

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM MUON TO GLUON: BRIDGING THEORY AND PRACTICE OF LMO-BASED OPTIMIZERS FOR LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent developments in deep learning optimization have brought about radically new algorithms based on the Linear Minimization Oracle (LMO) framework, such as **Muon** (Jordan et al., 2024b) and **Scion** (Pethick et al., 2025b). After over a decade of **Adam**’s dominance, these LMO-based methods are emerging as viable replacements, offering several practical advantages such as improved memory efficiency, better hyperparameter transferability, and most importantly, superior empirical performance on large-scale tasks, including LLM training. However, a significant gap remains between their practical use and our current theoretical understanding: prior analyses (1) overlook the layer-wise LMO application of these optimizers in practice, and (2) rely on an unrealistic smoothness assumption, leading to impractically small stepsizes. To address both, we propose a new LMO-based framework called **Gluon**, capturing prior theoretically analyzed methods as special cases, and introduce a new refined generalized smoothness model that captures the layer-wise geometry of neural networks, matches the layer-wise practical implementation of **Muon** and **Scion**, and leads to state-of-the-art convergence guarantees. Our experiments with **NanoGPT** and **CNN** confirm that our assumption holds along the optimization trajectory, ultimately closing the gap between theory and practice.

1 INTRODUCTION

The success of deep learning models across a wide range of challenging domains is inseparable from the optimization algorithms used to train them. As neural networks have grown deeper and datasets larger, optimization has quietly become one of the most consequential components of modern machine learning (ML). Nowhere is this more evident than in the training of large language models (LLMs), which routinely consume thousands of GPU-hours. **Adam** (Kingma & Ba, 2015) (and lately **AdamW** (Loshchilov & Hutter, 2019))—being effective, relatively reliable, and widely adopted—has for over a decade served as the default choice for this task. While this reliance has powered much of deep learning’s progress, it has also exposed the shortcomings of adaptive moment estimation as a one-size-fits-all solution—namely, sensitivity to learning rate schedules, heavy tuning requirements (Wilson et al., 2017), and poor generalization when not carefully calibrated (Zou et al., 2021). However, a shift may now be underway. Recent optimizers, such as **Muon** (Jordan et al., 2024b) and **Scion** (Pethick et al., 2025b), represent a significant departure from **Adam**-type methods: they forgo the adaptive moment estimation in favor of a geometry-aware approach inspired by Frank-Wolfe algorithms (Frank & Wolfe, 1956; Pokutta, 2024). These optimizers are not only simpler to implement and easier to tune, but also appear empirically stronger, outperforming **AdamW** in LLM training (Liu et al., 2025; Pethick et al., 2025b).

Yet, despite their potential, these new methods are still in their infancy, and our understanding of their theoretical foundations and practical utility in LLM training remains incomplete. Prior convergence guarantees in realistic nonconvex regimes are still far from satisfactory. Indeed, as we argue in Section 2, the (very few) existing theoretical analyses *fail to capture the true algorithms used in practice*, focusing instead on simplified variants that diverge from actual implementations. We identify two key mismatches—*neglect of layer-wise structure* (Section 2.1) and *flawed stepsize choices* stemming from an *inaccurate smoothness model* (Section 2.2)—and close this gap with a *solution to both*. We elaborate on these advances in the remainder of the paper.

054 **Algorithm 1** **Gluon**: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

055 1: **Input:** Initial model parameters $X^0 = [X_1^0, \dots, X_p^0] \in \mathcal{S}$, momentum $M^0 = [M_1^0, \dots, M_p^0] \in$
056 \mathcal{S} , momentum decay factors $\beta^k \in [0, 1)$ for all iterations $k \geq 0$

057 2: **for** $k = 0, 1, 2, \dots, K - 1$ **do**

058 3: Sample $\xi^k \sim \mathcal{D}$

059 4: **for** $i = 1, 2, \dots, p$ **do**

060 5: Compute stochastic gradient $\nabla_i f_{\xi^k}(X^k)$ for layer i

061 6: Update momentum $M_i^k = \beta^k M_i^{k-1} + (1 - \beta^k) \nabla_i f_{\xi^k}(X^k)$ for layer i

062 7: Choose adaptive stepsize/radius $t_i^k > 0$ for layer i

063 8: Update parameters for layer i via LMO over $\mathcal{B}_i^k := \{X_i \in \mathcal{S}_i : \|X_i - X_i^k\|_{(i)} \leq t_i^k\}$:

064

065
$$X_i^{k+1} = \text{LMO}_{\mathcal{B}_i^k}(M_i^k) := \arg \min_{X_i \in \mathcal{B}_i^k} \langle M_i^k, X_i \rangle_{(i)} \quad (1)$$

066

067 9: **end for**

068 10: Update full parameter vector $X^{k+1} = [X_1^{k+1}, \dots, X_p^{k+1}]$

069 11: **end for**

071 Our goal is to solve the general optimization problem

$$\min_{X \in \mathcal{S}} \{f(X) := \mathbb{E}_{\xi \sim \mathcal{D}} [f_{\xi}(X)]\}, \quad (2)$$

072 where \mathcal{S} is a finite-dimensional vector space and $f_{\xi} : \mathcal{S} \mapsto \mathbb{R}$ are potentially non-convex and
073 non-smooth but continuously differentiable functions. Here, $f_{\xi}(X)$ represents the loss of model
074 parameterized by X associated with training data point ξ sampled from probability distribution \mathcal{D} .
075 To make the problem meaningful, we assume that $f^{\inf} := \inf_{X \in \mathcal{S}} f(X) > -\infty$. In this work we are
076 particularly interested in the scenario when the parameter vector $X \in \mathcal{S}$ is obtained by collecting
077 the matrices $X_i \in \mathcal{S}_i := \mathbb{R}^{m_i \times n_i}$ of trainable parameters across all layers $i = 1, \dots, p$ of a deep
078 model. For simplicity, we therefore write $X = [X_1, \dots, X_p]$. This means that, formally, \mathcal{S} is the
079 d -dimensional product space $\mathcal{S} := \bigotimes_{i=1}^p \mathcal{S}_i \equiv \mathcal{S}_1 \otimes \dots \otimes \mathcal{S}_p$, where $d := \sum_{i=1}^p m_i n_i$. With each
080 space \mathcal{S}_i we associate the trace inner product $\langle X_i, Y_i \rangle_{(i)} := \text{tr}(X_i^{\top} Y_i)$ for $X_i, Y_i \in \mathcal{S}_i$, and an
081 arbitrary norm $\|\cdot\|_{(i)}$, not necessarily induced by the inner product.

082 2 THEORY VS. PRACTICE OF MUON AND SCION

083 In this work, we focus on an algorithm based on iteratively calling linear minimization oracles
084 (LMOs) across all layers, formalized in Algorithm 1, for which we coin the name **Gluon**. In particular,
085 for each layer i , independently across all layers, **Gluon** iteratively updates the parameters via

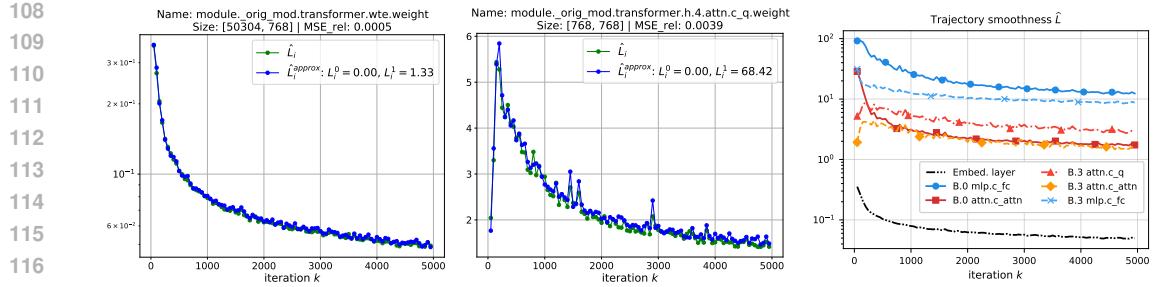
$$086 X_i^{k+1} = \text{LMO}_{\mathcal{B}_i^k}(M_i^k) := \arg \min_{X_i \in \mathcal{B}_i^k} \langle M_i^k, X_i \rangle_{(i)}, \text{ where } \mathcal{B}_i^k := \{X_i \in \mathcal{S}_i : \|X_i - X_i^k\|_{(i)} \leq t_i^k\},$$

087 where $t_i^k > 0$ is an adaptively chosen stepsize/radius/learning rate.¹ Note that the momentum
088 $M^k = [M_1^k, \dots, M_p^k] \in \mathcal{S}$ accumulates the contributions from the stochastic gradients $\nabla f_{\xi^k}(X^k) =$
089 $[\nabla_1 f_{\xi^k}(X^k), \dots, \nabla_p f_{\xi^k}(X^k)] \in \mathcal{S}$ (see Step 6 of Algorithm 1).

090 The **Gluon** framework generalizes a range of methods, including **Muon** and **Scion**, which are recovered
091 as special cases under specific norm choices (see Section 4.1 and Appendix D.1). Beyond their
092 ability to outperform **AdamW** on large-scale benchmarks, these optimizers offer a number of attractive
093 properties: improved memory efficiency, greater robustness to hyperparameter settings, and the ability
094 to transfer those settings across model sizes (Pethick et al., 2025b; Shah et al., 2025). Moreover,
095 in contrast to **Adam**, they were theoretically analyzed shortly after release and are guaranteed to
096 converge under standard assumptions of Lipschitz smoothness² and bounded variance of stochastic
097 gradients (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b).

098 ¹In this context, the radii defining the norm balls in the LMOs effectively act as stepsizes—see Appendix C.1.
099 Accordingly, we use the terms *radius*, *stepsize*, and *learning rate* interchangeably throughout.

100 ²A function $f : \mathcal{S} \mapsto \mathbb{R}$ is L -smooth if $\|\nabla f(x) - \nabla f(y)\|_{*} \leq L \|x - y\|$ for all $x, y \in \mathcal{S}$, where \mathcal{S} is a
101 finite-dimensional vector space equipped with a norm $\|\cdot\|$ and $\|\cdot\|_{*}$ is the dual norm associated with $\|\cdot\|$.



(a) Token embedding matrix from the first/last layer.
 (b) Self-attention query matrix from the 4th transformer block.
 (c) Trajectory smoothness across different blocks (B.*i*) and layers.

Figure 1: Training NanoGPT on FineWeb validates our layer-wise (L^0, L^1) -smoothness model.

Gluon presents the method that is deployed in practice (Jordan et al., 2024a; Pethick et al., 2025a) and has proven highly effective. That said, we argue that existing analyses (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b) do *not* accurately reflect this implementation, diverging from it in two key ways. As such, they *fail to explain why the algorithm performs so well*. Let us detail why.

2.1 LAYER-WISE STRUCTURE

First, we briefly walk through the theoretical understanding offered by previous studies. Muon is an optimizer specifically designed for hidden layers, leaving the first and last layers to be handled by some other optimizer, e.g., Adam(W). Its original introduction by Jordan et al. (2024b) was purely empirical, with no attempt at theoretical analysis. The first convergence result came from Li & Hong (2025), who analyzed the smooth nonconvex setting but focused solely on problem (2) with $p = 1$, effectively limiting the scope to the single-layer case. The Scion³ optimizer (a special case of Gluon) proposed by Pethick et al. (2025b) improves upon Muon by applying the LMO-based rule to all layers, ultimately achieving better empirical performance. Both this work and that of Kovalev (2025) analyze (a variant of) the general update rule

$$\begin{aligned} M^k &= \beta^k M^{k-1} + (1 - \beta^k) \nabla f_{\xi^k}(X^k), \\ X^{k+1} &= \text{LMO}_{\mathcal{B}^k}(M^k), \end{aligned} \quad (3)$$

where $\beta^k \in [0, 1]$ is momentum, $\nabla f_{\xi^k}(X^k)$ is the stochastic gradient sampled at iteration k , and $\mathcal{B}^k := \{X \in \mathcal{S} : \|X - X^k\| \leq t^k\}$ is a norm ball centered at X^k with stepsize $t^k > 0$. This setup closely resembles the structure of Gluon, but is *not* exactly the same. Indeed, Gluon updates the parameters *layer-wise*, not jointly over the full vector X . This distinction is critical since for practical, extremely high-dimensional models, calculating a single global LMO for the entire parameter vector is prohibitively expensive, while breaking the problem into “smaller”, per-layer LMOs restores computational feasibility.

Motivated by this disconnect, we formulate our analysis in the matrix product space \mathcal{S} , explicitly honoring the layer-wise structure. This enables us to study the actual per-layer updates (1), with assumptions and hyperparameters adapted to each layer.

2.2 A THEORY WITH PREDICTIVE POWER

All prior works claiming to guarantee convergence of Algorithm 1 come with several serious analytical shortcomings—and these directly translate into practical deficiencies. Concretely, all existing analyses of Muon/Scion are built on the classical L -smoothness assumption, imposing a uniform smoothness constant across all layers. This is problematic, as *different layers have different geometries*, and thus *should be treated differently*.

But the issue runs much deeper. These algorithms are built for deep learning, where the objective functions are already well known *not* to be smooth (Crawshaw et al., 2022; Zhang et al., 2020). This mismatch has consequences: prior convergence analyses prescribe *tiny constant stepsizes* (see

³Pethick et al. (2025b) introduce two variants of the Scion optimizer: one for constrained optimization, called simply “Scion”, and another for unconstrained problems, referred to as “unconstrained Scion”. In this work, “Scion” refers to either variant, and “unScion” is used when referring to the unconstrained version.

Table 1), uniform across all parameter groups, which bear little resemblance to the tuned learning rates that yield state-of-the-art empirical performance in practice. Consequently, they completely fail to explain why these methods perform so well empirically. In other words, the theory falls short at the one thing it should do best: guiding practical choices, leaving practitioners reliant on costly manual tuning.

Our result in Theorem 1 shows this mismatch is *not* inevitable. To better reflect the behavior of deep models, we introduce a more expressive regularity condition: the *layer-wise* (L^0, L^1) -smoothness⁴—an extension of the generalized smoothness model of Zhang et al. (2020), applied at the layer level.

Assumption 1 (Layer-wise (L^0, L^1) -smoothness). *The function $f : \mathcal{S} \mapsto \mathbb{R}$ is layer-wise (L^0, L^1) -smooth with constants $L^0 := (L_1^0, \dots, L_p^0) \in \mathbb{R}_+^p$ and $L^1 := (L_1^1, \dots, L_p^1) \in \mathbb{R}_+^p$. That is, the inequality*

$$\|\nabla_i f(X) - \nabla_i f(Y)\|_{(i)\star} \leq (L_i^0 + L_i^1 \|\nabla_i f(X)\|_{(i)\star}) \|X_i - Y_i\|_{(i)} \quad (4)$$

holds for all $i = 1, \dots, p$ and all $X = [X_1, \dots, X_p] \in \mathcal{S}$, $Y = [Y_1, \dots, Y_p] \in \mathcal{S}$, where $\|\cdot\|_{(i)\star}$ is the dual norm associated with $\|\cdot\|_{(i)}$ (i.e., $\|X_i\|_{(i)\star} := \sup_{\|Z_i\|_{(i)} \leq 1} \langle X_i, Z_i \rangle_{(i)}$ for any $X_i \in \mathcal{S}_i$).

Assumption 1 can be viewed as a generalization of the anisotropic “vector” (L^0, L^1) -smoothness introduced by Liu et al. (2024) (now framed in terms of arbitrary norms), which itself is a generalization of the (L^0, L^1) -smoothness model of Zhang et al. (2020). As such, our analysis of Gluon goes beyond all existing results, which have only considered the classical L -smooth setting. Crucially, however, this is *not* generalization for its own sake—we argue that this is in fact *the right* model for the problem setting at hand. Why? There are (at least) two reasons.

First, unlike classical L -smoothness, our formulation *aligns very closely with empirical observations*. In Figures 1a and 1b, we validate Assumption 1 in the context of training NanoGPT on the FineWeb dataset. We plot estimated *trajectory smoothness* $\hat{L}_i[k]$ (defined in (10)) alongside the approximation $\hat{L}_i^{\text{approx}}[k] := L_i^0 + L_i^1 \|\nabla_i f_{\xi^{k+1}}(X^{k+1})\|_{(i)\star}$, where L_i^0, L_i^1 are layer-specific parameters estimated from the training run. The figures show these quantities for parameters from the embedding layer and one of the transformer blocks. The close correspondence between $\hat{L}_i[k]$ and $\hat{L}_i^{\text{approx}}[k]$ provides strong evidence that Assumption 1 holds approximately along the training trajectory. In Section 5, we further corroborate this finding, showing that our assumption is satisfied *across the entire model architecture* for both the NanoGPT language modeling task and a CNN trained on CIFAR-10. In all cases, we find that $L_i^0 \approx 0$ for all i , again highlighting the limitations of classical smoothness. Moreover, as shown in Figure 1c, trajectory smoothness varies substantially across blocks and layers, underscoring the need for per-layer treatment. Complementary experiments using AdamW as the optimizer (Figure 10) confirm that this heterogeneity is an intrinsic property of the loss landscape. Together, these results suggest that layer-wise (L^0, L^1) -smoothness offers a *significantly more realistic model of the loss landscape in modern deep learning*.

Secondly, Assumption 1 not only better captures the geometry of the models, but also *directly informs the design of adaptive and practically effective stepsizes*. In Theorem 1, we derive learning rates that reflect the local geometry of each parameter group, guided by our layer-wise smoothness model. As demonstrated in Section 5.1, our theoretically grounded stepsizes turn out to accurately capture the relative magnitudes of the layer-wise learning rates obtained by Pethick et al. (2025b) via hyperparameter tuning—a striking validation of our approach, which further highlights the need for layer-wise reasoning. This proves that *theoretical stepsizes can have predictive power* and effectively guide hyperparameter tuning.

3 CONTRIBUTIONS

We present a comprehensive theoretical and empirical study of a broad class of layer-wise LMO-based optimization algorithms. Our key contributions can be summarized as follows:

⁴While we state Assumption 1 in this general form, it is worth noting that the proofs do not rely on its full strength. In all cases, we only require the assumption to hold for pairs X, Y such that $\|X - Y\| < c$ for some constant $c \geq 0$ (where $\|\cdot\|$ is any norm on \mathcal{S}). Specifically, the assumption is only invoked with $X = X^k$, $Y = X^{k+1}$, and since the stepsizes we use are bounded, the distances between consecutive iterates remain bounded as well. For clarity and consistency across results—since the relevant constants vary by theorem—we state the assumption in its stronger, global form, even though the local version suffices for all proofs.

216 Table 1: Comparison of convergence guarantees for **Gluon** (Algorithms 1 and 2) to achieve
 217 $\min_{k=0, \dots, K-1} \sum_{i=1}^p \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] \leq \varepsilon$, where the $\mathcal{O}(\cdot)$ notation hides logarithmic factors. Notation: K
 218 = total number of iterations, (L^0, L^1) = the result holds under layer-wise (L^0, L^1) -smoothness, t_i^k = radius/step-
 219 size, $1 - \beta^k$ = momentum.

Result	Stochastic?	(L^0, L^1)	Rate	Stepsizes t_i^k	$1 - \beta^k$
(Kovalev, 2025, Theorem 1)	✗	✗	$\mathcal{O}\left(\frac{1}{K^{1/2}}\right)$	const $\propto \frac{1}{K^{1/2}}$ ^(b)	—
(Kovalev, 2025, Theorem 2)	✓	✗	$\mathcal{O}\left(\frac{1}{K^{1/4}}\right)$	const $\propto \frac{1}{K^{3/4}}$ ^(b)	const $\propto \frac{1}{K^{1/2}}$
(Li & Hong, 2025, Theorem 2.1) ^(a)	✓	✗	$\mathcal{O}\left(\frac{1}{K^{1/4}}\right)$	const $\propto \frac{1}{K^{3/4}}$ ^(b)	const $\propto \frac{1}{K^{1/2}}$
(Pethick et al., 2025b, Lemma 5.4)	✓	✗	$\mathcal{O}\left(\frac{1}{K^{1/4}}\right)$	const $\propto \frac{1}{K^{3/4}}$ ^(b)	$\propto \frac{1}{k^{1/2}}$
NEW: Theorem 1	✗	✓	$\mathcal{O}\left(\frac{1}{K^{1/2}}\right)$	Adaptive	—
NEW: Theorem 2	✓	✓	$\mathcal{O}\left(\frac{1}{K^{1/4}}\right)$	$\propto \frac{1}{k^{3/4}}$	$\propto \frac{1}{k^{1/2}}$

(a) Applies only to the Muon/Scion update in (13) with $p = 1$.

(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K .

231 \diamond **A new generalized smoothness framework for neural networks.** We introduce *layer-wise*
 232 (L^0, L^1) -smoothness (Assumption 1), a novel non-Euclidean generalized smoothness condition that
 233 reflects the anisotropic, layer-wise structure of modern deep networks. This framework extends
 234 standard (L^0, L^1) -smoothness assumption (Zhang et al., 2020) to arbitrary norms while capturing
 235 per-layer variation, offering a *realistic foundation for analyzing deep learning optimizers*.

