OPQ.

Quantization-aware training While this type of aggressive vector quantization can sig-
nificantly reduce memory usage, it often comes at the cost of performance degradation due
to the quantization loss. To mitigate this problem, we use quantization-aware query-side
fine-tuning motivated by quantization-aware training [Jacob et al., 2018]. Specifically, dur-
ing query-side fine-tuning, we reconstruct the phrase vectors using the trained (optimized)
product quantizer, which are then used to minimize Eq. (5).

6.3 Experimental Results

In Figure 4, we present the top-5 pas-
sage retrieval accuracy with respect to the
size of the phrase index in DensePhrases.
First, applying OPQ can reduce the in-
dex size of DensePhrases from 307GB
to 69GB, while the top-5 retrieval accu-
racy is poor without quantization-aware
query-side fine-tuning. Furthermore, by
tuning the threshold 7 for the phrase fil- 58— e e
ter, the number of vectors per each pas- Size (GB)

sage (# vec / p) can be reduced with-
out hurting the performance significantly.

~
=]

w/o OPQ #vec/p =28.0
o< L 17.9

=N
®

o
o

5.1
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Figure 4: Top-5 passage retrieval accuracy on
Natural Questions (dev) for different index sizes

The performance improves with a larger ¢ DensePhrases. The index size (GB) and the

number of vectors per passage, which average number of saved vectors per passage

aligns. with the findings of multi—vect‘or (# vec / p) are controlled by the filtering thresh-
encoding models [Khattab and Zaharia, 14 +  For instance, # vec / p reduces from
2020, Luan et al., 2021]. Our results show 9g 0t 5.1 with higher 7, reducing the index size

that having 8.8 vectors per passage in g, 69GB to 23GB. OPQ: Optimized Product
DensePhrases has similar retrieval accu- Quantization [Ge et al., 2013)].

racy with DPR.

7. Conclusion

In this paper, we show that phrase retrieval models also learn passage retrieval without any
modification. By drawing connections between the objectives of DPR and DensePhrases,
we provide a better understanding of how phrase retrieval learns passage retrieval, which
is also supported by several empirical evaluations on multiple benchmarks. Specifically,
phrase-based passage retrieval has better retrieval quality on top k passages when k is
small, and this translates to an efficient use of passages for open-domain QA. We also show
that DensePhrases can be fine-tuned for more coarse-grained retrieval units, serving as a
basis for any retrieval unit. We plan to further evaluate phrase-based passage retrieval on
standard information retrieval tasks such as MS MARCO.
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