
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM MUON TO GLUON: BRIDGING THEORY AND
PRACTICE OF LMO-BASED OPTIMIZERS FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent developments in deep learning optimization have brought about radically
new algorithms based on the Linear Minimization Oracle (LMO) framework, such
as Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025b). After over a
decade of Adam’s dominance, these LMO-based methods are emerging as viable
replacements, offering several practical advantages such as improved memory
efficiency, better hyperparameter transferability, and most importantly, superior
empirical performance on large-scale tasks, including LLM training. However,
a significant gap remains between their practical use and our current theoretical
understanding: prior analyses (1) overlook the layer-wise LMO application of
these optimizers in practice, and (2) rely on an unrealistic smoothness assumption,
leading to impractically small stepsizes. To address both, we propose a new LMO-
based framework called Gluon, capturing prior theoretically analyzed methods
as special cases, and introduce a new refined generalized smoothness model that
captures the layer-wise geometry of neural networks, matches the layer-wise prac-
tical implementation of Muon and Scion, and leads to state-of-the-art convergence
guarantees. Our experiments with NanoGPT and CNN confirm that our assumption
holds along the optimization trajectory, ultimately closing the gap between theory
and practice.

1 INTRODUCTION

The success of deep learning models across a wide range of challenging domains is inseparable
from the optimization algorithms used to train them. As neural networks have grown deeper and
datasets larger, optimization has quietly become one of the most consequential components of
modern machine learning (ML). Nowhere is this more evident than in the training of large language
models (LLMs), which routinely consume thousands of GPU-hours. Adam (Kingma & Ba, 2015)
(and lately AdamW (Loshchilov & Hutter, 2019))—being effective, relatively reliable, and widely
adopted—has for over a decade served as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also exposed the shortcomings of adaptive moment
estimation as a one-size-fits-all solution–namely, sensitivity to learning rate schedules, heavy tuning
requirements (Wilson et al., 2017), and poor generalization when not carefully calibrated (Zou
et al., 2021). However, a shift may now be underway. Recent optimizers, such as Muon (Jordan
et al., 2024b) and Scion (Pethick et al., 2025b), represent a significant departure from Adam-type
methods: they forgo the adaptive moment estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms (Frank & Wolfe, 1956; Pokutta, 2024). These optimizers are not only
simpler to implement and easier to tune, but also appear empirically stronger, outperforming AdamW
in LLM training (Liu et al., 2025; Pethick et al., 2025b).

Yet, despite their potential, these new methods are still in their infancy, and our understanding
of their theoretical foundations and practical utility in LLM training remains incomplete. Prior
convergence guarantees in realistic nonconvex regimes are still far from satisfactory. Indeed, as we
argue in Section 2, the (very few) existing theoretical analyses fail to capture the true algorithms
used in practice, focusing instead on simplified variants that diverge from actual implementations.
We identify two key mismatches—neglect of layer-wise structure (Section 2.1) and flawed stepsize
choices stemming from an inaccurate smoothness model (Section 2.2)—and close this gap with a
solution to both. We elaborate on these advances in the remainder of the paper.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p] ∈ S, momentum M0 = [M0

1 , . . . ,M
0
p] ∈

S, momentum decay factors βk ∈ [0, 1) for all iterations k ≥ 0
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ξk ∼ D
4: for i = 1, 2, . . . , p do
5: Compute stochastic gradient ∇ifξk(X

k) for layer i
6: Update momentum Mk

i = βkMk−1
i + (1− βk)∇ifξk(X

k) for layer i
7: Choose adaptive stepsize/radius tki > 0 for layer i
8: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
Mk

i

)
:= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i) (1)

9: end for
10: Update full parameter vector Xk+1 = [Xk+1

1 , . . . , Xk+1
p]

11: end for

Our goal is to solve the general optimization problem

min
X∈S

{f(X) := Eξ∼D [fξ(X)]} , (2)

where S is a finite-dimensional vector space and fξ : S 7→ R are potentially non-convex and
non-smooth but continuously differentiable functions. Here, fξ(X) represents the loss of model
parameterized by X associated with training data point ξ sampled from probability distribution D.
To make the problem meaningful, we assume that f inf := infX∈S f(X) > −∞. In this work we are
particularly interested in the scenario when the parameter vector X ∈ S is obtained by collecting
the matrices Xi ∈ Si := Rmi×ni of trainable parameters across all layers i = 1, . . . , p of a deep
model. For simplicity, we therefore write X = [X1, . . . , Xp]. This means that, formally, S is the
d-dimensional product space S :=

⊗p
i=1 Si ≡ S1 ⊗ · · · ⊗ Sp, where d :=

∑p
i=1mini. With each

space Si we associate the trace inner product ⟨Xi, Yi⟩(i) := tr(X⊤
i Yi) for Xi, Yi ∈ Si, and an

arbitrary norm ∥ · ∥(i), not necessarily induced by the inner product.

2 THEORY VS. PRACTICE OF MUON AND SCION

In this work, we focus on an algorithm based on iteratively calling linear minimization oracles
(LMOs) across all layers, formalized in Algorithm 1, for which we coin the name Gluon. In particular,
for each layer i, independently across all layers, Gluon iteratively updates the parameters via

Xk+1
i = LMOBk

i
(Mk

i) := argmin
Xi∈Bk

i

⟨Mk
i , Xi⟩(i), where Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki },

where tki > 0 is an adaptively chosen stepsize/radius/learning rate.1 Note that the momentum
Mk = [Mk

1 , . . . ,M
k
p] ∈ S accumulates the contributions from the stochastic gradients ∇fξk(Xk) =

[∇1fξk(X
k), . . . ,∇pfξk(X

k)] ∈ S (see Step 6 of Algorithm 1).

The Gluon framework generalizes a range of methods, including Muon and Scion, which are recovered
as special cases under specific norm choices (see Section 4.1 and Appendix D.1). Beyond their
ability to outperform AdamW on large-scale benchmarks, these optimizers offer a number of attractive
properties: improved memory efficiency, greater robustness to hyperparameter settings, and the ability
to transfer those settings across model sizes (Pethick et al., 2025b; Shah et al., 2025). Moreover,
in contrast to Adam, they were theoretically analyzed shortly after release and are guaranteed to
converge under standard assumptions of Lipschitz smoothness2 and bounded variance of stochastic
gradients (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b).

1In this context, the radii defining the norm balls in the LMOs effectively act as stepsizes–see Appendix C.1.
Accordingly, we use the terms radius, stepsize, and learning rate interchangeably throughout.

2A function f : S 7→ R is L-smooth if ∥∇f(x)−∇f(y)∥⋆ ≤ L ∥x− y∥ for all x, y ∈ S, where S is a
finite-dimensional vector space equipped with a norm ∥ · ∥ and ∥ · ∥⋆ is the dual norm associated with ∥ · ∥.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
iteration k

10 1

6 × 10 2

2 × 10 1

3 × 10 1

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

(a) Token embedding matrix from the
first/last layer.

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0039

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.42

(b) Self-attention query matrix from
the 4th transformer block.

0 1000 2000 3000 4000 5000
iteration k

10 1

100

101

102

Trajectory smoothness L

Embed. layer
B.0 mlp.c_fc
B.0 attn.c_attn

B.3 attn.c_q
B.3 attn.c_attn
B.3 mlp.c_fc

(c) Trajectory smoothness across dif-
ferent blocks (B.i) and layers.

Figure 1: Training NanoGPT on FineWeb validates our layer-wise (L0, L1)-smoothness model.

Gluon presents the method that is deployed in practice (Jordan et al., 2024a; Pethick et al., 2025a)
and has proven highly effective. That said, we argue that existing analyses (Kovalev, 2025; Li &
Hong, 2025; Pethick et al., 2025b) do not accurately reflect this implementation, diverging from it in
two key ways. As such, they fail to explain why the algorithm performs so well. Let us detail why.