236 \diamond **First principled analysis of layer-wise methods.** Building on our new assumption, we develop the
 237 first faithful convergence analysis for a class of LMO-based algorithms we term **Gluon** (Algorithms 1
 238 and 2). We recover known algorithms, including state-of-the-art Muon-type optimizers, as special
 239 cases (Section 4.1 and Appendix D.1), and pinpoint why earlier theoretical works *fail* to explain
 240 the empirical success of these methods (Section 2). In contrast to prior analyses that oversimplify
 241 the update rules used in practice, our framework directly aligns with real-world implementations,
 242 bridging a critical gap between theory and application.

243 \diamond **Sharper and more general convergence theory.** We develop a convergence theory that extends
 244 prior work in both scope and sharpness. In the deterministic case (Algorithm 2), we establish
 245 convergence for general non-convex objectives under our Assumption 1 (Theorem 1), and under the
 246 block-wise PL condition (Theorem 5). Unlike earlier analyses, our theory yields *adaptive, layer-wise*
 247 *stepsizes* that align remarkably well with those selected via tuning in large-scale experiments (Pethick
 248 et al., 2025b) (Section 5.1). We next analyze the practical stochastic variant with time-varying
 249 stepsizes and momentum (Algorithm 1), proving convergence under bounded variance assumption
 250 (Theorem 1). In both deterministic and stochastic regimes, our guarantees offer *tighter convergence*
 251 *rates* under *more general assumptions* (Table 1), providing the first such results in the non-smooth
 252 setting. Moreover, we provide the first theoretical explanation of the benefits of layer-wise learning
 253 rates, clearly establishing the advantages of structured, anisotropic optimization in deep learning.

254 \diamond **Empirical evidence.** We validate our theoretical insights through extensive experiments (Section 5
 255 and Appendix F) in both language modeling (NanoGPT on FineWeb) and image classification
 256 (CNN on CIFAR-10). The results confirm that our Assumption 1 holds approximately throughout
 257 training and demonstrate the practical utility of our theoretically prescribed stepsizes from Theorem 1.

259 4 MAIN THEORY AND RESULTS

260 To gain a better intuition into the structure of the updates, we begin with a deterministic formulation
 261 of **Gluon**, formalized in Algorithm 2. At each iteration, the method independently minimizes a linear
 262 approximation of f around each parameter group X_i^k within a ball of radius $t_i^k > 0$, ultimately
 263 allowing for layer-specific algorithmic design choices.

264 4.1 EXAMPLES OF OPTIMIZERS SATISFYING OUR FRAMEWORK

265 Deterministic **Gluon** describes a general class of methods, parameterized by the choice of norms
 266 $\|\cdot\|_{(i)}$ in the LMO. To illustrate the flexibility of this framework, we highlight several notable special
 267 cases (see Appendix D.1 for more details). First, observe that the update rule (12) can be written as

$$269 X_i^{k+1} = X_i^k + t_i^k \text{LMO}_{\{X_i \in \mathcal{S}_i : \|X_i\|_{(i)} \leq 1\}} (\nabla_i f(X^k)) = X_i^k + t_i^k \underset{\|X_i\|_{(i)} \leq 1}{\text{argmin}} \langle \nabla_i f(X^k), X_i \rangle_{(i)}. \quad (5)$$

For any $X_i \in \mathcal{S}_i = \mathbb{R}^{m_i \times n_i}$, define $\|X_i\|_{\alpha \rightarrow \beta} := \sup_{\|z\|_\alpha=1} \|X_i z\|_\beta$, where $\|\cdot\|_\alpha$ and $\|\cdot\|_\beta$ are some (possibly non-Euclidean) norms on \mathbb{R}^{n_i} and \mathbb{R}^{m_i} , respectively. Note that (5) naturally recovers several known updates for specific choices of the layer norms, e.g., layer-wise normalized GD (Yu et al., 2018) for Euclidean norms $\|\cdot\|_{(i)} = \|\cdot\|_2$, and layer-wise signGD (Balles et al., 2020) for max-norms $\|\cdot\|_{(i)} = \|\cdot\|_\infty$. Two special cases are particularly relevant to our analysis:

◇ **Muon** (Jordan et al., 2024b) when $\|\cdot\|_{(i)} = \|\cdot\|_{2 \rightarrow 2}$ for all hidden layers.

◇ **unScion for LLM training** (Pethick et al., 2025b) when $\|\cdot\|_{(i)} = \sqrt{n_i/m_i} \|\cdot\|_{2 \rightarrow 2}$ for $i = 1, \dots, p-1$, corresponding to weight matrices of transformer blocks, and $\|\cdot\|_{(p)} = n_p \|\cdot\|_{1 \rightarrow \infty}$ for the last group X_p , representing the embedding and output layers (the two coincide under the weight sharing regime⁵ considered here). In this case, update (5) becomes

$$\begin{aligned} X_i^{k+1} &= X_i^k - t_i^k \sqrt{\frac{m_i}{n_i}} U_i^k (V_i^k)^\top, \quad i = 1, \dots, p-1, \\ X_p^{k+1} &= X_p^k - \frac{t_p^k}{n_p} \text{sign}(\nabla_p f(X^k)), \end{aligned} \quad (6)$$

where the matrices U_i^k, V_i^k are obtained from the (reduced) SVD of $\nabla_i f(X^k) = U_i^k \Sigma_i^k (V_i^k)^\top$.

4.2 CONVERGENCE RESULTS

Having demonstrated the framework's flexibility through concrete examples, we now state a general convergence result for deterministic **Gluon**.

Theorem 1. *Let Assumption 1 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of deterministic **Gluon** (Algorithm 2) run with stepsizes $t_i^k = \frac{\|\nabla_i f(X^k)\|_{(i)*}}{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)*}}$. Then, to guarantee that*

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \left[\frac{1/L_i^1}{\frac{1}{p} \sum_{j=1}^p 1/L_j^1} \|\nabla_i f(X^k)\|_{(i)*} \right] \leq \varepsilon, \quad (7)$$

it suffices to run the algorithm for

$$K = \left\lceil \frac{2\Delta^0 \left(\sum_{i=1}^p L_i^0 / (L_i^1)^2 \right)}{\varepsilon^2 \left(\frac{1}{p} \sum_{j=1}^p 1/L_j^1 \right)^2} + \frac{2\Delta^0}{\varepsilon \left(\frac{1}{p} \sum_{j=1}^p 1/L_j^1 \right)} \right\rceil \quad (8)$$

iterations, where $\Delta^0 := f(X^0) - f^{\inf}$.

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an additional result (Theorem 3) that modifies the first term in (8) to $2\Delta^0 \sum_{i=1}^p L_i^0 / \varepsilon^2$, potentially leading to improvements in certain settings (depending on the relationship between the sequences $\{L_i^0\}$ and $\{L_i^1\}$ —see Remark 4). However, this introduces a dependence on $L_{\max}^1 := \max_{i=1, \dots, p} L_i^1$ in the second term. Empirically, we find that $L_i^0 \approx 0$ across all layers (see Section 5), making the first term vanish in both bounds. In this case, the rate (8) is clearly superior, replacing the worst-case constant L_{\max}^1 with the more favorable harmonic mean.

When $p = 1$, our rates match the best-known complexity for finding a stationary point of (L^0, L^1) -smooth functions, $\mathcal{O}(L^0 \Delta^0 / \varepsilon^2 + L^1 \Delta^0 / \varepsilon)$, as established by Vankov et al. (2025) for the Gradient Method. While no prior work has analyzed deterministic **Gluon** under general (L^0, L^1) -smoothness, there exist analyses under classical L -smoothness, treating the parameters as a single vector. The analysis by Kovalev (2025) guarantees convergence in $K = \lceil 6L\Delta^0 / \varepsilon^2 \rceil$ iterations. The same bound appears in Li & Hong (2025) and Pethick et al. (2025b) (by setting $\sigma^2 = 0$). Since for $p = 1$, L -smoothness implies Assumption 1 with $L^1 = 0$ (Lemma 2), our rates match these prior results up to a constant factor. Thus, even in the smooth setting, our bounds are as tight as those derived specifically for it.

⁵Weight sharing refers to the practice of using the same parameters (weights) for different parts of a model, rather than allowing each part to have its own unique parameters.

324 However, the real strength of our guarantees lies in their broader applicability. Our analysis is
 325 much more general than prior studies, as it extends beyond standard smoothness—allowing $L_i^1 > 0$
 326 introduces additional terms that drive the accelerated convergence enabled by (L^0, L^1) -smoothness.
 327 This richer model is *essential for explaining the empirical speedup* of methods like Muon, and much
 328 more accurately reflects the geometry of neural network loss surfaces. Indeed, as we demonstrate in
 329 Section 5, the assumption typically holds with $L_i^0 \approx 0$ and $L_i^1 > 0$.

330 **Practical radii t_i^k .** Unlike previous analyses (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b),
 331 which prescribe impractically small constant radii proportional to ϵ , our framework allows t_i^k to be
 332 *adaptive* to the loss landscape. Therefore, t_i^k can be larger early in training when $\|\nabla_i f(X^k)\|_{(i)\star}$
 333 is large and gradually shrink as the gradient norm decreases. In the special case when $L_i^0 \approx 0$
 334 (as observed empirically), $t_i^k \approx 1/L_i^1$, which is substantially larger than the radii dictated by earlier
 335 analyses. Crucially, as shown in Section 5.1, our adaptive stepsizes closely match those that yield state-
 336 of-the-art empirical performance identified by Pethick et al. (2025b) through hyperparameter tuning.
 337 This alignment demonstrates that *principled, theory-driven stepsize selection could substantially*
 338 *reduce the need for costly manual tuning.*

340 4.3 STOCHASTIC CASE

341 In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We
 342 therefore turn to the practical **Gluon** (Algorithm 1), a stochastic variant of Algorithm 2 that operates
 343 with noisy gradient estimates available through a stochastic gradient oracle $\nabla f_\xi, \xi \sim \mathcal{D}$.

344 **Assumption 2.** *The stochastic gradient estimator $\nabla f_\xi : \mathcal{S} \mapsto \mathcal{S}$ is unbiased and has bounded
 345 variance. That is, $\mathbb{E}_{\xi \sim \mathcal{D}}[\nabla f_\xi(X)] = \nabla f(X)$ for all $X \in \mathcal{S}$ and there exists $\sigma \geq 0$ such that
 346 $\mathbb{E}_{\xi \sim \mathcal{D}}[\|\nabla_i f_\xi(X) - \nabla_i f(X)\|_2^2] \leq \sigma^2$ for all $X \in \mathcal{S}, i = 1, \dots, p$.*

347 Note that the choice of norm in Assumption 2 is not restrictive: in finite-dimensional spaces, all
 348 norms are equivalent, so variance bounds remain valid up to a constant factor when compared to
 349 those based on any non-Euclidean norm. The following result establishes the convergence properties.

350 **Theorem 2.** *Let Assumptions 1 and 2 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of
 351 Gluon (Algorithm 1) run with $\beta^k = 1 - (k+1)^{-1/2}$, $t_i^k = t_i(k+1)^{-3/4}$ for some $t_i > 0$, and
 352 $M_i^0 = \nabla_i f_{\xi^0}(X^0)$. Then*

$$353 \min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{12L_i^1} \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] \lesssim \frac{\Delta^0}{K^{1/4}} + \frac{1}{K^{1/4}} \sum_{i=1}^p \left[\frac{\sigma}{L_i^1} + \frac{L_i^0}{(L_i^1)^2} \right], \quad (9)$$

356 where $\Delta^0 := f(X^0) - f^{\inf}$ and the notation \lesssim omits numerical constants and logarithmic factors.

358 For $p = 1$, our rate in (9) recovers the complexity for finding a stationary point of (L^0, L^1) -smooth
 359 functions established by Hübler et al. (2024) for normalized SGD with momentum. When $p \geq 1$,
 360 compared to existing guarantees for Gluon, our Theorem 2 operates under the significantly more
 361 general Assumption 1 and uniquely supports training with larger, non-constant stepsizes $t_i^k \propto k^{-3/4}$.
 362 In contrast, prior analyses prescribe constant, vanishingly small stepsizes $t_i^k \equiv t_i \propto K^{-3/4}$, tied to
 363 the *total* number of iterations K (see Table 1).

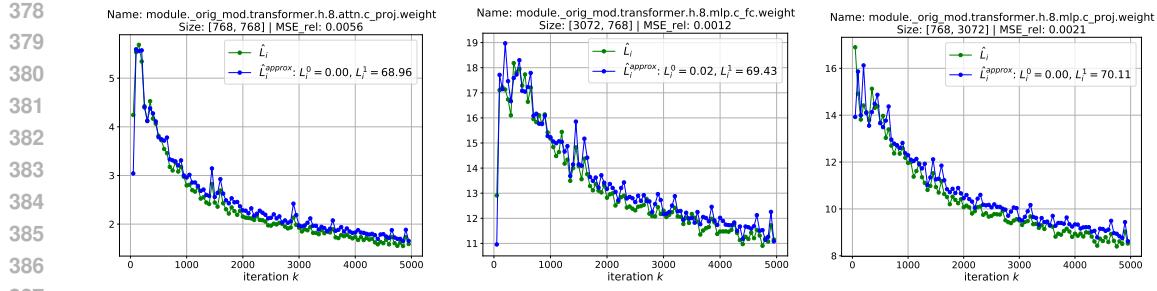
364 5 EXPERIMENTS

366 Below, we highlight selected experimental results for the **unScion** optimizer, a special case of Gluon
 367 (see Appendix D.1). Additional details and further experiments are provided in Appendix F.⁶

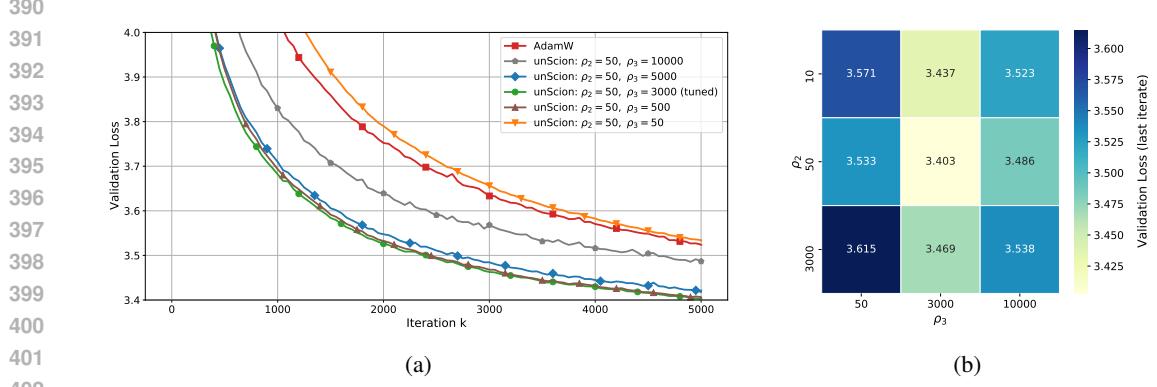
368 5.1 TRAINING NANO GPT ON FINEWEB

369 In the first set of experiments, we aim to verify layer-wise (L^0, L^1) -smoothness (Assumption 1). To
 370 this end, we train the NanoGPT model with 124M parameters on the FineWeb dataset, leveraging
 371 two open-source GitHub repositories (Jordan et al., 2024a; Pethick et al., 2025a). We use the **unScion**
 372 optimizer, i.e., **Gluon** with the norm choices as in (6). We adopt the hyperparameters from Pethick
 373 et al. (2025b, Table 7), mapping their values $\gamma = 0.00036$, $\rho_2 = 50$, and $\rho_3 = 3000$ into our notation
 374 as follows: $t_i^k \equiv \gamma\rho_2 = 0.018$ for $i = 1, \dots, p-1$ (corresponding to the transformer block layers),
 375 and $t_p^k \equiv \gamma\rho_3 = 1.08$ (token embeddings and output projections, due to weight sharing). We set
 376 the number of warmdown iterations to 0 to keep the learning rates constant throughout training.

377 ⁶Code for all experiments is available [here](#).



388 Figure 2: Validation of Assumption 1 for the 8th transformer block in NanoGPT-124M along
389 training trajectories of unScion.



403 Figure 3: (a) Validation curves for AdamW and unScion with varying ρ_3 values; (b) Heatmap of
404 validation loss from the last iteration of unScion across different combinations of ρ_2 and ρ_3 .

405
406
407 The model is trained for 5,000 iterations in accordance with the Chinchilla scaling laws to ensure
408 compute-optimal training. In Figures 2, 5, 6, we plot the estimated *trajectory smoothness* as a function
409 of the iteration index k

$$\hat{L}_i[k] := \|\nabla_i f_{\xi^{k+1}}(X^{k+1}) - \nabla_i f_{\xi^k}(X^k)\|_{(i)*} / \|X_i^{k+1} - X_i^k\|_{(i)} \quad (10)$$

410 for parameter groups from the embedding layer and 4th and 8th transformer blocks (with similar
411 trends observed across all blocks). We compare this to the approximation
412

$$\hat{L}_i^{\text{approx}}[k] := L_i^0 + L_i^1 \|\nabla_i f_{\xi^{k+1}}(X^{k+1})\|_{(i)*},$$

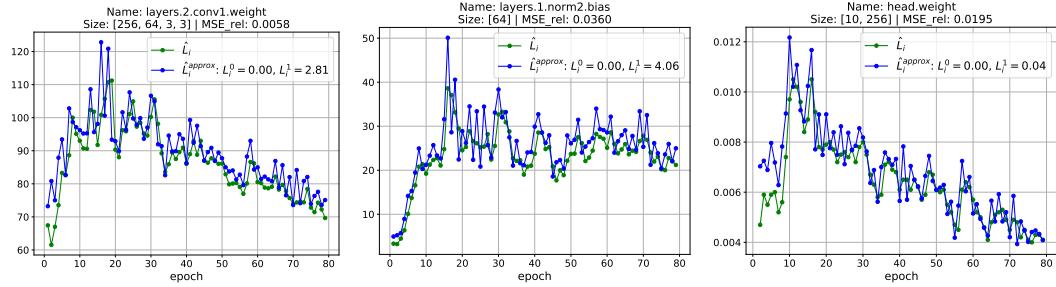
413 where $L_i^0, L_i^1 \geq 0$ are fitted to minimize the Euclidean error between $\hat{L}_i[k]$ and $\hat{L}_i^{\text{approx}}[k]$, with
414 hinge-like penalty on underestimation (see Appendix F.2). The close alignment between these curves
415 implies that Assumption 1 is approximately satisfied along the training trajectories.

416
417
418
419 **Effect of scaling factors.** We next evaluate the impact of the learning rate scaling factors ρ_2 and ρ_3
420 on the performance of the unScion optimizer. For consistency, all other hyperparameters are fixed
421 as described earlier. As a baseline, we include results obtained with the AdamW optimizer, using
422 the hyperparameter settings from Section F.3.3. Figure 3 presents (a) validation curves for both
423 optimizers, with varying ρ_3 in unScion, and (b) the final validation loss for unScion across different
424 combinations of ρ_2 and ρ_3 . The best performance is achieved with $\rho_2 = 50$ and $\rho_3 = 3000$, i.e.,
425 $t_i^k = 0.018$ for $i = 1, \dots, p-1$ and $t_p^k = 1.08$. This supports the use of non-uniform scaling across
426 layers, with larger step sizes for the embedding layer.

427
428
429
430
431 **Additional ablation studies.** In Appendix F.3.2, we present an ablation study demonstrating that
432 specialized norms provide a better approximation of trajectory smoothness compared to the standard
433 Euclidean norm. Appendix F.3.3 demonstrates that the layer-wise (L^0, L^1) -smoothness model also
434 closely approximates trajectory smoothness during AdamW training. Notably, we observe a similar
435 gap between transformer and embedding layers as with Scion, suggesting that smoothness statistics
436 from AdamW training can guide per-layer learning rate tuning in Scion.

432 5.2 TRAINING CNN ON CIFAR-10
433

434 In this experiment, we further validate layer-wise (L^0, L^1) -smoothness by training a CNN model on
435 the CIFAR-10 dataset, following implementations from two open-source GitHub repositories (Jordan,
436 2024; Pethick et al., 2025a). The model is trained using the unScion optimizer (15) with full-batch
437 gradients $\nabla_i f$, no momentum and no learning rate decay (results for the stochastic case are reported in
438 Appendix F.4). Other hyperparameters are as in Pethick et al. (2025b, Table 10), except that we train
439 for more epochs. Similar to the NanoGPT experiments discussed in Section 5.1, we plot the estimated
440 (non-stochastic) trajectory smoothness $\hat{L}_i[k] := \|\nabla_i f(X^{k+1}) - \nabla_i f(X^k)\|_{(i)*} / \|X_i^{k+1} - X_i^k\|_{(i)}$
441 alongside its approximation $\hat{L}_i^{\text{approx}}[k] := L_i^0 + L_i^1 \|\nabla_i f(X^{k+1})\|_{(i)*}$ for selected parameter groups.
442 In this experiment, we consider a simplified variant of Assumption 1, setting $L_i^0 = 0$, and estimate
443 $L_i^1 \geq 0$ using the same procedure as in Section 5.1. Figure 4 presents the results, demonstrating that
444 Assumption 1 is approximately satisfied along the training trajectory. When this condition holds
445 with $L_i^0 = 0$, Theorem 1 guarantees convergence under the stepsize choice $t_i^k \equiv t_i = 1/L_i^1$. In this
446 setting, the estimated L_i^1 values (shown in Figure 4) are $L_i^1 \approx 3$ for all parameter groups except
447 for the classification head weights X_p , where $L_p^1 \approx 0.03$. This roughly two-orders-of-magnitude
448 difference justifies the much larger radius t_p^k used for the head weights in the tuned configuration
449 reported in Pethick et al. (2025b, Table 10).



