Under review as a conference paper at ICLR 2026

FROM MUON TO GLUON: BRIDGING THEORY AND
PRACTICE OF LMO-BASED OPTIMIZERS FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent developments in deep learning optimization have brought about radically
new algorithms based on the Linear Minimization Oracle (LMO) framework, such
as Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025b). After over a
decade of Adam’s dominance, these LMO-based methods are emerging as viable
replacements, offering several practical advantages such as improved memory
efficiency, better hyperparameter transferability, and most importantly, superior
empirical performance on large-scale tasks, including LLM training. However,
a significant gap remains between their practical use and our current theoretical
understanding: prior analyses (1) overlook the layer-wise LMO application of
these optimizers in practice, and (2) rely on an unrealistic smoothness assumption,
leading to impractically small stepsizes. To address both, we propose a new LMO-
based framework called Gluon, capturing prior theoretically analyzed methods
as special cases, and introduce a new refined generalized smoothness model that
captures the layer-wise geometry of neural networks, matches the layer-wise prac-
tical implementation of Muon and Scion, and leads to state-of-the-art convergence
guarantees. Our experiments with NanoGPT and CNN confirm that our assumption
holds along the optimization trajectory, ultimately closing the gap between theory
and practice.

1 INTRODUCTION

The success of deep learning models across a wide range of challenging domains is inseparable
from the optimization algorithms used to train them. As neural networks have grown deeper and
datasets larger, optimization has quietly become one of the most consequential components of
modern machine learning (ML). Nowhere is this more evident than in the training of large language
models (LLMs), which routinely consume thousands of GPU-hours. Adam (Kingma & Ba, 2015)
(and lately AdamW (Loshchilov & Hutter, 2019))—being effective, relatively reliable, and widely
adopted—has for over a decade served as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also exposed the shortcomings of adaptive moment
estimation as a one-size-fits-all solution—namely, sensitivity to learning rate schedules, heavy tuning
requirements (Wilson et al., 2017), and poor generalization when not carefully calibrated (Zou
et al., 2021). However, a shift may now be underway. Recent optimizers, such as Muon (Jordan
et al., 2024b) and Scion (Pethick et al., 2025b), represent a significant departure from Adam-type
methods: they forgo the adaptive moment estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms (Frank & Wolfe, 1956; Pokutta, 2024). These optimizers are not only
simpler to implement and easier to tune, but also appear empirically stronger, outperforming AdamW
in LLM training (Liu et al., 2025; Pethick et al., 2025b).

Yet, despite their potential, these new methods are still in their infancy, and our understanding
of their theoretical foundations and practical utility in LLM training remains incomplete. Prior
convergence guarantees in realistic nonconvex regimes are still far from satisfactory. Indeed, as we
argue in Section 2, the (very few) existing theoretical analyses fail to capture the true algorithms
used in practice, focusing instead on simplified variants that diverge from actual implementations.
We identify two key mismatches—neglect of layer-wise structure (Section 2.1) and flawed stepsize
choices stemming from an inaccurate smoothness model (Section 2.2)—and close this gap with a
solution to both. We elaborate on these advances in the remainder of the paper.

Under review as a conference paper at ICLR 2026

Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X° = [X7,..., X] € S, momentum M° = [M?,..., M}] €
S, momentum decay factors 3% € [0, 1) for all iterations k > 0

2. fork=0,1,2,..., K —1do

3 Sample £F ~ D

4 fori=1,2,...,pdo

5: Compute stochastic gradient V; fex (X*) for layer i

6 Update momentum M} = gFMF™1 + (1 — BF)V ;i fer(X*) for layer i

7 Choose adaptive stepsize/radius ¥ > 0 for layer i

8 Update parameters for layer i via LMO over BY := {X; € S; : | X; — XF[|(;) < th}:

Xkt = LMOg: (M) := argmin (M}, X;) () 1)
X; EBf
9: end for
10: Update full parameter vector X*+1 = [X ! . Xk+1]
11: end for

Our goal is to solve the general optimization problem
min {£(X) := Eevop [fe(X)]},)

where S is a finite-dimensional vector space and fs : S — R are potentially non-convex and
non-smooth but continuously differentiable functions. Here, f¢(X) represents the loss of model
parameterized by X associated with training data point £ sampled from probability distribution D.
To make the problem meaningful, we assume that f™f := infxcs f(X) > —ooc. In this work we are
particularly interested in the scenario when the parameter vector X € S is obtained by collecting
the matrices X; € S; := R™i*" of trainable parameters across all layers i« = 1,...,p of a deep
model. For simplicity, we therefore write X = [X1,..., X p]. This means that, formally, S is the
d-dimensional product space S := Q"_; S, =S ® -+ ® S, where d := Y7, m;n,. With each
space S; we associate the trace inner product (X, Y;)) := tr(X,|Y;) for X;,Y; € S;, and an
arbitrary norm || - || ;y, not necessarily induced by the inner product.

2 THEORY VS. PRACTICE OF MUON AND SCION

In this work, we focus on an algorithm based on iteratively calling linear minimization oracles
(LMOs) across all layers, formalized in Algorithm 1, for which we coin the name Gluon. In particular,
for each layer 7, independently across all layers, Gluon iteratively updates the parameters via

X;H_l = LMOB{C (Mlk) = argmin <Mlk,Xl>(l), where Bf = {Xi S Sz : HX, — XlkH(,L) S tf},
‘)(1687{C
where t¥ > 0 is an adaptively chosen stepsize/radius/learning rate.! Note that the momentum

M¥* = [MF,...,M}] € S accumulates the contributions from the stochastic gradients V fer (X*) =
[Vifer(XF),...,Vyfer (X*)] € S (see Step 6 of Algorithm 1).

The Gluon framework generalizes a range of methods, including Muon and Scion, which are recovered
as special cases under specific norm choices (see Section 4.1 and Appendix D.1). Beyond their
ability to outperform AdamW on large-scale benchmarks, these optimizers offer a number of attractive
properties: improved memory efficiency, greater robustness to hyperparameter settings, and the ability
to transfer those settings across model sizes (Pethick et al., 2025b; Shah et al., 2025). Moreover,
in contrast to Adam, they were theoretically analyzed shortly after release and are guaranteed to
converge under standard assumptions of Lipschitz smoothness® and bounded variance of stochastic
gradients (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b).

'In this context, the radii defining the norm balls in the LMOs effectively act as stepsizes—see Appendix C.1.
Accordingly, we use the terms radius, stepsize, and learning rate interchangeably throughout.

?A function f : S = Ris L-smooth if |V f(z) — Vf(y)||, < L|lz —y| forall z,y € S, where S is a
finite-dimensional vector space equipped with a norm || - || and || - ||« is the dual norm associated with || - ||.

Under review as a conference paper at ICLR 2026

Name: module._orig_mod.transformer.wte.weight Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [50304, 768] | MSE_rel: 0.0005 Size: [768, 768] | MSE_rel: 0.0039

6 = 102
13 -
3x10 A N
—— [preiip=o00,Lr=133 | —— [P 1P=0.00, L} =68.42
| et P2
SN
\M“‘“.

100 4

Trajectory smoothness L

—- Embed.layer —A- B.3attn.cq
\ —e— B.Omlp.c_fc B.3 attn.c_attn
- BOattn.cattn -+ B3mip.c_fc

0 1000 2000 3000 2000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k fteration k

(a) Token embedding matrix from the (b) Self-attention query matrix from (c) Trajectory smoothness across dif-
first/last layer. the 4th transformer block. ferent blocks (B.¢) and layers.

Figure 1: Training NanoGPT on FineWeb validates our layer-wise (L%, L!)-smoothness model.

Gluon presents the method that is deployed in practice (Jordan et al., 2024a; Pethick et al., 2025a)
and has proven highly effective. That said, we argue that existing analyses (Kovalev, 2025; Li &
Hong, 2025; Pethick et al., 2025b) do not accurately reflect this implementation, diverging from it in
two key ways. As such, they fail to explain why the algorithm performs so well. Let us detail why.

2.1 LAYER-WISE STRUCTURE

First, we briefly walk through the theoretical understanding offered by previous studies. Muon is an
optimizer specifically designed for hidden layers, leaving the first and last layers to be handled by
some other optimizer, e.g., Adam(W). Its original introduction by Jordan et al. (2024b) was purely
empirical, with no attempt at theoretical analysis. The first convergence result came from Li & Hong
(2025), who analyzed the smooth nonconvex setting but focused solely on problem (2) with p = 1,
effectively limiting the scope to the single-layer case. The Scion® optimizer (a special case of Gluon)
proposed by Pethick et al. (2025b) improves upon Muon by applying the LMO-based rule to all
layers, ultimately achieving better empirical performance. Both this work and that of Kovalev (2025)
analyze (a variant of) the general update rule

MF = BFMF 4 (1= BR)V fer (XF),

3
XFH = LMOgk (M%),)

where 8% € [0,1) is momentum, V fe (X*) is the stochastic gradient sampled at iteration k, and
BF:={X € 8:||X — X*|| < ¥} is anorm ball centered at X* with stepsize t* > 0. This setup
closely resembles the structure of Gluon, but is not exactly the same. Indeed, Gluon updates the
parameters layer-wise, not jointly over the full vector X. This distinction is critical since for practical,
extremely high-dimensional models, calculating a single global LMO for the entire parameter vector
is prohibitively expensive, while breaking the problem into “smaller”, per-layer LMOs restores
computational feasibility.

Motivated by this disconnect, we formulate our analysis in the matrix product space S, explicitly
honoring the layer-wise structure. This enables us to study the actual per-layer updates (1), with
assumptions and hyperparameters adapted to each layer.

2.2 A THEORY WITH PREDICTIVE POWER

All prior works claiming to guarantee convergence of Algorithm 1 come with several serious analytical
shortcomings—and these directly translate into practical deficiencies. Concretely, all existing analyses
of Muon/Scion are built on the classical L-smoothness assumption, imposing a uniform smoothness
constant across all layers. This is problematic, as different layers have different geometries, and thus
should be treated differently.

But the issue runs much deeper. These algorithms are built for deep learning, where the objective
functions are already well known not to be smooth (Crawshaw et al., 2022; Zhang et al., 2020).
This mismatch has consequences: prior convergence analyses prescribe tiny constant stepsizes (see

3Pethick et al. (2025b) introduce two variants of the Scion optimizer: one for constrained optimization,
called simply “Scion”, and another for unconstrained problems, referred to as “unconstrained Scion”. In this
work, “Scion” refers to either variant, and “unScion” is used when referring to the unconstrained version.

Under review as a conference paper at ICLR 2026

Table 1), uniform across all parameter groups, which bear little resemblance to the tuned learning
rates that yield state-of-the-art empirical performance in practice. Consequently, they completely
fail to explain why these methods perform so well empirically. In other words, the theory falls short
at the one thing it should do best: guiding practical choices, leaving practitioners reliant on costly
manual tuning.

Our result in Theorem 1 shows this mismatch is not inevitable. To better reflect the behavior of deep
models, we introduce a more expressive regularity condition: the layer-wise (L°, L')-smoothness*~an
extension of the generalized smoothness model of Zhang et al. (2020), applied at the layer level.
Assumption 1 (Layer-wise (L°, L')-smoothness). The function f : S +— R is layer-wise (L°, L')-
smooth with constants L° := (LY,...,LY) € R} and L' := (L{,...,L,) € RY. That is, the
inequality

IVif(X) = Vaf (Nl ye < (L + LilIVif (X) [l ye) 1 X = Yill iy “4)

holds foralli =1,...,pand all X = [X1,...,X,] € S, Y = [Y1,...,Y,] € S, where || - || (i)« is
the dual norm associated with || - || ;) (i.e., || X;|| 5« := SUp| 7, , <1 (Xis Zi) ;) for any X; € S;).

Assumption 1 can be viewed as a generalization of the anisotropic “vector” (L°, L')—smoothness
introduced by Liu et al. (2024) (now framed in terms of arbitrary norms), which itself is a generaliza-
tion of the (L°, L')—smoothness model of Zhang et al. (2020). As such, our analysis of Gluon goes
beyond all existing results, which have only considered the classical L-smooth setting. Crucially,
however, this is not generalization for its own sake—we argue that this is in fact the right model for
the problem setting at hand. Why? There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns very closely with empirical observations.
In Figures la and 1b, we validate Assumption 1 in the context of training NanoGPT on the FineWeb
dataset. We plot estimated trajectory smoothness ﬁi [k] (defined in (10)) alongside the approximation
LPP (k] := LY + LYV, fers1 (XF41)[| 5y, where LY, L} are layer-specific parameters estimated
from the training run. The figures show these quantities for parameters from the embedding layer
and one of the transformer blocks. The close correspondence between L;[k] and L3P [k] provides
strong evidence that Assumption 1 holds approximately along the training trajectory. In Section 5,
we further corroborate this finding, showing that our assumption is satisfied across the entire model
architecture for both the NanoGPT language modeling task and a CNN trained on CIFAR-10. In
all cases, we find that L? a2 0 for all 4, again highlighting the limitations of classical smoothness.
Moreover, as shown in Figure lc, trajectory smoothness varies substantially across blocks and
layers, underscoring the need for per-layer treatment. Complementary experiments using AdamW
as the optimizer (Figure 10) confirm that this heterogeneity is an intrinsic property of the loss
landscape. Together, these results suggest that layer-wise (L°, L!)-smoothness offers a significantly
more realistic model of the loss landscape in modern deep learning.

