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Abstract

Parameter-Efficient Fine-Tuning (PEFT) methods
enable cost-effective adaptation of pretrained lan-
guage models to specific tasks and domains. Col-
laborative Fine-Tuning (CoFT) seeks to merge
these specialized models into a single model, of-
ten a routed Mixture-of-Expert (MoE) model, to
achieve better generalization across domains and
tasks. However, current CoFT models require a
post-merge fine-tuning stage, making these ap-
proaches inaccessible to users lacking fine-tuning
expertise. We introduce Seeded LoRA, a novel
CoFT approach that does not require post-merge
fine-tuning, enabling plug-and-play PEFT adapter
merging. Seeded LoRA outperforms LoRA and
MOoE LoRA (MoLoRA) approaches by an aver-
age of 7 percentage points across 16 zero-shot
tasks. Seeded LoRA works by initializing a model
with a generic seed expert low-rank adapter, en-
suring subsequent fine-tuning runs are in the same
optimization space, exhibiting linear mode con-
nectivity. This process allows integrating inde-
pendently fine-tuned models into a single model
using a static, untrained soft uniform probability
router. We show that this formulation is equiv-
alent to grouped convolution or multi-head pro-
cessing, explaining its effectiveness. Additionally,
we highlight that Seeded LoRA alleviates most
routing failures in post-merge fine-tuning, making
it a suitable base method for future routed CoFT
approaches.

1. Introduction

Fine-tuning pretrained Large Language Models (LLMs) to
follow user instructions (Wei et al., 2022) is crucial for devel-

'Technical University of Denmark *Cohere For AI *University
of Washington. Correspondence to: Alejandro R. Salamanca <ale-
jandro.rsalamanca@gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

oping interactive chatbots. Parameter-Efficient Fine-Tuning
(PEFT) (Hu et al., 2021; Liu et al., 2022; Li & Liang, 2021;
Zadouri et al., 2023) methods like Low-Rank Adaptation
(LoRA) (Hu et al., 2021) enable the creation of numerous
domain-specific models (Wolf et al., 2019; Mangrulkar et al.,
2022). However, enhancing a model with a new capability,
such as code generation, traditionally requires re-training
with new data mixes, incurring high computational costs
and requiring domain-specific expertise.

Collaborative fine-tuning (CoFT) aims to extend a model’s
capabilities by merging it with other fine-tuned models,
reusing the expertise and computational resources invested
in existing models. Current CoFT strategies often neces-
sitate post-merge fine-tuning to enable the successful use
of existing PEFT models (Mugeeth et al., 2024; Dou et al.,
2024; Zadouri et al., 2023).

In this paper, we introduce Seeded LoRA, a CoFT approach
that does not require post-merge fine-tuning. Seeded LoRA
works by initializing a model with a generic seed expert
low-rank adapter before fine-tuning, ensuring subsequent
fine-tuning runs are in the same optimization space and
exhibit linear mode connectivity (Frankle et al., 2020). This
enables merging existing models by averaging (Li et al.,
2022; Wortsman et al., 2022; Ilharco et al., 2022). With a
common initialization, no post-merge fine-tuning of a router
is required; instead, we average the outputs of all PEFT
experts, equivalent to a soft mixture of experts with a static
router assigning equal probability to each expert. We show
that this formulation is equivalent to grouped convolutions
(Xie et al., 2017).

Our findings demonstrate that Seeded LoRA provides state-
of-the-art CoFT performance, on par with more complex
routed models, and establishes its equivalence to grouped
convolutions and multi-head processing, explaining the ef-
fectiveness of Seeded LoRA and other MoE approaches like
Mixtral (Jiang et al., 2024).

We evaluated Seeded LoRA on 16 zero-shot tasks and found
that it improves performance significantly, increasing aver-
age accuracy from 44.1% (LoRA) and 45.6% (MoLoRA)
to 52.5%. Furthermore, our analysis shows that most CoFT
routing techniques have subtle failure modes leading to poor
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performance. Seeded LoRA initialization can overcome
these failures, and uniform routing (averaging) yields per-
formance comparable to routed models. Successful router
training is no better than averaging; seeding is more crucial
than router training.
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Figure 1. Left: LoRA (Hu et al., 2021) adapter with a rank of 64.
Right: Seeded LoRA with 8 experts, each having a rank of 8. Both
adapters have the same parameter count.

2. Related Work

Low-Rank Adaptation (LoRA) freezes the pretrained
parameters of a model and adds only a small set of trainable
parameters called low-rank adapters (Hu et al., 2021). This
decreases the memory required for fine-tuning by a factor
of roughly 6x through reduced memory requirements for
gradients and optimizers states. Given a pretrained weight
matrix W € R"*° and intermediate token activation x €
R", LoRA adds a low-rank projection to the outputs of the
layer as follows:

y =xWy+ xAB (1)

where A € R"*™ and B € R"*°. Only the weights A, and
B are updated during finetuning.