2.1 LAYER-WISE STRUCTURE

First, we briefly walk through the theoretical understanding offered by previous studies. Muon is an
optimizer specifically designed for hidden layers, leaving the first and last layers to be handled by
some other optimizer, e.g., Adam(W). Its original introduction by Jordan et al. (2024b) was purely
empirical, with no attempt at theoretical analysis. The first convergence result came from Li & Hong
(2025), who analyzed the smooth nonconvex setting but focused solely on problem (2) with p = 1,
effectively limiting the scope to the single-layer case. The Scion3 optimizer (a special case of Gluon)
proposed by Pethick et al. (2025b) improves upon Muon by applying the LMO-based rule to all
layers, ultimately achieving better empirical performance. Both this work and that of Kovalev (2025)
analyze (a variant of) the general update rule

Mk = βkMk−1 + (1− βk)∇fξk(Xk),

Xk+1 = LMOBk(Mk),
(3)

where βk ∈ [0, 1) is momentum, ∇fξk(Xk) is the stochastic gradient sampled at iteration k, and
Bk := {X ∈ S : ∥X −Xk∥ ≤ tk} is a norm ball centered at Xk with stepsize tk > 0. This setup
closely resembles the structure of Gluon, but is not exactly the same. Indeed, Gluon updates the
parameters layer-wise, not jointly over the full vector X . This distinction is critical since for practical,
extremely high-dimensional models, calculating a single global LMO for the entire parameter vector
is prohibitively expensive, while breaking the problem into “smaller”, per-layer LMOs restores
computational feasibility.

Motivated by this disconnect, we formulate our analysis in the matrix product space S, explicitly
honoring the layer-wise structure. This enables us to study the actual per-layer updates (1), with
assumptions and hyperparameters adapted to each layer.

2.2 A THEORY WITH PREDICTIVE POWER

All prior works claiming to guarantee convergence of Algorithm 1 come with several serious analytical
shortcomings–and these directly translate into practical deficiencies. Concretely, all existing analyses
of Muon/Scion are built on the classical L-smoothness assumption, imposing a uniform smoothness
constant across all layers. This is problematic, as different layers have different geometries, and thus
should be treated differently.

But the issue runs much deeper. These algorithms are built for deep learning, where the objective
functions are already well known not to be smooth (Crawshaw et al., 2022; Zhang et al., 2020).
This mismatch has consequences: prior convergence analyses prescribe tiny constant stepsizes (see

3Pethick et al. (2025b) introduce two variants of the Scion optimizer: one for constrained optimization,
called simply “Scion”, and another for unconstrained problems, referred to as “unconstrained Scion”. In this
work, “Scion” refers to either variant, and “unScion” is used when referring to the unconstrained version.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1), uniform across all parameter groups, which bear little resemblance to the tuned learning
rates that yield state-of-the-art empirical performance in practice. Consequently, they completely
fail to explain why these methods perform so well empirically. In other words, the theory falls short
at the one thing it should do best: guiding practical choices, leaving practitioners reliant on costly
manual tuning.

Our result in Theorem 1 shows this mismatch is not inevitable. To better reflect the behavior of deep
models, we introduce a more expressive regularity condition: the layer-wise (L0, L1)-smoothness4–an
extension of the generalized smoothness model of Zhang et al. (2020), applied at the layer level.
Assumption 1 (Layer-wise (L0, L1)-smoothness). The function f : S 7→ R is layer-wise (L0, L1)-
smooth with constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 := (L1
1, . . . , L

1
p) ∈ Rp

+. That is, the
inequality

∥∇if(X)−∇if(Y)∥(i)⋆ ≤
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Xi − Yi∥(i) (4)

holds for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S, where ∥ · ∥(i)⋆ is
the dual norm associated with ∥ · ∥(i) (i.e., ∥Xi∥(i)⋆ := sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si).

Assumption 1 can be viewed as a generalization of the anisotropic “vector” (L0, L1)–smoothness
introduced by Liu et al. (2024) (now framed in terms of arbitrary norms), which itself is a generaliza-
tion of the (L0, L1)–smoothness model of Zhang et al. (2020). As such, our analysis of Gluon goes
beyond all existing results, which have only considered the classical L-smooth setting. Crucially,
however, this is not generalization for its own sake–we argue that this is in fact the right model for
the problem setting at hand. Why? There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns very closely with empirical observations.
In Figures 1a and 1b, we validate Assumption 1 in the context of training NanoGPT on the FineWeb
dataset. We plot estimated trajectory smoothness L̂i[k] (defined in (10)) alongside the approximation
L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆, where L0

i , L
1
i are layer-specific parameters estimated

from the training run. The figures show these quantities for parameters from the embedding layer
and one of the transformer blocks. The close correspondence between L̂i[k] and L̂approx

i [k] provides
strong evidence that Assumption 1 holds approximately along the training trajectory. In Section 5,
we further corroborate this finding, showing that our assumption is satisfied across the entire model
architecture for both the NanoGPT language modeling task and a CNN trained on CIFAR-10. In
all cases, we find that L0

i ≈ 0 for all i, again highlighting the limitations of classical smoothness.
Moreover, as shown in Figure 1c, trajectory smoothness varies substantially across blocks and
layers, underscoring the need for per-layer treatment. Complementary experiments using AdamW
as the optimizer (Figure 10) confirm that this heterogeneity is an intrinsic property of the loss
landscape. Together, these results suggest that layer-wise (L0, L1)-smoothness offers a significantly
more realistic model of the loss landscape in modern deep learning.

Secondly, Assumption 1 not only better captures the geometry of the models, but also directly
informs the design of adaptive and practically effective stepsizes. In Theorem 1, we derive learning
rates that reflect the local geometry of each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically grounded stepsizes turn out to accurately
capture the relative magnitudes of the layer-wise learning rates obtained by Pethick et al. (2025b) via
hyperparameter tuning–a striking validation of our approach, which further highlights the need for
layer-wise reasoning. This proves that theoretical stepsizes can have predictive power and effectively
guide hyperparameter tuning.

3 CONTRIBUTIONS

We present a comprehensive theoretical and empirical study of a broad class of layer-wise LMO-based
optimization algorithms. Our key contributions can be summarized as follows:

4While we state Assumption 1 in this general form, it is worth noting that the proofs do not rely on its full
strength. In all cases, we only require the assumption to hold for pairs X , Y such that ∥X − Y ∥ < c for some
constant c ≥ 0 (where ∥·∥ is any norm on S). Specifically, the assumption is only invoked with X = Xk,
Y = Xk+1, and since the stepsizes we use are bounded, the distances between consecutive iterates remain
bounded as well. For clarity and consistency across results–since the relevant constants vary by theorem–we
state the assumption in its stronger, global form, even though the local version suffices for all proofs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve
mink=0,...,K−1

∑p
i=1 E[∥∇if(X

k)∥(i)⋆] ≤ ε, where the O(·) notation hides logarithmic factors. Notation: K
= total number of iterations, (L0, L1) = the result holds under layer-wise (L0, L1)-smoothness, tki = radius/step-
size, 1− βk = momentum.

Result Stochastic? (L0, L1) Rate Stepsizes tki 1 − βk

(Kovalev, 2025, Theorem 1) ✗ ✗ O
(

1

K1/2

)
const ∝ 1

K1/2
(b) —

(Kovalev, 2025, Theorem 2) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

(Li & Hong, 2025, Theorem 2.1)(a) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

(Pethick et al., 2025b, Lemma 5.4) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) ∝ 1

k1/2

NEW: Theorem 1 ✗ ✓ O
(

1

K1/2

)
Adaptive —

NEW: Theorem 2 ✓ ✓ O
(

1

K1/4

)
∝ 1

k3/4
∝ 1

k1/2

(a) Applies only to the Muon/Scion update in (13) with p = 1.
(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

⋄ A new generalized smoothness framework for neural networks. We introduce layer-wise
(L0, L1)-smoothness (Assumption 1), a novel non-Euclidean generalized smoothness condition that
reflects the anisotropic, layer-wise structure of modern deep networks. This framework extends
standard (L0, L1)-smoothness assumption (Zhang et al., 2020) to arbitrary norms while capturing
per-layer variation, offering a realistic foundation for analyzing deep learning optimizers.

⋄ First principled analysis of layer-wise methods. Building on our new assumption, we develop the
first faithful convergence analysis for a class of LMO-based algorithms we term Gluon (Algorithms 1
and 2). We recover known algorithms, including state-of-the-art Muon-type optimizers, as special
cases (Section 4.1 and Appendix D.1), and pinpoint why earlier theoretical works fail to explain
the empirical success of these methods (Section 2). In contrast to prior analyses that oversimplify
the update rules used in practice, our framework directly aligns with real-world implementations,
bridging a critical gap between theory and application.