Secondly, Assumption 1 not only better captures the geometry of the models, but also directly
informs the design of adaptive and practically effective stepsizes. In Theorem 1, we derive learning
rates that reflect the local geometry of each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically grounded stepsizes turn out to accurately
capture the relative magnitudes of the layer-wise learning rates obtained by Pethick et al. (2025b) via
hyperparameter tuning—a striking validation of our approach, which further highlights the need for
layer-wise reasoning. This proves that theoretical stepsizes can have predictive power and effectively
guide hyperparameter tuning.

3 CONTRIBUTIONS

We present a comprehensive theoretical and empirical study of a broad class of layer-wise LMO-based
optimization algorithms. Our key contributions can be summarized as follows:

*While we state Assumption 1 in this general form, it is worth noting that the proofs do not rely on its full
strength. In all cases, we only require the assumption to hold for pairs X, Y such that || X — Y'|| < ¢ for some
constant ¢ > 0 (where ||-|| is any norm on S). Specifically, the assumption is only invoked with X = X*,
Y =X k'H, and since the stepsizes we use are bounded, the distances between consecutive iterates remain
bounded as well. For clarity and consistency across results—since the relevant constants vary by theorem—we
state the assumption in its stronger, global form, even though the local version suffices for all proofs.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve
ming—o,... k-1 9 -y E[|[Vif(X*)|ltiy+] < e, where the O(-) notation hides logarithmic factors. Notation: K
= total number of iterations, (L, ') = the result holds under layer-wise (L, L')-smoothness, t¥ = radius/step-
size, 1 — ﬂ’“ = momentum.

Result Stochastic? (L°, L') Rate Stepsizes tf 1 — gk
(Kovalev, 2025, Theorem 1) X O K11/2 const o K11/2 ® —
(Kovalev, 2025, Theorem 2) v X O (171 const oc 7 const oc /5
(Li & Hong, 2025, Theorem 2.1)® v X o K11/4 const o< ﬁ(b) const o< ﬁ
(Pethick et al., 2025b, Lemma 5.4) v X O (17 const o¢ —zr x 573
NEW: Theorem 1 X v o (ﬁ) Adaptive —
NEW: Theorem 2 v v o (m) o« = « =i

@ Applies only to the Muon/Scion update in (13) with p = 1.
®) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

¢ A new generalized smoothness framework for neural networks. We introduce layer-wise
(L°, L')-smoothness (Assumption 1), a novel non-Euclidean generalized smoothness condition that
reflects the anisotropic, layer-wise structure of modern deep networks. This framework extends
standard (L, L')-smoothness assumption (Zhang et al., 2020) to arbitrary norms while capturing
per-layer variation, offering a realistic foundation for analyzing deep learning optimizers.

o First principled analysis of layer-wise methods. Building on our new assumption, we develop the
first faithful convergence analysis for a class of LMO-based algorithms we term Gluon (Algorithms 1
and 2). We recover known algorithms, including state-of-the-art Muon-type optimizers, as special
cases (Section 4.1 and Appendix D.1), and pinpoint why earlier theoretical works fail to explain
the empirical success of these methods (Section 2). In contrast to prior analyses that oversimplify
the update rules used in practice, our framework directly aligns with real-world implementations,
bridging a critical gap between theory and application.

< Sharper and more general convergence theory. We develop a convergence theory that extends
prior work in both scope and sharpness. In the deterministic case (Algorithm 2), we establish
convergence for general non-convex objectives under our Assumption 1 (Theorem 1), and under the
block-wise PL condition (Theorem 5). Unlike earlier analyses, our theory yields adaptive, layer-wise
stepsizes that align remarkably well with those selected via tuning in large-scale experiments (Pethick
et al., 2025b) (Section 5.1). We next analyze the practical stochastic variant with time-varying
stepsizes and momentum (Algorithm 1), proving convergence under bounded variance assumption
(Theorem 1). In both deterministic and stochastic regimes, our guarantees offer tighter convergence
rates under more general assumptions (Table 1), providing the first such results the in non-smooth
setting. Moreover, we provide the first theoretical explanation of the benefits of layer-wise learning
rates, clearly establishing the advantages of structured, anisotropic optimization in deep learning.

< Empirical evidence. We validate our theoretical insights through extensive experiments (Section 5
and Appendix F) in both language modeling (NanoGPT on FineWeb) and image classification
(CNN on CIFAR-10). The results confirm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoretically prescribed stepsizes from Theorem 1.

4 MAIN THEORY AND RESULTS

To gain a better intuition into the structure of the updates, we begin with a deterministic formulation
of Gluon, formalized in Algorithm 2. At each iteration, the method independently minimizes a linear
approximation of f around each parameter group X within a ball of radius ¥ > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1 EXAMPLES OF OPTIMIZERS SATISFYING OUR FRAMEWORK

Deterministic Gluon describes a general class of methods, parameterized by the choice of norms
|| - [I(s) in the LMO. To illustrate the flexibility of this framework, we highlight several notable special
cases (see Appendix D.1 for more details). First, observe that the update rule (12) can be written as

X = XF 4 FIMO e <1y (Vif (XF)) = XE +tf|‘a;(r%mii1 (Vif(X%), X)) (5)
il =t

Under review as a conference paper at ICLR 2026

For any X; € §; = R™*", define || X;|a—p := sup| ., =1 [Xiz[lg, where || - |[o and || - || are
some (possibly non-Euclidean) norms on R™¢ and R™?, respectively. Note that (5) naturally recovers
several known updates for specific choices of the layer norms, e.g., layer-wise normalized GD (Yu

et al., 2018) for Euclidean norms || - [;y = || - [|2, and layer-wise signGD (Balles et al., 2020) for
max-norms || - [|(;y = || - [|oc. Two special cases are particularly relevant to our analysis:
© Muon (Jordan et al., 2024b) when || - ||;) = || - ||2—2 for all hidden layers.

o unScion for LLM training (Pethick et al., 2025b) when || - [|;) = /™i/m| - |22 for i =
1,...,p — 1, corresponding to weight matrices of transformer blocks, and || - ||(,) = 7, || - |1 =00 for
the last group X, representing the embedding and output layers (the two coincide under the weight
sharing regime’ considered here). In this case, update (5) becomes

X = xb it [T)T =1,
i (6)
th
X}’;H = XI’f - n—pmgn (Vo f(XHF)),
P

where the matrices UF, V;* are obtained from the (reduced) SVD of V, f(X*) = UFS¥ (V;k)T

4.2 CONVERGENCE RESULTS

Having demonstrated the framework’s flexibility through concrete examples, we now state a general
convergence result for deterministic Gluon.

Theorem 1. Let Assumption 1 hold and fix e > 0. Let X°, ..., XX~1 be the iterates of deterministic
k .
Gluon (Algorithm 2) run with stepsizes t} = + l‘f{{é)_(f())'}‘;ﬁ(,) . Then, to guarantee that
p 1/L1
. i k
pgmin > [1 7 [Vir(x)H@*] <e, ™)
i=1 Lp &j=1 J

it suffices to run the algorithm for

200 (320 LY/ Lh?) 2A0
2 B 1 p 1
e? (% j=1 1/L}> ¢ (To j=1 VLJ‘)

iterations, where A° := f(X0) — finf,

K =

®

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an additional result (Theorem 3) that modifies the
first term in (8) to 2A° 37, L7/, potentially leading to improvements in certain settings (depending
on the relationship between the sequences { LY} and { L} }-see Remark 4). However, this introduces a
dependence on L. . := max;—1 ., L} in the second term. Empirically, we find that L? ~ 0 across
all layers (see Section 5), making the first term vanish in both bounds. In this case, the rate (8) is
clearly superior, replacing the worst-case constant L. _ with the more favorable harmonic mean.

max

When p = 1, our rates match the best-known complexity for finding a stationary point of (L, L!)-
smooth functions, O (LOAO/ e+ LIAO/E), as established by Vankov et al. (2025) for the Gradient

Method. While no prior work has analyzed deterministic Gluon under general (L°, L!)-smoothness,
there exist analyses under classical L-smoothness, treating the parameters as a single vector. The
analysis by Kovalev (2025) guarantees convergence in K = [GLAO/ 621 iterations. The same bound
appears in Li & Hong (2025) and Pethick et al. (2025b) (by setting 02 = 0). Since for p = 1,
L-smoothness implies Assumption 1 with L! = 0 (Lemma 2), our rates match these prior results
up to a constant factor. Thus, even in the smooth setting, our bounds are as tight as those derived
specifically for it.

SWeight sharing refers to the practice of using the same parameters (weights) for different parts of a model,
rather than allowing each part to have its own unique parameters.

Under review as a conference paper at ICLR 2026

However, the real strength of our guarantees lies in their broader applicability. Our analysis is
much more general than prior studies, as it extends beyond standard smoothness—allowing L} > 0
introduces additional terms that drive the accelerated convergence enabled by (L°, L!)-smoothness.
This richer model is essential for explaining the empirical speedup of methods like Muon, and much
more accurately reflects the geometry of neural network loss surfaces. Indeed, as we demonstrate in
Section 5, the assumption typically holds with LY ~ 0 and L} > 0.

Practical radii tf. Unlike previous analyses (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b),
which prescribe impractically small constant radii proportional to €, our framework allows ¢¥ to be
adaptive to the loss landscape. Therefore, t¥ can be larger early in training when ||V f(X*) || (;)«
is large and gradually shrink as the gradient norm decreases. In the special case when LY ~ 0
(as observed empirically), ¥ ~ 1/L!, which is substantially larger than the radii dictated by earlier
analyses. Crucially, as shown in Section 5.1, our adaptive stepsizes closely match those that yield state-
of-the-art empirical performance identified by Pethick et al. (2025b) through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven stepsize selection could substantially
reduce the need for costly manual tuning.

4.3 STOCHASTIC CASE

In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We
therefore turn to the practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates
with noisy gradient estimates available through a stochastic gradient oracle V f¢, { ~ D.

Assumption 2. The stochastic gradient estimator V f¢ : S — S is unbiased and has bounded
variance. That is, B¢ .p[V fe(X)] = Vf(X) for all X € S and there exists o > 0 such that

Een[|IVife(X) = Vif(X)|3] <o?forall X € S,i=1,...,p.

Note that the choice of norm in Assumption 2 is not restrictive: in finite-dimensional spaces, all
norms are equivalent, so variance bounds remain valid up to a constant factor when compared to
those based on any non-Euclidean norm. The following result establishes the convergence properties.
Theorem 2. Let Assumptions 1 and 2 hold and fix e > 0. Let X°,... XX~ be the iterates of
Gluon (Algorithm 1) run with 3% = 1 — (k + 1)7Y2, tF = t,(k + 1)73/* for some t; > 0, and
M =V, feo(XO). Then

. S . A° 1 &lo LY
et 2 orr B UV 04 S g + e 2 T ©

""" i=1
where A := f(X°) — f™f and the notation < omits numerical constants and logarithmic factors.

For p = 1, our rate in (9) recovers the complexity for finding a stationary point of (L°, L!)-smooth
functions established by Hiibler et al. (2024) for normalized SGD with momentum. When p > 1,
compared to existing guarantees for Gluon, our Theorem 2 operates under the significantly more
general Assumption 1 and uniquely supports training with larger, non-constant stepsizes t¥ oc k=3/4,
In contrast, prior analyses prescribe constant, vanishingly small stepsizes t¥ = t; oc K —3/4 tied to
the fotal number of iterations K (see Table 1).

5 EXPERIMENTS

Below, we highlight selected experimental results for the unScion optimizer, a special case of Gluon
(see Appendix D.1). Additional details and further experiments are provided in Appendix F.°

5.1 TRAINING NANOGPT ON FINEWEB

In the first set of experiments, we aim to verify layer-wise (LY, L!)-smoothness (Assumption 1). To
this end, we train the NanoGPT model with 124M parameters on the F i neWeb dataset, leveraging
two open-source GitHub repositories (Jordan et al., 2024a; Pethick et al., 2025a). We use the unScion
optimizer, i.e., Gluon with the norm choices as in (6). We adopt the hyperparameters from Pethick
et al. (2025b, Table 7), mapping their values v = 0.00036, p2 = 50, and p3 = 3000 into our notation
as follows: t¥ = ypy = 0.018 fori = 1,...,p — 1 (corresponding to the transformer block layers),
and t’; = vp3 = 1.08 (token embeddings and output projections, due to weight sharing). We set
the number of warmdown iterations to O to keep the learning rates constant throughout training.

8Code for all experiments is available here.

https://github.com/artem-riabinin/Experiments-estimating-smoothness-for-NanoGPT-and-CNN

Under review as a conference paper at ICLR 2026

Name: module._orig_mod.transformer.h.8.attn.c_proj.weight Name: module._orig_mod.transformer.h.8.mip.c_fc.weight Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056 Size: [3072, 768] | MSE rel: 0.0012 Size: [768, 3072] | MSE_rel: 0.0021
. 19 .
— — L — 0
—e [P 920,00, L} = 68.96 18 —— [P 10 =0.02, L} = 69.43 16 e [P 020,00, L} = 70.11

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 2: Validation of Assumption 1 for the 8th transformer block in NanoGPT—-124M along
training trajectories of unScion.