Collaborative Fine-Tuning (CoFT) Traditional fine-
tuning of a LLM often results in a model with static capabil-
ities, where introducing new functionalities, such as math-
ematical problem-solving, might erase previously learned
skills due to catastrophic forgetting. Typically, enhancing
a model’s capabilities involves retraining it from scratch
with a comprehensive dataset encompassing both old and
new domains, a process that is not only computationally
intensive but also demands access to all previous data and
domain-specific fine-tuning expertise. CoFT addresses these
limitations and extends the capabilities of existing model
without necessitating retraining. For instance, incorporating
math skills into a model could be achieved by merging it
with another model specifically fine-tuned for mathematics.
Among various integration methods, the most common in-

volves deploying a router to manage the interaction between
these specialized models (Mugeeth et al., 2024).

CoFT vs Federated Learning In federated learning (Lim
et al., 2020), individual models are locally trained and then
merged on a central server, preserving user privacy. CoFT,
while similar in merging parameters, focuses on final model
performance and simplicity, differing in usability and model
scale. In CoFT, privacy is not a major consideration while
final performance of the merged model is critical; CoFT
allows only for a single exchange of model parameters and
not successive updates; large models, that cannot be exe-
cuted on edge devices and introduce new challenges that
do not exist at the small scale, are used (Dettmers et al.,
2022). Federated learning approaches are usually not suit-
able CoFT solutions and vice versa due to usability, model
scale, single step merging, and importance of final model
performance.

Mixture-of-Adapters (MoA) methods such as MoLoRA,
SIRA, and LoRAMOE (Zadouri et al., 2023; Zhu et al.,
2023; Dou et al., 2024) learn a set of experts Ff, ..., E,
where each expert F; is a LoRA adapter, combined via a
router network R that generates gating scores s1, ..., S, fora
weighted sum of expert outputs (soft mixture) (Masoudnia &
Ebrahimpour, 2014) or the experts with the top-k probability
(sparse mixture) (Lepikhin et al., 2020; Shazeer et al., 2017)

s; = R(x); = softmax(Wxz) (Router)

n

y= Z s; - E;(x) (MoA Layer)
i=1

Branch-Train-Merge (BTM) Approaches BTM (Li
et al., 2022) is a communication-efficient algorithm de-
signed for the parallel training of large language models
(LLMs). It facilitates the independent training of model sub-
parts, called Expert Language Models (ELMs), across differ-
ent data subsets. ELMs form the ELMFOREST and can be
dynamically modulated or integrated through ensembling or
parameter averaging. Cluster-Branch-Train-Merge (c-BTM)
(Gururangan et al., 2023) extends BTM by incorporating
unsupervised domain discovery, enabling domain-specific
training and forming a sparse ensemble for efficient infer-
ence. Branch-Train-MiX (Sukhbaatar et al., 2024) further
advances this paradigm by mixing trained domain-specific
experts into an MoE model, yielding an efficient LLM with
enhanced accuracy-efficiency trade-offs.

Optimization Landscape Initialization via Seed Experts.
The initialization of fine-tuning from a shared seed expert
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ensures that the subsequent domain or task specific finetun-
ing occurs in a common optimization space. When neural
networks are being trained from a random parameter initial-
ization they quickly settle into a optimization subspace char-
acterized by the principle eigenvalues of the Hessian (Ghor-
bani et al., 2019; Gur-Ari et al., 2018; Frankle et al., 2019).
Once this subspace is entered the principal optimization
directions remain fixed for the rest of the training (Frankle
et al., 2019; Ghorbani et al., 2019; Gur-Ari et al., 2018) and
exhibit linear mode connectivity(Frankle et al., 2020). This
means, two neural networks with different random initial-
ization may have different optimization subspaces, but if
two neural networks are trained from an initialization that
has settled into an optimization subspace the two neural
networks will remain in that subspace even if trained on
different data (Frankle et al., 2020). If two neural networks
exhibit linear mode connectivity, they can be merged by a
simple or weighted average (Li et al., 2022; Gururangan
et al., 2023; Wortsman et al., 2022; Ilharco et al., 2022). We
exploit this property to enable CoFT that does not require
any post-merge finetuning.

3. Methodology

This section details the Seeded LoRA approach and its equiv-
alence to grouped convolutions. Additionally, it outlines the
experimental setup used to evaluate the proposed method.

3.1. Seeded LoRA

Seeded LoRA builds upon the foundation laid by LoRA
and MoLoRA and introduces key improvements over other
Mixture-of-Experts (MoE) methods. Unlike the complex
dynamic routing mechanisms of these methods, Seeded
LoRA uses a static uniform router that does not require post-
merge finetuning. The router assigns equal weight to each
expert’s contribution to the final output. This simplicity
avoids the need for additional training and is formalized in
the following equation:

N
1

—_———
Seeded LoRA update

Here, W, represents the base model parameters, x is the
input, and B; and A; are the i;;, LoRA adapter.

During inference, Seeded LoRA can merge the adapters into
the weights, reducing inference overhead significantly:

1 N
y=x (Wo + 5 ZAiBl) 3)

Pretrained
Weights

Pretrained
Weights

= Rdxd

Figure 2. Left: Seed Expert training. This expert is a regular LORA
adapter. Right: Seeded LoRA is a combination of LoRA adapters.
Each adapter, trained using the Seed Adapter as starting point, acts
as an Expert in this MoA model. Inputs are sent to every expert,
and the outputs are averaged and added to the pretrained model
output.