⋄ Sharper and more general convergence theory. We develop a convergence theory that extends
prior work in both scope and sharpness. In the deterministic case (Algorithm 2), we establish
convergence for general non-convex objectives under our Assumption 1 (Theorem 1), and under the
block-wise PŁ condition (Theorem 5). Unlike earlier analyses, our theory yields adaptive, layer-wise
stepsizes that align remarkably well with those selected via tuning in large-scale experiments (Pethick
et al., 2025b) (Section 5.1). We next analyze the practical stochastic variant with time-varying
stepsizes and momentum (Algorithm 1), proving convergence under bounded variance assumption
(Theorem 1). In both deterministic and stochastic regimes, our guarantees offer tighter convergence
rates under more general assumptions (Table 1), providing the first such results the in non-smooth
setting. Moreover, we provide the first theoretical explanation of the benefits of layer-wise learning
rates, clearly establishing the advantages of structured, anisotropic optimization in deep learning.

⋄ Empirical evidence. We validate our theoretical insights through extensive experiments (Section 5
and Appendix F) in both language modeling (NanoGPT on FineWeb) and image classification
(CNN on CIFAR-10). The results confirm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoretically prescribed stepsizes from Theorem 1.

4 MAIN THEORY AND RESULTS

To gain a better intuition into the structure of the updates, we begin with a deterministic formulation
of Gluon, formalized in Algorithm 2. At each iteration, the method independently minimizes a linear
approximation of f around each parameter group Xk

i within a ball of radius tki > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1 EXAMPLES OF OPTIMIZERS SATISFYING OUR FRAMEWORK

Deterministic Gluon describes a general class of methods, parameterized by the choice of norms
∥ · ∥(i) in the LMO. To illustrate the flexibility of this framework, we highlight several notable special
cases (see Appendix D.1 for more details). First, observe that the update rule (12) can be written as

Xk+1
i = Xk

i + tki LMO{Xi∈Si:∥Xi∥(i)≤1}
(
∇if(X

k)
)
= Xk

i + tki argmin
∥Xi∥(i)≤1

⟨∇if(X
k), Xi⟩(i). (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For any Xi ∈ Si = Rmi×ni , define ∥Xi∥α→β := sup∥z∥α=1 ∥Xiz∥β , where ∥ · ∥α and ∥ · ∥β are
some (possibly non-Euclidean) norms on Rni and Rmi , respectively. Note that (5) naturally recovers
several known updates for specific choices of the layer norms, e.g., layer-wise normalized GD (Yu
et al., 2018) for Euclidean norms ∥ · ∥(i) = ∥ · ∥2, and layer-wise signGD (Balles et al., 2020) for
max-norms ∥ · ∥(i) = ∥ · ∥∞. Two special cases are particularly relevant to our analysis:

⋄ Muon (Jordan et al., 2024b) when ∥ · ∥(i) = ∥ · ∥2→2 for all hidden layers.

⋄ unScion for LLM training (Pethick et al., 2025b) when ∥ · ∥(i) =
√

ni/mi∥ · ∥2→2 for i =
1, . . . , p− 1, corresponding to weight matrices of transformer blocks, and ∥ · ∥(p) = np∥ · ∥1→∞ for
the last group Xp, representing the embedding and output layers (the two coincide under the weight
sharing regime5 considered here). In this case, update (5) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
,

(6)

where the matrices Uk
i , V

k
i are obtained from the (reduced) SVD of ∇if(X

k) = Uk
i Σ

k
i

(
V k
i

)⊤
.

4.2 CONVERGENCE RESULTS

Having demonstrated the framework’s flexibility through concrete examples, we now state a general
convergence result for deterministic Gluon.
Theorem 1. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic

Gluon (Algorithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then, to guarantee that

min
k=0,...,K−1

p∑
i=1

[
1/L1

i

1
p

∑p
j=1

1/L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (7)

it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i/(L1

i)
2
)

ε2
(

1
p

∑p
j=1

1/L1
j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1/L1
j

)
 (8)

iterations, where ∆0 := f(X0)− f inf .

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an additional result (Theorem 3) that modifies the
first term in (8) to 2∆0 ∑p

i=1 L0
i/ϵ2, potentially leading to improvements in certain settings (depending

on the relationship between the sequences {L0
i } and {L1

i }–see Remark 4). However, this introduces a
dependence on L1

max := maxi=1,...,p L
1
i in the second term. Empirically, we find that L0

i ≈ 0 across
all layers (see Section 5), making the first term vanish in both bounds. In this case, the rate (8) is
clearly superior, replacing the worst-case constant L1

max with the more favorable harmonic mean.

When p = 1, our rates match the best-known complexity for finding a stationary point of (L0, L1)-
smooth functions, O

(
L0∆0

/ϵ2 + L1∆0
/ϵ
)
, as established by Vankov et al. (2025) for the Gradient

Method. While no prior work has analyzed deterministic Gluon under general (L0, L1)-smoothness,
there exist analyses under classical L-smoothness, treating the parameters as a single vector. The
analysis by Kovalev (2025) guarantees convergence in K =

⌈
6L∆0

/ϵ2
⌉

iterations. The same bound
appears in Li & Hong (2025) and Pethick et al. (2025b) (by setting σ2 = 0). Since for p = 1,
L-smoothness implies Assumption 1 with L1 = 0 (Lemma 2), our rates match these prior results
up to a constant factor. Thus, even in the smooth setting, our bounds are as tight as those derived
specifically for it.

5Weight sharing refers to the practice of using the same parameters (weights) for different parts of a model,
rather than allowing each part to have its own unique parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

However, the real strength of our guarantees lies in their broader applicability. Our analysis is
much more general than prior studies, as it extends beyond standard smoothness–allowing L1

i > 0
introduces additional terms that drive the accelerated convergence enabled by (L0, L1)-smoothness.
This richer model is essential for explaining the empirical speedup of methods like Muon, and much
more accurately reflects the geometry of neural network loss surfaces. Indeed, as we demonstrate in
Section 5, the assumption typically holds with L0

i ≈ 0 and L1
i > 0.

Practical radii tki . Unlike previous analyses (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b),
which prescribe impractically small constant radii proportional to ϵ, our framework allows tki to be
adaptive to the loss landscape. Therefore, tki can be larger early in training when ∥∇if(X

k)∥(i)⋆
is large and gradually shrink as the gradient norm decreases. In the special case when L0

i ≈ 0
(as observed empirically), tki ≈ 1/L1

i , which is substantially larger than the radii dictated by earlier
analyses. Crucially, as shown in Section 5.1, our adaptive stepsizes closely match those that yield state-
of-the-art empirical performance identified by Pethick et al. (2025b) through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven stepsize selection could substantially
reduce the need for costly manual tuning.

4.3 STOCHASTIC CASE

In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We
therefore turn to the practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates
with noisy gradient estimates available through a stochastic gradient oracle ∇fξ, ξ ∼ D.
Assumption 2. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
variance. That is, Eξ∼D[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists σ ≥ 0 such that
Eξ∼D

[
∥∇ifξ(X)−∇if(X)∥22

]
≤ σ2 for all X ∈ S, i = 1, . . . , p.

Note that the choice of norm in Assumption 2 is not restrictive: in finite-dimensional spaces, all
norms are equivalent, so variance bounds remain valid up to a constant factor when compared to
those based on any non-Euclidean norm. The following result establishes the convergence properties.
Theorem 2. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 1) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0). Then

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]
≲

∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

L1
i

+
L0
i

(L1
i)

2

]
, (9)

where ∆0 := f(X0)− f inf and the notation ≲ omits numerical constants and logarithmic factors.

For p = 1, our rate in (9) recovers the complexity for finding a stationary point of (L0, L1)-smooth
functions established by Hübler et al. (2024) for normalized SGD with momentum. When p ≥ 1,
compared to existing guarantees for Gluon, our Theorem 2 operates under the significantly more
general Assumption 1 and uniquely supports training with larger, non-constant stepsizes tki ∝ k−3/4.
In contrast, prior analyses prescribe constant, vanishingly small stepsizes tki ≡ ti ∝ K−3/4, tied to
the total number of iterations K (see Table 1).

5 EXPERIMENTS

Below, we highlight selected experimental results for the unScion optimizer, a special case of Gluon
(see Appendix D.1). Additional details and further experiments are provided in Appendix F.6

5.1 TRAINING NANOGPT ON FINEWEB

In the first set of experiments, we aim to verify layer-wise (L0, L1)-smoothness (Assumption 1). To
this end, we train the NanoGPT model with 124M parameters on the FineWeb dataset, leveraging
two open-source GitHub repositories (Jordan et al., 2024a; Pethick et al., 2025a). We use the unScion
optimizer, i.e., Gluon with the norm choices as in (6). We adopt the hyperparameters from Pethick
et al. (2025b, Table 7), mapping their values γ = 0.00036, ρ2 = 50, and ρ3 = 3000 into our notation
as follows: tki ≡ γρ2 = 0.018 for i = 1, . . . , p− 1 (corresponding to the transformer block layers),
and tkp ≡ γρ3 = 1.08 (token embeddings and output projections, due to weight sharing). We set
the number of warmdown iterations to 0 to keep the learning rates constant throughout training.