450
451 Figure 4: Validation of Assumption 1 for different groups of parameters in CNN along training
452 trajectories of unScion with full-batch gradients.
453
454

465 6 CONCLUSION AND FUTURE WORK
466

467 In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art
468 optimizers such as Muon and Scion as special cases. We develop a principled analytical framework
469 for layer-wise optimization based on a novel *layer-wise (L^0, L^1) -smoothness* assumption, which
470 captures the anisotropic structure of modern deep networks. This assumption enables sharper and
471 more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes that
472 closely match those found via finetuning. Our framework thus provides *the first rigorous and*
473 *practically predictive analysis of modern layer-wise optimizers*. Experiments confirm that the
474 assumption holds approximately throughout training, reinforcing its practical relevance. Together,
475 these results offer a refined foundation for structured optimization in deep learning.

476 While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important
477 directions for future research. Our analysis assumes exact LMO computations, whereas practical
478 implementations use approximations (Appendix F.1). Additionally, our stochastic guarantees (The-
479 orem 2) rely on the widely adopted bounded variance assumption, which may not hold in certain
480 scenarios, e.g., under subsampling (Khaled & Richtárik, 2020). Finally, our support for adaptive
481 stepsizes is currently restricted to the deterministic setting. While they also perform well empirically
482 in the stochastic regime (Section 5.1), a complete theoretical justification remains an open challenge.

483
484 In summary, although we make substantial progress by closing the two most critical gaps—establishing
485 a realistic generalized smoothness model and aligning analysis with actual implementations—no single
work can exhaust the subject. The field remains open, with many fruitful directions left to pursue.

486 REFERENCES
487

488 Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of Sign Gradient Descent,
489 2020. URL <https://arxiv.org/abs/2002.08056>. (Cited on page 6 and 18)

490 Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. *arXiv preprint*
491 *arXiv:2410.21265*, 2024a. URL <https://arxiv.org/abs/2410.21265>. (Cited on page 17)

492 Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. In *OPT 2024: 493 Optimization for Machine Learning*, 2024b. URL <https://arxiv.org/abs/2409.20325>.
494 (Cited on page 14 and 18)

495 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
496 signSGD: Compressed optimisation for non-convex problems. In *International Conference on 497 Machine Learning*, pp. 560–569. PMLR, 2018. URL <https://arxiv.org/abs/1802.04434>.
498 (Cited on page 14)

499 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
500 for distributed learning. *Journal of Machine Learning Research*, 24(276):1–50, 2023. (Cited on
501 page 24)

502 Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
503 to unbounded smoothness of generalized signSGD. *Advances in neural information processing 504 systems*, 35:9955–9968, 2022. URL <https://arxiv.org/abs/2208.11195>. (Cited on
505 page 3 and 14)

506 Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the zoo
507 of biased sgd. *Advances in Neural Information Processing Systems*, 36:23158–23171, 2023. (Cited
508 on page 24)

509 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. *Naval Research
510 Logistics Quarterly*, 3(1-2):95–110, 1956. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109>. (Cited on page 1 and 14)

511 Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
512 and Martin Takáč. Methods for convex (L_0, L_1) -smooth optimization: Clipping, acceleration, and
513 adaptivity. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
514 <https://arxiv.org/abs/2409.14989>. (Cited on page 14)

515 Kaja Gruntkowska, Hanmin Li, Aadi Rane, and Peter Richtárik. The Ball-Proximal (=”Broxi-
516 mal”) Point Method: a new algorithm, convergence theory, and applications. *arXiv preprint*
517 *arXiv:2502.02002*, 2025. URL <https://arxiv.org/abs/2502.02002>. (Cited on page 17)

518 Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
519 smoothness. In *International Conference on Artificial Intelligence and Statistics*, pp. 4861–4869.
520 PMLR, 2024. URL <https://arxiv.org/abs/2311.03252>. (Cited on page 7, 14, 16, and 29)

521 Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *International
522 conference on machine learning*, pp. 427–435. PMLR, 2013. (Cited on page 14)

523 Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
524 methods under refined smoothness and noise assumptions. *arXiv preprint arXiv:2406.04592*, 2024.
525 URL <https://arxiv.org/abs/2406.04592>. (Cited on page 14)

526 Keller Jordan. Cifar-10 airbench. <https://github.com/KellerJordan/cifar10-airbench>, 2024. GitHub repository. (Cited on page 9 and 33)

527 Keller Jordan, Jeremy Bernstein, Ben Rappazzo, B. Vlado, Y. Jiacheng, F. Cesista, and
528 B. Koszarsky. Modded-nanoGPT: Speedrunning the nanoGPT baseline. <https://github.com/KellerJordan/modded-nanogpt>, 2024a. GitHub repository. Additional contributors:
529 @fern-bear.bsky.social, @Grad62304977. (Cited on page 3, 7, and 33)

530 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
531 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL <https://kellerjordan.github.io/posts/muon/>. (Cited on page 1, 3, 6, 14, 18, and 33)

540 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 541 gradient methods under the Polyak-Łojasiewicz condition, 2020. URL <https://arxiv.org/abs/1608.04636>. (Cited on page 22)

543

544 Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. *arXiv preprint*
 545 *arXiv:2002.03329*, 2020. URL <https://arxiv.org/abs/2002.03329>. (Cited on page 9
 546 and 24)

547 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 548 *Conference on Learning Representations*, 2015. URL <https://arxiv.org/abs/1412.6980>. (Cited on page 1)

549

550 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-Euclidean
 551 trust-region optimization, 2025. URL <https://arxiv.org/abs/2503.12645>. (Cited on
 552 page 2, 3, 5, 6, 7, 14, and 17)

553

554 Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
 555 optimization in the modular norm. In *The Thirty-eighth Annual Conference on Neural Information*
 556 *Processing Systems*, 2024. URL <https://arxiv.org/abs/2405.14813>. (Cited on page 17)

557

558 Jiaxiang Li and Mingyi Hong. A note on the convergence of Muon and further, 2025. URL
<https://arxiv.org/abs/2502.02900>. (Cited on page 2, 3, 5, 6, 7, and 14)

559

560 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
 561 non-linear systems and neural networks. *Applied and Computational Harmonic Analysis*, 59, 01
 562 2022. doi: 10.1016/j.acha.2021.12.009. URL <https://arxiv.org/abs/2003.00307>.
 563 (Cited on page 22)

564

565 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
 566 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. *arXiv preprint*
 567 *arXiv:2502.16982*, 2025. URL <https://arxiv.org/abs/2502.16982>. (Cited on page 1)

568

569 Yuxing Liu, Rui Pan, and Tong Zhang. AdaGrad under anisotropic smoothness, 2024. URL
<https://arxiv.org/abs/2406.15244>. (Cited on page 4 and 14)

570

571 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 572 ence on Learning Representations*, 2019. URL <https://arxiv.org/abs/1711.05101>.
 573 (Cited on page 1)

574

575 Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM*
 576 *Journal on Optimization*, 22(2):341–362, 2012. URL <https://pubs.siam.org/doi/10.1137/100802001>. (Cited on page 14)

576

577 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 578 Volkan Cevher. Scion. <https://github.com/LIONS-EPFL/scion.git>, 2025a. GitHub
 579 repository. (Cited on page 3, 7, 9, and 33)

580

581 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 582 Volkan Cevher. Training deep learning models with norm-constrained LMOs. *arXiv preprint*
 583 *arXiv:2502.07529*, 2025b. URL <https://arxiv.org/abs/2502.07529>. (Cited on page 1,
 584 2, 3, 4, 5, 6, 7, 9, 14, 17, 18, 19, 36, and 37)

585

586 Sebastian Pokutta. The Frank-Wolfe algorithm: a short introduction. *Jahresbericht der Deutschen*
 587 *Mathematiker-Vereinigung*, 126(1):3–35, 2024. URL <https://arxiv.org/abs/2311.05313>. (Cited on page 1)

588

589 Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
 590 methods for minimizing a composite function. *Mathematical Programming*, 144(1):1–38, 2014.
 591 URL <https://arxiv.org/abs/1107.2848>. (Cited on page 14)

592

593 Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 594 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of Muon for
 595 pretraining. *arXiv preprint arXiv:2505.02222*, 2025. URL <https://arxiv.org/abs/2505.02222>. (Cited on page 2)

594 Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimizing (L_0, L_1) -smooth functions by gradient methods. In *The Thirteenth International Conference*
 595 *on Learning Representations*, 2025. URL <https://arxiv.org/abs/2410.10800>. (Cited
 596 on page 6, 14, and 18)

597 Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
 598 value of adaptive gradient methods in machine learning. *Advances in neural information processing*
 599 *systems*, 30, 2017. URL <https://arxiv.org/abs/1705.08292>. (Cited on page 1)

600 Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ_∞ -geometry of loss
 601 landscape via coordinate-wise adaptivity. *arXiv preprint arXiv:2410.08198*, 2024. URL <https://arxiv.org/abs/2410.08198>. (Cited on page 14)

602 Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
 603 normalized gradient method: An empirical study for training deep neural network, 2018. URL
 604 <https://openreview.net/forum?id=ry831QWAb>. (Cited on page 6 and 18)

605 Dingzhi Yu, Wei Jiang, Yuanyu Wan, and Lijun Zhang. Mirror descent under generalized smoothness.
 606 *arXiv preprint arXiv:2502.00753*, 2025. (Cited on page 14)

607 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
 608 training: A theoretical justification for adaptivity. In *International Conference on Learning*
 609 *Representations*, 2020. URL <https://arxiv.org/abs/1905.11881>. (Cited on page 3, 4,
 610 5, and 14)

611 Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of Adam in
 612 learning neural networks with proper regularization. *arXiv preprint arXiv:2108.11371*, 2021. URL
 613 <https://arxiv.org/abs/2108.11371>. (Cited on page 1)

614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648	APPENDIX	
649		
650	CONTENTS	
651		
652	1 Introduction	1
653		
654	2 Theory vs. practice of Muon and Scion	2
655	2.1 Layer-wise structure	3
656	2.2 A theory with predictive power	3
657	3 Contributions	4
658		
659	4 Main theory and results	5
660	4.1 Examples of optimizers satisfying our framework	5
661	4.2 Convergence results	6
662	4.3 Stochastic case	7
663	5 Experiments	7
664	5.1 Training NanoGPT on FineWeb	7
665	5.2 Training CNN on CIFAR-10	9
666		
667	6 Conclusion and future work	9
668		
669	A Related works	14
670		
671	B Auxiliary lemmas	15
672		
673	C Remarks on the theoretical results	17
674	C.1 Note on radii and stepsizes	17
675	C.2 Note on prior analyses	17
676	D Deterministic case	18
677	D.1 Special cases of the LMO framework	18
678	D.2 Proof of Theorem 1	19
679	D.3 Convergence under the PL condition	22
680	E Stochastic case	24
681	E.1 Adaptive stepsizes	24
682	E.2 Proof of Theorem 2	28
683		
684	F Additional experimental results and details	33
685	F.1 Experimental details	33
686	F.2 Fitting L_i^0 and L_i^1	33
687	F.3 Training NanoGPT on FineWeb	33
688	F.3.1 Empirical validation of Assumption 1	33
689	F.3.2 Generalized smoothness under Euclidean vs. specialized norms	35
690	F.3.3 Learning rate transfer from AdamW	36
691	F.4 Training CNN on CIFAR-10	37
692	G Additional Empirical Results	39
693	G.1 Layer-wise smoothness across all layers and varied model scales	39
694	G.2 Best vs. worst fits and aggregate fit quality	43
695		
696		
697		
698		
699		
700		
701		

702 A RELATED WORKS
703

704 **Generalized Smoothness.** The classical L -smoothness assumption, where the gradient is Lipschitz
705 continuous with a global constant L , often fails to accurately capture the complex geometry of
706 loss landscapes in deep learning (Crawshaw et al., 2022; Zhang et al., 2020). To address this,
707 Zhang et al. (2020) introduced the (L^0, L^1) -smoothness condition, empirically observing in language
708 model experiments that a bound of the form $\|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|$ better described the
709 Hessian norm behavior. Subsequent works have analyzed standard optimization algorithms under
710 this generalized smoothness framework. For instance, Gorbunov et al. (2025) and Vankov et al.
711 (2025) provided convergence analyses for the Gradient Method. Hübler et al. (2024) analyzed
712 Normalized SGD with momentum in a parameter-agnostic setting under (L^0, L^1) -smoothness. Yu
713 et al. (2025) proposed non-Euclidean generalized smoothness and established convergence rates
714 for mirror-descent-type methods. Our work extends this line by incorporating (L^0, L^1) -smoothness
715 into a *layer-wise* context using arbitrary norms, an approach that is particularly well-suited for the
716 LMO-based optimizers we study.

717 **Anisotropic Smoothness.** Recognizing the heterogeneous nature of parameters in large models,
718 researchers have explored anisotropic smoothness conditions, where smoothness constants can vary
719 across different dimensions or parameter blocks. Early work in this direction includes coordinate-wise
720 Lipschitz continuity for coordinate descent methods (Nesterov, 2012; Richtárik & Takáč, 2014).
721 More recently, Bernstein et al. (2018) analyzed signSGD under a weaker notion of coordinate-wise
722 smoothness. Crawshaw et al. (2022) further developed this by analyzing Generalized signSGD
723 under a generalized coordinate-wise smoothness assumption, highlighting that different parameter
724 groups can exhibit vastly different geometries. Jiang et al. (2024) focused on Adagrad's analysis
725 under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits
726 of adaptivity. Liu et al. (2024) proposed "Anisotropic (L^0, L^1) -smoothness" (a vector version of
727 (L_0, L_1) -smoothness applied coordinate-wise) and demonstrated Adagrad's provable advantages
728 over SGD in this setting. Xie et al. (2024) also leveraged anisotropic smoothness concepts in their
729 convergence analysis of Adam. Our work contributes by defining and analyzing *layer-wise* (L^0, L^1) -
730 *smoothness*, which combines the benefits of the generalized smoothness model with a structured,
731 anisotropic perspective tailored to the layer-block architecture of neural networks and compatible with
732 arbitrary layer-specific norms. This framework is essential for understanding LMO-based methods
733 like Muon and Scion.

734 **LMO-based Optimizers.** The optimizers Muon (Jordan et al., 2024b) and Scion (Pethick et al.,
735 2025b) represent a recent class of methods that have shown strong empirical performance in deep
736 learning. Muon was initially introduced as an effective empirical method, with its update rule for
737 hidden layers inspired by ideas from Bernstein & Newhouse (2024b). Subsequently, Pethick et al.
738 (2025b) (authors of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW)
739 framework (Frank & Wolfe, 1956; Jaggi, 2013), proposing the use of layer-specific norms within
740 an LMO-based update rule. These methods perform updates by solving, for each layer, a linear
741 minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of
742 these optimizers (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b) have relied on standard
743 L -smoothness and analyzed a simplified global update. Our work provides the first convergence
744 guarantees for these methods under the more realistic layer-wise (L_0, L_1) -smoothness, directly
745 addressing their practical layer-wise nature and leveraging the geometric insights offered by LMOs
746 over general norms.

747 ACKNOWLEDGMENTS
748

749 The authors used large language models (LLMs) during the preparation of this paper to assist with
750 grammar, wording, and code implementation. No LLMs were used to write scientific content, or
751 search for citations or related work. This is in accordance with two main LLM-related policies.

752
753
754
755

756 **B AUXILIARY LEMMAS**
757

758 **Lemma 1.** *Let $f : \mathcal{S} \mapsto \mathbb{R}$ satisfy Assumption 1. Then, for any $X, Y \in \mathcal{S}$, we have*

759
$$760 |f(Y) - f(X) - \langle \nabla f(X), Y - X \rangle| \leq \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X)\|_{(i)\star}}{2} \|Y_i - X_i\|_{(i)}^2.$$

761

762 *Proof.* For all $X, Y \in \mathcal{S}$ we have

763
$$764 f(Y) = f(X) + \int_0^1 \langle \nabla f(X + \tau(Y - X)), Y - X \rangle d\tau$$

765
$$766 = f(X) + \langle \nabla f(X), Y - X \rangle + \int_0^1 \langle \nabla f(X + \tau(Y - X)) - \nabla f(X), Y - X \rangle d\tau.$$

767

768 Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

769
$$770 |f(Y) - f(X) - \langle \nabla f(X), Y - X \rangle|$$

771
$$772 \leq \left| \int_0^1 \sum_{i=1}^p \langle \nabla_i f(X + \tau(Y - X)) - \nabla_i f(X), Y_i - X_i \rangle_{(i)} d\tau \right|$$

773
$$774 \leq \int_0^1 \sum_{i=1}^p \left| \langle \nabla_i f(X + \tau(Y - X)) - \nabla_i f(X), Y_i - X_i \rangle_{(i)} \right| d\tau$$

775
$$776 \leq \int_0^1 \sum_{i=1}^p \|\nabla_i f(X + \tau(Y - X)) - \nabla_i f(X)\|_{(i)\star} \|Y_i - X_i\|_{(i)} d\tau$$

777
$$778 \leq \int_0^1 \sum_{i=1}^p \tau (L_i^0 + L_i^1 \|\nabla_i f(X)\|_{(i)\star}) \|Y_i - X_i\|_{(i)}^2 d\tau$$

779
$$780 = \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X)\|_{(i)\star}}{2} \|Y_i - X_i\|_{(i)}^2.$$

781

782 \square

783 **Lemma 2.** *Suppose that f is L -smooth with respect to the norm defined in (11), i.e.,*

784
$$\|\nabla f(X) - \nabla f(Y)\|_{\max\star} \leq L \|X - Y\|_{\max},$$

785

786 *where $X = [X_1, \dots, X_p]$ and $Y = [Y_1, \dots, Y_p]$ with $X_i, Y_i \in \mathcal{S}_i$. Then Assumption 1 holds with $L_i^0 \leq L$ and $L_i^1 = 0$ for all $i = 1, \dots, p$.*

787 *Proof.* L -smoothness and the definition of the norm give

788
$$789 \sum_{i=1}^p \|\nabla_i f(X) - \nabla_i f(Y)\|_{(i)\star} \leq L \max \left\{ \|X_1 - Y_1\|_{(1)}, \dots, \|X_p - Y_p\|_{(p)} \right\}$$

790

791 *for all $X, Y \in \mathcal{S}$. In particular, choosing $X = [X_1, \dots, X_p]$ and $Y = [X_1, \dots, X_{j-1}, Y_j, X_{j+1}, \dots, X_p]$, we have*

792
$$793 \|\nabla_j f(X) - \nabla_j f(Y)\|_{(j)\star} \leq \sum_{i=1}^p \|\nabla_i f(X) - \nabla_i f(Y)\|_{(i)\star} \leq L \|X_j - Y_j\|_{(j)}$$

794

795 for any $j \in \{1, \dots, p\}$, proving the claim. \square

796 **Lemma 3.** *Suppose that $x_1, \dots, x_p, y_1, \dots, y_p \in \mathbb{R}$, $\max_{i \in [p]} |x_i| > 0$ and $z_1, \dots, z_p > 0$. Then*

797
$$798 \sum_{i=1}^p \frac{y_i^2}{z_i} \geq \frac{(\sum_{i=1}^p x_i y_i)^2}{\sum_{i=1}^p z_i x_i^2}.$$

810 *Proof.* Cauchy-Schwarz inequality gives
 811

$$812 \quad \left(\sum_{i=1}^p x_i y_i \right)^2 = \left(\sum_{i=1}^p \frac{y_i}{\sqrt{z_i}} \sqrt{z_i} x_i \right)^2 \leq \left(\sum_{i=1}^p \frac{y_i^2}{z_i} \right) \left(\sum_{i=1}^p z_i x_i^2 \right).$$

815 Rearranging, we obtain the result. \square
 816

817 **Lemma 4** (Technical Lemma 10 by Hübler et al. (2024)). *Let $q \in (0, 1)$, $p \geq 0$, and $p \geq q$. Further,
 818 let $a, b \in \mathbb{N}_{\geq 2}$ with $a \leq b$. Then*

$$819 \quad \sum_{k=a-1}^{b-1} (1+k)^{-p} \prod_{\tau=a-1}^k (1 - (\tau+1)^{-q}) \leq (a-1)^{q-p} \exp \left(\frac{a^{1-q} - (a-1)^{1-q}}{1-q} \right).$$

822 **Lemma 5** (Technical Lemma 11 by Hübler et al. (2024)). *Let $t > 0$ and for $k \in \mathbb{N}_{\geq 0}$, set $\beta^k =$
 823 $1 - (k+1)^{-1/2}$, $t^k = t(k+1)^{-3/4}$, $t > 0$. Then, for all $K \in \mathbb{N}_{\geq 1}$ the following inequalities hold:*
 824

$$825 \quad (i) \quad \sum_{k=0}^{K-1} t^k \sqrt{\sum_{\tau=0}^k (1 - \beta^\tau)^2 \prod_{\kappa=\tau+1}^k (\beta^\kappa)^2} \leq t \left(\frac{7}{2} + \sqrt{2e^2 \log(K)} \right),$$

$$827 \quad (ii) \quad \sum_{k=0}^{K-1} t^k \sum_{\tau=1}^k t^\tau \prod_{\kappa=\tau}^k \beta^\kappa \leq 7t^2 (3 + \log(K)).$$

829 *Proof.* This is a direct consequence of Lemma 11 by Hübler et al. (2024). To obtain (ii), it suffices to
 830 take the limit as $L^1 \rightarrow 0$ in statement (ii) of part (b). \square
 831