3.2. Equivalence to Grouped Convolutions

This section establishes the direct equivalence between
Seeded LoRA’s approach and grouped convolutions (Xie
et al., 2017) (refer to Appendix B), under specific initial-
ization strategies. This equivalence helps to explain the
effectiveness of Seeded LoRA, as grouped convolutions of-
ten yield improvements over regular convolutions (Xie et al.,
2017; Zhang et al., 2018) and exhibit distinct features across
groups (Krizhevsky et al., 2012b).

LoRA as 1x1 Convolution At its core, a LoRA layer func-
tions as a sequence of 1x1 convolutions that first minimize
the feature dimension before restoring it:

LoRA A Layer: h ﬂ) r @)
LoRA B Layer: r 1'% p, (5)

where 7 is the reduced dimensionality for the adaptation, and
h is the input and output dimension. In Seeded LoRA, nu-
merous LoRA adapters are merged through Uniform Rout-
ing.

Grouped Convolutions Grouped Convolutions process
input channels in separate groups, each undergoing inde-
pendent convolutions. This concept mirrors Seeded LoRA,
employing sequences of 1x1 convolutions for channel re-
duction and subsequent projection back to the original size.
The outputs are then summed across groups.

Initialization for Equivalence The main difference be-
tween grouped convolutions and Seeded LoRA is that
grouped convolutions aggregate through a sum while Seeded
LoRA uses the average. For equivalence to grouped convo-
lutions, we can initialize Seeded LoRA accordingly. Given
that LoRA’s output variance is linked to the input chan-
nel count (h), initializing LoRA adapters with a variance
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of + leads to standard normal N (0,1) outputs (Glorot &
Bengio, 2010). Correspondingly, grouped convolutions,
which distribute variance N (0, k) per group, sum this across
all groups. Aligning Seeded LoRA’s variance necessitates
equating the number of LoRA adapters (e) with grouped
convolution’s groups (k), achieved by initializing Seeded
LoRA’s adapters with N (0, \/1/(h x €)). This setup en-
sures the output variances from Seeded LoRA and grouped
convolutions are identical, demonstrating that both formula-
tions are the same.

Additionally, multi-headed methods, akin to grouped convo-
lutions, partition the input into multiple heads, processing
each with independent weight matrices. Seeded LoRA’s
approach, where each LoRA adapter acts as a head, closely
aligns with this concept, enabling parallel processing of
inputs with specialized adapters.

3.3. Experimental Setup

We evaluated Seeded LoRA wusing the Llama 2 7B
model (Touvron et al., 2023), comparing it to LoRA and
MoLoRA with equivalent parameter budgets on various
zero-shot tasks. The experiments leverage a range of
datasets for instruction fine-tuning (Appendix C) contain-
ing a mix of general knowledge, code, and mathematics,
totaling 282,360 data points'. A single seed expert model is
trained on a random 10% subset of the fine-tuning dataset,
ensuring all subsequent experts share a common optimiza-
tion space. The exact data is not important. Li et al. trained
a seed model on Javascript, and experimented local mode
connectivity when training across code-unrelated domains
such as medical, law, Arxiv, or C4.

We assessed performance on a range of tasks using the
Im-evaluation-harness (Gao et al., 2023) covering diverse
areas like natural language inference, arithmetic reasoning,
commonsense reasoning, and question answering.

We use a multi-stage fine-tuning process to simulate the
existence of independent open-source LoORA models, start-
ing with a pretrained LLM M, trained on a variety of top-
ics. We aim to improve M’s performance in N specific
areas of expertise. To achieve this, we fine-tune M with N
corresponding datasets, D := {D1, ..., Dy}, where each
dataset is related to a specific domain. For each fine-tuning
run we follow the following steps:

1. Seed Expert Training A single seed expert model
is trained on a random subset (e.g., 10%) of the finetun-
ing dataset D. This ensures all subsequent experts share a
common optimization space that exhibits linear mode con-
nectivity.

"https://huggingface.co/datasets/alexrs/seededlora-data

2. Dataset-Specific Expert Training Each expert is then
fine-tuned independently on its data. This simulates inde-
pendent training of open-source models if initialized with a
seed expert.

3. Combining Experts Finally, Seeded LoRA incorpo-
rates all fine-tuned adapters using soft uniform routing.

3.4. Baseline Methods

The baseline methods used for comparison include LoRA
and MoLoRA. LoRA freezes the pretrained parameters of
a model and adds only a small set of trainable parameters
called low-rank adapters. MoLoRA extends this approach
by combining multiple LoRA adapters using a router net-
work that generates gating scores for a weighted sum of
expert outputs. For MoLoRA, we use the same number of
experts as Seeded LoRA, following the method described in
Zadouri et al.. All methods present an equivalent parameter
budget.