6Code for all experiments is available here.

7

https://github.com/artem-riabinin/Experiments-estimating-smoothness-for-NanoGPT-and-CNN

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.8.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.96

0 1000 2000 3000 4000 5000
iteration k

11

12

13

14

15

16

17

18

19

Name: module._orig_mod.transformer.h.8.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0012

Li

Lapprox
i : L0

i = 0.02, L1
i = 69.43

0 1000 2000 3000 4000 5000
iteration k

8

10

12

14

16

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.11

Figure 2: Validation of Assumption 1 for the 8th transformer block in NanoGPT-124M along
training trajectories of unScion.

0 1000 2000 3000 4000 5000
Iteration k

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Va
lid

at
io

n
Lo

ss

AdamW
unScion: 2 = 50, 3 = 10000
unScion: 2 = 50, 3 = 5000
unScion: 2 = 50, 3 = 3000 (tuned)
unScion: 2 = 50, 3 = 500
unScion: 2 = 50, 3 = 50

(a)

50 3000 10000
3

10
50

30
00

2

3.571 3.437 3.523

3.533 3.403 3.486

3.615 3.469 3.538
3.425

3.450

3.475

3.500

3.525

3.550

3.575

3.600

Va
lid

at
io

n
Lo

ss
 (l

as
t i

te
ra

te
)

(b)

Figure 3: (a) Validation curves for AdamW and unScion with varying ρ3 values; (b) Heatmap of
validation loss from the last iteration of unScion across different combinations of ρ2 and ρ3.

The model is trained for 5,000 iterations in accordance with the Chinchilla scaling laws to ensure
compute-optimal training. In Figures 2, 5, 6, we plot the estimated trajectory smoothness as a function
of the iteration index k

L̂i[k] := ∥∇ifξk+1(Xk+1)−∇ifξk(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i) (10)

for parameter groups from the embedding layer and 4th and 8th transformer blocks (with similar
trends observed across all blocks). We compare this to the approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i ≥ 0 are fitted to minimize the Euclidean error between L̂i[k] and L̂approx

i [k], with
hinge-like penalty on underestimation (see Appendix F.2). The close alignment between these curves
implies that Assumption 1 is approximately satisfied along the training trajectories.

Effect of scaling factors. We next evaluate the impact of the learning rate scaling factors ρ2 and ρ3
on the performance of the unScion optimizer. For consistency, all other hyperparameters are fixed
as described earlier. As a baseline, we include results obtained with the AdamW optimizer, using
the hyperparameter settings from Section F.3.3. Figure 3 presents (a) validation curves for both
optimizers, with varying ρ3 in unScion, and (b) the final validation loss for unScion across different
combinations of ρ2 and ρ3. The best performance is achieved with ρ2 = 50 and ρ3 = 3000, i.e.,
tki = 0.018 for i = 1, . . . , p− 1 and tkp = 1.08.This supports the use of non-uniform scaling across
layers, with larger step sizes for the embedding layer.

Additional ablation studies. In Appendix F.3.2, we present an ablation study demonstrating that
specialized norms provide a better approximation of trajectory smoothness compared to the standard
Euclidean norm. Appendix F.3.3 demonstrates that the layer-wise (L0, L1)-smoothness model also
closely approximates trajectory smoothness during AdamW training. Notably, we observe a similar
gap between transformer and embedding layers as with Scion, suggesting that smoothness statistics
from AdamW training can guide per-layer learning rate tuning in Scion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 TRAINING CNN ON CIFAR-10

In this experiment, we further validate layer-wise (L0, L1)-smoothness by training a CNN model on
the CIFAR-10 dataset, following implementations from two open-source GitHub repositories (Jor-
dan, 2024; Pethick et al., 2025a). The model is trained using the unScion optimizer (15) with full-batch
gradients ∇if , no momentum and no learning rate decay (results for the stochastic case are reported in
Appendix F.4). Other hyperparameters are as in Pethick et al. (2025b, Table 10), except that we train
for more epochs. Similar to the NanoGPT experiments discussed in Section 5.1, we plot the estimated
(non-stochastic) trajectory smoothness L̂i[k] := ∥∇if(X

k+1) −∇if(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i)

alongside its approximation L̂approx
i [k] := L0

i + L1
i ∥∇if(X

k+1)∥(i)⋆ for selected parameter groups.
In this experiment, we consider a simplified variant of Assumption 1, setting L0

i = 0, and estimate
L1
i ≥ 0 using the same procedure as in Section 5.1. Figure 4 presents the results, demonstrating that

Assumption 1 is approximately satisfied along the training trajectory. When this condition holds
with L0

i = 0, Theorem 1 guarantees convergence under the stepsize choice tki ≡ ti = 1/L1
i . In this

setting, the estimated L1
i values (shown in Figure 4) are L1

i ≈ 3 for all parameter groups except
for the classification head weights Xp, where L1

p ≈ 0.03. This roughly two-orders-of-magnitude
difference justifies the much larger radius tkp used for the head weights in the tuned configuration
reported in Pethick et al. (2025b, Table 10).

0 10 20 30 40 50 60 70 80
epoch

60

70

80

90

100

110

120

Name: layers.2.conv1.weight
Size: [256, 64, 3, 3] | MSE_rel: 0.0058

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.81

0 10 20 30 40 50 60 70 80
epoch

10

20

30

40

50

Name: layers.1.norm2.bias
Size: [64] | MSE_rel: 0.0360

Li

Lapprox
i : L0

i = 0.00, L1
i = 4.06

0 10 20 30 40 50 60 70 80
epoch

0.004

0.006

0.008

0.010

0.012

Name: head.weight
Size: [10, 256] | MSE_rel: 0.0195

Li

Lapprox
i : L0

i = 0.00, L1
i = 0.04

Figure 4: Validation of Assumption 1 for different groups of parameters in CNN along training
trajectories of unScion with full-batch gradients.

6 CONCLUSION AND FUTURE WORK

In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art
optimizers such as Muon and Scion as special cases. We develop a principled analytical framework
for layer-wise optimization based on a novel layer-wise (L0, L1)-smoothness assumption, which
captures the anisotropic structure of modern deep networks. This assumption enables sharper and
more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes that
closely match those found via finetuning. Our framework thus provides the first rigorous and
practically predictive analysis of modern layer-wise optimizers. Experiments confirm that the
assumption holds approximately throughout training, reinforcing its practical relevance. Together,
these results offer a refined foundation for structured optimization in deep learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important
directions for future research. Our analysis assumes exact LMO computations, whereas practical
implementations use approximations (Appendix F.1). Additionally, our stochastic guarantees (The-
orem 2) rely on the widely adopted bounded variance assumption, which may not hold in certain
scenarios, e.g., under subsampling (Khaled & Richtárik, 2020). Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically
in the stochastic regime (Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps–establishing
a realistic generalized smoothness model and aligning analysis with actual implementations–no single
work can exhaust the subject. The field remains open, with many fruitful directions left to pursue.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of Sign Gradient Descent,
2020. URL https://arxiv.org/abs/2002.08056. (Cited on page 6 and 18)

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a. URL https://arxiv.org/abs/2410.21265. (Cited on page 17)

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. In OPT 2024:
Optimization for Machine Learning, 2024b. URL https://arxiv.org/abs/2409.20325.
(Cited on page 14 and 18)

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In International Conference on Ma-
chine Learning, pp. 560–569. PMLR, 2018. URL https://arxiv.org/abs/1802.04434.
(Cited on page 14)

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023. (Cited on
page 24)

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signSGD. Advances in neural information processing
systems, 35:9955–9968, 2022. URL https://arxiv.org/abs/2208.11195. (Cited on
page 3 and 14)

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the zoo
of biased sgd. Advances in Neural Information Processing Systems, 36:23158–23171, 2023. (Cited
on page 24)

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800030109. (Cited on page 1 and 14)

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
and Martin Takáč. Methods for convex (L0, L1)-smooth optimization: Clipping, acceleration, and
adaptivity. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://arxiv.org/abs/2409.14989. (Cited on page 14)

Kaja Gruntkowska, Hanmin Li, Aadi Rane, and Peter Richtárik. The Ball-Proximal (=”Broxi-
mal”) Point Method: a new algorithm, convergence theory, and applications. arXiv preprint
arXiv:2502.02002, 2025. URL https://arxiv.org/abs/2502.02002. (Cited on page 17)