832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 C REMARKS ON THE THEORETICAL RESULTS
865

866 C.1 NOTE ON RADII AND STEPSIZES

867 It is known (see, e.g., Gruntkowska et al. (2025, Theorem D.1), who establish this for $\mathcal{S} = \mathbb{R}^d$ under
868 Euclidean norms; the extension to general normed vector spaces is entirely analogous) that if g is a
869 convex function, then the solution to the problem

870
$$\arg \min_{X \in \mathcal{B}^k} g(X)$$

871

872 lies on the boundary of the ball $\mathcal{B}^k := \{X \in \mathcal{S} : \|X - X^k\| \leq t^k\}$ (unless $\mathcal{B}^k \cap \arg \min_{X \in \mathcal{S}} g(X) \neq$
873 \emptyset , that is, the ball intersects the set of minimizers of g).
874875 This applies directly to the LMO subproblem solved at each iteration of [Gluon](#) in (1), since the
876 objective $\langle M_i^k, X_i \rangle_{(i)}$ is linear in X_i , and hence convex. In other words, each LMO step moves the
877 iterate from the center of the ball X_i^k to a new point X_i^{k+1} located on the boundary of \mathcal{B}_i^k , effectively
878 traversing a distance of t_i^k at each step. For this reason, we use the terms *radius*, *stepsize*, and *learning
879 rate* interchangeably.880 C.2 NOTE ON PRIOR ANALYSES
881882 As presented, prior convergence results do not directly apply to the algorithms used in practice.
883 However, there is a workaround. Specifically, some of the existing convergence guarantees (Kovalev,
884 2025; Pethick et al., 2025b) expressed in terms of the flat vector x are transferable to the structured
885 parameters $X = [X_1, \dots, X_l] \in \mathcal{S}$ by employing the max-norm (Bernstein & Newhouse, 2024a;
886 Large et al., 2024), defined as

887
$$\|X\|_{\max} := \max \left\{ \|X_1\|_{(1)}, \dots, \|X_p\|_{(p)} \right\}, \quad (11)$$

888

889 with corresponding dual norm $\|Y\|_{\max \star} = \sup_{\|X\|_{\max} \leq 1} \langle X, Y \rangle = \sum_{i=1}^p \|Y_i\|_{(i) \star}$. Nevertheless,
890 these works do not make this connection explicit, and an additional layer of analysis is required to
891 ensure the guarantees meaningfully extend to the structured practical setting. Even if such a translation
892 was attempted, the global treatment introduces serious practical limitations. For example, real-world
893 training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous structure of deep
894 networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
895 control in hyperparameter selection.
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **Algorithm 2** Deterministic Adaptive Layer-Wise LMO-based Optimizer

```

919 1: Input: Initial model parameters  $X^0 = [X_1^0, \dots, X_p^0] \in \mathcal{S}$ 
920 2: for  $k = 0, 1, \dots, K - 1$  do
921 3:   for  $i = 1, 2, \dots, p$  do
922 4:     Choose adaptive stepsize/radius  $t_i^k > 0$  for layer  $i$ 
923 5:     Update parameters for layer  $i$  via LMO over  $\mathcal{B}_i^k := \{X_i \in \mathcal{S}_i : \|X_i - X_i^k\|_{(i)} \leq t_i^k\}$ :
924
925   
$$X_i^{k+1} = \text{LMO}_{\mathcal{B}_i^k}(\nabla_i f(X^k)) := \arg \min_{X_i \in \mathcal{B}_i^k} \langle \nabla_i f(X^k), X_i \rangle_{(i)} \quad (12)$$

926
927 6:   end for
928 7:   Update full vector:  $X^{k+1} = [X_1^{k+1}, \dots, X_p^{k+1}]$ 
929 8: end for
930
931

```

D DETERMINISTIC CASE

We begin by considering the deterministic counterpart of **Gluon**, as formalized in Algorithm 2. We first review several existing algorithms that fall within this framework (Appendix D.1), followed by a proof of Theorem 1 (Appendix D.2). Finally, we present an additional convergence guarantee under the layer-wise Polyak-Łojasiewicz (PL) condition (Appendix D.3).

D.1 SPECIAL CASES OF THE LMO FRAMEWORK

As outlined in Section 4.1, deterministic **Gluon** encompasses a general class of algorithms, parameterized by the choice of norms $\|\cdot\|_{(i)}$ in the LMO. We now provide a more detailed discussion of the most notable special cases.

Layer-wise normalized GD (Yu et al., 2018). Let $\|\cdot\|_{(i)} = \|\cdot\|_{2 \rightarrow 2}$ for each parameter group and assume that $n_i = 1$ for all $i = 1, \dots, p$. In this case, the spectral norm reduces to the standard Euclidean norm $\|\cdot\|_2$, yielding the update rule

$$X_i^{k+1} = X_i^k - t_i^k \frac{\nabla_i f(X^k)}{\|\nabla_i f(X^k)\|_2}, \quad i = 1, \dots, p,$$

which corresponds to layer-wise normalized GD. With a suitable choice of t_i^k (see Theorem 1), the method can also recover the Gradient Method for (L^0, L^1) -smooth functions (Vankov et al., 2025).

Layer-wise signGD (Balles et al., 2020). Suppose that $\|\cdot\|_{(i)} = \|\cdot\|_{1 \rightarrow \infty}$ for each parameter group, with $n_i = 1$ for all $i = 1, \dots, p$. Then, $\|\cdot\|_{1 \rightarrow \infty}$ reduces to $\|\cdot\|_\infty$, and the update becomes

$$X_i^{k+1} = X_i^k - t_i^k \text{sign}(\nabla_i f(X^k)), \quad i = 1, \dots, p,$$

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon (Jordan et al., 2024b). Here, the spectral norm $\|\cdot\|_{2 \rightarrow 2}$ is used for all parameter groups, without restrictions on n_i . In this case, it can be shown that (12) is equivalent to

$$X_i^{k+1} = X_i^k - t_i^k U_i^k (V_i^k)^\top, \quad i = 1, \dots, p, \quad (13)$$

where $\nabla_i f(X^k) = U_i^k \Sigma_i^k (V_i^k)^\top$ is the singular value decomposition (Bernstein & Newhouse, 2024b). This is exactly the per-layer deterministic version of the **Muon** optimizer. In practical LLM training, a more general variant of (13) incorporating stochasticity and momentum is applied to the intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion (Pethick et al., 2025b). We can also recover two variants of **unScion** introduced by Pethick et al. (2025b): one for training LLMs on next-token prediction, and another for training CNNs for image classification.

- **Training LLMs.** Define the norms $\|\cdot\|_{(i)}$ as follows: for $i = 1, \dots, p - 1$, corresponding to weight matrices of transformer blocks, set $\|\cdot\|_{(i)} = \sqrt{n_i/m_i} \|\cdot\|_{2 \rightarrow 2}$, and for the last

group X_p , representing the embedding and output layers (which coincide under the weight sharing regime considered here), let $\|\cdot\|_{(p)} = n_p \|\cdot\|_{1 \rightarrow \infty}$. In this case, (12) becomes

$$\begin{aligned} X_i^{k+1} &= X_i^k - t_i^k \sqrt{\frac{m_i}{n_i}} U_i^k (V_i^k)^\top, \quad i = 1, \dots, p-1, \\ X_p^{k+1} &= X_p^k - \frac{t_p^k}{n_p} \text{sign}(\nabla_p f(X^k)), \end{aligned} \quad (14)$$

where $\nabla_i f(X^k) = U_i^k \Sigma_i^k (V_i^k)^\top$ is the singular value decomposition. This is equivalent to deterministic layer-wise unScion optimizer without momentum. A more general variant, incorporating stochasticity and momentum and applied to all layers, was shown by Pethick et al. (2025b) to outperform Muon on LLM training tasks.

- **Training CNNs.** The main difference in the CNN setting is the presence of not only 2D weight matrices, but also 1D bias vectors and 4D convolutional kernels parameters. Biases are 1D tensors of shape $\mathbb{R}^{C_i^{out}}$, for which we use scaled Euclidean norms. Convolutional parameters (conv) are 4D tensors with shapes $\mathbb{R}^{C_i^{out} \times C_i^{in} \times k \times k}$, where C_i^{out} and C_i^{in} denote the number of output and input channels, and k is the kernel size. To compute norms, we reshape each 4D tensor to a 2D matrix of shape $\mathbb{R}^{C_i^{out} \times C_i^{in} k^2}$, and then apply a scaled $\|\cdot\|_{2 \rightarrow 2}$ norm. This yields the norm choices $\|\cdot\|_{(i)} = \sqrt{1/C_i^{out}} \|\cdot\|_2$ for biases, $\|\cdot\|_{(i)} = k^2 \sqrt{C_i^{in}/C_i^{out}} \|\cdot\|_{2 \rightarrow 2}$ for conv, and $\|\cdot\|_{(p)} = n_p \|\cdot\|_{1 \rightarrow \infty}$ for the last group X_p , associated with classification head weights. Then, it can be shown that (12) is equivalent to

$$\begin{aligned} X_i^{k+1} &= X_i^k - t_i^k \sqrt{C_i^{out}} \frac{\nabla_i f(X^k)}{\|\nabla_i f(X^k)\|_2}, \quad (\text{for biases}), \\ X_i^{k+1} &= X_i^k - t_i^k \frac{1}{k^2} \sqrt{\frac{C_i^{out}}{C_i^{in}}} U_i^k (V_i^k)^\top, \quad (\text{for conv}), \\ X_p^{k+1} &= X_p^k - \frac{t_p^k}{n_p} \text{sign}(\nabla_p f(X^k)), \quad (\text{for head}) \end{aligned} \quad (15)$$

where $\nabla_i f(X^k) = U_i^k \Sigma_i^k (V_i^k)^\top$ is the singular value decomposition. This corresponds to the deterministic layer-wise unScion optimizer without momentum.

D.2 PROOF OF THEOREM 1

We now state and prove a generalization of Theorem 1.

Theorem 3. Let Assumption 1 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of deterministic Gluon (Algorithm 2) run with stepsizes $t_i^k = \frac{\|\nabla_i f(X^k)\|_{(i)*}}{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)*}}$. Then,

1. In order to reach the precision

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)*} \leq \epsilon,$$

it suffices to run the algorithm for

$$K = \left\lceil \frac{2\Delta^0 \sum_{i=1}^p L_i^0}{\epsilon^2} + \frac{2\Delta^0 L_{\max}^1}{\epsilon} \right\rceil \quad (16)$$

iterations;

2. In order to reach the precision

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \left[\frac{\frac{1}{L_i^1}}{\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1}} \|\nabla_i f(X^k)\|_{(i)*} \right] \leq \varepsilon, \quad (17)$$

1026 it suffices to run the algorithm for
 1027

$$1028 \quad K = \left[\frac{2\Delta^0 \left(\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2} \right)}{\varepsilon^2 \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} + \frac{2\Delta^0}{\varepsilon \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)} \right] \quad (18)$$

1032 iterations,

1033 where $\Delta^0 := f(X^0) - \inf_{X \in \mathcal{S}} f(X)$ and $L_{\max}^1 := \max_{i=1, \dots, p} L_i^1$.

1034 **Remark 4.** Let us compare bounds (16) and (18). Due to the reweighting of the gradient component
 1035 norms in (17), the rates are not exactly equivalent. Nevertheless, both use weights that sum to p ,
 1036 ensuring a fair comparison. Obviously, $(1/p \sum_{j=1}^p 1/L_j^1)^{-1} \leq L_{\max}^1$, so the second term in (18) is
 1037 always no worse than its counterpart in (16). The comparison of the first terms, however, depends
 1038 on how the sequences $\{L_i^0\}$ and $\{L_i^1\}$ relate: if larger values of L_i^0 's tend to be attached to smaller
 1039 values of L_i^1 , then the first term in (16) improves over that in (18), while for a positive correlation the
 1040 opposite is true. Indeed, in the extreme case when $L_1^0 \geq \dots \geq L_p^0$ and $L_1^1 \leq \dots \leq L_p^1$ (or the reverse
 1041 ordering), Chebyshev's sum inequality implies that

$$1042 \quad \frac{\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2}}{\left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} \geq \frac{\left(\frac{1}{p} \sum_{i=1}^p \frac{L_i^0}{L_i^1} \right) \left(\frac{1}{p} \sum_{i=1}^p \frac{1}{L_i^1} \right)}{\left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} \geq \frac{\left(\frac{1}{p} \sum_{i=1}^p L_i^0 \right) \left(\frac{1}{p} \sum_{i=1}^p \frac{1}{L_i^1} \right)}{\frac{1}{p} \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)} = \sum_{i=1}^p L_i^0.$$

1043 Conversely, if both sequences $\{L_i^0\}$ and $\{L_i^1\}$ are sorted in the same order (either increasing or
 1044 decreasing), the inequality reverses, and the first term of (18) may be tighter. That said, empirical
 1045 evidence we provide in Section 5 indicates that in practice $L_i^0 \approx 0$ across all layers, in which case the
 1046 first terms in (16) and (18) effectively vanish. Then, (18) is clearly superior, replacing the worst-case
 1047 constant L_{\max}^1 by the harmonic mean.

1048 *Proof.* We start with the result obtained in Lemma 1 with $X = X^k$ and $Y = X^{k+1}$

$$1049 \quad f(X^{k+1}) \leq f(X^k) + \langle \nabla f(X^k), X^{k+1} - X^k \rangle + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2$$

$$1050 \quad = f(X^k) + \sum_{i=1}^p \left[\langle \nabla_i f(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \right].$$

1051 The update rule (12) and the definition of the dual norm $\|\cdot\|_{(i)\star}$ give

$$1052 \quad \|X_i^k - X_i^{k+1}\|_{(i)}^2 \leq (t_i^k)^2$$

1053 and

$$1054 \quad \langle \nabla_i f(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} = \langle \nabla_i f(X^k), \text{LMO}_{\mathcal{B}_i^k}(\nabla_i f(X^k)) - X_i^k \rangle_{(i)}$$

$$1055 \quad = -t_i^k \max_{\|X_i\|_{(i)} \leq 1} \langle \nabla_i f(X^k), X_i \rangle_{(i)}$$

$$1056 \quad = -t_i^k \|\nabla_i f(X^k)\|_{(i)\star}.$$

1057 Consequently,

$$1058 \quad f(X^{k+1}) \leq f(X^k) + \sum_{i=1}^p \left[-t_i^k \|\nabla_i f(X^k)\|_{(i)\star} + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} (t_i^k)^2 \right].$$

1059 Now, choosing

$$1060 \quad t_i^k = \frac{\|\nabla_i f(X^k)\|_{(i)\star}}{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}},$$

1080 which minimizes the right-hand side of the last inequality, yields the descent inequality
 1081

$$1082 \quad f(X^{k+1}) \leq f(X^k) - \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2(L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star})}. \quad (19)$$

1083
 1084

1085 Summing the terms, we obtain
 1086

$$1087 \quad \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2(L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star})} \leq \sum_{k=0}^{K-1} (f(X^k) - f(X^{k+1}))$$

1088
 1089
 1090
 1091
 1092

$$= f(X^0) - f(X^K)$$

$$\leq f(X^0) - \inf_{X \in \mathcal{S}} f(X) =: \Delta^0.$$

1093
 1094

Now, the analysis can proceed in two ways:

1095 1. Upper-bounding L_i^1 by $L_{\max}^1 := \max_{i=1,\dots,p} L_i^1$ in (20), we obtain
 1096

$$1097 \quad \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2(L_i^0 + L_{\max}^1 \|\nabla_i f(X^k)\|_{(i)\star})} \leq \Delta^0. \quad (21)$$

1098
 1099

1100 Now, applying Lemma 3 with $x_i = 1$, $y_i = \|\nabla_i f(X^k)\|_{(i)\star}$ and $z_i =$
 1101 $2(L_i^0 + L_{\max}^1 \|\nabla_i f(X^k)\|_{(i)\star})$ gives
 1102

$$1103 \quad \phi \left(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right) = \frac{(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star})^2}{2(\sum_{i=1}^p L_i^0 + L_{\max}^1 \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star})}$$

1104
 1105
 1106
 1107
 1108

$$\leq \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2(L_i^0 + L_{\max}^1 \|\nabla_i f(X^k)\|_{(i)\star})},$$

1109 where $\phi(t) := \frac{t^2}{2(\sum_{i=1}^p L_i^0 + L_{\max}^1 t)}$. Combining the last inequality with (21) and using the
 1110 fact that ϕ is increasing, we obtain
 1111

$$1112 \quad K\phi \left(\min_{k=0,\dots,K-1} \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right) \leq \sum_{k=0}^{K-1} \phi \left(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right) \leq \Delta^0, \quad (22)$$

1113
 1114

1115 and hence

$$1116 \quad \min_{k=0,\dots,K-1} \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \leq \phi^{-1} \left(\frac{\Delta^0}{K} \right),$$

1117
 1118

1119 where ϕ^{-1} is the inverse function (which exists since ϕ is increasing). Therefore, to reach the
 1120 precision $\min_{k=0,\dots,K-1} \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \leq \epsilon$, it is sufficient to choose the number
 1121 of iterations to be
 1122

$$1123 \quad K = \left\lceil \frac{\Delta^0}{\phi(\epsilon)} \right\rceil = \left\lceil \frac{2 \sum_{i=1}^p L_i^0 \Delta^0}{\epsilon^2} + \frac{2 L_{\max}^1 \Delta^0}{\epsilon} \right\rceil.$$

1124
 1125

1126 2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with $x_i = 1/L_i^1$,
 1127 $y_i = \|\nabla_i f(X^k)\|_{(i)\star}$ and $z_i = 2(L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star})$ to obtain
 1128

$$1129 \quad \Delta^0 \geq \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2(L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star})}$$

1130
 1131
 1132
 1133

$$\geq \sum_{k=0}^{K-1} \frac{\left(\sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star} \right)^2}{2 \left(\sum_{i=1}^p \frac{1}{(L_i^1)^2} (L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}) \right)}$$

$$\begin{aligned}
&= \sum_{k=0}^{K-1} \frac{\left(\sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star}\right)^2}{2 \left(\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2} + \sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star}\right)} \\
&= \sum_{t=0}^{K-1} \psi \left(\sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star} \right),
\end{aligned}$$

where $\psi(t) := \frac{t^2}{2 \left(\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2} + t\right)}$. Since the function ψ is increasing for $t > 0$, ψ^{-1} exists.

It follows that

$$\begin{aligned}
\Delta^0 &\geq \sum_{k=0}^{K-1} \psi \left(\sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star} \right) \\
&\geq K \psi \left(\min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star} \right),
\end{aligned}$$

and hence

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{L_i^1} \|\nabla_i f(X^k)\|_{(i)\star} \leq \psi^{-1} \left(\frac{\Delta^0}{K} \right).$$

This in turn means that to reach the precision

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \left[\frac{\frac{1}{L_i^1}}{\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1}} \|\nabla_i f(X^k)\|_{(i)\star} \right] \leq \varepsilon,$$

it suffices to run the algorithm for

$$K = \left\lceil \frac{\Delta^0}{\psi \left(\varepsilon \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right) \right)} \right\rceil = \left\lceil \frac{2\Delta^0 \left(\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2} \right)}{\varepsilon^2 \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} + \frac{2\Delta^0}{\varepsilon \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)} \right\rceil$$

iterations.

□

D.3 CONVERGENCE UNDER THE PL CONDITION

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PL) condition, introduced in Assumption 3. This property is especially relevant for heavily over-parameterized neural networks, as it has been shown to capture the properties of their loss landscapes (Liu et al., 2022).

Assumption 3 (Layer-wise Polyak–Łojasiewicz condition). *The function $f : \mathcal{S} \mapsto \mathbb{R}$ satisfies the layer-wise Polyak–Łojasiewicz (PL) condition with a constant $\mu > 0$, i.e., for any $X \in \mathcal{S}$*

$$\sum_{i=1}^p \|\nabla_i f(X)\|_{(i)\star}^2 \geq 2\mu (f(X) - f^*),$$

where $f^* := \inf_{X \in \mathcal{S}} f(X) > -\infty$.

Assumption 3 reduces to the standard PL condition (Karimi et al., 2020) by vectorizing the parameters and adopting the Euclidean norm $\|\cdot\|_2$.

Theorem 5. *Let Assumptions 1 and 3 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of deterministic Gluon (Algorithm 2) run with $t_i^k = \frac{\|\nabla_i f(X^k)\|_{(i)\star}}{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}$.*

1. If $L_i^1 \geq 0$, then to reach the precision $\min_{k=0, \dots, K-1} f(X^k) - f^* \leq \varepsilon$, it suffices to run the algorithm for

$$K = \left\lceil \frac{\sum_{i=1}^p L_i^0 \Delta^0}{\mu \varepsilon} + \frac{\sqrt{2} L_{\max}^1 \Delta^0}{\sqrt{\mu \varepsilon}} \right\rceil$$

iterations,

1188 2. If $L_i^1 = 0$ for all $i = 1, \dots, p$, then to reach the precision $f(X^K) - f^* \leq \epsilon$, it suffices to
 1189 run the algorithm for

$$1190 \quad 1191 \quad 1192 \quad K = \left\lceil \frac{L_{\max}^0}{\mu} \log \frac{\Delta^0}{\epsilon} \right\rceil,$$

1193 where $L_{\max}^0 := \max_{i=1, \dots, p} L_i^0$, $L_{\max}^1 := \max_{i=1, \dots, p} L_i^1$, $\Delta^0 := f(X^0) - f^*$ and $f^* :=$
 1194 $\inf_{X \in \mathcal{S}} f(X)$.