4. Results

Table 1 summarizes the zero-shot accuracy achieved by each
model. Seeded LoRA outperforms LoRA and MoLoRA
on average. This suggests Seeded LoRA’s ability to ef-
fectively leverage expert knowledge for broader task ap-
plicability. Notably, Seeded LoRA exhibits superior per-
formance in tasks like arithmetic reasoning (2D and 4D),
where LoRA and MoLoRA struggle. Compared to LoRA
and MoLoRA, Seeded LoRA consistently achieves better
results across various tasks. Despite some tasks where other
models scored marginally higher, Seeded LoRA’s overall
performance shows effectiveness as a fine-tuning approach,
especially in a multi-task setting. This highlights Seeded
LoRA’s ability to maintain or improve benchmark perfor-
mance while introducing chatbot abilities, a common chal-
lenge when fine-tuning LLMs (Luo et al., 2023; Dou et al.,
2024).

Appendix F contains results for each individual expert in
Seeded LoRA.

5. Conclusions

In this paper, we introduced Seeded LoRA, a novel PEFT
method that leverages LoRA adapters to enable collabo-
rative fine-tuning. Seeded LoRA distinguishes itself by
enabling the integration of expert knowledge from indepen-
dently trained adapters, without requiring additional compu-
tational resources for post-merge fine-tuning by leveraging
a seed adapter as the starting point for fine-tuning.

Our analysis shows that Seeded LoRA outperforms existing
PEFT methods in a set of 16 zero-shot tasks. We also show
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SEEDED
TASK LoRA MOLORA LORA
ANLI R1 36.30 34.80 35.20
ANLI R2 37.50 34.80 32.50
ANLI R3 38.75 32.50 34.42
ARC CHALLENGE 37.20 39.59 44.45
ARITH. 2DS 00.00 11.65 83.70
ARITH. 4DS 00.00 14.05 52.15
BB CAUSAL JUDG. MC  52.11 52.11 53.16
BLIMP CAUSATIVE 74.40 75.80 75.90
CB 44.64 39.29 30.36
COPA 86.00 87.00 88.00
HELLASWAG 57.87 57.71 57.46
RTE 53.79 54.87 63.18
TRUTHFULQA McCl1 27.29 28.64 30.35
WIC 51.25 50.94 50.00
WINOGRANDE 70.32 71.27 70.32
WSC 37.50 45.19 38.46
AVERAGE 44.05 45.63 52.47

Table 1. Zero-shot accuracy of LoRA, MoLoRA, and Seeded
LoRA (ours) on multiple evaluation tasks. All models were fine-
tuned using instruction-tuning with Llama 2 as the base model.

that Seeded LoRA can add the ability to generate appropriate
responses for most prompts to a pretrained model (Ouyang
et al., 2022; Longpre et al., 2023). Additionally, we study
different routing methods commonly used in MoA models,
and highlighting subtle failures that negatively affect the
performance of the final model (refer to Appendix A).

We also established a theoretical foundation linking Seeded
LoRA’s operational principles with Grouped Convolutions,
showing that under specific initializations, Seeded LoRA
operates similarly to grouped convolutions. This equiv-
alence sheds light on the method’s underlying efficiency
and offers a bridge between PEFT methods and established
convolutional techniques.

6. Limitations & Future Work

Despite Seeded LoRA’s demonstrated efficacy in enhancing
the zero-shot performance of LLMs across a variety of tasks
while adding chatbot capabilities to pretrained models, there
are inherent limitations that require further exploration:

Past models are unseeded While future models can be
initialized via Seeded LoRA, currently available models are
not seeded and as such not initialized in the same optimiza-
tion subspace.

Inherent limits of averaging While a simple average of
expert outputs works in Seeded LoRA, this has inherent
limits as ineffective experts add more and more noise de-
creasing the signal to noise ratio. As such, when too many

experts are merged more advanced weighted averaging tech-
niques will become necessary.

Scalable Expert Management To address scalability, fur-
ther research should explore how to develop efficient algo-
rithms for expert selection and routing that minimize com-
putational overhead. Techniques such as sparse expert se-
lection, where only a subset of the most relevant experts are
activated for a given input, could improve Seeded LoRA’s
performance.

Number of Experts Determining an optimal number of
experts for a given task or dataset remains an open question.
Techniques for dynamically adjusting the number of experts
based on task complexity or data characteristics could be
beneficial.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Reproducibility Statement

The code to fine-tune using LoORA, MoLoRA, and Seeded
LoRA, as well as the evaluation code, can be found in
Github?.
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A. The Pitfalls of Routing: Analysis of Subtle Routing Failures

While the main contribution of this paper is a simple approach that allows for collaborative finetuning without any routing,
we did extensive experiments of routing approaches. In this section, we highlight subtle failures and show how to debug
routing approaches to be able to develop routing methods that might outperform Seeded LoRA.

Experimental Setup To investigate the impact of the routing mechanism, we employed Unsupervised Domain Discov-
ery (Gururangan et al., 2023) to cluster a selected dataset into multiple smaller datasets via k-means. Subsequently, a
seed expert, several domain-specific experts, and a routing layer designed for expert selection through soft merging were
developed and trained. Comparative analyses were conducted between Seeded LoRA, LoRA, and MoLoRA, examining
configurations with 5, 10, 15, and 30 experts, while ensuring parameter and computational resources remained consistent
across these variations.