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024. URL https://arxiv.org/abs/2311.03252. (Cited on page 7, 14, 16, and 29)

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427–435. PMLR, 2013. (Cited on page 14)

Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
methods under refined smoothness and noise assumptions. arXiv preprint arXiv:2406.04592, 2024.
URL https://arxiv.org/abs/2406.04592. (Cited on page 14)

Keller Jordan. Cifar-10 airbench. https://github.com/KellerJordan/
cifar10-airbench, 2024. GitHub repository. (Cited on page 9 and 33)

Keller Jordan, Jeremy Bernstein, Ben Rappazzo, B. Vlado, Y. Jiacheng, F. Cesista, and
B. Koszarsky. Modded-nanoGPT: Speedrunning the nanoGPT baseline. https://github.
com/KellerJordan/modded-nanogpt, 2024a. GitHub repository. Additional contributors:
@fern-bear.bsky.social, @Grad62304977. (Cited on page 3, 7, and 33)

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/. (Cited on page 1, 3, 6, 14, 18, and 33)

10

https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2410.21265
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2208.11195
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2406.04592
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Łojasiewicz condition, 2020. URL https://arxiv.org/
abs/1608.04636. (Cited on page 22)

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020. URL https://arxiv.org/abs/2002.03329. (Cited on page 9
and 24)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/abs/1412.
6980. (Cited on page 1)

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-Euclidean
trust-region optimization, 2025. URL https://arxiv.org/abs/2503.12645. (Cited on
page 2, 3, 5, 6, 7, 14, and 17)

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://arxiv.org/abs/2405.14813. (Cited on page 17)

Jiaxiang Li and Mingyi Hong. A note on the convergence of Muon and further, 2025. URL
https://arxiv.org/abs/2502.02900. (Cited on page 2, 3, 5, 6, 7, and 14)

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59, 01
2022. doi: 10.1016/j.acha.2021.12.009. URL https://arxiv.org/abs/2003.00307.
(Cited on page 22)

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025. URL https://arxiv.org/abs/2502.16982. (Cited on page 1)

Yuxing Liu, Rui Pan, and Tong Zhang. AdaGrad under anisotropic smoothness, 2024. URL
https://arxiv.org/abs/2406.15244. (Cited on page 4 and 14)

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://arxiv.org/abs/1711.05101.
(Cited on page 1)

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012. URL https://epubs.siam.org/doi/10.
1137/100802001. (Cited on page 14)

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Scion. https://github.com/LIONS-EPFL/scion.git, 2025a. GitHub
repository. (Cited on page 3, 7, 9, and 33)

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025b. URL https://arxiv.org/abs/2502.07529. (Cited on page 1,
2, 3, 4, 5, 6, 7, 9, 14, 17, 18, 19, 36, and 37)

Sebastian Pokutta. The Frank-Wolfe algorithm: a short introduction. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 126(1):3–35, 2024. URL https://arxiv.org/abs/2311.
05313. (Cited on page 1)

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.
URL https://arxiv.org/abs/1107.2848. (Cited on page 14)

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of Muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025. URL https://arxiv.org/abs/2505.
02222. (Cited on page 2)

11

https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2405.14813
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2406.15244
https://arxiv.org/abs/1711.05101
https://epubs.siam.org/doi/10.1137/100802001
https://epubs.siam.org/doi/10.1137/100802001
https://github.com/LIONS-EPFL/scion.git
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimiz-
ing (L0, L1)-smooth functions by gradient methods. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://arxiv.org/abs/2410.10800. (Cited
on page 6, 14, and 18)

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017. URL https://arxiv.org/abs/1705.08292. (Cited on page 1)

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ∞-geometry of loss
landscape via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024. URL https:
//arxiv.org/abs/2410.08198. (Cited on page 14)

Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
normalized gradient method: An empirical study for training deep neural network, 2018. URL
https://openreview.net/forum?id=ry831QWAb. (Cited on page 6 and 18)

Dingzhi Yu, Wei Jiang, Yuanyu Wan, and Lijun Zhang. Mirror descent under generalized smoothness.
arXiv preprint arXiv:2502.00753, 2025. (Cited on page 14)

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/abs/1905.11881. (Cited on page 3, 4,
5, and 14)

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of Adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021. URL
https://arxiv.org/abs/2108.11371. (Cited on page 1)

12

https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198
https://openreview.net/forum?id=ry831QWAb
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/2108.11371

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction 1

2 Theory vs. practice of Muon and Scion 2
2.1 Layer-wise structure . 3
2.2 A theory with predictive power . 3

3 Contributions 4

4 Main theory and results 5
4.1 Examples of optimizers satisfying our framework 5
4.2 Convergence results . 6
4.3 Stochastic case . 7

5 Experiments 7
5.1 Training NanoGPT on FineWeb . 7
5.2 Training CNN on CIFAR-10 . 9

6 Conclusion and future work 9

A Related works 14

B Auxiliary lemmas 15

C Remarks on the theoretical results 17
C.1 Note on radii and stepsizes . 17
C.2 Note on prior analyses . 17

D Deterministic case 18
D.1 Special cases of the LMO framework . 18
D.2 Proof of Theorem 1 . 19
D.3 Convergence under the PŁ condition . 22

E Stochastic case 24
E.1 Adaptive stepsizes . 24
E.2 Proof of Theorem 2 . 28

F Additional experimental results and details 33
F.1 Experimental details . 33
F.2 Fitting L0

i and L1
i . 33

F.3 Training NanoGPT on FineWeb. 33
F.3.1 Empirical validation of Assumption 1 . 33
F.3.2 Generalized smoothness under Euclidean vs. specialized norms 35
F.3.3 Learning rate transfer from AdamW . 36

F.4 Training CNN on CIFAR-10 . 37

G Additional Empirical Results 39
G.1 Layer-wise smoothness across all layers and varied model scales 39
G.2 Best vs. worst fits and aggregate fit quality . 43

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz
continuous with a global constant L, often fails to accurately capture the complex geometry of
loss landscapes in deep learning (Crawshaw et al., 2022; Zhang et al., 2020). To address this,
Zhang et al. (2020) introduced the (L0, L1)-smoothness condition, empirically observing in language
model experiments that a bound of the form ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ better described the
Hessian norm behavior. Subsequent works have analyzed standard optimization algorithms under
this generalized smoothness framework. For instance, Gorbunov et al. (2025) and Vankov et al.
(2025) provided convergence analyses for the Gradient Method. Hübler et al. (2024) analyzed
Normalized SGD with momentum in a parameter-agnostic setting under (L0, L1)-smoothness. Yu
et al. (2025) proposed non-Euclidean generalized smoothness and established convergence rates
for mirror-descent-type methods. Our work extends this line by incorporating (L0, L1)-smoothness
into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models,
researchers have explored anisotropic smoothness conditions, where smoothness constants can vary
across different dimensions or parameter blocks. Early work in this direction includes coordinate-wise
Lipschitz continuity for coordinate descent methods (Nesterov, 2012; Richtárik & Takáč, 2014).
More recently, Bernstein et al. (2018) analyzed signSGD under a weaker notion of coordinate-wise
smoothness. Crawshaw et al. (2022) further developed this by analyzing Generalized signSGD
under a generalized coordinate-wise smoothness assumption, highlighting that different parameter
groups can exhibit vastly different geometries. Jiang et al. (2024) focused on Adagrad’s analysis
under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits
of adaptivity. Liu et al. (2024) proposed “Anisotropic (L0, L1)-smoothness” (a vector version of
(L0, L1)-smoothness applied coordinate-wise) and demonstrated Adagrad’s provable advantages
over SGD in this setting. Xie et al. (2024) also leveraged anisotropic smoothness concepts in their
convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise (L0, L1)-
smoothness, which combines the benefits of the generalized smoothness model with a structured,
anisotropic perspective tailored to the layer-block architecture of neural networks and compatible with
arbitrary layer-specific norms. This framework is essential for understanding LMO-based methods
like Muon and Scion.

LMO-based Optimizers. The optimizers Muon (Jordan et al., 2024b) and Scion (Pethick et al.,
2025b) represent a recent class of methods that have shown strong empirical performance in deep
learning. Muon was initially introduced as an effective empirical method, with its update rule for
hidden layers inspired by ideas from Bernstein & Newhouse (2024b). Subsequently, Pethick et al.
(2025b) (authors of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW)
framework (Frank & Wolfe, 1956; Jaggi, 2013), proposing the use of layer-specific norms within
an LMO-based update rule. These methods perform updates by solving, for each layer, a linear
minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of
these optimizers (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b) have relied on standard
L-smoothness and analyzed a simplified global update. Our work provides the first convergence
guarantees for these methods under the more realistic layer-wise (L0, L1)-smoothness, directly
addressing their practical layer-wise nature and leveraging the geometric insights offered by LMOs
over general norms.