1195 *Proof.* We consider two scenarios: (1) the general case with arbitrary $L_i^1 \geq 0$ and (2) $L_i^1 = 0$ for all
 1196 $i = 1, \dots, p$.

1197 **Case 1:** $L_i^1 \geq 0$. We start by following the same steps as in the proof of Theorem 1. From (22), we
 1198 have

$$1201 \quad 1202 \quad 1203 \quad \sum_{k=0}^{K-1} \phi \left(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right) \leq \Delta^0,$$

1204 where $\phi(t) := \frac{t^2}{2(\sum_{i=1}^p L_i^0 + L_{\max}^1 t)}$. Now, using Assumption 3, we get

$$1205 \quad 1206 \quad 1207 \quad \left(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right)^2 \geq \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star}^2 \geq 2\mu (f(X^k) - f^*).$$

1208 Consequently, since ϕ is an increasing function,

$$1209 \quad 1210 \quad 1211 \quad K \phi \left(\sqrt{2\mu} \sqrt{f(X^{k^*}) - f^*} \right) \leq \sum_{k=0}^{K-1} \phi \left(\sqrt{2\mu} \sqrt{f(X^k) - f^*} \right) \\ 1212 \quad 1213 \quad 1214 \quad \leq \sum_{k=0}^{K-1} \phi \left(\sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star} \right) \leq \Delta^0,$$

1215 where $k^* := \arg\min_{k=0, \dots, K-1} f(X^k) - f^*$. Denoting the corresponding inverse function (which
 1216 exists since ϕ is increasing) by ϕ^{-1} , it follows that

$$1217 \quad 1218 \quad 1219 \quad \sqrt{2\mu} \sqrt{f(X^{k^*}) - f^*} \leq \phi^{-1} \left(\frac{\Delta^0}{K} \right) \leq \sqrt{2\mu\epsilon}.$$

1220 Therefore, to reach the precision $f(X^{k^*}) - f^* \leq \epsilon$, it is sufficient to choose the number of iterations

$$1221 \quad 1222 \quad 1223 \quad K = \left\lceil \frac{\Delta^0}{\phi(\sqrt{2\mu\epsilon})} \right\rceil = \left\lceil \frac{\sum_{i=1}^p L_i^0 \Delta^0}{\mu\epsilon} + \frac{\sqrt{2}L_{\max}^1 \Delta^0}{\sqrt{\mu\epsilon}} \right\rceil.$$

1224 **Case 2:** $L_i^1 = 0$. Inequality (19) from the proof of Theorem 1 with $L_i^1 = 0$ gives

$$1225 \quad 1226 \quad 1227 \quad f(X^{k+1}) \leq f(X^k) - \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2L_i^0}.$$

1228 Using the fact that

$$1229 \quad 1230 \quad 1231 \quad \sum_{i=1}^p \frac{\|\nabla_i f(X^k)\|_{(i)\star}^2}{2L_i^0} \geq \min_{j=1, \dots, p} \frac{1}{2L_j^0} \sum_{i=1}^p \|\nabla_i f(X^k)\|_{(i)\star}^2 = \frac{1}{2 \max_{j=1, \dots, p} L_j^0} \sum_{i=1}^p \|\nabla f(X^k)\|_{(i)\star}^2$$

1232 along with Assumption 3, we obtain

$$1233 \quad 1234 \quad 1235 \quad f(X^{k+1}) \leq f(X^k) - \frac{\mu}{L_{\max}^0} (f(X^k) - f^*).$$

1236 The remaining part of the proof follows from the simple observation

$$1237 \quad 1238 \quad 1239 \quad \log \left(\frac{\Delta_0}{\epsilon} \right) \leq k \frac{\mu}{L_{\max}^0} \leq k \log \left(\frac{1}{1 - \frac{\mu}{L_{\max}^0}} \right).$$

1240

1241 \square

1242 **E STOCHASTIC CASE**
 1243

1244 **E.1 ADAPTIVE STEPSIZES**

1245 Before proving the main result from Section 4.3, we first present an attempt to formulate an adaptive
 1246 stepsize strategy for the stochastic setting. This requires the following assumption:

1247 **Assumption 4.** *The stochastic gradient estimator $\nabla f_\xi : \mathcal{S} \mapsto \mathcal{S}$ is unbiased and has bounded
 1248 relative variance. That is, $\mathbb{E}[\nabla f_\xi(X)] = \nabla f(X)$ for all $X \in \mathcal{S}$ and there exists $0 \leq \zeta < 1$ such that*

1249
$$\|\nabla_i f_\xi(X) - \nabla_i f(X)\|_{(i)*} \leq \zeta \|\nabla_i f_\xi(X)\|_{(i)*}, \quad i = 1, \dots, p$$

 1250

1251 *holds almost surely for all $X \in \mathcal{S}$.*

1252 This assumption is somewhat unconventional due to the presence of the stochastic gradients on
 1253 the right-hand side of the inequality. It does not follow from standard conditions and does not
 1254 fall within known frameworks for modeling stochasticity, such as the ABC inequality of **Khaled &**
 1255 **Richtárik** (2020). Instead, it introduces a novel structure with parallels to the literature on contractive
 1256 compression (Beznosikov et al., 2023; Demidovich et al., 2023).

1257 To elaborate, recall the definition of a contractive compressor:

1258 **Definition 6** (Contractive compressor). A stochastic mapping $\mathcal{C} : \mathcal{S} \rightarrow \mathcal{S}$ is called a *contractive*
 1259 *compressor* if there exists $\alpha \in [0, 1)$ such that

1260
$$\mathbb{E} [\|\mathcal{C}(X) - X\|^2] \leq (1 - \alpha) \|X\|^2 \tag{23}$$

 1261

1262 for any $X \in \mathcal{S}$.

1263 There is a conceptual similarity between Assumption 4 and the contractive property in (23). Assumption 4 can be interpreted as asserting that the true gradient $\nabla f(X)$ is effectively a contraction
 1264 of the stochastic gradient $\nabla f_\xi(X)$, with contraction factor $1 - \zeta$. Unlike contractive compressors,
 1265 there is no explicit mapping from $\nabla f_\xi(X)$ to $\nabla f(X)$, and the uniform bound implies the same
 1266 contraction-like behavior across all stochastic gradients.

1267 Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using
 1268 an adaptive stepsize strategy similar to the one employed in the deterministic case in Theorem 3.

1269 **Theorem 7.** *Let Assumptions 1 and 4 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of Gluon
 1270 (Algorithm 1) run with $\beta^k = 0$ and $t_i^k = \frac{(1-\zeta)\|\nabla_i f_\xi^k(X^k)\|_{(i)*}}{L_i^0 + (1+\zeta)L_i^1\|\nabla_i f_\xi^k(X^k)\|_{(i)*}}$. Then,*

1271 *1. In order to reach the precision*

1272
$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)*}] \leq \varepsilon,$$

 1273

1274 *it suffices to run the algorithm for*

1275
$$K = \left\lceil \frac{2 \sum_{i=1}^p L_i^0 \Delta^0}{(1 - \zeta)^2 \varepsilon^2} + \frac{2(1 + \zeta) L_{\max}^1 \Delta^0}{(1 - \zeta)^2 \varepsilon} \right\rceil$$

 1276

1277 *iterations.*

1278 *2. In order to reach the precision*

1279
$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \left[\frac{\frac{1}{L_i^1}}{\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1}} \|\nabla_i f(X^k)\|_{(i)*} \right] \leq \varepsilon,$$

 1280

1281 *it suffices to run the algorithm for*

1282
$$K = \left\lceil \frac{2 \Delta^0 \sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2}}{\varepsilon^2 (1 - \zeta)^2 \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} + \frac{2 \Delta^0 (1 + \zeta)}{\varepsilon (1 - \zeta)^2 \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)} \right\rceil$$

 1283

1284 *iterations,*

1285 *where $\Delta^0 := f(X^0) - \inf_{X \in \mathcal{S}} f(X)$ and $L_{\max}^1 := \max_{i=1, \dots, p} L_i^1$.*

1296 *Proof.* Lemma 1 with $X = X^k$ and $Y = X^{k+1}$ gives

$$\begin{aligned}
 1297 \quad & f(X^{k+1}) \\
 1298 \leq & f(X^k) + \langle \nabla f(X^k), X^{k+1} - X^k \rangle + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \\
 1300 = & f(X^k) + \sum_{i=1}^p \left[\langle \nabla_i f(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \right] \\
 1302 = & f(X^k) + \sum_{i=1}^p \left[\langle \nabla_i f_{\xi^k}(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} + \langle \nabla_i f(X^k) - \nabla_i f_{\xi^k}(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} \right] \\
 1304 & + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2,
 \end{aligned}$$

1305 and applying the Cauchy-Schwarz inequality, we get

$$\begin{aligned}
 1312 \quad f(X^{k+1}) \leq & f(X^k) + \sum_{i=1}^p \left[\langle \nabla_i f_{\xi^k}(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} \right. \\
 1313 & + \|\nabla_i f(X^k) - \nabla_i f_{\xi^k}(X^k)\|_{(i)\star} \|X_i^{k+1} - X_i^k\|_{(i)} \\
 1314 & \left. + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \right].
 \end{aligned}$$

1319 The update rule (1) and the definition of the dual norm $\|\cdot\|_{(i)\star}$ give

$$\|X_i^k - X_i^{k+1}\|_{(i)}^2 \leq (t_i^k)^2$$

1322 and

$$\begin{aligned}
 1324 \quad \langle \nabla_i f_{\xi^k}(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} &= \left\langle \nabla_i f_{\xi^k}(X^k), \text{LMO}_{\mathcal{B}_i^k}(\nabla_i f_{\xi^k}(X^k)) - X_i^k \right\rangle_{(i)} \\
 1325 &= -t_i^k \max_{\|X_i\|_{(i)} \leq 1} \langle \nabla_i f_{\xi^k}(X^k), X_i \rangle_{(i)} \\
 1327 &= -t_i^k \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}.
 \end{aligned}$$

1329 Consequently, using Assumption 4, we obtain

$$\begin{aligned}
 1331 \quad f(X^{k+1}) \leq & f(X^k) + \sum_{i=1}^p \left[-t_i^k \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star} + t_i^k \|\nabla_i f(X^k) - \nabla_i f_{\xi^k}(X^k)\|_{(i)\star} \right. \\
 1333 & \left. + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} (t_i^k)^2 \right] \\
 1336 \leq & f(X^k) + \sum_{i=1}^p \left[-(1 - \zeta) t_i^k \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star} \right. \\
 1337 & \left. + \frac{L_i^0 + (1 + \zeta) L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}}{2} (t_i^k)^2 \right].
 \end{aligned}$$

1342 Minimizing the right-hand side of the last inequality with respect to t_i^k yields

$$t_i^k = \frac{(1 - \zeta) \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}}{L_i^0 + (1 + \zeta) L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}}.$$

1347 This greedy approach for choosing t_i^k gives the descent inequality

$$f(X^{k+1}) \leq f(X^k) - \sum_{i=1}^p \frac{(1 - \zeta)^2 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}^2}{2(L_i^0 + (1 + \zeta) L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star})}.$$

1350 Taking expectations, we have
 1351

$$1352 \mathbb{E}[f(X^{k+1})] \leq \mathbb{E}[f(X^k)] - \sum_{i=1}^p \mathbb{E} \left[\frac{(1-\zeta)^2 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}^2}{2(L_i^0 + (1+\zeta)L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star})} \right]. \quad (24)$$

1355 Now, let us define the function $\phi_i(t) := \frac{(1-\zeta)^2 t^2}{2(L_i^0 + (1+\zeta)L_i^1 t)}$. Since $\phi_i(t)$ is convex, Jensen's inequality
 1356 gives
 1357

$$1358 \mathbb{E}[f(X^k)] - \mathbb{E}[f(X^{k+1})] \geq \sum_{i=1}^p \mathbb{E} \left[\frac{(1-\zeta)^2 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}^2}{2(L_i^0 + (1+\zeta)L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star})} \right]$$

$$1361 \geq \sum_{i=1}^p \frac{(1-\zeta)^2 (\mathbb{E} [\|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}])^2}{2(L_i^0 + (1+\zeta)L_i^1 \mathbb{E} [\|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}])}.$$

1363 By Jensen's inequality and Assumption 4
 1364

$$1365 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] = \mathbb{E} [\|\mathbb{E} [\nabla_i f_{\xi^k}(X^k) | X^k]\|_{(i)\star}]$$

$$1366 \leq \mathbb{E} [\mathbb{E} [\|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star} | X^k]]$$

$$1368 = \mathbb{E} [\|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}],$$

1370 and hence, using the fact that ϕ_i is increasing, we get
 1371

$$1372 \mathbb{E}[f(X^k)] - \mathbb{E}[f(X^{k+1})] \geq \sum_{i=1}^p \frac{(1-\zeta)^2 (\mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])^2}{2(L_i^0 + (1+\zeta)L_i^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])}.$$

1375 Summing the terms gives
 1376

$$1377 \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{(1-\zeta)^2 (\mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])^2}{2(L_i^0 + (1+\zeta)L_i^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])} \leq \sum_{k=0}^{K-1} (\mathbb{E}[f(X^k)] - \mathbb{E}[f(X^{k+1})])$$

$$1380 = \mathbb{E}[f(X^0)] - \mathbb{E}[f(X^K)]$$

$$1381 \leq f(X^0) - \inf_{X \in \mathcal{S}} f(X) =: \Delta^0,$$

1383 The remaining part of the proof closely follows the proof of Theorem 3. We can proceed in two ways:
 1384

1385 1. Upper-bounding L_i^1 by $L_{\max}^1 := \max_{i=1,\dots,p} L_i^1$ in (25), we obtain

$$1386 \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{(1-\zeta)^2 (\mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])^2}{2(L_i^0 + (1+\zeta)L_{\max}^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])} \leq \Delta^0. \quad (26)$$

1390 Now, Lemma 3 with $x_i = 1$, $y_i = (1-\zeta)\mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}]$ and $z_i =$
 1391 $2(L_i^0 + (1+\zeta)L_{\max}^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])$ gives
 1392

$$1393 \phi \left(\sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right) = \frac{((1-\zeta) \sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])^2}{2 \sum_{i=1}^p (L_i^0 + (1+\zeta)L_{\max}^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])}$$

$$1396 \leq \sum_{i=1}^p \frac{(1-\zeta)^2 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}]^2}{2(L_i^0 + (1+\zeta)L_{\max}^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])}$$

1399 where $\phi(t) := \frac{(1-\zeta)^2 t^2}{2(\sum_{i=1}^p L_i^0 + (1+\zeta)L_{\max}^1 t)}$. Combining the last inequality with (26) and using
 1400 the fact that ϕ is increasing, we get
 1401

$$1402 K \phi \left(\min_{k=0,\dots,K-1} \sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right) \leq \sum_{k=0}^{K-1} \phi \left(\sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right) \leq \Delta^0.$$

1404 and hence

$$1406 \min_{k=0, \dots, K-1} \sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \leq \phi^{-1} \left(\frac{\Delta^0}{K} \right),$$

1408 where ϕ^{-1} denotes the inverse function (which exists since ϕ is increasing). Therefore,
1409 to reach the precision $\min_{k=0, \dots, K-1} \sum_{i=1}^p \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \leq \epsilon$, it suffices to run the
1410 algorithm for

$$1412 K = \left\lceil \frac{\Delta^0}{\phi(\epsilon)} \right\rceil = \left\lceil \frac{2\Delta^0 \sum_{i=1}^p L_i^0}{(1-\zeta)^2 \epsilon^2} + \frac{2\Delta^0(1+\zeta)L_{\max}^1}{(1-\zeta)^2 \epsilon} \right\rceil$$

1414 iterations.

1415 2. Alternatively, we can start from inequality (25) and apply Lemma 3 with $x_i = 1/L_i^1$,
1416 $y_i = (1-\zeta)\mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}]$ and $z_i = 2(L_i^0 + (1+\zeta)L_i^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])$ to
1417 obtain

$$\begin{aligned} 1419 \Delta^0 &\geq \sum_{k=0}^{K-1} \sum_{i=1}^p \frac{(1-\zeta)^2 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}]^2}{2(L_i^0 + (1+\zeta)L_i^1 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}])} \\ 1420 &\geq \sum_{k=0}^{K-1} \frac{\left(\sum_{i=1}^p \frac{1}{L_i^1} (1-\zeta) \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right)^2}{2 \sum_{i=1}^p \left(\frac{L_i^0}{(L_i^1)^2} + (1+\zeta) \frac{1}{L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right)} \\ 1421 &= \sum_{t=0}^{K-1} \psi \left(\sum_{i=1}^p \frac{1}{L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right), \end{aligned}$$

1430 where $\psi(t) := \frac{(1-\zeta)^2 t^2}{2 \left(\sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2} + (1+\zeta)t \right)}$. Since the function ψ is increasing for $t > 0$, ψ^{-1}
1431 exists. It follows that

$$\begin{aligned} 1433 \Delta^0 &\geq \sum_{k=0}^{K-1} \psi \left(\sum_{i=1}^p \frac{1}{L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right) \\ 1434 &\geq K \psi \left(\min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right), \end{aligned}$$

1439 and hence

$$1440 \min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \leq \psi^{-1} \left(\frac{\Delta^0}{K} \right).$$

1443 This in turn means that to reach the precision

$$1444 \min_{k=0, \dots, K-1} \sum_{i=1}^p \left[\frac{\frac{1}{L_i^1}}{\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1}} \|\nabla_i f(X^k)\|_{(i)\star} \right] \leq \varepsilon,$$

1447 it suffices to run the algorithm for

$$\begin{aligned} 1449 K &= \left\lceil \frac{\Delta^0}{\psi \left(\varepsilon \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right) \right)} \right\rceil \\ 1450 &= \left\lceil \frac{2\Delta^0 \sum_{i=1}^p \frac{L_i^0}{(L_i^1)^2}}{(1-\zeta)^2 \varepsilon^2 \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)^2} + \frac{2\Delta^0(1+\zeta)}{(1-\zeta)^2 \varepsilon \left(\frac{1}{p} \sum_{j=1}^p \frac{1}{L_j^1} \right)} \right\rceil \end{aligned}$$

1456 iterations.

1457

□

1458 E.2 PROOF OF THEOREM 2

1459 We now establish the main result of Section 4.3. The guarantees in Theorem 2 follow from the
 1460 more general result below. Here, $\rho_i > 0$ for $i \in [p]$ denote the norm equivalence constants, i.e.,
 1461 $\|X_i\|_{(i)\star} \leq \rho_i \|X_i\|_2$ for all $X_i \in \mathcal{S}_i$.

1462 **Theorem 8.** *Let Assumptions 1 and 2 hold and fix $\varepsilon > 0$. Let X^0, \dots, X^{K-1} be the iterates of
 1463 Gluon (Algorithm 1) run with $\beta^k = 1 - (k+1)^{-1/2}$, $t_i^k = t_i(k+1)^{-3/4}$ for some $t_i > 0$, and
 1464 $M_i^0 = \nabla_i f_{\xi^0}(X^0)$.*

1465 1. If $L_i^1 = 0$, then

$$\begin{aligned} & \min_{k=0, \dots, K-1} \sum_{i=1}^p t_i \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \\ & \leq \frac{\Delta^0}{K^{1/4}} + \frac{1}{K^{1/4}} \sum_{i=1}^p \left[\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + L_i^0 t_i^2 \left(\frac{87}{2} + 14 \log(K) \right) \right], \end{aligned}$$

1466 2. If $L_i^1 \neq 0$, then for $t_i = \frac{1}{12L_i^1}$, we have

$$\begin{aligned} & \min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{12L_i^1} \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \\ & \leq \frac{2\Delta^0}{K^{1/4}} + \frac{1}{K^{1/4}} \sum_{i=1}^p \left[\frac{\sigma \rho_i}{6L_i^1} \left(7 + 2\sqrt{2e^2} \log(K) \right) + \frac{L_i^0}{144(L_i^1)^2} (87 + 28 \log(K)) \right], \end{aligned}$$

1467 where $\Delta^0 := f(X^0) - \inf_{X \in \mathcal{S}} f(X)$.