4.0

—m— AdamW
—a— unScion: p, =50, p3=10000

—&— unScion: p, =50, p3=5000

—e— unScion: p, =50, p3=3000 (tuned)
—&— unScion: p, =50, p3 =500
unScion: p, =50, p3 =50

3.600

3.9 3.437 3.575

3.550
3.8

3.525

3.7 3.403 3.486

-3.500

Validation Loss

36 -3.475

-3.450

Validation Loss (last iterate)

35 3.469

-3.425

3.4 y
0 1000 2000 3000 4000 5000 3000

Iteration k P3
(2) (b)

Figure 3: (a) Validation curves for AdamW and unScion with varying ps values; (b) Heatmap of
validation loss from the last iteration of unScion across different combinations of p, and ps.

The model is trained for 5,000 iterations in accordance with the Chinchilla scaling laws to ensure
compute-optimal training. In Figures 2, 5, 6, we plot the estimated frajectory smoothness as a function
of the iteration index &

Lilk] = ||V fersr (XPH) = Vifer (XP) |/ 1 X = XE L) (10)

for parameter groups from the embedding layer and 4th and 8th transformer blocks (with similar
trends observed across all blocks). We compare this to the approximation

LK) = LY + LIV ferrs (X)) [
where L, L} > 0 are fitted to minimize the Euclidean error between L;[k] and L¥***[k], with

hinge-like penalty on underestimation (see Appendix F.2). The close alignment between these curves
implies that Assumption 1 is approximately satisfied along the training trajectories.

Effect of scaling factors. We next evaluate the impact of the learning rate scaling factors ps and ps
on the performance of the unScion optimizer. For consistency, all other hyperparameters are fixed
as described earlier. As a baseline, we include results obtained with the AdamW optimizer, using
the hyperparameter settings from Section F.3.3. Figure 3 presents (a) validation curves for both
optimizers, with varying ps in unScion, and (b) the final validation loss for unScion across different
combinations of py and p3. The best performance is achieved with p2 = 50 and p3 = 3000, i.e.,
tF =0.018 fori =1,...,p— 1 and t’; = 1.08.This supports the use of non-uniform scaling across
layers, with larger step sizes for the embedding layer.

Additional ablation studies. In Appendix F.3.2, we present an ablation study demonstrating that
specialized norms provide a better approximation of trajectory smoothness compared to the standard
Euclidean norm. Appendix F.3.3 demonstrates that the layer-wise (L°, L!)-smoothness model also
closely approximates trajectory smoothness during AdamW training. Notably, we observe a similar
gap between transformer and embedding layers as with Scion, suggesting that smoothness statistics
from AdamW training can guide per-layer learning rate tuning in Scion.

Under review as a conference paper at ICLR 2026

5.2 TRAINING CNN oON CIFAR-10

In this experiment, we further validate layer-wise (L°, L!)-smoothness by training a CNN model on
the CIFAR-10 dataset, following implementations from two open-source GitHub repositories (Jor-
dan, 2024; Pethick et al., 2025a). The model is trained using the unScion optimizer (15) with full-batch
gradients V; f, no momentum and no learning rate decay (results for the stochastic case are reported in
Appendix F.4). Other hyperparameters are as in Pethick et al. (2025b, Table 10), except that we train
for more epochs. Similar to the NanoGP T experiments discussed in Section 5.1, we plot the estimated

(non-stochastic) trajectory smoothness L;[k] := ||V, f(X*1) — V, f(X*) H(i)*/HXfH - XF &

alongside its approximation LI [k] := L9 + L} ||V, f(X**1)||(i)« for selected parameter groups.
In this experiment, we consider a simplified variant of Assumption 1, setting LY = 0, and estimate
L} > 0 using the same procedure as in Section 5.1. Figure 4 presents the results, demonstrating that
Assumption | is approximately satisfied along the training trajectory. When this condition holds
with L? = 0, Theorem 1 guarantees convergence under the stepsize choice t¥ = t; = 1/L!. In this
setting, the estimated L} values (shown in Figure 4) are L} ~ 3 for all parameter groups except

for the classification head weights X,,, where Lll, =~ 0.03. This roughly two-orders-of-magnitude

difference justifies the much larger radius t*

» used for the head weights in the tuned configuration
reported in Pethick et al. (2025b, Table 10).

. i Name: layers.1.norm2.bias Name: head.weight
Name: layers.2.convl.weight)
Size: [256, 64, 3. 3] | MSE rel: 0.0058 Size: [64] | MSE rel: 0.0360 Size: [10, 256] | MSE_rel: 0.0195

T i 0.012)
120 —— L Li L

{27, 19 2 0,00, L} = 2.81 —e— [PP%10=0.00, L} = 4.06 —— [P 10 =0.00, L} =0.04

0.010
0.008

0.006

0.004

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch epoch

Figure 4: Validation of Assumption 1 for different groups of parameters in CNN along training
trajectories of unScion with full-batch gradients.

6 CONCLUSION AND FUTURE WORK

In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art
optimizers such as Muon and Scion as special cases. We develop a principled analytical framework
for layer-wise optimization based on a novel layer-wise (L°, L')-smoothness assumption, which
captures the anisotropic structure of modern deep networks. This assumption enables sharper and
more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes that
closely match those found via finetuning. Our framework thus provides the first rigorous and
practically predictive analysis of modern layer-wise optimizers. Experiments confirm that the
assumption holds approximately throughout training, reinforcing its practical relevance. Together,
these results offer a refined foundation for structured optimization in deep learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important
directions for future research. Our analysis assumes exact LMO computations, whereas practical
implementations use approximations (Appendix F.1). Additionally, our stochastic guarantees (The-
orem 2) rely on the widely adopted bounded variance assumption, which may not hold in certain
scenarios, e.g., under subsampling (Khaled & Richtérik, 2020). Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically
in the stochastic regime (Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps—establishing
a realistic generalized smoothness model and aligning analysis with actual implementations—no single
work can exhaust the subject. The field remains open, with many fruitful directions left to pursue.

Under review as a conference paper at ICLR 2026

REFERENCES

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of Sign Gradient Descent,
2020. URL https://arxiv.org/abs/2002.08056. (Cited on page 6 and 13)

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265,2024a. URL https://arxiv.org/abs/2410.21265. (Cited on page 17)

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. In OPT 2024:
Optimization for Machine Learning, 2024b. URL https://arxiv.org/abs/2409.20325.
(Cited on page 14 and 18)

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on Ma-
chine Learning, pp. 560-569. PMLR, 2018. URL https://arxiv.org/abs/1802.04434.
(Cited on page 14)

Aleksandr Beznosikov, Samuel Horvéth, Peter Richtarik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1-50, 2023. (Cited on
page 24)

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signSGD. Advances in neural information processing
systems, 35:9955-9968, 2022. URL https://arxiv.org/abs/2208.11195. (Cited on
page 3 and 14)

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtarik. A guide through the zoo
of biased sgd. Advances in Neural Information Processing Systems, 36:23158-23171, 2023. (Cited
on page 24)

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95-110, 1956. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800030109. (Cited on page 1 and 14)

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtarik, Samuel Horvéth,
and Martin Takd¢. Methods for convex (Lg, L1)-smooth optimization: Clipping, acceleration, and
adaptivity. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://arxiv.org/abs/2409.14989. (Cited on page 14)

Kaja Gruntkowska, Hanmin Li, Aadi Rane, and Peter Richtarik. The Ball-Proximal (="Broxi-
mal”) Point Method: a new algorithm, convergence theory, and applications. arXiv preprint
arXiv:2502.02002, 2025. URL https://arxiv.org/abs/2502.02002. (Cited on page 17)

Florian Hiibler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861-4869.
PMLR, 2024. URL https://arxiv.org/abs/2311.03252. (Cited on page 7, 14, 16, and 29)

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427-435. PMLR, 2013. (Cited on page 14)

Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
methods under refined smoothness and noise assumptions. arXiv preprint arXiv:2406.04592, 2024.
URL https://arxiv.org/abs/2406.04592. (Cited on page 14)

Keller Jordan. Cifar-10 airbench. https://github.com/KellerJordan/
cifarl0-airbench, 2024. GitHub repository. (Cited on page 9 and 33)

Keller Jordan, Jeremy Bernstein, Ben Rappazzo, B. Vlado, Y. Jiacheng, F. Cesista, and
B. Koszarsky. Modded-nanoGPT: Speedrunning the nanoGPT baseline. https://github.
com/KellerJordan/modded-nanogpt, 2024a. GitHub repository. Additional contributors:
@fern-bear.bsky.social, @ Grad62304977. (Cited on page 3, 7, and 33)

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/. (Cited on page 1, 3, 6, 14, 18, and 33)

10

https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2410.21265
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2208.11195
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2406.04592
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Under review as a conference paper at ICLR 2026

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-t.ojasiewicz condition, 2020. URL https://arxiv.org/
abs/1608.04636. (Cited on page 22)

Ahmed Khaled and Peter Richtérik. Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020. URL https://arxiv.org/abs/2002.03329. (Cited on page 9
and 24)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/abs/1412.
6980. (Cited on page 1)

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-Euclidean
trust-region optimization, 2025. URL https://arxiv.org/abs/2503.12645. (Cited on
page 2,3,5,6,7, 14, and 17)

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems,2024. URL https://arxiv.org/abs/2405.14813. (Cited on page 17)

Jiaxiang Li and Mingyi Hong. A note on the convergence of Muon and further, 2025. URL
https://arxiv.org/abs/2502.02900. (Cited on page 2, 3, 5, 6, 7, and 14)

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59, 01
2022. doi: 10.1016/j.acha.2021.12.009. URL https://arxiv.org/abs/2003.00307.
(Cited on page 22)

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025. URL https://arxiv.org/abs/2502.16982. (Cited on page 1)

Yuxing Liu, Rui Pan, and Tong Zhang. AdaGrad under anisotropic smoothness, 2024. URL
https://arxiv.org/abs/2406.15244. (Cited on page 4 and 14)

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://arxiv.org/abs/1711.05101.
(Cited on page 1)

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341-362, 2012. URL https://epubs.siam.org/doi/10.
1137/100802001. (Cited on page 14)

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Scion. https://github.com/LIONS-EPFL/scion.git,2025a. GitHub
repository. (Cited on page 3, 7, 9, and 33)

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025b. URL https://arxiv.org/abs/2502.07529. (Cited on page 1,
2,3,4,5,6,7,9,14,17, 18, 19, 36, and 37)

Sebastian Pokutta. The Frank-Wolfe algorithm: a short introduction. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 126(1):3-35, 2024. URL https://arxiv.org/abs/2311.
05313. (Cited on page 1)

Peter Richtdrik and Martin Tak4c¢. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1-38, 2014.
URL https://arxiv.org/abs/1107.2848. (Cited on page 14)

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of Muon for
pretraining. arXiv preprint arXiv:2505.02222,2025. URL https://arxiv.org/abs/2505.
02222. (Cited on page 2)

11

https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2405.14813
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2406.15244
https://arxiv.org/abs/1711.05101
https://epubs.siam.org/doi/10.1137/100802001
https://epubs.siam.org/doi/10.1137/100802001
https://github.com/LIONS-EPFL/scion.git
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222

Under review as a conference paper at ICLR 2026

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimiz-
ing (Lo, L1)-smooth functions by gradient methods. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://arxiv.org/abs/2410.10800. (Cited
on page 6, 14, and 18)

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017. URL https://arxiv.org/abs/1705.08292. (Cited on page 1)

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ¢,,-geometry of loss
landscape via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024. URL https:
//arxiv.org/abs/2410.08198. (Cited on page 14)

Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
normalized gradient method: An empirical study for training deep neural network, 2018. URL
https://openreview.net/forum?id=ry831QWADb. (Cited on page 6 and 18)

Dingzhi Yu, Wei Jiang, Yuanyu Wan, and Lijun Zhang. Mirror descent under generalized smoothness.
arXiv preprint arXiv:2502.00753, 2025. (Cited on page 14)

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/abs/1905.11881. (Cited on page 3, 4,
5, and 14)

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of Adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021. URL
https://arxiv.org/abs/2108.11371. (Cited on page 1)

12

https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198
https://openreview.net/forum?id=ry831QWAb
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/2108.11371

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1
2

a w o>

Introduction

Theory vs. practice of Muon and Scion
2.1 Layer-wise StruCturettt e e e e e
2.2 Atheory with predictive power

Contributions

Main theory and results

4.1 Examples of optimizers satisfying our framework
42 Convergenceresults e e e e
4.3 Stochasticcase e

Experiments
5.1 Training NanoGPT on FineWeb
5.2 TrainingCNNon CIFAR-10

Conclusion and future work
Related works
Auxiliary lemmas

Remarks on the theoretical results
C.1 Noteonradii and Stepsizes o oo e e
C.2 Noteonprior analySes o v i i i vt i

Deterministic case

D.1 Special cases of the LMO framework
D.2 Proofof Theorem 1 e
D.3 Convergence under the PL. condition

Stochastic case
E.l1 Adaptive StepsSizes v v o i i e e e e e e e e e e
E.2 Proofof Theorem 2 e