ACKNOWLEDGMENTS

The authors used large language models (LLMs) during the preparation of this paper to assist with
grammar, wording, and code implementation. No LLMs were used to write scientific content, or
search for citations or related work. This is in accordance with two main LLM-related policies.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B AUXILIARY LEMMAS

Lemma 1. Let f : S 7→ R satisfy Assumption 1. Then, for any X,Y ∈ S, we have

|f(Y)− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Proof. For all X,Y ∈ S we have

f(Y) = f(X) +

∫ 1

0

⟨∇f(X + τ(Y −X)), Y −X⟩ dτ

= f(X) + ⟨∇f(X), Y −X⟩+
∫ 1

0

⟨∇f(X + τ(Y −X))−∇f(X), Y −X⟩ dτ.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

|f(Y)− f(X)− ⟨∇f(X), Y −X⟩|

≤

∣∣∣∣∣
∫ 1

0

p∑
i=1

⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i) dτ

∣∣∣∣∣
≤

∫ 1

0

p∑
i=1

∣∣∣⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i)
∣∣∣ dτ

≤
∫ 1

0

p∑
i=1

∥∇if(X + τ(Y −X))−∇if(X)∥(i)⋆ ∥Yi −Xi∥(i)dτ

≤
∫ 1

0

p∑
i=1

τ
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Yi −Xi∥2(i)dτ

=

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

∥∇f(X)−∇f(Y)∥max ⋆ ≤ L ∥X − Y ∥max ,

where X = [X1, . . . , Xp] and Y = [Y1, . . . , Yp] with Xi, Yi ∈ Si. Then Assumption 1 holds with
L0
i ≤ L and L1

i = 0 for all i = 1, . . . , p.

Proof. L-smoothness and the definition of the norm give
p∑

i=1

∥∇if(X)−∇if(Y)∥(i)⋆ ≤ Lmax
{
∥X1 − Y1∥(1) , . . . , ∥Xp − Yp∥(p)

}
for all X,Y ∈ S. In particular, choosing X = [X1, . . . , Xp] and Y =
[X1, . . . , Xj−1, Yj , Xj+1, . . . Xp], we have

∥∇jf(X)−∇jf(Y)∥(j)⋆ ≤
p∑

i=1

∥∇if(X)−∇if(Y)∥(i)⋆ ≤ L ∥Xj − Yj∥(j)

for any j ∈ {1, . . . , p}, proving the claim.

Lemma 3. Suppose that x1, . . . , xp, y1, . . . , yp ∈ R, maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Cauchy-Schwarz inequality gives(
p∑

i=1

xiyi

)2

=

(
p∑

i=1

yi√
zi

√
zixi

)2

≤

(
p∑

i=1

y2i
zi

)(
p∑

i=1

zix
2
i

)
.

Rearranging, we obtain the result.

Lemma 4 (Technical Lemma 10 by Hübler et al. (2024)). Let q ∈ (0, 1), p ≥ 0, and p ≥ q. Further,
let a, b ∈ N≥2 with a ≤ b. Then

b−1∑
k=a−1

(1 + k)−p
k∏

τ=a−1

(
1− (τ + 1)−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
.

Lemma 5 (Technical Lemma 11 by Hübler et al. (2024)). Let t > 0 and for k ∈ N≥0, set βk =

1− (k + 1)−1/2, tk = t(k + 1)−3/4, t > 0. Then, for all K ∈ N≥1 the following inequalities hold:

(i)
∑K−1

k=0 tk
√∑k

τ=0(1− βτ)2
∏k

κ=τ+1(β
κ)2 ≤ t

(
7
2 +

√
2e2 log(K)

)
,

(ii)
∑K−1

k=0 tk
∑k

τ=1 t
τ
∏k

κ=τ β
κ ≤ 7t2 (3 + log(K)).

Proof. This is a direct consequence of Lemma 11 by Hübler et al. (2024). To obtain (ii), it suffices to
take the limit as L1 → 0 in statement (ii) of part (b).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C REMARKS ON THE THEORETICAL RESULTS

C.1 NOTE ON RADII AND STEPSIZES

It is known (see, e.g., Gruntkowska et al. (2025, Theorem D.1), who establish this for S = Rd under
Euclidean norms; the extension to general normed vector spaces is entirely analogous) that if g is a
convex function, then the solution to the problem

argmin
X∈Bk

g(X)

lies on the boundary of the ball Bk := {X ∈ S : ∥X−Xk∥ ≤ tk} (unless Bk∩argminX∈S g(X) ̸=
∅, that is, the ball intersects the set of minimizers of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (1), since the
objective ⟨Mk

i , Xi⟩(i) is linear in Xi, and hence convex. In other words, each LMO step moves the
iterate from the center of the ball Xk

i to a new point Xk+1
i located on the boundary of Bk

i , effectively
traversing a distance of tki at each step. For this reason, we use the terms radius, stepsize, and learning
rate interchangeably.

C.2 NOTE ON PRIOR ANALYSES

As presented, prior convergence results do not directly apply to the algorithms used in practice.
However, there is a workaround. Specifically, some of the existing convergence guarantees (Kovalev,
2025; Pethick et al., 2025b) expressed in terms of the flat vector x are transferable to the structured
parameters X = [X1, . . . , Xl] ∈ S by employing the max-norm (Bernstein & Newhouse, 2024a;
Large et al., 2024), defined as

∥X∥max := max
{
∥X1∥(1) , . . . , ∥Xp∥(p)

}
, (11)

with corresponding dual norm ∥Y ∥max ⋆ = sup∥X∥max≤1⟨X,Y ⟩ =
∑p

i=1 ∥Yi∥(i)⋆. Nevertheless,
these works do not make this connection explicit, and an additional layer of analysis is required to
ensure the guarantees meaningfully extend to the structured practical setting. Even if such a translation
was attempted, the global treatment introduces serious practical limitations. For example, real-world
training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous structure of deep
networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p] ∈ S

2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Choose adaptive stepsize/radius tki > 0 for layer i
5: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
∇if(X

k)
)
:= argmin

Xi∈Bk
i

⟨∇if(X
k), Xi⟩(i) (12)

6: end for
7: Update full vector: Xk+1 = [Xk+1

1 , . . . , Xk+1
p]

8: end for

D DETERMINISTIC CASE

We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We
first review several existing algorithms that fall within this framework (Appendix D.1), followed by a
proof of Theorem 1 (Appendix D.2). Finally, we present an additional convergence guarantee under
the layer-wise Polyak-Łojasiewicz (PŁ) condition (Appendix D.3).

D.1 SPECIAL CASES OF THE LMO FRAMEWORK

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameter-
ized by the choice of norms ∥ · ∥(i) in the LMO. We now provide a more detailed discussion of the
most notable special cases.

Layer-wise normalized GD (Yu et al., 2018). Let ∥ · ∥(i) = ∥ · ∥2→2 for each parameter group
and assume that ni = 1 for all i = 1, . . . , p. In this case, the spectral norm reduces to the standard
Euclidean norm ∥ · ∥2, yielding the update rule

Xk+1
i = Xk

i − tki
∇if(X

k)

∥∇if(Xk)∥2
, i = 1, . . . , p,

which corresponds to layer-wise normalized GD. With a suitable choice of tki (see Theorem 1), the
method can also recover the Gradient Method for (L0, L1)-smooth functions (Vankov et al., 2025).

Layer-wise signGD (Balles et al., 2020). Suppose that ∥ · ∥(i) = ∥ · ∥1→∞ for each parameter
group, with ni = 1 for all i = 1, . . . , p. Then, ∥ · ∥1→∞ reduces to ∥ · ∥∞, and the update becomes

Xk+1
i = Xk

i − tki sign
(
∇if(X

k)
)
, i = 1, . . . , p,

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon (Jordan et al., 2024b). Here, the spectral norm ∥ · ∥2→2 is used for all parameter groups,
without restrictions on ni. In this case, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki U
k
i

(
V k
i

)⊤
, i = 1, . . . , p, (13)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition (Bernstein & Newhouse,

2024b). This is exactly the per-layer deterministic version of the Muon optimizer. In practical LLM
training, a more general variant of (13) incorporating stochasticity and momentum is applied to the
intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion (Pethick et al., 2025b). We can also recover two variants of unScion
introduced by Pethick et al. (2025b): one for training LLMs on next-token prediction, and another for
training CNNs for image classification.