1468 *Proof.* We again start with the result in Lemma 1 with $X = X^k$ and $Y = X^{k+1}$, obtaining

$$\begin{aligned} f(X^{k+1}) & \leq f(X^k) + \langle \nabla f(X^k), X^{k+1} - X^k \rangle + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \\ & = f(X^k) + \sum_{i=1}^p \left[\langle \nabla_i f(X^k), X_i^{k+1} - X_i^k \rangle_{(i)} + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2 \right] \\ & = f(X^k) + \sum_{i=1}^p \left[\langle M_i^k, X_i^{k+1} - X_i^k \rangle_{(i)} + \langle \nabla_i f(X^k) - M_i^k, X_i^{k+1} - X_i^k \rangle_{(i)} \right] \\ & \quad + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2. \end{aligned}$$

1469 Applying the Cauchy-Schwarz inequality, we have

$$\begin{aligned} f(X^{k+1}) & \leq f(X^k) + \sum_{i=1}^p \left[\langle M_i^k, X_i^{k+1} - X_i^k \rangle_{(i)} + \|\nabla_i f(X^k) - M_i^k\|_{(i)\star} \|X_i^{k+1} - X_i^k\|_{(i)} \right] \\ & \quad + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} \|X_i^k - X_i^{k+1}\|_{(i)}^2. \end{aligned}$$

1470 Now, the update rule (1) and the definition of the dual norm $\|\cdot\|_{(i)\star}$ give

$$\|X_i^k - X_i^{k+1}\|_{(i)}^2 \leq (t_i^k)^2$$

1471 and

$$\langle M_i^k, X_i^{k+1} - X_i^k \rangle = \langle M_i^k, \text{LMO}_{\mathcal{B}_i^k}(M_i^k) - X_i^k \rangle = -t_i^k \max_{\|X_i\|_{(i)} \leq 1} \langle M_i^k, X_i \rangle = -t_i^k \|M_i^k\|_{(i)\star}.$$

1512

Consequently,

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

$$f(X^{k+1})$$

$$\begin{aligned} &\leq f(X^k) + \sum_{i=1}^p \left[-t_i^k \|M_i^k\|_{(i)\star} + t_i^k \|\nabla_i f(X^k) - M_i^k\|_{(i)\star} + \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} (t_i^k)^2 \right] \\ &= f(X^k) + \sum_{i=1}^p \left[-t_i^k \|M_i^k - \nabla_i f(X^k) + \nabla_i f(X^k)\|_{(i)\star} + t_i^k \|M_i^k - \nabla_i f(X^k)\|_{(i)\star} \right] \\ &\quad + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} (t_i^k)^2 \\ &\leq f(X^k) + \sum_{i=1}^p \left[-t_i^k \|\nabla_i f(X^k)\|_{(i)\star} + 2t_i^k \|M_i^k - \nabla_i f(X^k)\|_{(i)\star} \right] \\ &\quad + \sum_{i=1}^p \frac{L_i^0 + L_i^1 \|\nabla_i f(X^k)\|_{(i)\star}}{2} (t_i^k)^2. \end{aligned}$$

Taking expectations, we obtain

1532

1533

1534

1535

1536

1537

$$\begin{aligned} \mathbb{E}[f(X^{k+1})] &\leq \mathbb{E}[f(X^k)] + \sum_{i=1}^p \left[-t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] + 2t_i^k \mathbb{E}[\|M_i^k - \nabla_i f(X^k)\|_{(i)\star}] \right. \\ &\quad \left. + \frac{L_i^0 + L_i^1 \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]}{2} (t_i^k)^2 \right]. \end{aligned}$$

Telescoping the last inequality gives

1538

1539

1540

1541

1542

1543

1544

1545

$$\begin{aligned} \sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] &\leq \Delta^0 + \sum_{i=1}^p \left[2 \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|M_i^k - \nabla_i f(X^k)\|_{(i)\star}] \right. \\ &\quad \left. + \sum_{k=0}^{K-1} \frac{L_i^0}{2} (t_i^k)^2 + \sum_{k=0}^{K-1} \frac{L_i^1}{2} \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] (t_i^k)^2 \right], \end{aligned} \quad (27)$$

where $\Delta^0 := f(X^0) - \inf_{X \in \mathcal{S}} f(X)$.

1546

1547

Now, inspired by the analysis in [Hübler et al. \(2024\)](#), we introduce the following notation: $\mu_i^k := M_i^k - \nabla_i f(X^k)$, $\gamma_i^k := \nabla_i f_{\xi^k}(X^k) - \nabla_i f(X^k)$, $\alpha^k = 1 - \beta^k$, $\beta^{a:b} := \prod_{k=a}^b \beta^k$ and $S_i^k := \nabla_i f(X^{k-1}) - \nabla_i f(X^k)$. Then, we can rewrite the algorithm's momentum update rule as

1551

1552

1553

1554

1555

$$\begin{aligned} M_i^k &= \beta^k M_i^{k-1} + (1 - \beta^k) \nabla_i f_{\xi^k}(X^k) \\ &= \beta^k (\mu_i^{k-1} + \nabla_i f(X^{k-1})) + (1 - \beta^k) (\gamma_i^k + \nabla_i f(X^k)) \\ &= \nabla_i f(X^k) + \alpha^k \gamma_i^k + \beta^k S_i^k + \beta^k \mu_i^{k-1}. \end{aligned}$$

1556

1557

This yields

1558

1559

1560

1561

1562

1563

1564

1565

$$\begin{aligned} \mu_i^k &= M_i^k - \nabla_i f(X^k) \\ &= \alpha^k \gamma_i^k + \beta^k S_i^k + \beta^k \mu_i^{k-1} \\ &= \sum_{\tau=1}^k \beta^{(\tau+1):k} \alpha^\tau \gamma_i^\tau + \sum_{\tau=1}^k \beta^{\tau:k} S_i^\tau + \beta^{1:k} \mu_i^0 \\ &= \sum_{\tau=0}^k \beta^{(\tau+1):k} \alpha^\tau \gamma_i^\tau + \sum_{\tau=1}^k \beta^{\tau:k} S_i^\tau, \end{aligned}$$

where the last line follows from the fact that $M_i^0 = \nabla_i f_{\xi^0}(X^0)$ and $\beta^0 = 0$. Thus,

$$\begin{aligned}
& \mathbb{E} \left[\|M_i^k - \nabla_i f(X^k)\|_{(i)\star} \right] = \mathbb{E} \left[\|\mu_i^k\|_{(i)\star} \right] \\
& \leq \mathbb{E} \left[\left\| \sum_{\tau=0}^k \beta^{(\tau+1):k} \alpha^\tau \gamma_i^\tau \right\|_{(i)\star} \right] + \sum_{\tau=1}^k \beta^{\tau:k} \mathbb{E} \left[\|S_i^\tau\|_{(i)\star} \right] \\
& \leq \rho_i \mathbb{E} \left[\left\| \sum_{\tau=0}^k \beta^{(\tau+1):k} \alpha^\tau \gamma_i^\tau \right\|_2 \right] + \sum_{\tau=1}^k \beta^{\tau:k} \mathbb{E} \left[\|S_i^\tau\|_{(i)\star} \right] \\
& \leq \rho_i \sqrt{\sum_{\tau=0}^k (\beta^{(\tau+1):k} \alpha^\tau)^2 \mathbb{E} \left[\|\gamma_i^\tau\|_2^2 \right]} + \sum_{\tau=1}^k \beta^{\tau:k} \mathbb{E} \left[\|S_i^\tau\|_{(i)\star} \right],
\end{aligned}$$

where in the last line we used Jensen's inequality and the fact that for all $q < l$

$$\begin{aligned}\mathbb{E}[(\gamma_i^l)^\top \gamma_i^q] &= \mathbb{E}[\mathbb{E}[(\gamma_i^l)^\top \gamma_i^q \mid X_i^l]] = \mathbb{E}\left[\mathbb{E}[\gamma_i^l \mid X_i^l]^\top \gamma_i^q\right] \\ &= \mathbb{E}\left[\left(\mathbb{E}[\nabla_i f_{\xi^l}(X^l) - \nabla_i f(X^l) \mid X_i^l]\right)^\top \gamma_i^q\right] = 0.\end{aligned}$$

Using Assumptions 1 and 2, we get

$$\mathbb{E} \left[\|\gamma_i^\tau\|_2^2 \right] = \mathbb{E} \left[\underbrace{\mathbb{E} \left[\|\gamma_i^\tau\|_2^2 \mid X_i^\tau \right]}_{\leq \sigma^2} \right] \leq \sigma^2$$

and

$$\|S_i^\tau\|_{(i)\star} \leq (L_i^0 + L_i^1 \|\nabla_i f(X^\tau)\|_{(i)\star}) \|X_i^{\tau+1} - X_i^\tau\|_{(i)} \leq (L_i^0 + L_i^1 \|\nabla_i f(X^\tau)\|_{(i)\star}) t_i^\tau.$$

Therefore,

$$\begin{aligned} \mathbb{E} \left[\|M_i^k - \nabla_i f(X^k)\|_{(i)\star} \right] &\leq \sigma \rho_i \sqrt{\sum_{\tau=0}^k \left(\beta^{(\tau+1):k} \alpha^\tau \right)^2} + L_i^0 \sum_{\tau=1}^k \beta^{\tau:k} t_i^\tau \\ &\quad + L_i^1 \sum_{\tau=1}^k \beta^{\tau:k} t_i^\tau \mathbb{E} \left[\|\nabla_i f(X^\tau)\|_{(i)\star} \right]. \end{aligned}$$

Combining the last inequality with (27) gives

$$\begin{aligned}
& \sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] \\
& \leq \Delta^0 + \sum_{i=1}^p \left[\underbrace{2\sigma\rho_i \sum_{k=0}^{K-1} t_i^k \sqrt{\sum_{\tau=0}^k (\beta^{(\tau+1):k} \alpha^\tau)^2}}_{=:I_1} + \underbrace{2L_i^0 \sum_{k=0}^{K-1} t_i^k \sum_{\tau=1}^k \beta^{\tau:k} t_i^\tau}_{=:I_2} \right. \\
& \quad \left. + \underbrace{2L_i^1 \sum_{k=0}^{K-1} t_i^k \sum_{\tau=1}^k \beta^{\tau:k} t_i^\tau \mathbb{E}[\|\nabla_i f(X^\tau)\|_{(i)\star}]}_{=:I_3} \right. \\
& \quad \left. + \underbrace{\frac{L_i^0}{2} \sum_{k=0}^{K-1} (t_i^k)^2 + \frac{L_i^1}{2} \sum_{k=0}^{K-1} (t_i^k)^2 \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]}_{=:I_4} \right]. \tag{28}
\end{aligned}$$

Let us now upper-bound each term I_i , $i = 1, 2, 3, 4$.

1620 I_1 : using Lemma 5, we obtain
 1621

$$1622 \quad I_1 \leq \sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right).$$

1623
 1624 I_2 : using Lemma 5, we obtain
 1625

$$1626 \quad I_2 \leq 14L_i^0 t_i^2 (3 + \log(K)).$$

1627 I_3 : rearranging the sums and using Lemma 4 with $a = \tau + 1, b = K, p = 3/4$ and $q = 1/2$, we have
 1628

$$\begin{aligned} 1629 \quad I_3 &= 2L_i^1 \sum_{k=0}^{K-1} t_i^k \sum_{\tau=1}^k \beta^{\tau:k} t_i^\tau \mathbb{E} [\|\nabla_i f(X^\tau)\|_{(i)\star}] \\ 1630 &= 2L_i^1 \sum_{\tau=1}^{K-1} t_i^\tau \left(\sum_{k=\tau}^{K-1} t_i^k \beta^{\tau:k} \right) \mathbb{E} [\|\nabla_i f(X^\tau)\|_{(i)\star}] \\ 1631 &= 2L_i^1 \sum_{\tau=1}^{K-1} t_i^\tau t_i \left(\sum_{k=\tau}^{K-1} (k+1)^{-3/4} \beta^{\tau:k} \right) \mathbb{E} [\|\nabla_i f(X^\tau)\|_{(i)\star}] \\ 1632 &\leq 2L_i^1 \sum_{\tau=1}^{K-1} t_i^\tau t_i \tau^{-1/4} \underbrace{e^{2((\tau+1)^{1/2} - \tau^{1/2})}}_{\leq e^{2(\sqrt{2}-1)} \text{ for } \tau \geq 1} \mathbb{E} [\|\nabla_i f(X^\tau)\|_{(i)\star}] \\ 1633 &\leq 2e^{2(\sqrt{2}-1)} L_i^1 \sum_{\tau=1}^{K-1} t_i^\tau t_i \tau^{-1/4} \mathbb{E} [\|\nabla_i f(X^\tau)\|_{(i)\star}] \\ 1634 &\leq 2e^{2(\sqrt{2}-1)} L_i^1 \sum_{k=0}^{K-1} t_i^k t_i \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}]. \end{aligned}$$

1640 I_4 :

$$\begin{aligned} 1641 \quad I_4 &= \frac{L_i^0}{2} \sum_{k=0}^{K-1} (t_i^k)^2 \leq \frac{L_i^0}{2} \sum_{k=0}^{\infty} (t_i^k)^2 = \frac{L_i^0}{2} t_i^2 \sum_{k=0}^{\infty} (1+k)^{-3/2} \\ 1642 &\leq \frac{L_i^0}{2} t_i^2 \left(1 + \int_1^{\infty} \frac{1}{z^{3/2}} dz \right) = \frac{3L_i^0}{2} t_i^2. \end{aligned}$$

1643 Combining the upper-bounds for $I_i, i = 1, 2, 3, 4$ with (28) gives
 1644

$$\begin{aligned} 1645 \quad \sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] &\leq \Delta^0 + \sum_{i=1}^p \left[\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + 14L_i^0 t_i^2 (3 + \log(K)) \right. \\ 1646 &\quad + 2e^{2(\sqrt{2}-1)} L_i^1 \sum_{k=0}^{K-1} t_i^k t_i \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \\ 1647 &\quad \left. + \frac{3L_i^0}{2} t_i^2 + \frac{L_i^1}{2} \sum_{k=0}^{K-1} (t_i^k)^2 \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right]. \end{aligned}$$

1648 Using the fact that $t_i^k = t_i(1+k)^{-3/4} \leq t_i$, and denoting $C := 2e^{2(\sqrt{2}-1)} + \frac{1}{2} \leq 5.1$, we get
 1649

$$\begin{aligned} 1650 \quad \sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] &\leq \Delta^0 + \sum_{i=1}^p \left[\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + 14L_i^0 t_i^2 \left(\frac{87}{28} + \log(K) \right) \right. \\ 1651 &\quad \left. + CL_i^1 t_i \sum_{k=0}^{K-1} t_i^k \mathbb{E} [\|\nabla_i f(X^k)\|_{(i)\star}] \right]. \end{aligned}$$

1652 Now, let us consider two options: (1) $L_i^1 = 0$ for all $i \in \{1, \dots, p\}$ and (2) $L_i^1 \neq 0$, for all
 1653 $i \in \{1, \dots, p\}$.

1674
1675**Case 1:** $L_i^1 = 0, i = 1, \dots, p$. In this case,1676
1677
1678

$$\sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] \leq \Delta^0 + \sum_{i=1}^p \left[\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + 14L_i^0 t_i^2 \left(\frac{87}{28} + \log(K) \right) \right],$$

1679

and therefore,

1680

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p t_i \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1683

$$\leq \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i=1}^p t_i \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1686

$$\leq \frac{1}{K^{1/4}} \sum_{k=0}^{K-1} \sum_{i=1}^p t_i (1+k)^{-3/4} \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1689

$$= \frac{1}{K^{1/4}} \sum_{k=0}^{K-1} \sum_{i=1}^p t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1692

$$\leq \frac{\Delta^0}{K^{1/4}} + \frac{1}{K^{1/4}} \sum_{i=1}^p \left[\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + L_i^0 t_i^2 \left(\frac{87}{2} + 14 \log(K) \right) \right].$$

1695

Case 2: $L_i^1 \neq 0, i = 1, \dots, p$. Let us choose $t_i = \frac{1}{12L_i^1}$. Then

1697

$$\sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}] \leq 2\Delta^0 + \sum_{i=1}^p \left[2\sigma \rho_i t_i \left(7 + 2\sqrt{2e^2} \log(K) \right) + L_i^0 t_i^2 (87 + 28 \log(K)) \right],$$

1701

and hence

1702

$$\min_{k=0, \dots, K-1} \sum_{i=1}^p \frac{1}{12L_i^1} \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1705

$$\leq \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i=1}^p t_i \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1708

$$\leq \frac{1}{K^{1/4}} \sum_{k=0}^{K-1} \sum_{i=1}^p t_i (1+k)^{-3/4} \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1711

$$= \frac{1}{K^{1/4}} \sum_{i=1}^p \sum_{k=0}^{K-1} t_i^k \mathbb{E}[\|\nabla_i f(X^k)\|_{(i)\star}]$$

1714

$$\leq \frac{2\Delta^0}{K^{1/4}} + \frac{1}{K^{1/4}} \sum_{i=1}^p \left[\frac{\sigma \rho_i}{6L_i^1} \left(7 + 2\sqrt{2e^2} \log(K) \right) + \frac{L_i^0}{144(L_i^1)^2} (87 + 28 \log(K)) \right].$$

1716

□

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 **F ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS**
 1729

1730 **F.1 EXPERIMENTAL DETAILS**

1731 All experiments for the NanoGPT model are conducted using PyTorch⁷ with Distributed Data Parallel
 1732 (DDP)⁸ across 4 NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed
 1733 on a single NVIDIA A100 GPU (40GB). The training and evaluation pipelines are implemented
 1734 using open-source codebases (Jordan, 2024; Jordan et al., 2024a; Pethick et al., 2025a), with all
 1735 modifications clearly documented and properly referenced where applicable.

1736 For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an
 1737 analytical solution is unavailable (e.g., for SVD-type updates), following the approach proposed by
 1738 Jordan et al. (2024b). This method provides a computationally efficient approximation of the required
 1739 orthogonalization while preserving the convergence behavior of the overall algorithm.

1741 **F.2 FITTING L_i^0 AND L_i^1**
 1742

1743 To minimize the Euclidean error between the true value $\hat{L}_i[k]$ and its approximation $\hat{L}_i^{\text{approx}}[k]$, while
 1744 penalizing underestimation, we incorporate a hinge-like penalty term. Specifically, we fit L_i^0 and L_i^1
 1745 by minimizing the loss function

$$1747 \quad \mathcal{L}_i(L_i^0, L_i^1) := \sum_{k=0}^{K-1} \left(\hat{L}_i[k] - \hat{L}_i^{\text{approx}}[k] \right)^2 + \lambda \sum_{k=0}^{K-1} \max \left(0, \hat{L}_i[k] - \hat{L}_i^{\text{approx}}[k] \right)^2. \quad (29)$$

1750
 1751 The first term of \mathcal{L}_i captures the standard Euclidean (squared) error, while the second term introduces
 1752 an additional penalty proportional to the amount of underestimation (i.e., when $\hat{L}_i[k] > \hat{L}_i^{\text{approx}}[k]$).
 1753 The hyperparameter $\lambda \geq 0$ controls the strength of this penalty.

1754 **F.3 TRAINING NANOGPT ON FINEWEB.**

1755 In this section, we present additional results and experimental details for the experiment described in
 1756 the main text, which involves training a NanoGPT model on the FineWeb dataset using the unScion
 1757 optimizer.

1758 **F.3.1 EMPIRICAL VALIDATION OF ASSUMPTION 1**

1759 We begin by presenting additional results for the experiment described in Section 5.1, aimed at
 1760 empirically validating Assumption 1. We plot the estimated *trajectory smoothness*

$$1761 \quad \hat{L}_i[k] := \frac{\|\nabla_i f_{\xi^{k+1}}(X^{k+1}) - \nabla_i f_{\xi^k}(X^k)\|_{(i)\star}}{\|X_i^{k+1} - X_i^k\|_{(i)}}$$

1762 and its approximation

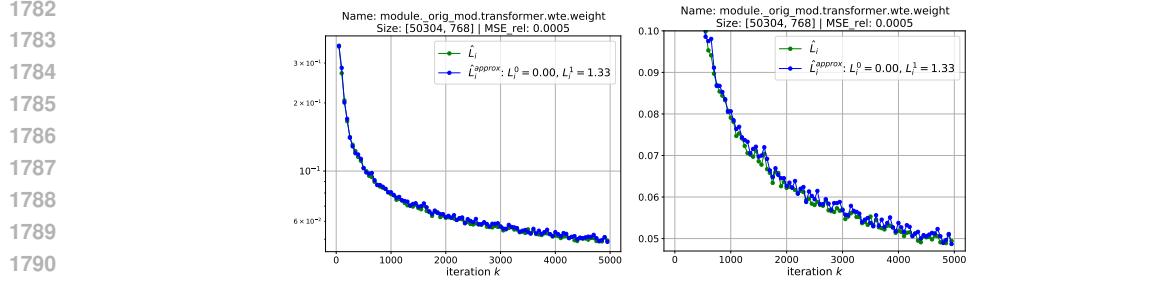
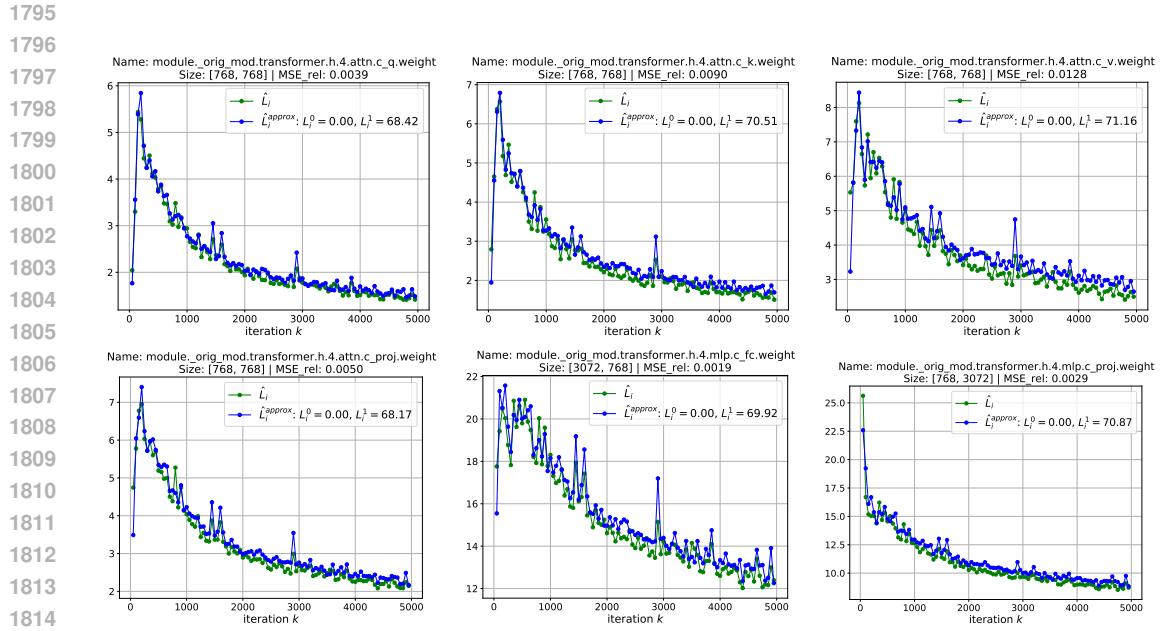
$$1763 \quad \hat{L}_i^{\text{approx}}[k] := L_i^0 + L_i^1 \|\nabla_i f_{\xi^{k+1}}(X^{k+1})\|_{(i)\star}$$

1764 as functions of the iteration index k , where $L_i^0, L_i^1 \geq 0$ are fitted using the procedure described in
 1765 Appendix F.2.