Additional experimental results and details

F.1 Experimental details

F2 Fitting LY and L}

F.3 Training NanoGPT on FineWeb.
F3.1 Empirical validation of Assumption 1
F.3.2 Generalized smoothness under Euclidean vs. specialized norms
F3.3 Learning rate transfer from AdamW,

F4 Training CNNon CIFAR-10

Additional Empirical Results

G.1 Layer-wise smoothness across all layers and varied model scales
G.2 Best vs. worst fits and aggregate fitquality oL

13

~N O\ L i =~ W W N

NeRENEEN |

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz
continuous with a global constant L, often fails to accurately capture the complex geometry of
loss landscapes in deep learning (Crawshaw et al., 2022; Zhang et al., 2020). To address this,
Zhang et al. (2020) introduced the (LY, L')-smoothness condition, empirically observing in language
model experiments that a bound of the form ||V2f(x)| < Lo + L1||V f(z)]|| better described the
Hessian norm behavior. Subsequent works have analyzed standard optimization algorithms under
this generalized smoothness framework. For instance, Gorbunov et al. (2025) and Vankov et al.
(2025) provided convergence analyses for the Gradient Method. Hiibler et al. (2024) analyzed
Normalized SGD with momentum in a parameter-agnostic setting under (L°, L!)-smoothness. Yu
et al. (2025) proposed non-Euclidean generalized smoothness and established convergence rates
for mirror-descent-type methods. Our work extends this line by incorporating (LY, L!)-smoothness
into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models,
researchers have explored anisotropic smoothness conditions, where smoothness constants can vary
across different dimensions or parameter blocks. Early work in this direction includes coordinate-wise
Lipschitz continuity for coordinate descent methods (Nesterov, 2012; Richtarik & Takac, 2014).
More recently, Bernstein et al. (2018) analyzed signSGD under a weaker notion of coordinate-wise
smoothness. Crawshaw et al. (2022) further developed this by analyzing Generalized signSGD
under a generalized coordinate-wise smoothness assumption, highlighting that different parameter
groups can exhibit vastly different geometries. Jiang et al. (2024) focused on Adagrad’s analysis
under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits
of adaptivity. Liu et al. (2024) proposed “Anisotropic (L°, L')-smoothness” (a vector version of
(Lo, L1)-smoothness applied coordinate-wise) and demonstrated Adagrad’s provable advantages
over SGD in this setting. Xie et al. (2024) also leveraged anisotropic smoothness concepts in their
convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise (L°, L')-
smoothness, which combines the benefits of the generalized smoothness model with a structured,
anisotropic perspective tailored to the layer-block architecture of neural networks and compatible with
arbitrary layer-specific norms. This framework is essential for understanding LMO-based methods
like Muon and Scion.

LMO-based Optimizers. The optimizers Muon (Jordan et al., 2024b) and Scion (Pethick et al.,
2025b) represent a recent class of methods that have shown strong empirical performance in deep
learning. Muon was initially introduced as an effective empirical method, with its update rule for
hidden layers inspired by ideas from Bernstein & Newhouse (2024b). Subsequently, Pethick et al.
(2025b) (authors of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW)
framework (Frank & Wolfe, 1956; Jaggi, 2013), proposing the use of layer-specific norms within
an LMO-based update rule. These methods perform updates by solving, for each layer, a linear
minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of
these optimizers (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b) have relied on standard
L-smoothness and analyzed a simplified global update. Our work provides the first convergence
guarantees for these methods under the more realistic layer-wise (Lg, L1)-smoothness, directly
addressing their practical layer-wise nature and leveraging the geometric insights offered by LMOs
over general norms.

ACKNOWLEDGMENTS

The authors used large language models (LLMs) during the preparation of this paper to assist with
grammar, wording, and code implementation. No LLMs were used to write scientific content, or
search for citations or related work. This is in accordance with two main LLM-related policies.

14

Under review as a conference paper at ICLR 2026

B AUXILIARY LEMMAS
Lemma 1. Let f : S — R satisfy Assumption 1. Then, for any X,Y € S, we have

p 0 1
IF(Y) = f(X) = (Vf(X),Y — X|<ZL+LIIVf()

|| 7)%
O 11v; - X312

Proof. Forall X, Y € S we have
1
FY) = F(X) + / (VAX +7(Y —X)).Y - X)dr

:f(X)+(Vf(X),Y—X>+/O (VX +7Y -X))-Vf(X),Y - X)dr.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

IFY) = f(X) (VI(X)Y = X)|

< ‘/ ZVfXJrT(Y X)) = Vif (X),Yi = Xi);y dr

< (Vif(X +7(Y = X)) = Vi f(X),Y; — Xi),

< / Zluv X+ 7Y = X)) = Vif (X)l| o, ¥ = Xill iy
<

1 P
/0 S 7 (04 LIV F(Oll) Y — Xill2dr
=1

zp: LY + LIV f (X) | ¢y«
2
i=1

1Y; — X3y

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

||vf(X) - vf(Y)Hmax* — L HX lelmax7

where X = [X1,..., Xl andY = [Y1,..., Y, with X;,Y; € S;. Then Assumption 1 holds with
LY <Land L} =0foralli=1,...,p

Proof. L-smoothness and the definition of the norm give
P
SOIViF(X) = Vif ()l < Lmax {1 X1 = Yill - 1% = Yyll }

for all XY € S. In particular, choosing X = [X;,...,X,] and V¥ =
[Xl,...7Xj,1,Yj,Xj+1,...Xp],wehave

P
19,400 = V3 ()l < 32 IV () = Vi V)l < LIX; =Yl

forany j € {1,...,p}, proving the claim. O

Lemma 3. Suppose that x1,...,Tp,y1,...,yp € R, maxepp |2i| > 0and z1,. .., 2z, > 0. Then

15

Under review as a conference paper at ICLR 2026

Proof. Cauchy-Schwarz inequality gives

Rearranging, we obtain the result. O

Lemma 4 (Technical Lemma 10 by Hiibler et al. (2024)). Let ¢ € (0,1), p > 0, and p > q. Further,
leta,b € N>o witha < b. Then

b—1 k I
Z (L+k)"? H (1-(r+1)7%) <(a—1)"Pexp (al (a—1)! >

1—
k=a—1 T=a—1 q

Lemma 5 (Technical Lemma 11 by Hiibler et al. (2024)). Lett > 0 and for k € N>, set Bk =
1—(k+1)"Y2 ¢tk = t(k +1)73/1 ¢ > 0. Then, for all K € N> the following inequalities hold:

(i) SIS S (1= 872 Ty (392 < ¢ (§ + V2P log(K)),

(i) SoyZy M0y 7 TThe, B < 782 (3 + log(K).

Proof. This is a direct consequence of Lemma 11 by Hiibler et al. (2024). To obtain (ii), it suffices to
take the limit as L' — 0 in statement (ii) of part (b). O

16

Under review as a conference paper at ICLR 2026

C REMARKS ON THE THEORETICAL RESULTS

C.1 NOTE ON RADII AND STEPSIZES

It is known (see, e.g., Gruntkowska et al. (2025, Theorem D.1), who establish this for S = R under
Euclidean norms; the extension to general normed vector spaces is entirely analogous) that if g is a
convex function, then the solution to the problem

arg min g(X)
XeBk

lies on the boundary of the ball B* := {X € S : | X — X*|| < t*} (unless B¥ Narg min y ¢ 5 9(X) #
(), that is, the ball intersects the set of minimizers of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (1), since the
objective (MF, Xi) () is linear in X, and hence convex. In other words, each LMO step moves the

iterate from the center of the ball X* to a new point X f“ located on the boundary of B, effectively

traversing a distance of ¢¥ at each step. For this reason, we use the terms radius, stepsize, and learning
rate interchangeably.

C.2 NOTE ON PRIOR ANALYSES

As presented, prior convergence results do not directly apply to the algorithms used in practice.
However, there is a workaround. Specifically, some of the existing convergence guarantees (Kovalev,
2025; Pethick et al., 2025b) expressed in terms of the flat vector x are transferable to the structured
parameters X = [X1,...,X;] € S by employing the max-norm (Bernstein & Newhouse, 2024a;
Large et al., 2024), defined as

1X D 2= 2 { 1Kl - 1 Xl } (11

with corresponding dual norm [|Y ||lmax« = supx,..<1(X,;Y) = 30— [|[Yill(5).. Nevertheless,
these works do not make this connection explicit, and an additional layer of analysis is required to
ensure the guarantees meaningfully extend to the structured practical setting. Even if such a translation
was attempted, the global treatment introduces serious practical limitations. For example, real-world
training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous structure of deep
networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.

17

Under review as a conference paper at ICLR 2026

Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X° = [X?,...,X]] € S
2: fork=0,1,...,K —1do
3: fori=1,2,...,pdo

4 Choose adaptive stepsize/radius t¥ > 0 for layer i
5: Update parameters for layer i via LMO over Bf := {X; € S; : | X; — XikH(i) < k)
Xik+1 — LMOB@ (Vlf(Xk)) := arg min <vif(Xk),Xi>(i) (12)
' X, eBk
6: end for
7 Update full vector: X*+1 = [XF+1 X k]
8: end for

D DETERMINISTIC CASE

We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We
first review several existing algorithms that fall within this framework (Appendix D.1), followed by a
proof of Theorem 1 (Appendix D.2). Finally, we present an additional convergence guarantee under
the layer-wise Polyak-Lojasiewicz (PL) condition (Appendix D.3).

D.1 SPECIAL CASES OF THE LMO FRAMEWORK

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameter-
ized by the choice of norms || - || ;) in the LMO. We now provide a more detailed discussion of the
most notable special cases.

Layer-wise normalized GD (Yu et al., 2018). Let || - [[;) = || - |2—2 for each parameter group
and assume that n; = 1 forall ¢ = 1, ..., p. In this case, the spectral norm reduces to the standard
Euclidean norm || - ||2, yielding the update rule

v Vif(XF)

h A i=1,...,p,
IV f(XF)]l2 P

Xkt — xk _ ¢
which corresponds to layer-wise normalized GD. With a suitable choice of t¥ (see Theorem 1), the
method can also recover the Gradient Method for (L%, L!)-smooth functions (Vankov et al., 2025).

Layer-wise signGD (Balles et al., 2020). Suppose that || - [|;) = || - [|1 o0 for each parameter
group, withn; = 1 foralli = 1,...,p. Then, || - |10 reduces to || - ||, and the update becomes

XFH = XF —thsign (Vi f(XF)), i=1,....p,
where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon (Jordan et al., 2024b). Here, the spectral norm || - ||2— 2 is used for all parameter groups,
without restrictions on n;. In this case, it can be shown that (12) is equivalent to

X = xE-dul(vh)', i=1 0, (13)

where V, f(X*) = UFsk (Vlk)T is the singular value decomposition (Bernstein & Newhouse,
2024b). This is exactly the per-layer deterministic version of the Muon optimizer. In practical LLM
training, a more general variant of (13) incorporating stochasticity and momentum is applied to the
intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion (Pethick et al., 2025b). We can also recover two variants of unScion
introduced by Pethick et al. (2025b): one for training LLMs on next-token prediction, and another for
training CNNs for image classification.

* Training LLMs. Define the norms || - || ;) as follows: fori = 1,...,p — 1, corresponding
to weight matrices of transformer blocks, set || - |5y = +/"i/m;

* |l2—2, and for the last

18

Under review as a conference paper at ICLR 2026

group X,,, representing the embedding and output layers (which coincide under the weight
sharing regime considered here), let || - [|(,) = 1, || - |1 00. In this case, (12) becomes

. T
X=X [)T =L
1

k

14
k+1 Kl k (o
X :Xp—n—mgn(vpf(X),
P

where V; f(X*) = UFXF (V*) is the singular value decomposition. This is equivalent to
deterministic layer-wise unScion optimizer without momentum. A more general variant,

incorporating stochasticity and momentum and applied to all layers, was shown by Pethick
et al. (2025b) to outperform Muon on LLM training tasks.

Training CNNs. The main difference in the CNN setting is the presence of not only 2D
weight matrices, but also 1D bias vectors and 4D convolutional kernels parameters. Biases

are 1D tensors of shape R , for which we use scaled Euclidean norms. Convolutional

parameters (conv) are 4D tensors with shapes RC?"* < Ci" xkxk where C2% and Ci™ denote
the number of output and input channels, and k is the kernel size. To compute norms, we

reshape each 4D tensor to a 2D matrix of shape R¢¥ “xCi"k* and then apply a scaled
|| - |l2—2 norm. This yields the norm choices || - [|;y = \/1/c¢“|| - ||2 for biases, || - ||;) =

k2y/Ci" ezt - |22 for conv, and || - || () = np]| - [[1— 00 for the last group X, associated
with classification head weights. Then, it can be shown that (12) is equivalent to

Vi (XF)
X;Hl Xk gk Cout W2 (for biases),
HV FXF)2”
1 yk ki k (1/k 15
X! Xk — ¢ 3 C’” U V , (for conv), (15)
s
k k
Xp+1 = Xk - ;ZSlgn(2f(X))) (for head)

T. . . .
where V; f(X*) = UFSF (V¥) ' is the singular value decomposition. This corresponds to
the deterministic layer-wise unScion optimizer without momentum.