• Training LLMs. Define the norms ∥ · ∥(i) as follows: for i = 1, . . . , p− 1, corresponding
to weight matrices of transformer blocks, set ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, and for the last

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

group Xp, representing the embedding and output layers (which coincide under the weight
sharing regime considered here), let ∥ · ∥(p) = np∥ · ∥1→∞. In this case, (12) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
,

(14)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This is equivalent to

deterministic layer-wise unScion optimizer without momentum. A more general variant,
incorporating stochasticity and momentum and applied to all layers, was shown by Pethick
et al. (2025b) to outperform Muon on LLM training tasks.

• Training CNNs. The main difference in the CNN setting is the presence of not only 2D
weight matrices, but also 1D bias vectors and 4D convolutional kernels parameters. Biases
are 1D tensors of shape RCout

i , for which we use scaled Euclidean norms. Convolutional
parameters (conv) are 4D tensors with shapes RCout

i ×Cin
i ×k×k, where Cout

i and Cin
i denote

the number of output and input channels, and k is the kernel size. To compute norms, we
reshape each 4D tensor to a 2D matrix of shape RCout

i ×Cin
i k2

, and then apply a scaled
∥ · ∥2→2 norm. This yields the norm choices ∥ · ∥(i) =

√
1/Cout

i ∥ · ∥2 for biases, ∥ · ∥(i) =
k2
√

Cin
i /Cout

i ∥ · ∥2→2 for conv, and ∥ · ∥(p) = np∥ · ∥1→∞ for the last group Xp, associated
with classification head weights. Then, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki

√
Cout

i

∇if(X
k)

∥∇if(Xk)∥2
, (for biases),

Xk+1
i = Xk

i − tki
1

k2

√
Cout

i

Cin
i

Uk
i

(
V k
i

)⊤
, (for conv),

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
, (for head)

(15)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This corresponds to

the deterministic layer-wise unScion optimizer without momentum.

D.2 PROOF OF THEOREM 1

We now state and prove a generalization of Theorem 1.
Theorem 3. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic

Gluon (Algorithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2∆0

∑p
i=1 L

0
i

ϵ2
+

2∆0L1
max

ϵ

⌉
(16)

iterations;

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε, (17)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i

(L1
i)

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)
 (18)

iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Remark 4. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component
norms in (17), the rates are not exactly equivalent. Nevertheless, both use weights that sum to p,
ensuring a fair comparison. Obviously, (1/p

∑p
j=1

1/L1
j)

−1 ≤ L1
max, so the second term in (18) is

always no worse than its counterpart in (16). The comparison of the first terms, however, depends
on how the sequences {L0

i } and {L1
i } relate: if larger values of L0

i s tend to be attached to smaller
values of L1

i , then the first term in (16) improves over that in (18), while for a positive correlation the
opposite is true. Indeed, in the extreme case when L0

1 ≥ . . . ≥ L0
p and L1

1 ≤ . . . ≤ L1
p (or the reverse

ordering), Chebyshev’s sum inequality implies that
p∑

i=1

L0
i

(L1
i)

2(
1
p

p∑
j=1

1
L1

j

)2 ≥

(
1
p

p∑
i=1

L0
i

L1
i

)(
1
p

p∑
i=1

1
L1

i

)
1
p

(
1
p

p∑
j=1

1
L1

j

)2 ≥

(
1
p

p∑
i=1

L0
i

)(
1
p

p∑
i=1

1
L1

i

)
1
p

(
1
p

p∑
j=1

1
L1

j

) =

p∑
i=1

L0
i .

Conversely, if both sequences {L0
i } and {L1

i } are sorted in the same order (either increasing or
decreasing), the inequality reverses, and the first term of (18) may be tighter. That said, empirical
evidence we provide in Section 5 indicates that in practice L0

i ≈ 0 across all layers, in which case the
first terms in (16) and (18) effectively vanish. Then, (18) is clearly superior, replacing the worst-case
constant L1

max by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = Xk and Y = Xk+1

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (12) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇if(X

k),LMOBk
i

(
∇if(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇if(X

k), Xi

〉
(i)

= −tki ∥∇if(X
k)∥(i)⋆.

Consequently,

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

.

Now, choosing

tki =
∥∇if(X

k)∥(i)⋆
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

which minimizes the right-hand side of the last inequality, yields the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) . (19)

Summing the terms, we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) ≤

K−1∑
k=0

(
f(Xk)− f(Xk+1)

)
= f(X0)− f(XK)

≤ f(X0)− inf
X∈S

f(X) =: ∆0.

(20)

Now, the analysis can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (20), we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ≤ ∆0. (21)

Now, applying Lemma 3 with xi = 1, yi = ∥∇if(X
k)∥(i)⋆ and zi =

2
(
L0
i + L1

max

∥∥∇if(X
k)
∥∥
(i)⋆

)
gives

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
=

(∑p
i=1 ∥∇if(X

k)∥(i)⋆
)2

2
(∑p

i=1 L
0
i + L1

max

∑p
i=1 ∥∇if(Xk)∥(i)⋆

)
≤

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Combining the last inequality with (21) and using the

fact that ϕ is increasing, we obtain

Kϕ

(
min

k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆

)
≤

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0, (22)

and hence

min
k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆ ≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 is the inverse function (which exists since ϕ is increasing). Therefore, to reach the
precision mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ, it is sufficient to choose the number
of iterations to be

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2
∑p

i=1 L
0
i∆

0

ϵ2
+

2L1
max∆

0

ϵ

⌉
.

2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with xi = 1/L1
i ,

yi =
∥∥∇if(X

k)
∥∥
(i)⋆

and zi = 2(L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

) to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
)

≥
K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
1

(L1
i)

2

(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
))

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

=

K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
L0

i

(L1
i)

2 +
∑p

i=1
1
L1

i
∥∇if(Xk)∥(i)⋆

)
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

where ψ(t) := t2

2

(∑p
i=1

L0
i

(L1
i
)2

+t

) . Since the function ψ is increasing for t > 0, ψ−1 exists.

It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))
 =


2∆0

(∑p
i=1

L0
i

(L1
i)

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.

D.3 CONVERGENCE UNDER THE PŁ CONDITION

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PŁ) condition, intro-
duced in Assumption 3. This property is especially relevant for heavily over-parameterized neural
networks, as it has been shown to capture the properties of their loss landscapes (Liu et al., 2022).
Assumption 3 (Layer-wise Polyak-Łojasiewicz condition). The function f : S 7→ R satisfies the
layer-wise Polyak-Łojasiewicz (PŁ) condition with a constant µ > 0, i.e., for any X ∈ S

p∑
i=1

∥∇if(X)∥2(i)⋆ ≥ 2µ (f(X)− f⋆) ,

where f⋆ := infX∈S f(X) > −∞.

Assumption 3 reduces to the standard PŁ condition (Karimi et al., 2020) by vectorizing the parameters
and adopting the Euclidean norm ∥ · ∥2.
Theorem 5. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of

deterministic Gluon (Algorithm 2) run with tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
.

1. If L1
i ≥ 0, then to reach the precision mink=0,...,K−1 f(X

k)− f⋆ ≤ ϵ, it suffices to run the
algorithm for

K =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
iterations,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2. If L1
i = 0 for all i = 1, . . . , p, then to reach the precision f(XK) − f⋆ ≤ ϵ, it suffices to

run the algorithm for

K =

⌈
L0
max

µ
log

∆0

ϵ

⌉
,

where L0
max := maxi=1,...,p L

0
i , L1

max := maxi=1,...,p L
1
i , ∆0 := f(X0) − f⋆ and f⋆ :=

infX∈S f(X).

Proof. We consider two scenarios: (1) the general case with arbitrary L1
i ≥ 0 and (2) L1

i = 0 for all
i = 1, . . . , p.

Case 1: L1
i ≥ 0. We start by following the same steps as in the proof of Theorem 1. From (22), we

have

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Now, using Assumption 3, we get(

p∑
i=1

∥∇if(X
k)∥(i)⋆

)2

≥
p∑

i=1

∥∇if(X
k)∥2(i)⋆ ≥ 2µ

(
f(Xk)− f⋆

)
.