1766 Figures 5, 6, and 7 show results for parameter groups from the embedding layer and from the 4th
 1767 and 8th transformer blocks. Similar patterns are observed across all layers. In each case, we see a
 1768 strong agreement between $\hat{L}_i[k]$ and $\hat{L}_i^{\text{approx}}[k]$, suggesting that Assumption 1 holds approximately
 1769 along the optimization trajectory.

1770⁷PyTorch Documentation. Available at: <https://pytorch.org/docs/stable/index.html>

1771⁸Distributed Data Parallel (DDP) in PyTorch. Available at: <https://pytorch.org/docs/stable/notes/ddp.html>



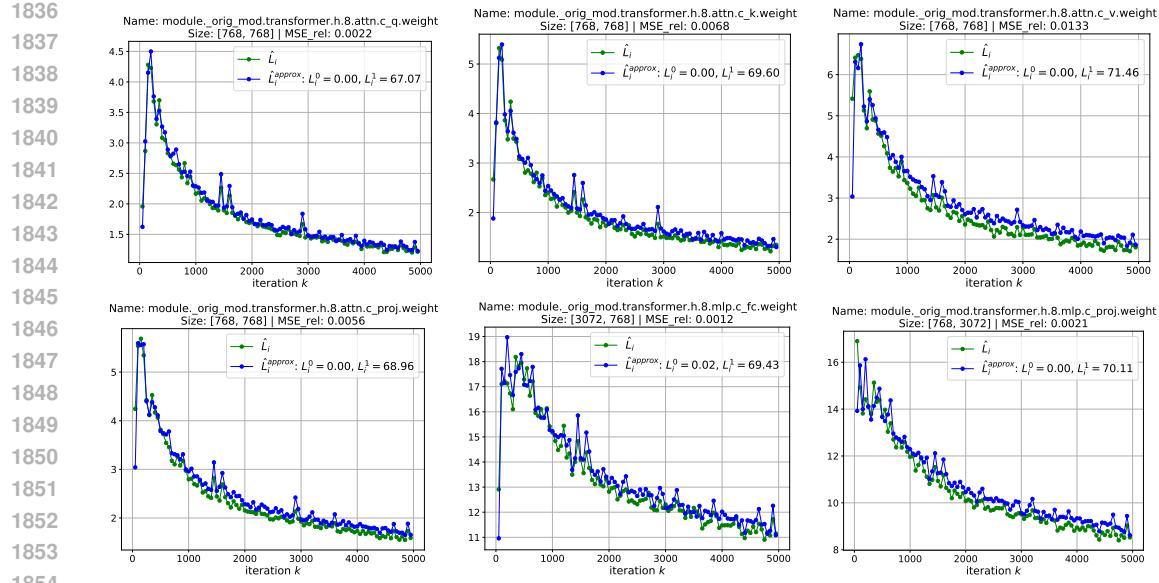


Figure 7: Validation of layer-wise (L^0, L^1) -smoothness for the group of parameters from the 8th transformer block of NanoGPT-12.4M along unScion training trajectories. The group norms are $\|\cdot\|_{(i)} = \sqrt{n_i/m_i} \|\cdot\|_{2 \rightarrow 2}$, with fitted values $L_i^0 \approx 0, L_i^1 \approx 70$.

F.3.2 GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L^0, L^1) -smoothness assumption is satisfied under the standard Euclidean norms $\|\cdot\|_2$ for each parameter block, as opposed to the specialized norms described in (14). We adopt the same training setup as in Section 5.1, plotting the estimated trajectory smoothness \hat{L}_i and its approximation $\hat{L}_i^{\text{approx}}$ along the training trajectories across several parameter groups. Unlike previous sections, here we do not penalize instances where $\hat{L}_i > \hat{L}_i^{\text{approx}}$ in order to find the best approximation (i.e., $\lambda = 0$ in (29)). Additionally, when using the standard Euclidean norm $\|\cdot\|_2$ for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error ($\text{MSE}_i^{\text{rel}}$, denoted MSE_{rel} in the figures), defined as

$$\text{MSE}_i^{\text{rel}} := \frac{1}{K} \sum_{i=1}^K \left(\frac{\hat{L}_i[k] - \hat{L}_i^{\text{approx}}[k]}{\hat{L}_i[k]} \right)^2,$$

where a lower value indicates a better fit.

As shown in Figures 8 and 9, both visually and in terms of $\text{MSE}_i^{\text{rel}}$, using specialized norms for each group of parameters provides a better approximation than the standard Euclidean norm $\|\cdot\|_2$. Notably, the relative mean squared error $\text{MSE}_i^{\text{rel}}$ is consistently an order of magnitude lower under specialized norms.

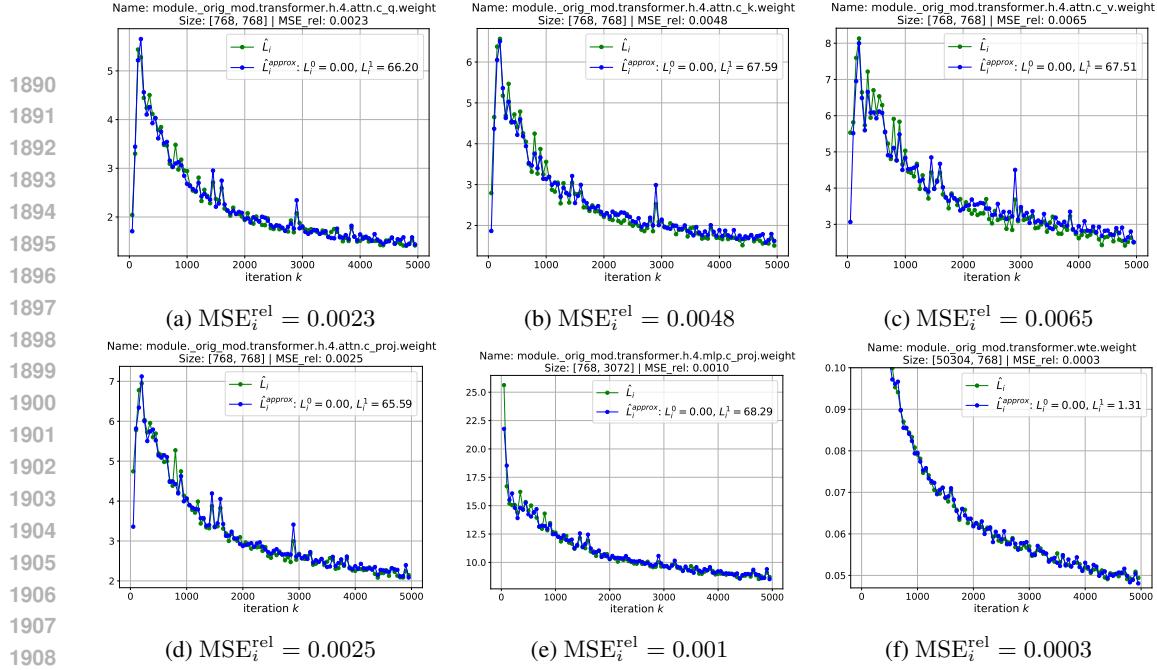


Figure 8: Validation of layer-wise (L^0, L^1) -smoothness for different groups of parameters in NanoGPT-12.4M along training trajectories of unScion using the specialized norm choices defined in (14).

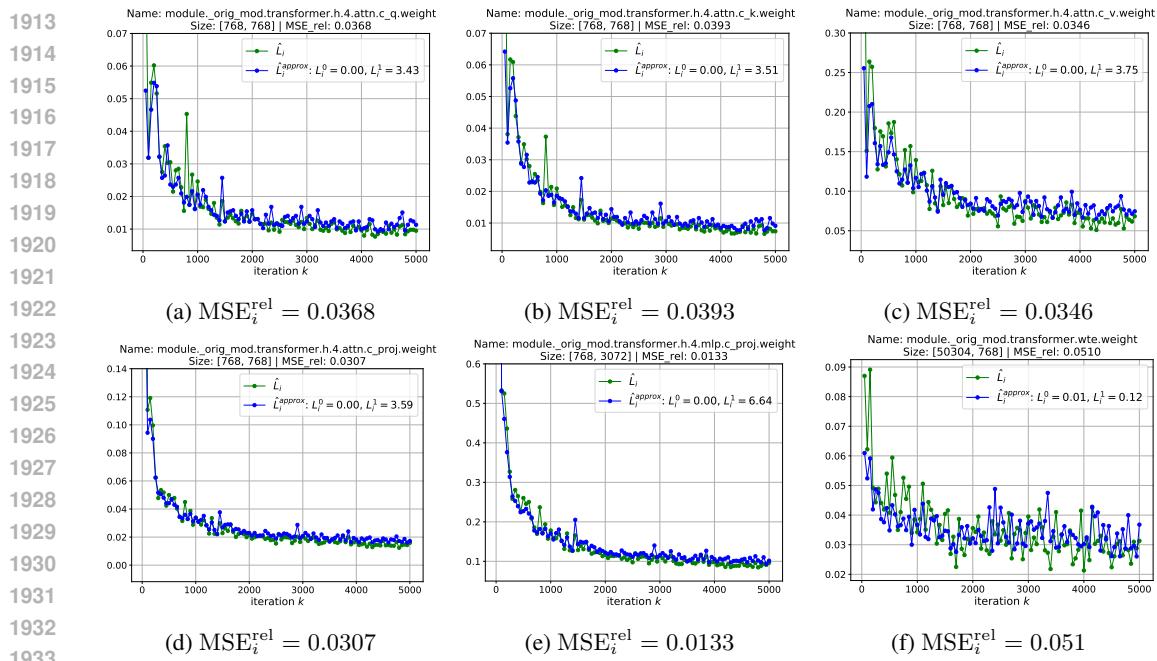


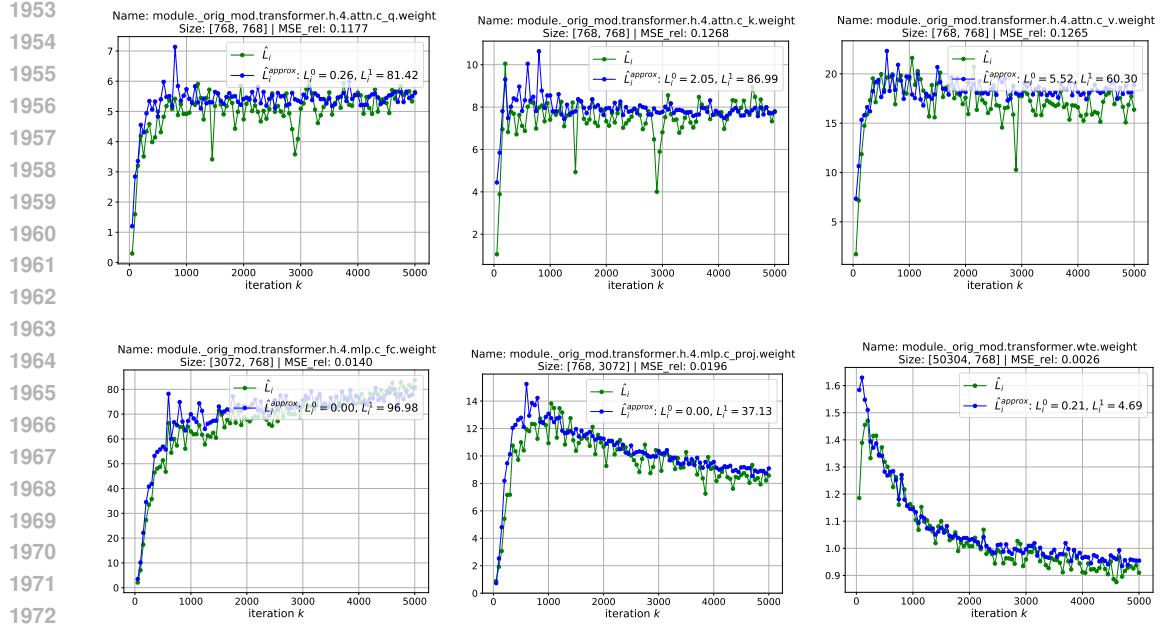
Figure 9: Validation of layer-wise (L^0, L^1) -smoothness for different groups of parameters in NanoGPT-12.4M along training trajectories of unScion using the standard Euclidean norm $\|\cdot\|_2$.

F.3.3 LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L^0, L^1) -smoothness following the approach used in Section 5.1, but employing the AdamW optimizer. We use hyperparameters specified in Pethick et al. (2025b, Table 7). In Figure 10, we present the results for the estimated trajectory smoothness \hat{L}_i and its approximation $\hat{L}_i^{\text{approx}}$ across several parameter groups along the training trajectories. Notably, for the group of parameters from the embedding layer X_p (the last plot in Figure 10), the fitted value of L^1 is approximately 20–30 times smaller than in other groups. Since in all plots we observe that

1944 $L_i^0 \ll L_i^1 \|\nabla_i f_{\xi^k}(X^k)\|_{(i)\star}$, Theorem 1 implies that $t_i^k \approx 1/L_i^k$. Thus, t_p^k should be 20–30 times
 1945 larger than t_i^k for $i = 1, \dots, p-1$, which is consistent with the tuned parameters from Pethick et al.
 1946 (2025b, Table 7).

1948 This insight provides an efficient and principled method for initializing learning rates in Scion.
 1949 Smoothness statistics collected during standard AdamW training (which is commonly used for
 1950 training LLMs) can serve as a strong prior, allowing practitioners to directly incorporate structure-
 1951 aware choices, such as larger stepsizes for embedding layers, into their tuning process. Importantly,
 1952 computing these statistics is computationally inexpensive, introducing minimal additional cost.



1973 Figure 10: Validation of layer-wise (L^0, L^1) -smoothness for different groups of parameters in
 1974 NanoGPT-124M along AdamW training trajectories.

1976 F.4 TRAINING CNN ON CIFAR-10

1978 In this section, we provide additional results for the experiments described in Section 5.2, where a
 1979 CNN model is trained on the CIFAR-10 dataset using the unScion optimizer.

1980 **Full-batch (deterministic) gradients.** We begin with presenting additional results in the deterministic
 1981 setting. Figure 11 shows the estimated trajectory smoothness

$$1982 \hat{L}_i[k] := \frac{\|\nabla_i f(X^{k+1}) - \nabla_i f(X^k)\|_{(i)\star}}{\|X_i^{k+1} - X_i^k\|_{(i)}}$$

1985 and its approximation

$$1987 \hat{L}_i^{\text{approx}}[k] := L_i^1 \|\nabla_i f(X^{k+1})\|_{(i)\star}$$

1988 (where we set $L_i^0 = 0$) for a broader selection of parameter groups than shown in the main text. The
 1989 results further support the validity of Assumption 1 with $L_i^0 = 0$.

1990 **Stochastic gradients.** Here, we report results for analogous experiments in the stochastic setting,
 1991 using noisy gradients $\nabla_i f_{\xi^k}$. We use momentum as in Pethick et al. (2025b, Table 10), but do not
 1992 apply a linear decay schedule. In Figure 12, we plot

$$1994 \hat{L}_i[k] = \frac{\|\nabla_i f_{\xi^{k+1}}(X^{k+1}) - \nabla_i f_{\xi^k}(X^k)\|_{(i)\star}}{\|X_i^{k+1} - X_i^k\|_{(i)}}, \quad \hat{L}_i^{\text{approx}}[k] = L_i^1 \|\nabla_i f_{\xi^{k+1}}(X^{k+1})\|_{\star},$$

1997 again setting $L_i^0 = 0$. Despite the added variance, we still observe that the stochastic trajectory
 roughly adheres to Assumption 1.

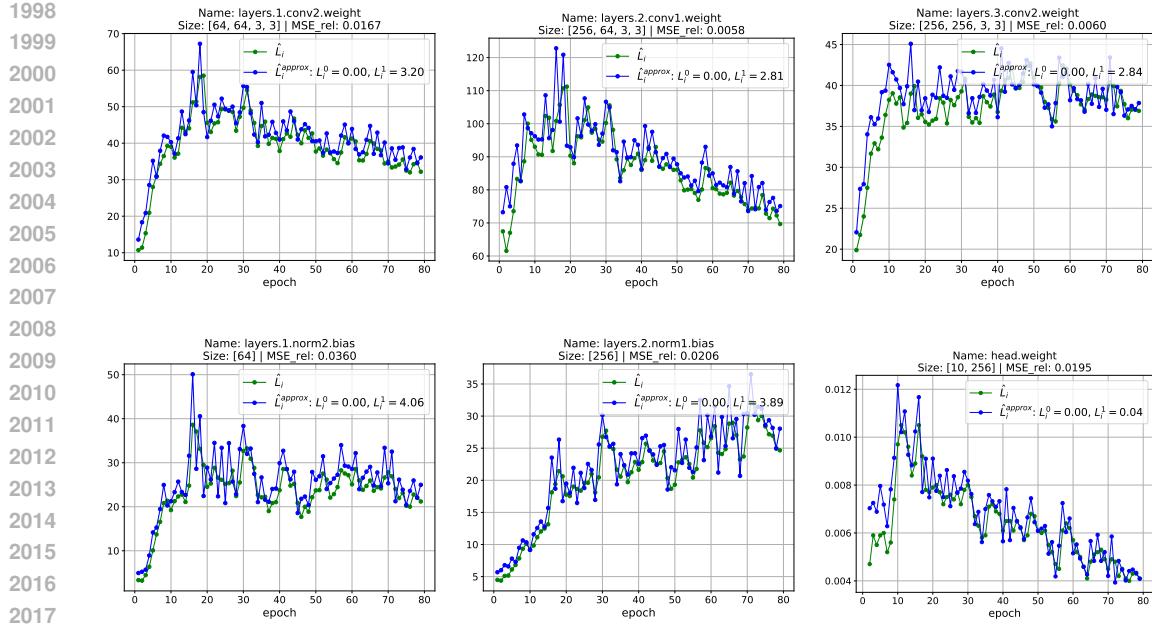


Figure 11: Validation of layer-wise (L^0, L^1) -smoothness for different groups of parameters of a CNN model along the training trajectories of **unScion** with **full-batch gradients**. The norms used for each group are as follows: $\|\cdot\|_{(i)} = \sqrt{1/C_i^{\text{out}}} \|\cdot\|_2$ for biases, $\|\cdot\|_{(i)} = k^2 \sqrt{C_i^{\text{in}}/C_i^{\text{out}}} \|\cdot\|_{2 \rightarrow 2}$ for conv, and $\|\cdot\|_{(p)} = n_p \|\cdot\|_{1 \rightarrow \infty}$ for the last group X_p , associated with classification head weights.