D.2 PROOF OF THEOREM 1

We now state and prove a generalization of Theorem 1.

Theorem 3. Let Assumption I hold and fix € > 0. Let X°, ...,
IV FXONre gy

Gluon (Algorithm 2) run with stepsizes tf =

1. In order to reach the precision

LOTLIV;

FOXE) oy

p
n ,12 Hvif(Xk)H(i)* <e
i—1

it suffices to run the algorithm for

max

2A0
|

62
iterations,

2. In order to reach the precision

.....

LY 2A°L)
]

€

XK1 be the iterates of deterministic

(16)

a7

Under review as a conference paper at ICLR 2026

it suffices to run the algorithm for
p L(ij
2A° (i1 (Lg)2> 2A0°

sf(ixr 1) 5(1 X L)
E\p =111 p ~j=1 L]

K= (18)

iterations,

where A := f(X°) —infxes f(X) and L}, := max;—1,_, L;.

Remark 4. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component
norms in (17), the rates are not exactly equivalent. Nevertheless, both use weights that sum to p,
ensuring a fair comparison. Obviously, (1/p >-7_, 1/L})~" < L., so the second term in (18) is
always no worse than its counterpart in (16). The comparison of the first terms, however, depends
on how the sequences { LY} and { L} relate: if larger values of L?s tend to be attached to smaller
values of L}, then the first term in (16) improves over that in (18), while for a positive correlation the
opposite is true. Indeed, in the extreme case when LY > ... > L and L{ < ... < L, (or the reverse

ordering), Chebyshev’s sum inequality implies that

p LQ P LQ P p
San (EH)0Ed) (En)(LH) o
i=1 v > =1 " =1 " > =1 =1 " _ ZLO

Conversely, if both sequences {L{} and {L}} are sorted in the same order (either increasing or
decreasing), the inequality reverses, and the first term of (18) may be tighter. That said, empirical
evidence we provide in Section 5 indicates that in practice LY ~ 0 across all layers, in which case the
first terms in (16) and (18) effectively vanish. Then, (18) is clearly superior, replacing the worst-case
constant L. by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = X* and Y = X*+!

, . — L7 + L[| Vif(X*)
f(Xk-‘rl) < f(Xk) + <Vf(Xk),Xk+1 _Xk> +Z 5

1=1
LY+ LV f (X5)]])«
2

H)% .
W)k — X B2,
p

=X+

i=1

(Vif (XF), X = XF) o+

X5~ Xf“(é)] :

The update rule (12) and the definition of the dual norm || - [| ;). give

IXE = XEF2) < (8)

and
(Vif (X*), X = XF) = (Vi f(X5), LMOs (Vi f (X)) — XF)
’ : : ()
= —tF max (V,f(X*),X;),
'|\X1-u<7~,>s1< XD, X
= —tF IV f (X iy
Consequently,
% LY + LYV f (Xl e 2
FOXR) < FXR) + 3 | =tV (Xl + S ()
=1

Now, choosing

o IV
P IO LV (X

20

Under review as a conference paper at ICLR 2026

which minimizes the right-hand side of the last inequality, yields the descent inequality

-’ IV f (XE)IIE).

FOXTY) < F(XF) - : (19)
; 2 (LY + LIV f(XF) [l oy)
Summing the terms, we obtain
g IV f(XP)I1? =
(i)* k k1
< JXF) = f(XFT)
2 X I v < 2) o
= f(X") - f(XT)
< 0y _ _. AO
< f(X7) = jnf f(X) =4
Now, the analysis can proceed in two ways:
1. Upper-bounding L} by L} :=max;—; __, L} in (20), we obtain
p V'f XEYy)2.
ZZ - ||L1 ()‘3}1 a0 o
k=0 i= 1 + max‘lvif()”(Z)*)
Now, applying Lemma 3 with z; = 1, y; = [Vif(X")|s. and 2z, =

(LO + LY. ||Vif(Xk)H(i)*) gives

P P k 2
Vil (X | = (izt IVif (X)||(‘)*)
d’(;” it ””) 2T L0+ Lo 57 IV F X)
: IV XM,
D Ew Ea LTS G

i=1

where ¢(t) := W‘lﬂﬂ Combining the last inequality with (21) and using the

max

fact that ¢ is increasing, we obtain

K—1 D
K¢(min_ ZHVf M)) < ¢<Z ||vif<X’“)||<z->*> <A% (22

k=0 i=1

and hence

AO
an Mow <07 (5).

where ¢! is the inverse function (which exists since ¢ is increasing). Therefore, to reach the
precision ming—o,.. x—1 Y oy HVif(Xk) H(i)* < ¢, it is sufficient to choose the number
of iterations to be

. [AO —‘ B "22 L LYA° QL%%XAO—‘
o ele) | €2 € '

2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with z; = 1/},
yi = ||Vif (X®)]| ;). and 2 = 2(L + L | Vi f(X¥)]] ;),) to obtain

= Vif(XR)2
INEEED) L e It
k=0 i=1 2 L + Lz ||Vlf(X)H(Z)*)

K—

,_.

(S 2 95 09)],)
=2 (0 (L9+Lll IV: (X9 o))

v

21

Under review as a conference paper at ICLR 2026

2
S (i’ L IV (X))
=0 2 (X0 e + X0 & IV (X))
K-1 14 1
k
- (S g
t=0 \i=1 i
where ¢(t) := pt—zbu Since the function 1 is increasing for ¢ > 0, ¢y~ exists.
25t)

It follows that

v

K-—1 P 1
2= S (S mal,

p
. 1 &
b0 1 Z Lt [Vif (X*) H(m)a

v
=
<
E

@
Il
_

and hence
p

. 1 X /A
k:()r,?.l,r}(71ZL711|‘vif(X)H(,L.)* < o el

This in turn means that to reach the precision

P 1

. L
in Y ey [V (X)), | < e
T i=1 | p £vj=1 L1

T
J

it suffices to run the algorithm for

iterations.

D.3 CONVERGENCE UNDER THE PL. CONDITION

We now establish convergence rates under the layer-wise Polyak—Lojasiewicz (PL) condition, intro-
duced in Assumption 3. This property is especially relevant for heavily over-parameterized neural
networks, as it has been shown to capture the properties of their loss landscapes (Liu et al., 2022).
Assumption 3 (Layer-wise Polyak-Fojasiewicz condition). The function f : S — R satisfies the
layer-wise Polyak-Lojasiewicz (PL) condition with a constant i > 0, i.e., forany X € S

Z IV f OO, > 20 (F(X) = £4),

where f* ;= infxes f(X) > —o0.

Assumption 3 reduces to the standard PL condition (Karimi et al., 2020) by vectorizing the parameters
and adopting the Euclidean norm || - ||2.

Theorem 5. Let Assumptions 1 and 3 hold and fix € > 0. Let X°, ..., XX~ be the iterates of
Vi f (Xl

deterministic Gluon (Algorithm 2) run with tf = TR LIV T XD e

1. Ile1 > 0, then to reach the precision ming—o ... x—1 f(Xk) — f* < e it suffices to run the

algorithm for
K f:l L?AO 4 \/iLrlnaxAO
e V€
iterations,

22

Under review as a conference paper at ICLR 2026

2. IfL} =0foralli=1,...,p, then to reach the precision f(X*) — f* <'¢, it suffices to

run the algorithm for
Lo AY
K= {max log -‘ ,
I €
= max;—1, , LY, Ll = max;—1, p, L, AY == f(X°) — f* and f* =

max

where L9

max

infxes f(X).

Proof. We consider two scenarios: (1) the general case with arbitrary LZ-1 > 0and (2) L} = 0 for all
t=1,...,p

Case 1: L} > 0. We start by following the same steps as in the proof of Theorem 1. From (22), we
have

K-1 P
> o (Z ||vz—f<X’€>|<z-)*> < A°,
k=0 =1

where ¢(t) := wa) Now, using Assumption 3, we get

max

b
(Z'vif(Xk)”(i)*) ZHV f(X L= 20 (F(XF) =).
i=1 i=1
Consequently, since ¢ is an increasing function,

o (Va1 1) < DWVT)
Y (Zfok>||<>*)<A

k=0 i=1
where k* 1= argming_ _q f(X k) — f*. Denoting the corresponding inverse function (which
exists since ¢ is increasing) by ¢!, it follows that

0
V2 F(XE) = fr <7t (ﬁ() <\ 2pe.

Therefore, to reach the precision f(X ’“*) — f* < ¢, itis sufficient to choose the number of iterations

0 p 0AO 1 0
K:’7 A —‘ :’7 i:leA _"_\/iLmaxA —‘

¢ (V2ue) e Ve

Case 2: L} = 0. Inequality (19) from the proof of Theorem 1 with L} = 0 gives

p . kY12
FXRY < F(XM) =Y o e

; 219
=1 ?
Using the fact that
LIV (XF)IE 1 o 1 .
7 (i) . k112 k
_— > — JXO) = X
S g 2 i g IV OO = g D IVIE

along with Assumption 3, we obtain

FXEY) < F(XR) = = (F(X5) = f) -

max

The remaining part of the proof follows from the simple observation

Ag I 1
1 < —_— .
Og(€) kLmax N <1L0)

max

23

Under review as a conference paper at ICLR 2026

E STOCHASTIC CASE

E.1 ADAPTIVE STEPSIZES

Before proving the main result from Section 4.3, we first present an attempt to formulate an adaptive
stepsize strategy for the stochastic setting. This requires the following assumption:

Assumption 4. The stochastic gradient estimator V f¢ : S — & is unbiased and has bounded
relative variance. That is, E[V f¢(X)] = Vf(X) for all X € S and there exists 0 < { < 1 such that

IVife(X) = Vif (X)llgye < CIVife(Xll e i=1,..5p
holds almost surely for all X € S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on
the right-hand side of the inequality. It does not follow from standard conditions and does not
fall within known frameworks for modeling stochasticity, such as the ABC inequality of Khaled &
Richtarik (2020). Instead, it introduces a novel structure with parallels to the literature on contractive
compression (Beznosikov et al., 2023; Demidovich et al., 2023).

To elaborate, recall the definition of a contractive compressor:
Definition 6 (Contractive compressor). A stochastic mapping C : S — S is called a contractive
compressor if there exists a € [0, 1) such that

E[[lc(X) - X]?] < (1 - o)l X]? (23)
forany X € S.

There is a conceptual similarity between Assumption 4 and the contractive property in (23). As-
sumption 4 can be interpreted as asserting that the true gradient V f (X)) is effectively a contraction
of the stochastic gradient V f¢(X), with contraction factor 1 — ¢. Unlike contractive compressors,
there is no explicit mapping from V f¢(X) to V f(X), and the uniform bound implies the same
contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using
an adaptive stepsize strategy similar to the one employed in the deterministic case in Theorem 3.
Theorem 7. Let Assumptions I and 4 hold and fix € > 0. Let X°, ..., XX~ be the iterates of Gluon

i : E_ E_ (1_C)“vif5k(Xk)H(i)*
(Algorithm 1) run with B* = 0 and t; = IO LIV for (XN Then,

1. In order to reach the precision

P
i X | <
pgmin Z;E 7:xX9)]|] <&
it suffices to run the algorithm for

_ 2 Zf:l L(Z)AO + 2(1 + C)LrlnaXAO
| a-¢fe (1-¢)e

iterations.

2. In order to reach the precision

P 1
k:o{?.i,l}(q ; ;Zg:Ll; HVJ(Xk)H(i)* s ¢,
it suffices to run the algorithm for
Ko 2A° 370, % - 2A%(1 + ()
-0 (i) - ()
iterations,
where AY := f(X°) —infxes f(X) and L., := max;—1__, L}.

24

Under review as a conference paper at ICLR 2026

Proof. Lemma | with X = X* and Y = X%+ gives

f(XkJrl)
L LlIIV FXF) iy
< FXR) 4 (VAR XM - Z Xk - X B2,
u L)+ L%lIVif(X’“)II(n*
= f(x") +Z (Vif(X?), X[+ = XF)) + 5 1XE — X

= f(x" +Z[(Vifer(XF), X = XF)) <Vif(Xk)*Viffk(Xk)va+l*Xik>(i>]

- L0+L1IIV f(XF)

>

and applymg the Cauchy-Schwarz inequality, we get

H(i)* k k412
X5 = X Gy

P

f(Xk+1 < f Xk Z

=1

<v ffk Xk Xk+1 Xk:>()

IV f(XF) = Vifer (X)) oI XFH = XNl

LY+ LYV f (X5)| iy«
+ 2

um—wﬂ@}

The update rule (1) and the definition of the dual norm || - [|(;). give
k k+1 k
|XE = XEF2) < (8F)
and

(Vifer(X¥), XEF - XE) = <vif£k (X*), LMOgs (Vi fer (X*)) — Xz-’“>(i)

=—tf m Vifer (XF), X5,
nxzu(><1< (X5, X}

=t} Vifer (X))

Consequently, using Assumption 4, we obtain

FXE) < f(X +Z — IV fer (XP) oy + IV (XP) = Vi fer (X))

=1
L)+ LIV (XF) e /2
2 (tz)
<P+ | = A= OtFIVifer (XF)]l o)
i=1

n LY+ (1+ C)L}!Vz‘f@ (X5l iy« (tf)zl .