We then analyzed MoLoRA'’s routing layer’s capability to accurately assign tokens to appropriate experts. To do this we
inspect the router probabilities while evaluating with the EleutherAl Eval Harness(Gao et al., 2023). We mainly track two
quantities: (1) aggregate probability mass over all tokens, (2) normalized proportion of top-k experts activities for all tokens.
Normalized proportions mean that we keep track of all top-k expert counts and then divide by the total number of activated
experts.

The evaluation tasks included HellaSwag, which tests common-sense reasoning, and TruthfulQA, which aims at addressing
failures in truthfulness.

The next paragraphs will discuss subtle routing failures that we observed in these experiments.

B HellaSwag
mmm TruthfulQA
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Figure 3. Activation patterns of the MoLoRA routing layer for two distinct tasks, HellaSwag and TruthfulQA, across a set of ten experts.
The uniformity in activation distribution suggests similar utilization of experts for both tasks meaning that experts did not specialize in
any of the trained 10 domains.

Failure I: Uniform specialization A subtle pattern of expert specialization failure occurs if for a particular evaluation
task only a few experts are activated, but that the distribution of experts remains fixed for other tasks. This indicates that all
tasks are learned across all experts with one particular weighted average. This pattern is depicted in Figure 3.

Failure II: Linear increase in performance with linear increased % in top-% routing. If a router and experts are trained
successfully, then adding the top-k experts in order of their routing probability should increase the performance in a non-
linear manner. A non-linear increase indicates, that routing probability p is proportional to the expert specialization. A linear
increases indicate, while the router assigns a higher p to some experts, all experts are interchangeable and provide similar
performance despite different routing probabilities. This is essentially, non-specialization combined with a uncalibrated
router. See Figure 4 for this failure and successful specialization.
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Figure 4. Normalized mean accuracy of Seeded LoRA with Routing, and MoLoRA as a function of the number of top K experts considered
for 30 experts. Seeded LoRA, with its independently trained specialized experts, displays a steep increase in performance with a smaller
number of top experts, highlighting the benefits of expert specialization. MoLoRA, trained end-to-end, shows a more gradual improvement,
reflecting different dynamics in expert utilization.

Failure III: Uniform routing. While uniform routing where each expert has the same probability p often yields better
performance with more experts (Jiang et al., 2024) , we show in Section 3.2 that this routing pattern is equivalent to grouped
convolution and multi-head processing. As such, despite its improved performance, uniform routing represents a routing
failure since performance of the model is the same with and without routing. We show this experimentally for Seeded LoRA
with and without routing.

Discussion. Here we depicted common routing failures. Seeded LoRA shows that through the adoption of a seed Expert
and the application of uniform routing, it is possible to avoid these challenges while simplifying the architecture. We believe
that routers can be trained to improve the performance of LoORA MoE approaches, but Seeded LoRA is a strong baseline that
we are unable to beat with any current routing approaches. The failure cases in this section can be used to develop routing
mechanisms that improve over Seeded LoRA.

B. Convolutions

Convolutional Neural Networks (CNNs) CNNs automate feature extraction from images using layers of convolutional
kernels. These kernels, through the convolution operation, identify patterns and features within the input data, making them
essential for tasks such as image and video recognition, image classification, and medical image analysis. The convolution
operation is mathematically represented as:

F(i,j) = (K« X)(i,j) = > > K(m,n)X (i —m,j—n) 6)

where F' is the feature map resulting from applying the kernel K to the input image X at coordinates (%, ).

Convolutional Kernels Convolutional kernels are the core components of CNNs, allowing the network to capture
spatial hierarchies of features. Early layers might capture basic patterns such as edges and textures, while deeper layers
combine these features to detect more complex patterns. The design of CNN architectures such as ResNet (He et al., 2015)
demonstrates how deep networks can effectively learn a wide variety of features by applying convolutional kernels across
multiple layers.
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Grouped Convolutions Grouped convolutions, introduced in (Krizhevsky et al., 2012a), extend the convolutional
operation by dividing the input and kernels into groups, allowing each group to perform convolutions independently. This
method reduces computational requirements and parameters while maintaining the network’s effectiveness. ResNeXt (Xie
et al., 2017) leverages grouped convolutions, introducing the concept of cardinality to efficiently scale the model’s capacity.
This approach demonstrates the significant advantages of grouped convolutions in deep learning architectures:

Fy =Ky X, %

where I, represents the feature map produced by the g'" group’s convolution of kernel K ¢ with input X .

C. Data

The experiments for Seeded LoRA leverage a composite dataset® for instruction fine-tuning containing a mix of general
knowledge, code, and mathematics, totaling 282,360 data points. Instruction fine-tuning contrasts with traditional supervised
fine-tuning, which primarily aims to correlate input data with corresponding outputs. The data originates from various
sources:

* Open-Orca/OpenOrca (Lian et al., 2023): collection of augmented FLAN (Wei et al., 2022) data that aligns with
the distributions outlined in the Orca paper (Mukherjee et al., 2023).

» TokenBender/code_instructions_122k_alpaca_style*: coding questions following the Alpaca tem-
plate.

e camel-ai/math (Lietal., 2023): composed of SOK problem-solution pairs obtained using GPT-4.
e yahma/alpaca-cleaned (Taori et al., 2023): contains a cleaned version of the Alpaca dataset.