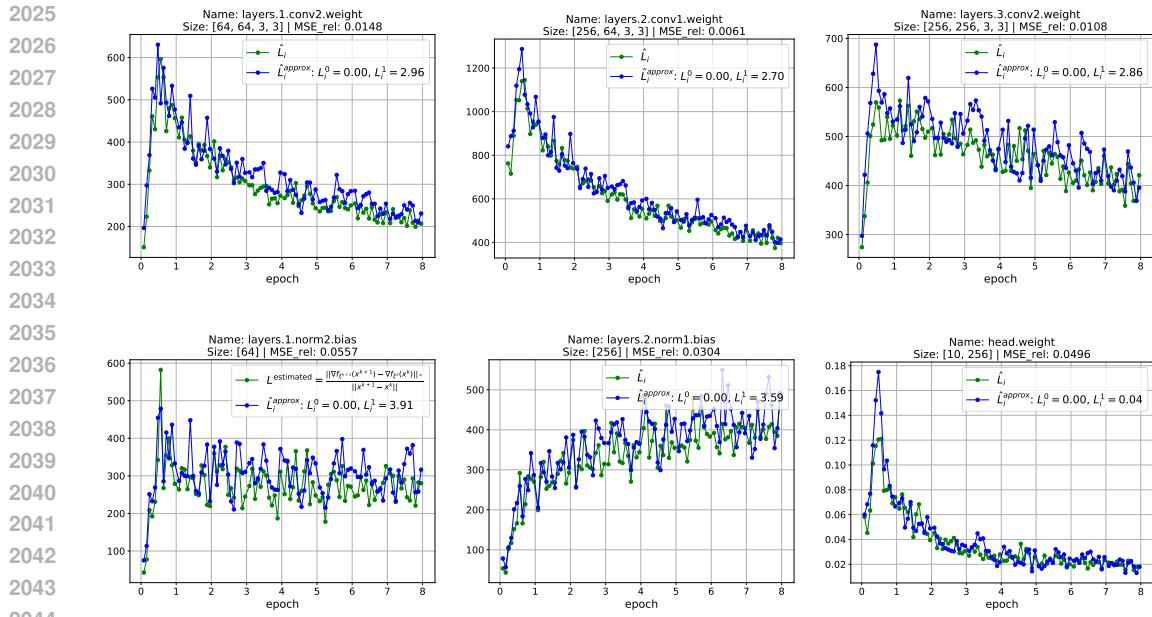


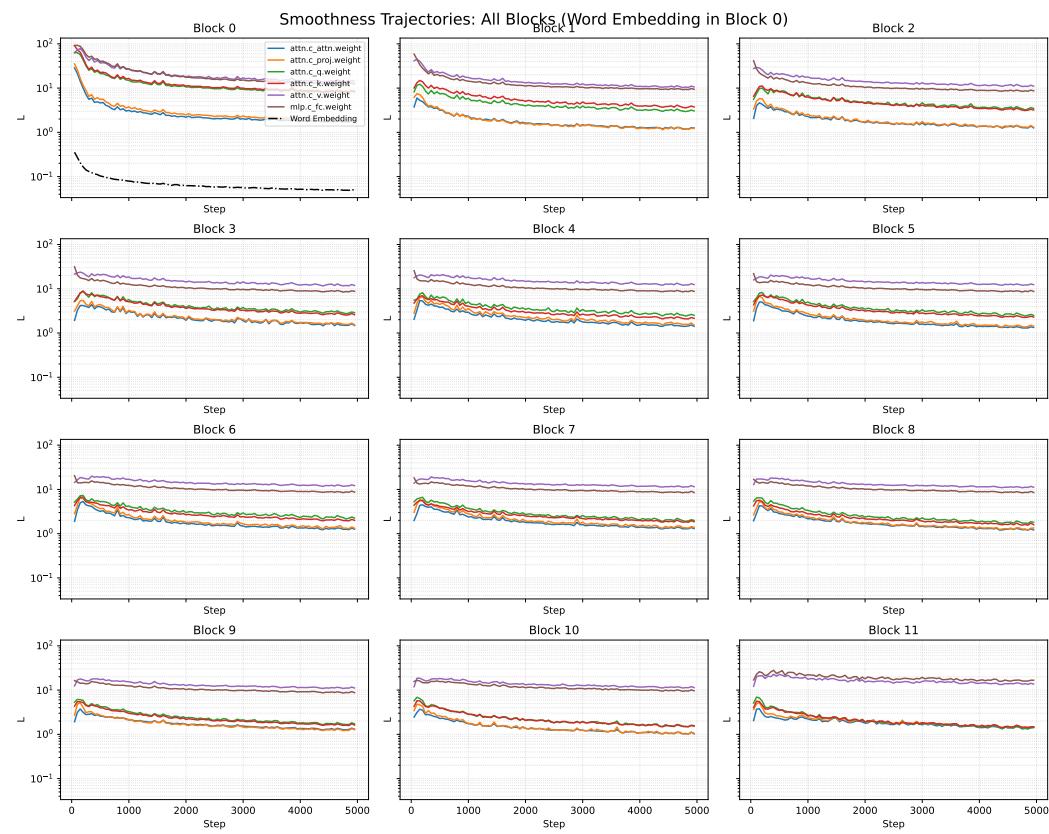
Figure 12: Validation of layer-wise (L^0, L^1) -smoothness for different groups of parameters of a CNN model along the training trajectories of **unScion** with **stochastic gradients**. The norms used for each group are as follows: $\|\cdot\|_{(i)} = \sqrt{1/C_i^{\text{out}}} \|\cdot\|_2$ for biases, $\|\cdot\|_{(i)} = k^2 \sqrt{C_i^{\text{in}}/C_i^{\text{out}}} \|\cdot\|_{2 \rightarrow 2}$ for conv, and $\|\cdot\|_{(p)} = n_p \|\cdot\|_{1 \rightarrow \infty}$ for the last group X_p , associated with classification head weights.

2052 G ADDITIONAL EMPIRICAL RESULTS

2053 G.1 LAYER-WISE SMOOTHNESS ACROSS ALL LAYERS AND VARIED MODEL SCALES

2054 Aggregate layer-wise trajectory smoothness across all blocks/layers. The cross-layer heterogeneity
 2055 and the empirical trend $L_i^0 \approx 0$ persist from 124M to 774M parameters.

2057



2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

Figure 13: NanoGPT-124M

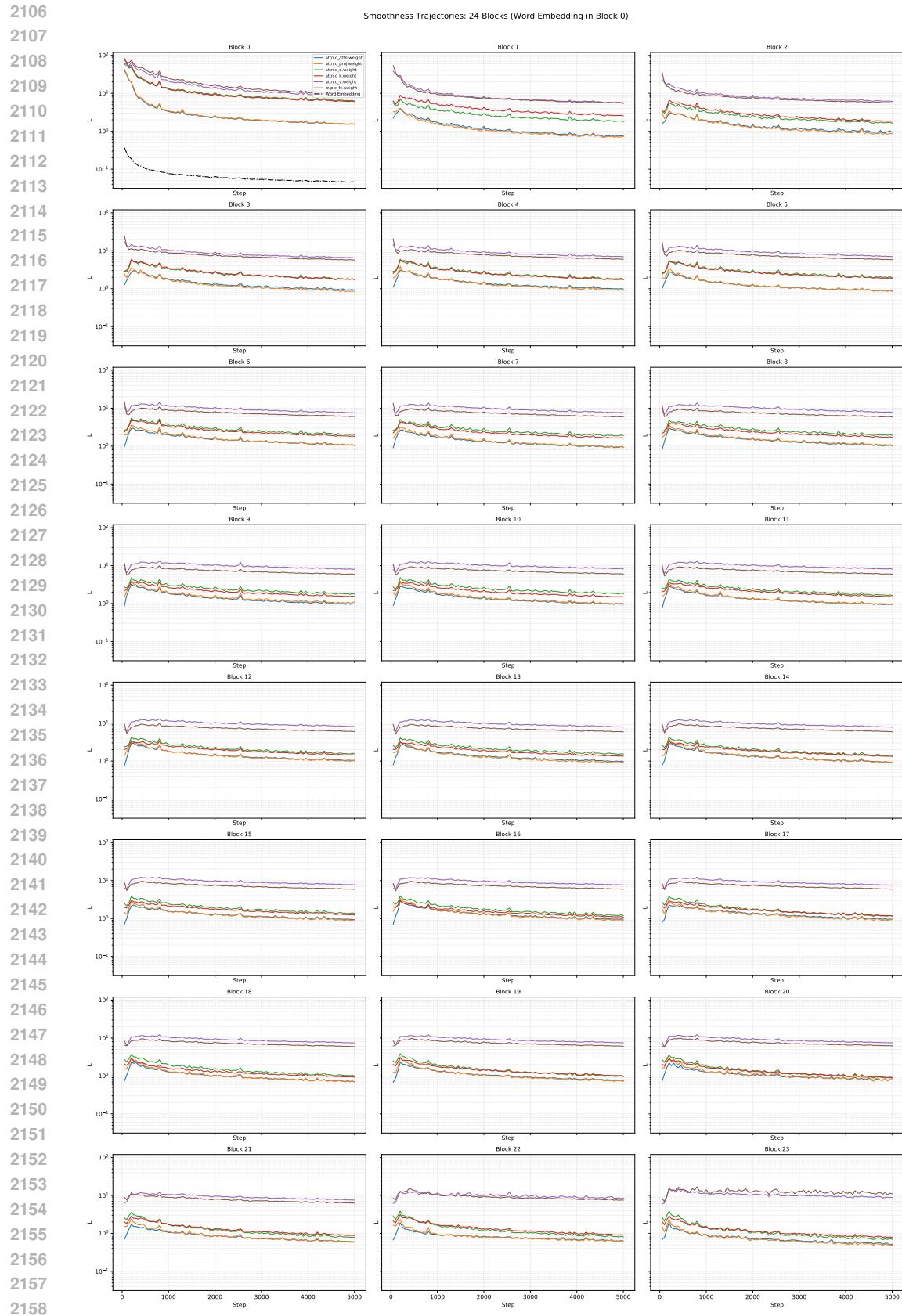


Figure 14: GPT-2 Medium (~355M)

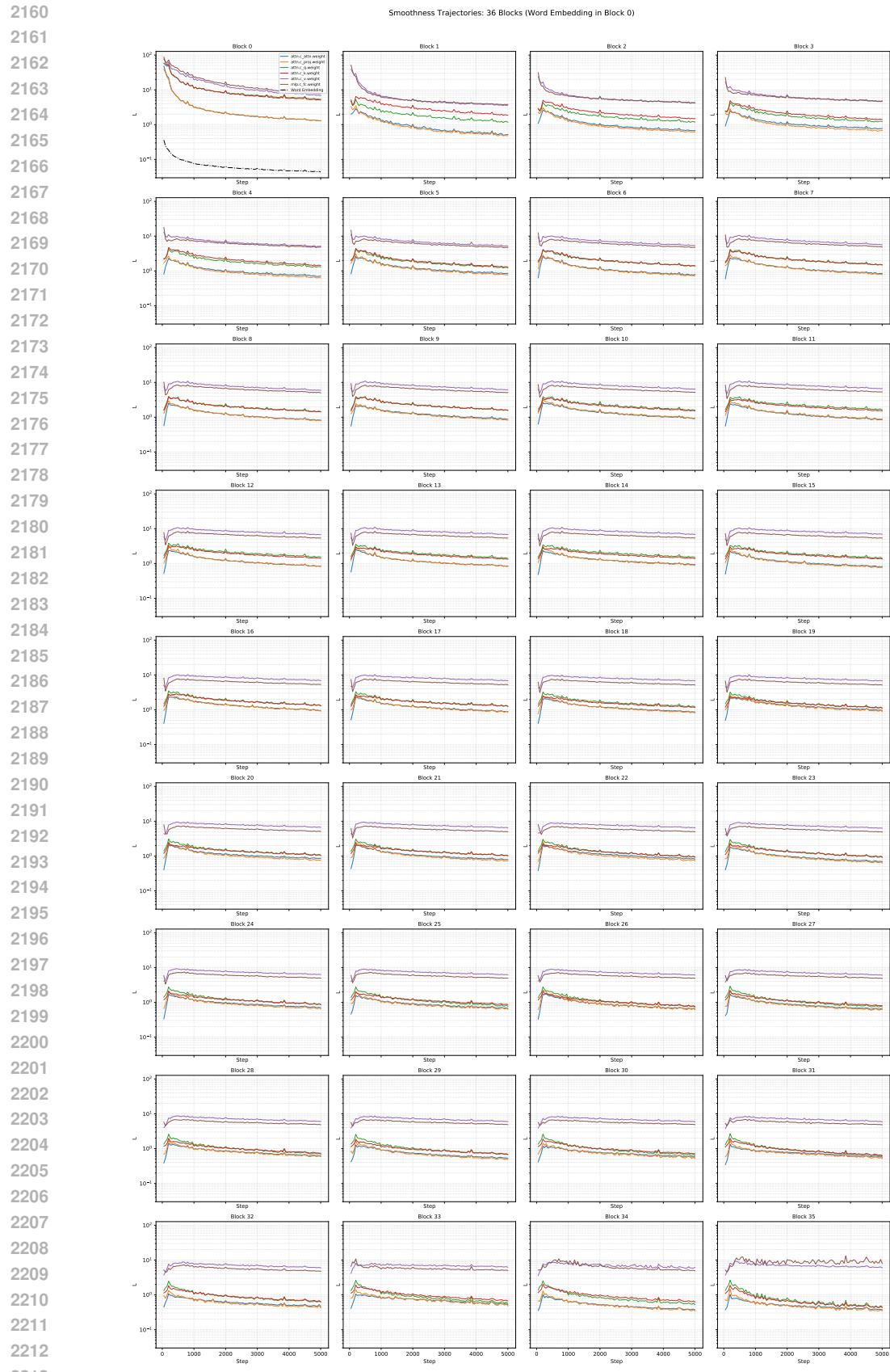
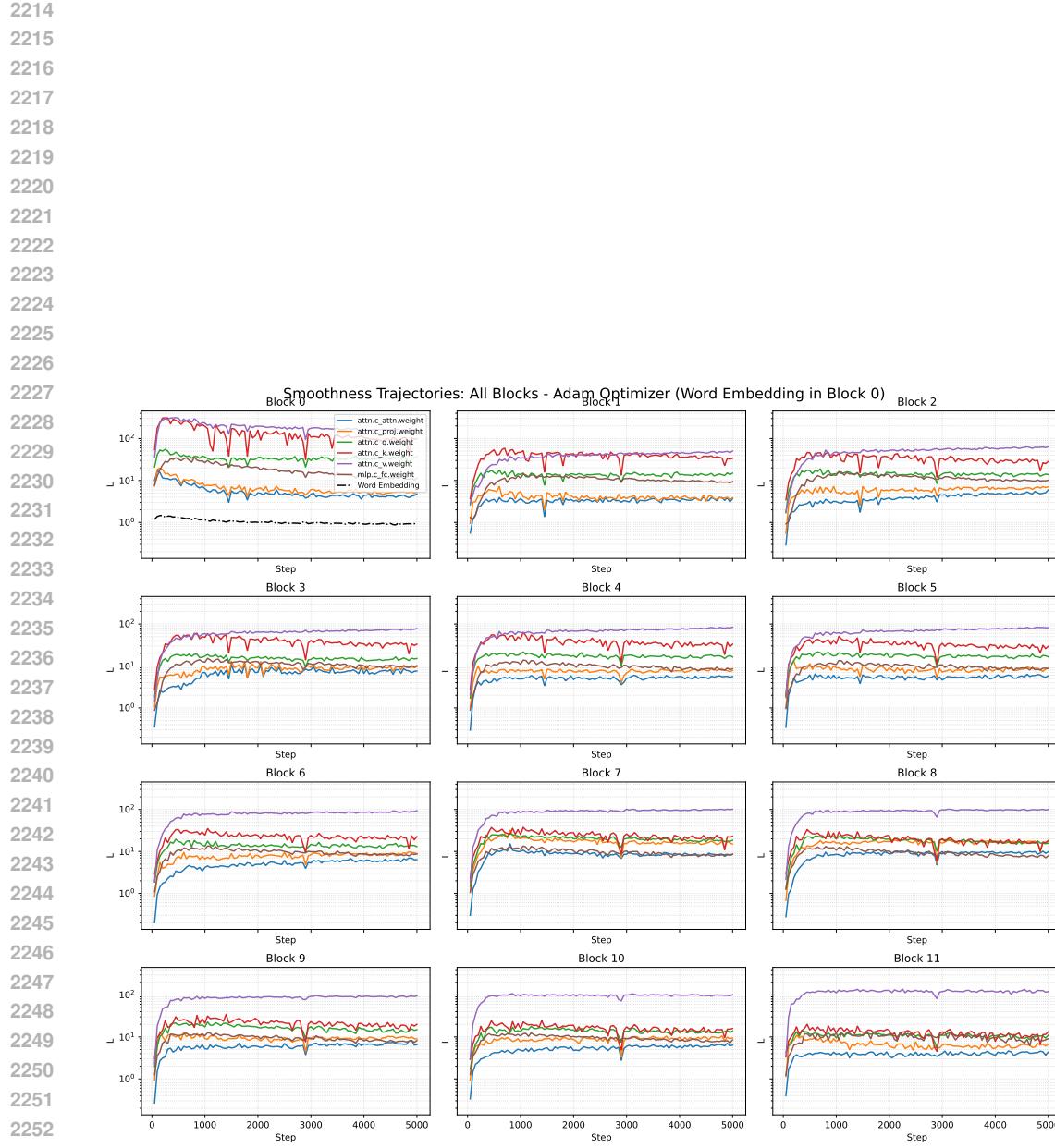


Figure 15: GPT-2 Large (~774M)

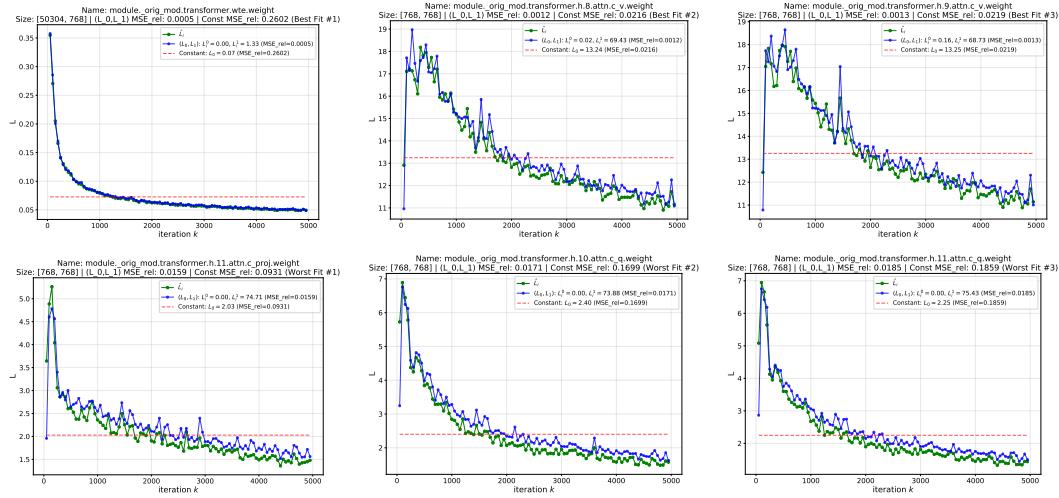


2254 Figure 16: NanoGPT-124M trained with AdamW. The same cross-layer heterogeneity pattern
 2255 persists, indicating that layer-wise (L_i^0, L_i^1) -smoothness is not specific to unScion.

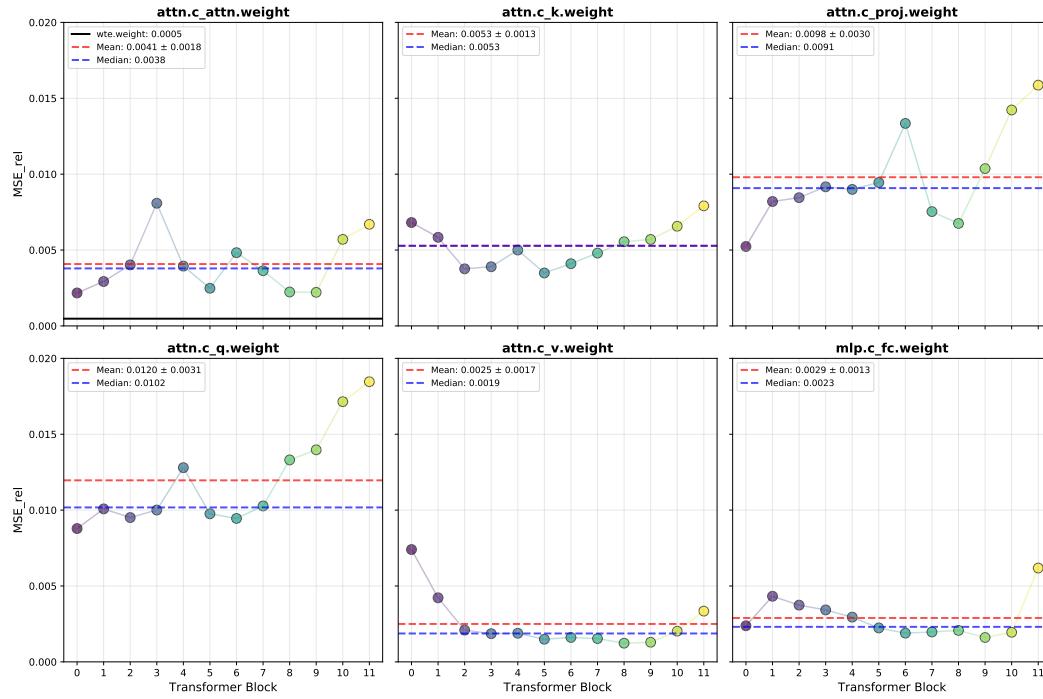
2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268 **G.2 BEST VS. WORST FITS AND AGGREGATE FIT QUALITY**
 2269

2270 Figure 17 illustrates best and worst per-layer fits of Assumption 1 (measured $L_i[k]$ vs. $L_i^{\text{approx}}[k]$)
 2271 along NanoGPT-124M training. We observe tight fits for many layers (e.g., embeddings and several
 2272 attention V matrices), while a few layers show looser—yet still bounded—fits. The model error is
 2273 more than 10 \times smaller than for constant- L_i fits on most layers, and in some cases smaller by orders
 2274 of magnitude.



2291 Figure 17: Illustrative *best* (top row) and *worst* (bottom row) per-layer fits of Assumption 1 (measured
 2292 $L_i[k]$ vs. $L_i^{\text{approx}}[k]$) along NanoGPT-124M training.
 2293



2317 Figure 18: Relative fit error MSE_{rel} of the layer-wise (L_i^0, L_i^1) model across transformer blocks for
 2318 each matrix type in NanoGPT-124M. Dashed lines show mean and median over blocks (embedding
 2319 matrix: $MSE_{\text{rel}} = 0.0005$).
 2320

2321