Minimizing the right-hand side of the last inequality with respect to t¥ yields

k_ (1= OlIVifer (XF) | iy«
CLY (L QLIVi fer (XF) [oy«

This greedy approach for choosing ¢¥ gives the descent inequality
(1= OV fer (XM
+ (L4 OQLHIVifer (X9) [)+)

AT <1009 =3 o

i=1

25

Under review as a conference paper at ICLR 2026

Taking expectations, we have

| v < OV for (X923,]
k+1
E[f(X")] < Z]E [L4+ QLI fer (X*)iye) | ey

=1
__ =92
2(LY+(1+) L)
(1= O [IVifer (XM)IT,
(LY + (L + QO LIV fer (XF) [l (1))

L (1= QP EIVife (X9 w))?
= Z 2 (LY + (L+ QLIE [Vifer (XF) s])

Now, let us define the function ¢;(t) :=
gives

Since ¢;(t) is convex, Jensen’s inequality

-lks

By Jensen’s inequality and Assumption
E IV (X)) =B [[B[Vefe X9 X4,
<E[E[||Vife. (XM .| X*]]
= E [[Vife, (X" -
and hence, using the fact that ¢; is increasing, we get

o 0 (B[99 .))
E[f(X*)] - E[f(X**1)] > (L0 + (1 + OLIE [IVif(X*)])

i=1 2
Summing the terms gives
» _)2 A k 2 _
i ElIvrela.) (LX) — Bl X))
= = 2 (L0 + A+ OLE IV (XH)l.]) ~ =0
= E[f(X")] - E[f(X™)]
< F(X0) ~ fnf f(X) = A",

K-1

(25)

The remaining part of the proof closely follows the proof of Theorem 3. We can proceed in two ways:

1. Upper-bounding L} by L}, := max;—1__, L} in (25), we obtain

K-1

oo (e,]
;)gz(m (1+ Q) L e {Hviﬂmn(i)*})
Now, Lemma 3 with z; = 1, y; = (1 — QE[[Vif(X")||@)] and 2z =
Q(LO (1+¢)LL .. [HVf H(Z.)*Dgives

(1= QX EIV:f (X9 :])°
E[IV:/(X*))
(Z o) o (L° (14 O Lo [IV:7 (X5 5])

< A0, (26)

2
- Z = O2E [IVif (X ys]
=2 (1 < + O L [IV:f (X5 5.))
where ¢(t) := 5 T, 5:10 +C()1 O Combining the last inequality with (26) and using

the fact that ¢ is increasing, we get

K—-1 p
K¢ (k min ZE IV f (X*) iy]) ¢ (ZE[nviﬂX’mw]) < A0

""" k=0 i=1

26

Under review as a conference paper at ICLR 2026

and hence

p
AY
i E) BN 1 < 1
f=0 K —1 pot E{IVif (X5llay] < ¢ (K) ’

where ¢! denotes the inverse function (which exists since ¢ is increasing). Therefore,
to reach the precision minj—o, ...,k 1 SP L EIVif(X*)|i)+] < e it suffices to run the
algorithm for

SEREETEE

iterations.

2. Alternatlvely, we can start from inequality (25) and apply Lemma 3 with z; = 1/L},
k 04 1 k
= (1= QE[[[Vaf (xX*)]]), and 2 = 2 (L0 + (1 + OLIE [||Vaf (X)]|,]) o
obtain

(1= B[94]

=0 =1 2 (L0 + 1+ QLIE [IVif (XH) |,
(S0, A0 QR [V,
3250, (e + 1+ OHE[IViF ()]])

Lg [HVz-f(X‘“>||<i)J>»

t
where (t) := (170%2 Since the function 1 is increasing for ¢ > 0, ¢!
2(1 o)

exists. It follows that

g

)2
)

I

<

NNg
|

Y

) K-1 (» X
A 1/J<Zl LTE [HVZ-f(X >H(¢)*D

P

. 1 &
k=0,.... K —1 £~ f}E {HVJ(X)H(i)*}>’

IV
=

<
=
=

and hence

p 1) AO
ka2 " 19569] < 07 (K) |

This in turn means that to reach the precision

P L
. LT &
k:omn}(qz 1y 1 [Vif (X)H(i)* <6
i=1 | p &=j=1 L]
it suffices to run the algorithm for
A0
K=) .
¢ (= (620))
- 0
_ 200370 i n 2A°(1+ ()
a 2 1 1
(- (3,) (-0 (3T

iterations.

27

Under review as a conference paper at ICLR 2026

E.2 PROOF OF THEOREM 2

We now establish the main result of Section 4.3. The guarantees in Theorem 2 follow from the
more general result below. Here, p; > 0 for ¢ € [p] denote the norm equivalence constants, i.e.,

Theorem 8. Let Assumptions 1 and 2 hold and fix € > 0. Let X°,... XX~ be the iterates of
Gluon (Algorithm 1) run with % = 1 — (k +1)"Y2, & = t;(k + 1)~3/* for some t; > 0, and
M =V feo (X?).

1. If L} =0, then
P
B m17n . ;tlE [||sz(X)H(l)*]

A° 1 <& 87
— + = E it V2e2 042 (22
< e + /4 2 [Upltz <7+2 2e log(K)) + Ljt; (2 +14log(K)>1,

2. IfL} #0, then for t; = we have

12L1’

p
) 1
k:o?.l,r;(—lz EE IV f (X))

=1
2A 4
= K1/4 Kl/ Z

where A% := f(X) — infxes f(X).

0

144(L1)

(7 +2v2e2 1og(K)) (87 + 28 1og(K))] ,

Proof. We again start with the result in Lemma 1 with X = X* and Y = X**1, obtaining

2 xF - XFER,

=1 2
3 LY + Li|| Vi (X*)]
— k k k+1 k i i i (i) k k4112
= fX +Z va)X X>()+ 9 X5 — X5 H(i)
i=1
P
k E yk+1 k k E yk+1 k
= JX)+; (M7, X7 = X >(z) (Vif (XF) = M7, X7 _Xi>(z‘)]
LY+ LHIVif (X lye or ok
i 7 +12
+2 5 S)|XE - XE,,

i=1

Applying the Cauchy-Schwarz inequality, we have

FEH) < FEN Y

(MF,XEL = XE) 4+ IV (X5) = ME[[| XEH Xf@]

P LY 4 LV f(XF) [()
+> 5

=1

IXF = X2

Now, the update rule (1) and the definition of the dual norm || - [|(;), give
1XF = XE) < (1)
and

(F XV~ XE) = (MELMOg (MF) — XE) = 46 s (ME) = ~HIE .
’ (1 X3 sy <1

28

Under review as a conference paper at ICLR 2026

Consequently,

f()(k+1)

N COEDY

= S+

hS]

L9+ LUV (X ige 2
~tE Ml e + E IV FOCP) — My + S (1h)

—tHMF = Vi f (X)) + Vi f (XP)]| iye + 5 MF — viﬂxk)nwl

LY + LVif (X))o (492
+2 > ()

i=1

IN

X’“+Z [tV f(XF) |y + 25 ME = V3 F(XP)) o))

Z”: +L1|Vf(Xk)H(Z (tﬁ)z.

Taking expectations, we obtain

p

E[f(X"] <E[f(XF)+>°

=1

— B[V) + 25 [||MF = Vif (X))]

L L%E[IIVQJ(X’“)IIW] (tf)ﬂ |

Telescoping the last inequality gives

p K-1
Yo > HEIVA (X)) <A°+Z 2ZtkE[HM’“ Vi (X)) @7)
i=1 k=0 =
K—-1 K—-1
L L}
X S X S @1,
k=0 k=0

where A? := f(X°) — infxes f(X).

Now, inspired by the analysis in Hiibler et al. (2024), we introduce the following notation: u¥ :=
= Vif(XF), vF = Vifer(XP) = Vi f(XF), oF = 1 = gF, p*0 = sza B* and SF =
Vif(X*=1) — ¥V, f(XF). Then, we can rewrite the algorithm’s momentum update rule as

M —5’“M’“*1 + (1=) Vifer (X)
=B (™ + Vi (X)) + (1= B°) (4 + Vif (X))
= Vif (X*) + ofyf + prsE 4+ ghuk—t,
This yields
pi =M; = Vif (x*)
= oy + BESE + Ry

k k
_ Z 6(T+1):k05T'7Z + ZBTkS;r + ﬂl:kug
=1 T=1

k k
_ Z B(T-‘rl):kaT,y;r + Z BT:kSZT’
7=0 T=1

29

Under review as a conference paper at ICLR 2026

where the last line follows from the fact that M) = V, f¢o(X°) and % = 0. Thus,

E|[|Mf = Vif (X9] = E el .

k k
<E[|[>p0%aryr|l |+ 308 E (17)]
T=0 (i) T=1
k k
< || 308 araT | |+ 30 57 (15T
7=0 2 T=1

k

< piy| 3 (BCHRan) E (|7 13] + > e [EPRE

7=0 T=1

where in the last line we used Jensen’s inequality and the fact that for all ¢ < {
T
E ()] =E[E[(5) ¢ | X})] =E[E [+} | x!] "]
—E|(E[Vife(X") - Vif (X) | X1]) " 5¢] = 0.

Using Assumptions | and 2, we get

E[In7 1] =E| E |In73 | X{]] o?
<o?
and
157 e < (29 + LUV Xl o) 1X7H = XTIy < (L2 + LHIVif (X o) £
Therefore,
k k
E |:HMk Vi f Xk H(1 :| < op; Z (5(7+1)2ka7>2 +L?Zﬁrkt:
7=0 =1

k
+HLEY BR[|V (X)) -

T=1
Combining the last inequality with (27) gives
p K-1
> Zt E[[|Vif (X*)lliys]
i=1 k=0
K-1 k K-1 &
<A°+ Z 20p; Z 2, [ST (B tDEar) 4200 Sk ST gk
k=0 7=0 k=0 T=1
=:1; =:15
K-1 k
+2L0 > tE Y BTMTE [Ve f (X7l iy
k=0 T=1
=T
+5 3 Y () E IVl
k=0 k=0
=1,

Let us now upper-bound each term [;,7 = 1,2, 3, 4.

30

(28)

Under review as a conference paper at ICLR 2026

I;: using Lemma 5, we obtain

I < opit; (7 + 2v/2¢2 log(K)))

I5: using Lemma 5, we obtain
Iy < 14197 (3 + log(K)) .
I5: rearranging the sums and using Lemma 4 witha = 7+1,b = K, p = 3/4 and ¢ = 1/2, we have

K-1 k

Iy=2L} Y 8y BTMTE[[Vaf (X7)|l)]

k=0 =1

K—-1
—2L12t7<2t’“67’“> IV £ (X)) iy
K-—1

_ 2L1 Z tT (Z k + 1)3/467:k> E [Hsz(XT)H(z)*]
k=1
e 1/2__1/2
< 2L,} Z tZtiT—1/4 62((T+1) /21)E [”sz(XT)H(z)*]
—_—

=1 <e2(V2Z-1) for £>1

K—1
<22V LIS 4T T VAR [V (X))

T=1

K-1
< 2e2VENLENT LR [V (X)) -

k=0
I4$
IR I Y) ST
4_2k20 i _2k:0 i _Qik:()

L?Q <1 3L12

Combining the upper-bounds for I;, i = 1,2, 3,4 with (28) gives

p K-—1
ZZM@ IV F (X))]<A0—|—Z ap”(7+2\/ze log(K))+14L9t§(3+1og(1())
1=1 k=0 i=1
K—-1
+ 222D LE N LR [[Vaf (X))
k=0
30 , L' L2 ,
+ 5t D () EIViF (Xl |-
k=0

Using the fact that t¥ = ¢;(1 + k)*3/4 < t;, and denoting C := 2e2(V2-1) 4 % < 5.1, we get

p K-1 p
STST RV X)) < A+ S opits (7+2\/2e2 1og(K)) 414192 (ig —Hog(K))
=1 k=0 =1
K-—1
+ CLjt; Z R [IVif (XF))iy
k=0

Now, let us consider two options: (1) L} = 0 for all i € {1,...,p} and (2) L} # 0, for all
ie{l,...,p}.

31

Under review as a conference paper at ICLR 2026

Casel: L! =0,i=1,...,p. In this case,

p K-1 4
>0 3 BB K] < 4+ 3 ot (7+ 2R 10g()) + 14z (52 +1og<f<>)],
i=1 k=0 i=1

and therefore,

_ min ZHEHVJXk M ¢iys)

K-

g E (A ||V f H(z]
k=0
K

,_.

IA
N\H

i=1

=

1

P
i 2 2t B) RV (X))

1

IN

>
Il
o

i

T

|
-M“

Il
—

1
K1/4

VRV f (X5 5)s]

x>
Il

01

A 1 P]7
e 2 02 (87
At 3 [apztz (7+2\/§10g(K)) + L9t (2 +14log(K)) .