* garage-bAInd/Open-Platypus (Lee etal., 2023): dataset focused on improving LLM logical reasoning skills
and was used to train the Platypus2 models.

* sahil2801/CodeAlpaca-20k (Chaudhary, 2023): contains 20K code problems in the Alpaca format.

e c-s-ale/dolly-15k-instruction-alpaca-format: cleaned and alpaca formatted version of
Dolly (Conover et al., 2023), a corpus of more than 15,000 records generated by thousands of Databricks employees.

* hendrycks/competitionmath (Hendrycks etal., 2021): consists of problems from mathematics competitions,
including the AMC 10, AMC 12, AIME, and more. Each problem has a full step-by-step solution, which can be used
to teach models to generate answer derivations and explanations.

* gsm8k (Cobbe et al., 2021): dataset of 8.5K high quality linguistically diverse grade school math word problems. The
dataset was created to support the task of question answering on basic mathematical problems that require multi-step

reasoning.
DATASET COUNT PERCENTAGE (%)
OPEN-ORCA/OPENORCA 70565 24.99
TOKENBENDER/CODE_INSTRUCTIONS_122K_ALPACA_STYLE 60979 21.60
CAMEL—AI/MATH 50000 17.71
YAHMA/ALPACA—CLEANED 25880 9.17
GARAGE—BAIND/OPEN-PLATYPUS 24926 8.83
SAHIL2801/CoDEALPACA—20K 20022 7.09
C—S—ALE/DOLLY-15K—INSTRUCTION—ALPACA—FORMAT 15015 5.32
HENDRYCKS/COMPETITION_MATH 7500 2.66
GSM8K 7473 2.65

Table 2. Distribution of elements and their respective percentages across various datasets.
3https://huggingface.co/datasets/alexrs/seededlora-data
“https://huggingface.co/datasets/TokenBender/code_instructions_122k _alpaca_style
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D. Baselines Training Details

For training Seeded LoRA and MoLoRA experts, the following hyperparameters per expert, for a total of 9, were used:

Rank: 16 (dimensionality of the low-rank adaptation space)

LoRA Alpha: 8
* LoRA Dropout: 0.05

* Epochs: 2
The baseline LoRA adapter was trained using:

¢ Rank: 128 (dimensionality of the low-rank adaptation space)
* LoRA Alpha: 64

* LoRA Dropout: 0.05

* Epochs: 2

E. Seeded LoRA Fine-Tuning using Unsupervised Domain Discovery

Building upon the foundation laid by c-BTM (Gururangan et al., 2023), we experimented with Unsupervised Domain
Discovery to create clusters to train experts.

The process begins by segmenting the data using k-means clustering. This divides the data (denoted by X with [V samples)
into K distinct clusters (C'). Each cluster is characterized by a centroid ( 1), representing the average feature vector of its
members. The k-means algorithm aims to minimize the inertia, ensuring data points within each cluster are similar.

n

. . . 2
E min (|jz; — p
i Owec(” i ill%)

This method is flexible in its data representation. You can use any encoding method that captures the dataset’s information
suitable for unsupervised domain discovery. In this case, we create embeddings of our data. Afterwards, experts are trained
as shown in Section 3.3.

Results for this setting can be seen in Appendices I and J, and an overview of this training method can be seein in Figure 5.

1. Cluster 2. Tfain Seed Expert 3. Train Experts 4. Combine Experts

Perform Unsupervised Train a Seed Expert Train Experts in parallel Combine the Experts

Domain Discovery on a subset of the in each domain into a single adapter
data

Figure 5. Seeded LoRA fine-funing using Unsupervised Domain Discovery. This method contains four stages: 1) Unsupervised Domain
Discovery on an unlabelled dataset to create domain-specific datasets. 2) Seed Expert Training. 3) Cluster-Specific Expert Training. 4)
Expert Combination.
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F. Evaluation results for Seeded LoRA Experts trained on individual datasets

Table 3 contains the evaluation results for Seeded LoRA with experts trained on the individual datasets.

TASK SEED EXPERT ExP.0 ExpP. 1 Expr.2 Exp.3 Exp.4 ExpP.5 ExP.6 Exp.7 EXP. 8
ANLIR1 36.10 34.70 35.30 33.90 34.00 31.90 35.20 37.00 34.70 38.00
ANLIR2 35.50 34.20 34.30 33.40 33.40 31.20 34.30 37.50 32.30 33.90
ANLIR3 34.67 35.92 34.33 32.58 33.42 32.67 33.50 35.83 33.25 35.33
ARC CHALLENGE 43.77 3473  46.16 4096  45.56 4232  45.22 4454 42775  43.34
ARITHMETIC 2DS 54.00 00.00 94.50  46.35 72.65 58.45 91.10  96.25 53.30  43.65
ARITHMETIC 4DS 37.10 00.00  52.80 39.45 44.70 39.90 50.35 58.35 37.90 37.00
BB C.J. MC 50.53 52.11 47.89 49.47 47.89 54.21 50.53 52.63 52.11 51.58
BLIMP CAUSATIVE 76.50 68.10 75.00 75.30 74.10 73.70 76.40 75.70 77.80  77.30
CB 26.79 26.79 39.29 21.43 30.36 21.43 28.57 32.14 28.57 26.79
COPA 88.00 88.00 86.00 85.00 88.00 86.00 87.00 88.00 88.00 88.00
HELLASWAG 57.12 57.97 57.04 56.84 57.77 57.25 57.12 57.42 57.38 57.22
RTE 60.65 52.71 63.18 51.62 64.98 58.84 61.01 59.21 59.93 58.84
TRUTHFULQA MC1 30.35 31.95 28.52 33.90 34.39 31.09 2791 28.76 28.89 28.03
WIC 50.16 50.00 49.69 50.00 49.84 50.00 50.00 50.00 50.00 50.00
WINOGRANDE 69.61 7096  71.35 68.51 70.72  70.24  70.40 69.77 69.69 69.77
WSC 39.42 36.54  40.38 36.54  41.35 36.54 50.96 37.50  41.35 38.46
AVERAGE 50.26 42.16  53.48 47.20 51.44  48.48 53.09 53.78 49.24  48.57

Table 3. Zero-shot accuracy of Seeded LoRA experts on multiple evaluation tasks for experts trained on individual datasets.

G. Evaluation results for Seeded LoRA trained on individual datasets with no Seed Expert

Table 4 contains the evaluation results for Seeded LoRA trained on individual datasets with no Seed Expert.
TASK SE(?\});“;ELE%I;A Exp.0 Exp.1 Exp.2 Expr.3 Exp.4 Exp.5 Exp.6 Exp. 7 EXP.8
ANLIR1 37.10 36.40 37.00 33.20 38.20 32.20 35.60 35.70 36.30 35.90
ANLI R2 38.60 34.80 38.30 31.50 37.80 31.60 37.10 38.60 37.60 36.80
ANLIR3 37.83 35.25 35.42 33.25 36.25 32.00 37.67 36.08 37.17 37.83
ARC CHALLENGE 43.34 3422 4480 40.36 44.54 4224 4343 44.28 42.58 42.66
ARITHMETIC 2DS 49.80 00.00 93.90 46.00 44.55 44.45 51.90 52.85 50.10  48.90
ARITHMETIC 4DS 37.85 00.00 45.15 40.20 41.90 38.40 36.25 3580 37.05 36.70
BB C.J. MC 52.63 51.05 47.37 48.42  48.95 51.05 55.79 53.16 51.58 52.63
BLiMP CAUSATIVE 74.00 63.70 74.10 75.30 73.70 75.00 75.30 73.20 74.00 73.90
CB 39.29 26.79 37.50 30.36 28.57 17.86  48.21 44.64  48.21 53.57
COPA 87.00 90.00 87.00 84.00 88.00 87.00 87.00 87.00 88.00 87.00
HELLASWAG 57.38 57.81 57.14 56.82 57.35 57.28 57.14 57.41 57.26 57.07
RTE 62.82 52.71 59.21 54.51 63.18 59.57 61.37 57.04 62.45 62.45
TRUTHFULQA McCl1 28.64 31.95 27.29 33.05 33.05 30.35 25.21 27.42 25.46 24.36
WIC 50.00 50.00 50.47 50.00 50.00 50.00 50.00 50.00 49.53 49.84
WINOGRANDE 70.32 71.59 70.09 68.90 70.01 70.56 69.69 69.30 69.06 69.14
WSC 38.46 36.54 44.23 36.54 36.54 36.54 38.46 37.50 38.46 38.46
AVERAGE 50.31 42.04 53.05 47.65 49.53 47.25 50.63 49.99 50.30 50.45

Table 4. Zero-shot accuracy of Seeded, trained on individual datasets without Seed Expert, on multiple evaluation tasks.

H. Seeded LoRA with Seed Expert in the final model

We also experimented with including the Seed Expert in the final model. This resulted in an average score of 52.29, showing
that the Seed Expert does not contribute to the accuracy of the model and only serves to achieve a common initialization

subspace.
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SEEDED LORA

Task WITH seed EXPERT
ANLIR1 35.70
ANLI R2 32.90
ANLI R3 34.75
ARC CHALLENGE 44.71
ARITHMETIC 2DS 81.85
ARITHMETIC 4DS 49.15
BB CAUSAL JUDGEMENT MC 48.95
BLIMP CAUSATIVE 77.20
CB 30.36
COPA 88.00
HELLASWAG 57.39
RTE 64.98
TRUTHFULQA MC1 31.82
WIC 50.00
WINOGRANDE 70.48
WSC 38.46
AVERAGE 52.29

Table 5. Zero-shot accuracy of Seeded LoRA with seed expert in the final model trained on clusters on multiple evaluation tasks.

I. Evaluation results for Seeded LoRA Experts trained on Clusters

Table 6 contains the results for Seeded LoRA trained on clusters using Unsupervised Domain Discovery. Table 7 contains
the results for each expert in this model.