IN

Case2: L} #0,i=1,...,p. Letuschooset; = Then

12L1

p K-1
SN HEIViF(X)H(i)}<2AO+Z 20p”(7+2@1og())+L?t?(87+2810g([())],
1=1 k=0 =1
and hence
"1
,mr;(; T BV (X .
1 K—-1 p
S % D LE[IVif (X))
k=0 i=1
1 K—-1 p
< r 2L 2t R)TEIVA (X
k=0 i=1
p -1
= KMZZ E[[|V: £ (X*)]|)]
i=1 k=0
2A0 1 op; O
< —=at-—=7 2V2e2log(K —_—t
< ot > [GL} (7+ V2¢ log()) T (87 + 28108 () |

32

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

F.1 EXPERIMENTAL DETAILS

All experiments for the NanoGP T model are conducted using PyTorch’ with Distributed Data Parallel
(DDP)? across 4 NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed
on a single NVIDIA A100 GPU (40GB). The training and evaluation pipelines are implemented
using open-source codebases (Jordan, 2024; Jordan et al., 2024a; Pethick et al., 2025a), with all
modifications clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton—Schulz iteration when an
analytical solution is unavailable (e.g., for SVD-type updates), following the approach proposed by
Jordan et al. (2024b). This method provides a computationally efficient approximation of the required
orthogonalization while preserving the convergence behavior of the overall algorithm.

F.2 FITTING LY AND L}

To minimize the Euclidean error between the true value L;[k] and its approximation L5 [k], while

penalizing underestimation, we incorporate a hinge-like penalty term. Specifically, we fit LY and L}
by minimizing the loss function

K-1 K-1
L (L0,2}) =3 (L [k] — L2Pr [k])2 +A Y max (0, Li[k] - ﬁ;“’*’“’*[k])Q. (29)
k=0 k=0

The first term of £; captures the standard Euclidean (squared) error, while the second term introduces

an additional penalty proportional to the amount of underestimation (i.e., when L;[k] > L2 [k]).
The hyperparameter A > 0 controls the strength of this penalty.

F.3 TRAINING NANOGPT ON FINEWEB.

In this section, we present additional results and experimental details for the experiment described in
the main text, which involves training a NanoGPT model on the F ineWeb dataset using the unScion
optimizer.

F.3.1 EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at
empirically validating Assumption 1. We plot the estimated trajectory smoothness

Fijk] = [Vi ferer (XFHY) = Vi fer (X)L i)
IXEF — Xl

and its approximation

L E] = LY+ LYV fersr (X)) 6s

3

as functions of the iteration index k, where LY, L} > 0 are fitted using the procedure described in
Appendix F.2.

Figures 5, 6, and 7 show results for parameter groups from the embedding layer and from the 4th
and 8th transformer blocks. Similar patterns are observed across all layers. In each case, we see a
strong agreement between L;[k] and L:""** k], suggesting that Assumption 1 holds approximately
along the optimization trajectory.

"PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
8Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/
notes/ddp.html

33

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html

Under review as a conference paper at ICLR 2026

Name: module._orig_mod.transformer.wte.weight

Name: module._orig_mod.transformer.wte.weight P .
Sz [30304.768] | MSE rel 0.0005 010 Size: [50304, 768] | MSE_rel: 0.0005
— L ey
e —— [P 1020,00,L}=1.33 | 0.09 —— L1 =0.00,1} =133
2107
0.08
0.07
101
0.06
6107
0.05
[1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k

Figure 5: Validation of layer-wise (L°, L')-smoothness for the group of parameters from the embedding layer
of NanoGPT~-124M along unScion training trajectories. The group normis || - ||,y = npl| - |10, With fitted

values Lg =~ 0, L; = 1.3. The same plot is shown twice with different y-axis limits.

Name: module._orig_mod.transformer.h.4.attn.c_q.weight Name: module._orig_mod.transformer.h.4.attn.c_k.weight Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0039 B Size: [768, 768] | MSE_rel: 0.0090 Size: [768, 768] | MSE_rel: 0.0128
6
— L I —— s —
—e— [PPP%, 020,00, L} =68.42 6 —— [PPP%. 020,00, L} =70.51 —e— [PPPO%10=0.00, L} =71.16
5

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
Name: module._orig_mod.transformer.h.4.attn.c_proj.weight Name: module._orig_mod.transformer.h.4.mip.c_fc.weight . o
Size: [768, 768] | MSE_rel: 0.0050 Size: [3072, 768] | MSE _rel: 0.0019 Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
~ 22 Size: [768, 3072] | MSE _rel: 0.0029
o — L .
’ L“’appmx o 1 n;pm o N 25.0 —
—e— [P 10 =0.00, L} = 68.17 20 —e— [P 10=0.00, L} =69.92 {905, 10 _ 0,00, L1 = 70.87

225 ! ! !

6

18 20.0

5

17.5
16

4 15.0
125

3 14
10.0

2 12

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 6: Validation of layer-wise (L°, L')-smoothness for the group of parameters from the 4th transformer
block of NanoGPT~124M along unScion training trajectories. The group norms are || - || ;y = /"¢/m.]| - |22,
with fitted values L? ~ 0, L} ~ 70.

34

Under review as a conference paper at ICLR 2026

Name: module._orig_mod.transformer.h.8.attn.c_g.weight Name: modg\;éo[r;g@mggg;alnhifsogn:lr.g.g.oasttsn.cik.we\ght Name: modLgliiéo[r;%émggét;inws‘goErn:eelr.g.g.lastgn.civ.weight
Size: [768, 768] | MSE_rel: 0.0022 = d AL 4 -_rel: 0.
45 -1 . —-— L:, —— L:.
—— L} 10 =0.00, L} = 69.60 6 —e— [P 020,00, L} =71.46

40 —e— [2PP%.10=0.00, L} = 67.07

o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
Name: module._orig_mod.transformer.h.8.attn.c_proj.weight Name: module._orig_mod.transformer.h.8.mip.c_fc.weight Name: module._orig_mod.transformer.h.8.mip.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056 Size: [3072, 768] | MSE _rel: 0.0012 Size: [768, 3072] | MSE_rel: 0.0021
. 19 - =
— —— L —— [
—e— (PP 020,00, L} = 68.96 18 —— [P0 =0.02, L} = 69.43 16 —e— [PPP% 100,00, L} = 70.11

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 7: Validation of layer-wise (L%, L')-smoothness for the group of parameters from the 8th
transformer block of NanoGPT-124M along unScion training trajectories. The group norms are

I~ [le) = v/mi/mil| - |22, with fitted values L? ~ 0, L} ~ 70.

F.3.2 GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L, L')-smoothness assumption is satisfied
under the standard Euclidean norms || - || for each parameter block, as opposed to the specialized
norms described in (14). We adopt the same training setup as in Section 5.1, plotting the estimated
trajectory smoothness L; and its approximation L*™ along the training trajectories across several
parameter groups. Unlike previous sections, here we do not penalize instances where L; > L2PP"™*
in order to find the best approximation (i.e., A = 0 in (29)). Additionally, when using the standard
Euclidean norm || - ||2 for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSE?I, denoted
MSE _rel in the figures), defined as

P . 2
1 &Rk — D

MSEF = — § (2 i W)
K ; Li[k]

where a lower value indicates a better fit.

As shown in Figures 8 and 9, both visually and in terms of MSE?I, using specialized norms for
each group of parameters provides a better approximation than the standard Euclidean norm || - ||2.

Notably, the relative mean squared error MSE?’1 is consistently an order of magnitude lower under
specialized norms.

35

Under review as a conference paper at ICLR 2026

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE _rel: 0.0023

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0048

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0065

—— 0

5 —e— [PPP%: 100,00, L} = 66.20

— L

L9PPTO%; 102 0,00, L} = 67.59

8 — 0

ﬁ:wprax: LP=0.00, L} =67.51

0 1000 2000 3000 4000 5000
iteration k

(a) MSE:®! = 0.0023

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0025

7 —— 0

L*’alwmx: LP=0.00, L} = 65.59

0 1000 2000 3000 4000 5000
iteration k

(b) MSE:®! = 0.0048

Name: module._orig_mod.transformer.h.4.mip.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0010

0 1000 2000 3000 4000 5000
iteration k

(c) MSE®! = 0.0065

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0003

0 1000 2000 3000 4000 5000
iteration k

(d) MSE:®! = 0.0025

25.0 —
—e— [P 10=0.00, L} =68.29
225
20.0
17.5
15.0
125
10.0
o 1000 2000 3000 4000 5000
iteration k

(e) MSE!®! = 0.001

01
S
0.09 —e— [PPPP% (020,00, L} =1.31
0.08
0.07
0.06
005
[1000 2000 3000 4000 5000
iteration k

(f) MSE:®! = 0.0003

Figure 8: Validation of layer-wise (L°, L')-smoothness for different groups of parameters in NanoGPT-124M
along training trajectories of unScion using the specialized norm choices defined in (14).

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE _rel: 0.0368

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0393

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0346

0.07 0.07 o.
— 0 —]
0.06 —e— [P 020,00, L} =3.43 006 —e— [2PPO% 190,00, L} =3.51 0251 1} —— [P 1020.00, L} =375
0.05 0.05
0.20
0.04 0.04
0.15
0.03 0.03
0.02 0.02 0.10
0.01 oo 0.05
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
rel rel rel
(a) MSE;®" = 0.0368 (b) MSE;* = 0.0393 (c) MSE;®" = 0.0346
. i Name: module._orig_mod.transformer.wte.weight
Name: module._orig_mod.transformer.h.4.attn.c_proj.weight Name: mcdusle"‘.m7ggr8“03do't7rzanSfﬁgger'h'g'omllgéc’proj'we‘gm Size: [50304?_7681 | MSE_rel: 0.0510 o
014 Size: [768, 768] | MSE _rel: 0.0307 06 ize: [768, 1| MSE rel: 0. 000 ~
o — — i
o —e— [PPP% 100,00, L} =3.59 0.5 —e— [PPP% 020,00, L} = 6.64 0.08 —— L[{PP% 10 =0.01, L} =0.12
0.10 0.07
0.4
0.08 0.06
0.06 03 0.05
0.04
02 0.04
0.02
0.03
0.00 0.1
0.02
0 1000 2000 3000 4000 5000 [1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
rel rel rel
(d) MSE;® = 0.0307 (e) MSE;® = 0.0133 (f) MSE;* = 0.051

Figure 9: Validation of layer-wise (L, L')-smoothness for different groups of parameters in NanoGPT-124M

along training trajectories of unScion using the standard Euclidean norm || -

F.3.3 LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L, L')-smoothness following the approach used in Section 5.1,
but employing the AdamW optimizer. We use hyperparameters specified in Pethick et al. (2025b,

Table 7). In Figure 10, we present the results for the estimated trajectory smoothness L; and its

approximation L:P"**

[l2-

across several parameter groups along the training trajectories. Notably, for

the group of parameters from the embedding layer X,, (the last plot in Figure 10), the fitted value
of Lzl, is approximately 20-30 times smaller than in other groups. Since in all plots we observe that

36

Under review as a conference paper at ICLR 2026

L) < L}||Vifer (X*)||(5)«» Theorem 1 implies that ¢} ~ 1/z¥. Thus, ¢t should be 20-30 times
larger than tf‘ fort =1,...,p — 1, which is consistent with the tuned parameters from Pethick et al.
(2025b, Table 7).

This insight provides an efficient and principled method for initializing learning rates in Scion.
Smoothness statistics collected during standard AdamW training (which is commonly used for
training LL.Ms) can serve as a strong prior, allowing practitioners to directly incorporate structure-
aware choices, such as larger stepsizes for embedding layers, into their tuning process. Importantly,
computing these statistics is computationally inexpensive, introducing minimal additional cost.

Name: module._orig_mod transformer.h.4.attn.c_q.weight Name: module._orig_mod.transformer.h.4.attn.c_k.weight Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE rel: 0.1177 Size: [768, 768] | MSE_rel: 0.1268 Size: [768, 768] | MSE_rel: 0.1265
7 — 1 — 0 —— 0
R —e— [P 102026, L} =81.42 e [P0%, 19 22,05, L1 = 86.99 20 e [3P1O%, 10552 |1 =60.30
N ¥ ¥ 3
5 8 W
15
4
6
3 10
4
2
5
1 2
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Name: module._orig_mod.transformer.h.4.mip.c_fc.weight N . f transf h4.ml ight Name: module._orig_mod.transformer.wte.weight
Size: [3072, 768] | MSE rel: 0.0140 o T aa s oo <19 Size: [50304, 768] | MSE rel: 0.0026
80 — I — 1.6 —— L
P appre 14 A e [3PPIOX, 0 1=
0 e [PP9%: 192000, L} = 96.98 L7 102 0,00, L} = 37.13 15 LPPPre%: 10 =0.21, L} = 4.69
. w 12
60 14
10
50 13
40 ¢ 12
30 6
11
20 4
1.0
10 2
0.9
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 10: Validation of layer-wise (L°, L')-smoothness for different groups of parameters in
NanoGPT-124M along AdamW training trajectories.

F.4 TRAINING CNN ON CIFAR-10

In this section, we provide additional results for the experiments described in Section 5.2, where a
CNN model is trained on the CIFAR-10 dataset using the unScion optimizer.

Full-batch (deterministic) gradients. We begin with presenting additional results in the determin-
istic setting. Figure 11 shows the estimated trajectory smoothness

£ o IV O Vi (XY .
X=Xl

and its approximation
LK) = LYV f (Xl oy

(where we set LY = 0) for a broader selection of parameter groups than shown in the main text. The
results further support the validity of Assumption 1 with LY = 0.