TASK SEEDED LORA
ANLIR1 34.90
ANLI R2 32.10
ANLI R3 35.08
ARC CHALLENGE 44.62
ARITHMETIC 2DS 85.20
ARITHMETIC 4DS 50.25
BB CAUSAL JUDGEMENT MC 50.00
BLIMP CAUSATIVE 77.30
CB 26.79
COPA 88.00
HELLASWAG 57.48
RTE 64.98
TRUTHFULQA MC1 31.46
WIC 50.00
WINOGRANDE 70.48
WSC 37.50
AVERAGE 52.25

Table 6. Zero-shot accuracy of Seeded LoRA trained on clusters on multiple evaluation tasks.
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TASK SEED EXPERT ExP.0 Exp.1 Expr.2 Exp.3 Exr.4 Expr.5 Expr.6 Expr.7 EXP8
ANLIR1 36.10 33.20 36.30 37.10 34.00 34.10 33.50 34.20 36.50 36.40
ANLI R2 35.50 32.70 33.80 34.10 32.80 33.40 31.30 31.90 32.70 32.50
ANLIR3 34.67 33.25 35.92 33.58 32.67 32.92 33.08 33.33 33.33 32.50
ARC CHALLENGE 43.77 41.89 35.92 46.08 43.94 42.83 41.81 43.69 45.05 45.22
ARITHMETIC 2DS 54.00 83.70 00.00 92.30 45.95 93.25 32.85 76.35 67.90 79.20
ARITHMETIC 4DS 37.10 49.35 00.00 45.45 38.50 55.35 33.60 43.10 41.70 44.35
BB C.J. MC 50.53 52.11 52.11 47.89 47.37 51.58 48.95 50.53 47.89 47.37
BLIMP CAUSATIVE 76.50 73.00 65.60 75.80 77.60 76.90 78.00 77.50 76.00 75.40
CB 26.79 44.64 35.71 19.64 16.07 26.79 23.21 35.71 26.79 26.79
COPA 88.00 87.00 90.00 88.00 87.00 88.00 86.00 88.00 87.00 88.00
HELLASWAG 57.12 57.47 57.93 57.48 57.24 57.31 56.94 57.03 57.17 57.33
RTE 60.65 51.62 53.07 62.82 65.70 63.18 64.26 59.57 61.73 63.18
TRUTHFULQA MC1 30.35 30.60 32.19 30.48 31.33 32.19 33.05 31.21 30.72 30.11
WIC 50.16 50.00 50.00 50.00 49.53 50.00 50.00 50.00 50.31 50.16
WINOGRANDE 69.61 70.88 70.64 71.03 70.48 71.51 70.48 71.82 70.48 70.48
WSC 39.42 36.54 36.54 41.35 52.88 36.54 36.54 36.54 47.12 41.35
AVERAGE 49.39 51.74 42.85 52.06 48.94 52.86 47.09 51.28 50.77 51.27

Table 7. Zero-shot accuracy of Seeded LoRA experts, each one trained on a different cluster, on multiple evaluation tasks.

J. Evaluation results for SharedL.oRa trained on Clusters with no Seed Expert

Table 8 contains the evaluation results for Seeded LoRA trained on clusters with no Seed Expert.

SEEDED LORA

TASK (NO SEED) Exp.0 Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp. 6 Exp.7 EXp 8
ANLIR1 38.60 33.80 34.90 37.30 37.10 36.40 37.50 37.50 36.10 36.40
ANLI R2 37.30 32.20 34.20 38.90 38.30 34.10 36.90 37.10 37.90 36.50
ANLIR3 37.00 33.75 32.50 38.25 36.92 35.42 37.83 37.75 38.17 37.83
ARC CHALLENGE 43.52 43.77 42.75 43.94 43.94 42.92 43.26 43.09 42.83 43.69
ARITHMETIC 2DS 51.75 75.60 89.70 65.75 49.80 47.50 49.95 49.40 50.40 50.30
ARITHMETIC 4DS 37.45 51.85 54.45 36.75 36.75 38.00 36.60 36.85 36.35 36.25
BB C.J. MC 53.68 52.11 52.63 50.00 48.95 48.42 48.42 46.32 51.05 52.11
BLIMP CAUSATIVE 74.70 75.70 71.00 75.10 73.80 77.30 74.30 77.20 73.60 74.10
CB 39.29 33.93 08.93 32.14 44.64 28.57 44.64 39.29 42.86 42.86
COPA 88.00 86.00 88.00 88.00 87.00 87.00 87.00 86.00 87.00 88.00
HELLASWAG 57.20 57.32 57.60 57.22 57.09 57.06 56.87 57.08 57.28 57.14
RTE 63.54 66.06 62.82 60.29 63.54 62.82 62.45 63.18 63.54 62.82
TRUTHFULQA McCl1 28.52 29.38 34.39 27.91 28.27 30.35 28.27 29.74 24.97 25.58
WIC 50.00 50.31 50.00 50.00 49.53 50.16 49.69 49.69 49.84 49.84
WINOGRANDE 69.38 70.32 70.88 69.77 69.53 70.01 69.22 69.61 68.90 69.61
WSC 38.46 36.54 36.54 38.46 39.42 45.19 38.46 40.38 37.50 38.46
AVERAGE 50.52 51.79 51.33 50.61 50.28 49.45 50.08 50.01 49.89 50.09

Table 8. Zero-shot accuracy of Seeded LoRA, trained on Clusters without Seed Expert, on multiple evaluation tasks.
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