Stochastic gradients. Here, we report results for analogous experiments in the stochastic setting,
using noisy gradients V; f¢x. We use momentum as in Pethick et al. (2025b, Table 10), but do not
apply a linear decay schedule. In Figure 12, we plot

Falk] = Vi ferrr (XEHY) = Vi fer (X))
o X5+ = XFll)

L LK = L Vi feen (XML,

again setting LY = 0. Despite the added variance, we still observe that the stochastic trajectory
roughly adheres to Assumption 1.

37

Under review as a conference paper at ICLR 2026

Name: layers.1.conv2.weight Name: la i Name: layers.3.conv2.weight
: layers.2.convl.weight
20 Size: [64, 64, 3, 3] | MSE rel: 0.0167 Size: [256, 64, 3, 3] | MSE rel: 0.0058 Size: [256, 256, 3, 3] | MSE_rel: 0.0060
T a5
— l:, 120 —— L = l:l
60 —e— [P 10=0.00, L} =3.20 [aPProx, 0 _ 0,00, L1 =2.81 —e— [P 10 =0.00, L} =2.84
110 40 -
50
100 35
40
90
30
30
80
2 25
70
10 60 20
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch epoch
Name: layers.1.norm2.bias Name: layers.2.norm1.bias
Size: [64] | MSE_rel: 0.0360 Size: [256] | MSE_rel: 0.0206 Name: head.weight
Size: [10, 256) | MSE._rel: 0.0195
50 — L 35 i}
i i 3
Fapprox. | o N Lopror. | o . 0.012 i
—e— [P 10=0.00, L} = 4.06 —e— [PPO%10=0.00, L} = 3.89 L oprox
—e— [P 020,00, L} =0.04
40
0.010
30
0.008
20
0.006
10
0.004
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch epoch

Figure 11: Validation of layer-wise (L°, L*)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with full-batch gradients. The norms used for each group are as

follows: |- [¢iy = /777 -[|2 for biases. ||| sy = &1/ €:" /e[a2 for conv, and [|-[| sy = 1p|-[|1 o0
for the last group X, associated with classification head weights.

Name: layers.1.conv2.weight Name: layers.2.convl.weight Name: layers.3.conv2.weight

Size: [64, 64, 3, 3] | MSE_rel: 0.0148 Size: (256, 64, 3, 31 | MSE rel: 0.0061 Size: [256, 256, 3, 3] | MSE _rel: 0.0108
 — — 700
600 - E: —— 0 B L:
—— L[PPrO% 19=0.00, L} =2.96 1200 e [IP% 020,00, L} = 2.70 —— L[PPO% 10=0.00, L} =2.86
600
500
1000
400 500
800
300 400
600
200 300
400
0 1 2 3 5 6 7 8 0 1 2 3 a4 5 6 7 8 0 1 2 3 5 6 7 8
epoch epoch epoch
Name: layers.1.norm2.bias Name: layers.2.norm1.bias Name: head.weight
Size: [64] | MSE_rel: 0.0557 Size: [256] | MSE_rel: 0.0304 Size: [10, 256] | MSE_rel: 0.0496
600 018 =
L estimated _ [I7fer () = Vel —— L — i
TR 500 I 0.16 -
500 fovProx, 10 20,00, L1 = 3.01 —— [P 19=0.00, L} =3.59 —— L7 1P =0.00, L} =0.04
i — L i i 0.14
400
400 0.12
0.10
300 300
0.08
200 200 0.06
0.04
100 100
0.02
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
epoch epoch epoch

Figure 12: Validation of layer-wise (L°, L')-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with stochastic gradients. The norms used for each group are as

follows: || -||sy = v/1/cov*||-||2 for biases, || || iy = k*1/C" /ceut||-||l2—2 for conv, and || || () = 7| || 1—s00
for the last group X, associated with classification head weights.

38

Under review as a conference paper at ICLR 2026

G ADDITIONAL EMPIRICAL RESULTS

G.1

LAYER-WISE SMOOTHNESS ACROSS ALL LAYERS AND VARIED MODEL SCALES

Aggregate layer-wise trajectory smoothness across all blocks/layers. The cross-layer heterogeneity
and the empirical trend LY ~0 persist from 124M to 774M parameters.

Block 0

Block 2

— attn.c_q.weight
] — attn.c_kweight
— attn.c_v.weight
— mip.c_fc.weight
—- Word Embedding

— attn.c_attn.weight
—— attn.c_proj.weight

Smoothness Trajectories: All Blo%\%sCéYVord Embedding in Block 0)

-
| R——

R —

P

Step Step Step
Block 3 Block 4 Block 5

Step

Step

Step

Block 6 Block 7 Block 8
e——— || ;
Step Step Step
Block 9 Block 10 Block 11
| FT - - - !

S w

e

0 1000 2000 3000

step

4000 5000

0 1000 2000 3000

Step

4000 5000

Figure 13: NanoGPT-124M

39

0 1000 2000 3000

Step

4000 5000

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Smoothness Trajectories: 24 Blocks (Word Embedding in Block 0)

Block 0

Block 1

Block 2

e ————

S

Step
Block 3

Step
Block 4

Step
Block 5

P

=SONN

M

Vﬁzﬁ::xzzzzzzzzzzjzzzzz
A S —

Step
Block 6

Step
Block 7

Step
Block 8

e, —
A ——

e
e

e

s

Step
Block 9

Step
Block 10

Step
Block 11

S

R

o —

=

e

e o——

Step
Block 12

Step
Block 13

Step
Block 14

\P:%

o

%2:::::::::3:::::::::::

S

e

M

Step
Block 15

Step
Block 16

Step
Block 17

me

M

S

farm\‘

Y e

o———

Step
Block 18

Step
Block 19

Step
Block 20

I o

T S———

mwmv-—ﬂ._ﬁl—m:_

M

ﬁw

PR e

Step
Block 21

Step
Block 22

Step
Block 23

M‘

/A—A.‘

M

IMAA

M

o 1000 2000 3000 4000 5000
Step

0

1000 2000 3000 4000 5000
Step

o 1000 2000 3000 4000 5000
Step

Figure 14: GPT-2 Medium (~355M)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Block 0

‘Smoothness Trajectories: 36 Blocks (Word Embedding in Block 0)

Block 1

Block 2

Block 3

S —

——

Step Step Step Step
Block 4 Block 5 Block & Block 7

e

F‘tt?:_;—:_

Step Step Step Step
Block & Block 9 Block 10 Block 11

R::t;—:

RS —

e

Step Step Step Step
Block 12 Block 13 Block 14 Block 15
Step Step Step Step
Block 16 Block 17 Block 18 Block 19
Step Step Step ES)
Block 20 Block 21 Block 22 Block 23
Step Step Step Step
Block 24 Block 25 Block 26 Block 27
Step Step Step EZ)
Block 28 Block 29 Block 30 Block 31
Step Step Step Step
Block 32 Block 33 Block 34 Block 35
o 1000 2000 3000 4000 5000 © 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000 © 1000 2000 3000 4000 5000
step step step step

Figure 15: GPT-2 Large (~774M)

41

Under review as a conference paper at ICLR 2026

naoothness Trajectories: All Blocks - Adagpogqtimizer (Word Embedding in Block 0)

BloT Block 2
— attn.c_attn.weight
~— attn.c_proj.weight
10 — attn.c_q.weight
—— attn.c_k.weight
— attn.c_v.weight
10t — mip.c_fc.weight
- —+ Word Embedding - -
v Ao -
10° S r—— o~
Step Step Step
Block 3 Block 4 Block 5
102
o0t o o
10°
Step Step Step
Block 6 Block 7 Block 8
102
10t
4 o o et af
10°
Step Step Step
Block 9 Block 10 Block 11
10?
o100 o
10°
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Step Step Step

Figure 16: NanoGPT-124M trained with AdamW. The same cross-layer heterogeneity pattern
persists, indicating that layer-wise (LY, L})-smoothness is not specific to unScion.

42

Under review as a conference paper at ICLR 2026

G.2 BEST VS. WORST FITS AND AGGREGATE FIT QUALITY

Figure 17 illustrates best and worst per-layer fits of Assumption 1 (measured L;[k] vs. L3 *[k])
along NanoGPT-124M training. We observe tight fits for many layers (e.g., embeddings and several
attention V matrices), while a few layers show looser—yet still bounded—fits. The model error is
more than 10x smaller than for constant-L; fits on most layers, and in some cases smaller by orders
of magnitude.

dule._orig_mod.transformer.h.8.attn.c_v.weight Name: module._orig_mod.transformer..9.attn.c_v.weight
jame: module. orig mod.transformer.wte weight me: mo
Sze: (50304, 7681 (L 0L 1) MSE 147 0,000 | Const HSE rer 03602 (Best it #1) Size: (768, 7681 | (L 0.1 1) MSE el 0.0012 | Const MSE réi-0.0518 (Best Fit #2) Size: (768, 768] | (L 0.L 1) MSE rel: 0.0013] Const MSE rel0.0219 (Best Fit #3)
19 - B
.y
035 = 72000 1215 0t s DR w—— " DR ——
s Lo .07 (MRSl 20021 18 1 Constant Lo=13.24 (MSE_rel=0.0216) Constant Lo=13.25 (MSE_rel=0.0219)
030 17
7
025 16 16
15
S0z It o
14 1
015
13 B
010 1 12
0.5 1n n
3 1000 2000 3000 2000 5000] 1000 2000 3000 4000 5000] 1000 2000 3000 4000 5000
iteration k iteration k iteration k
iame: module. orig_mod.transformer.h.10.attn.c_q.weight Name: module._orig_mod.transformer.h.11.attn.c_q.weight
jame: module,_orig_mod.transformer..11.attn.c_proj.weight
Size: 1768, 7681 | (0L 17 WSE.reh 0.0156 Consi MSE.rei-b.0651 (Werst Fit #1) size; 768, 7681 1L O 1 S8 ok 0.0171 | Canet MSE el 016603 (Werst Fit #2) Size: [768, 7681 | (L_0.L_1) MSE rel: 0.0185 | Const MSE_rel: 0.159 (Worst Fit #3)
T - 7
Constant: Lo = 2.03 (MSE_re1=0,0931) . Constant: Ly = 240 (4SE.el=0.1699) . Constant: Ly = 235 (4SE,re1=0.1659)
6 6
a5
40 5 5
35 . .
- 4 4
30
25 3 3
e
20 . v 7
2
15
] 1000 2000 3000 ad00 5000 3 1000 2000 3000 4000 5600 3 1000 2000 3600 2000 5000
iteration k iteration k iteration k

Figure 17: Nlustrative best (top row) and worst (bottom row) per-layer fits of Assumption 1 (measured
L;[k] vs. L [k]) along NanoGPT—124M training.

0.020 attn.c_attn.weight attn.c_k.weight attn.c_proj.weight
’ = wte.weight: 0.0005 = = Mean: 0.0053 + 0.0013 = = Mean: 0.0098 + 0.0030
= = Mean: 0.0041 + 0.0018 = = Median: 0.0053 == Median: 0.0091
== Median: 0.0038
o
0.015
o
%]
K]
‘%' LT T e e S [B e F A S S O [S S St s S s g---To-=-- o]
s 0t] pemm——— B ettt
o ©
[]
@
0.005 L]
0.000
0.020 attn.c_q.weight attn.c_v.weight mlp.c_fc.weight
’ = = Mean: 0.0120 + 0.0031 = = Mean: 0.0025 + 0.0017 = = Mean: 0.0029 + 0.0013
== Median: 0.0102 o = = Median: 0.0019 == Median: 0.0023
o
0.015
(0]
@
[}
K]
(0 I ——— e e Y |
0.010 p &
4 R
= @
[)
o
0.005
Oy 5T]
0.000
1 2 3 4 5 6 7 8 9 10 11] 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
Transformer Block Transformer Block Transformer Block

Figure 18: Relative fit error MSE, of the layer-wise (LY, L}) model across transformer blocks for
each matrix type in NanoGPT—-124M. Dashed lines show mean and median over blocks (embedding
matrix: MSE,.; = 0.0005).

43

	Introduction
	Theory vs. practice of Muon and Scion
	Layer-wise structure
	A theory with predictive power

	Contributions
	Main theory and results
	Examples of optimizers satisfying our framework
	Convergence results
	Stochastic case

	Experiments
	Training NanoGPT on FineWeb
	Training CNN on CIFAR-10

	Conclusion and future work
	Related works
	Auxiliary lemmas
	Remarks on the theoretical results
	Note on radii and stepsizes
	Note on prior analyses

	Deterministic case
	Special cases of the LMO framework
	Proof of Theorem 1
	Convergence under the PŁ condition

	Stochastic case
	Adaptive stepsizes
	Proof of Theorem 2

	Additional experimental results and details
	Experimental details
	Fitting L0i and L1i
	Training NanoGPT on FineWeb.
	Empirical validation of ass:generalized-smoothness
	Generalized smoothness under Euclidean vs. specialized norms
	Learning rate transfer from AdamW

	Training CNN on CIFAR-10

	Additional Empirical Results
	Layer-wise smoothness across all layers and varied model scales
	Best vs. worst fits and aggregate fit quality