Consequently, since ϕ is an increasing function,

Kϕ

(√
2µ
√
f(Xk⋆)− f⋆

)
≤

K−1∑
k=0

ϕ

(√
2µ
√
f(Xk)− f⋆

)

≤
K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where k⋆ := argmink=0,...,K−1 f(X
k)− f⋆. Denoting the corresponding inverse function (which

exists since ϕ is increasing) by ϕ−1, it follows that√
2µ
√
f(Xk⋆)− f⋆ ≤ ϕ−1

(
∆0

K

)
≤
√
2µϵ.

Therefore, to reach the precision f(Xk⋆

)− f⋆ ≤ ϵ, it is sufficient to choose the number of iterations

K =

⌈
∆0

ϕ
(√

2µϵ
)⌉ =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
.

Case 2: L1
i = 0. Inequality (19) from the proof of Theorem 1 with L1

i = 0 gives

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

.

Using the fact that
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

≥ min
j=1,...,p

1

2L0
j

p∑
i=1

∥∇if(X
k)∥2(i)⋆ =

1

2maxj=1,...,p L0
j

p∑
i=1

∥∇f(Xk)∥2(i)⋆

along with Assumption 3, we obtain

f(Xk+1) ≤ f(Xk)− µ

L0
max

(
f(Xk)− f⋆

)
.

The remaining part of the proof follows from the simple observation

log

(
∆0

ϵ

)
≤ k

µ

L0
max

≤ k log

(
1

1− µ
L0

max

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E STOCHASTIC CASE

E.1 ADAPTIVE STEPSIZES

Before proving the main result from Section 4.3, we first present an attempt to formulate an adaptive
stepsize strategy for the stochastic setting. This requires the following assumption:
Assumption 4. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
relative variance. That is, E[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists 0 ≤ ζ < 1 such that

∥∇ifξ(X)−∇if(X)∥(i)⋆ ≤ ζ∥∇ifξ(X)∥(i)⋆, i = 1, . . . , p

holds almost surely for all X ∈ S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on
the right-hand side of the inequality. It does not follow from standard conditions and does not
fall within known frameworks for modeling stochasticity, such as the ABC inequality of Khaled &
Richtárik (2020). Instead, it introduces a novel structure with parallels to the literature on contractive
compression (Beznosikov et al., 2023; Demidovich et al., 2023).

To elaborate, recall the definition of a contractive compressor:
Definition 6 (Contractive compressor). A stochastic mapping C : S → S is called a contractive
compressor if there exists α ∈ [0, 1) such that

E
[
∥C(X)−X∥2

]
≤ (1− α)∥X∥2 (23)

for any X ∈ S.

There is a conceptual similarity between Assumption 4 and the contractive property in (23). As-
sumption 4 can be interpreted as asserting that the true gradient ∇f(X) is effectively a contraction
of the stochastic gradient ∇fξ(X), with contraction factor 1− ζ. Unlike contractive compressors,
there is no explicit mapping from ∇fξ(X) to ∇f(X), and the uniform bound implies the same
contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using
an adaptive stepsize strategy similar to the one employed in the deterministic case in Theorem 3.
Theorem 7. Let Assumptions 1 and 4 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon

(Algorithm 1) run with βk = 0 and tki =
(1−ζ)∥∇ifξk (X

k)∥(i)⋆

L0
i+(1+ζ)L1

i ∥∇ifξk (X
k)∥(i)⋆

. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2
∑p

i=1 L
0
i∆

0

(1− ζ)
2
ϵ2

+
2(1 + ζ)L1

max∆
0

(1− ζ)
2
ϵ

⌉
iterations.

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =


2∆0

∑p
i=1

L0
i

(L1
i)

2

ε2(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

ε(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)


iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. Lemma 1 with X = Xk and Y = Xk+1 gives

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−∇ifξk(X
k), Xk+1

i −Xk
i

〉
(i)

]
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i),

and applying the Cauchy-Schwarz inequality, we get

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (1) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇ifξk(X

k),LMOBk
i

(
∇ifξk(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇ifξk(X

k), Xi

〉
(i)

= −tki ∥∇ifξk(X
k)∥(i)⋆.

Consequently, using Assumption 4, we obtain

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
− tki ∥∇ifξk(X

k)∥(i)⋆ + tki ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

≤ f(Xk) +

p∑
i=1

[
− (1− ζ)tki ∥∇ifξk(X

k)∥(i)⋆

+
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

2

(
tki
)2]

.

Minimizing the right-hand side of the last inequality with respect to tki yields

tki =
(1− ζ)∥∇ifξk(X

k)∥(i)⋆
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
.

This greedy approach for choosing tki gives the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

(1− ζ)2∥∇ifξk(X
k)∥2(i)⋆

2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
) .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Taking expectations, we have

E[f(Xk+1)] ≤ E[f(Xk)]−
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)] . (24)

Now, let us define the function ϕi(t) :=
(1−ζ)2t2

2(L0
i+(1+ζ)L1

i t)
. Since ϕi(t) is convex, Jensen’s inequality

gives

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)]

≥
p∑

i=1

(1− ζ)2
(
E
[
∥∇ifξk(X

k)∥(i)⋆
])2

2
(
L0
i + (1 + ζ)L1

iE
[
∥∇ifξk(Xk)∥(i)⋆

]) .
By Jensen’s inequality and Assumption 4

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
= E

[∥∥E [∇ifξk(X
k)
∣∣Xk

]∥∥
(i)⋆

]
≤ E

[
E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

∣∣∣Xk
]]

= E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

]
,

and hence, using the fact that ϕi is increasing, we get

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) .
Summing the terms gives

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) ≤
K−1∑
k=0

(
E[f(Xk)]− E[f(Xk+1)]

)
= E[f(X0)]− E[f(XK)]

≤ f(X0)− inf
X∈S

f(X) =: ∆0,

(25)

The remaining part of the proof closely follows the proof of Theorem 3. We can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (25), we obtain

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

]) ≤ ∆0. (26)

Now, Lemma 3 with xi = 1, yi = (1 − ζ)E
[
∥∇if(X

k)∥(i)⋆
]

and zi =

2
(
L0
i + (1 + ζ)L1

maxE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
gives

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

=

(
(1− ζ)

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
])2

2
∑p

i=1

(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
≤

p∑
i=1

(1− ζ)2E
[
∥∇if(X

k)∥(i)⋆
]2

2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
where ϕ(t) := (1−ζ)2t2

2(
∑p

i=1 L0
i+(1+ζ)L1

maxt)
. Combining the last inequality with (26) and using

the fact that ϕ is increasing, we get

Kϕ

(
min

k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤
K−1∑
k=0

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤ ∆0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

and hence

min
k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
]
≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 denotes the inverse function (which exists since ϕ is increasing). Therefore,
to reach the precision mink=0,...,K−1

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
]
≤ ϵ, it suffices to run the

algorithm for

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2∆0

∑p
i=1 L

0
i

(1− ζ)2ϵ2
+

2∆0(1 + ζ)L1
max

(1− ζ)2ϵ

⌉
iterations.

2. Alternatively, we can start from inequality (25) and apply Lemma 3 with xi = 1/L1
i ,

yi = (1 − ζ)E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
and zi = 2

(
L0
i + (1 + ζ)L1

iE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
to

obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

(1− ζ)2E
[∥∥∇if(X

k)
∥∥
(i)⋆

]2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

])
≥

K−1∑
k=0

(∑p
i=1

1
L1

i
(1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

])2
2
∑p

i=1

(
L0

i

(L1
i)

2 + (1 + ζ) 1
L1

i
E
[
∥∇if(Xk)∥(i)⋆

])
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

where ψ(t) := (1−ζ)2t2

2

(∑p
i=1

L0
i

(L1
i
)2

+(1+ζ)t

) . Since the function ψ is increasing for t > 0, ψ−1

exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))


=


2∆0

∑p
i=1

L0
i

(L1
i)

2

(1− ζ)2ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

(1− ζ)2ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.2 PROOF OF THEOREM 2
We now establish the main result of Section 4.3. The guarantees in Theorem 2 follow from the
more general result below. Here, ρi > 0 for i ∈ [p] denote the norm equivalence constants, i.e.,
∥Xi∥(i)⋆ ≤ ρi ∥Xi∥2 for all Xi ∈ Si.
Theorem 8. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 1) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0).

1. If L1
i = 0, then

min
k=0,...,K−1

p∑
i=1

tiE
[
∥∇if(X

k)∥(i)⋆
]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
,

2. If L1
i ̸= 0, then for ti = 1

12L1
i

, we have

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρi
6L1

i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i)

2
(87 + 28 log(K))

]
,

where ∆0 := f(X0)− infX∈S f(X).

Proof. We again start with the result in Lemma 1 with X = Xk and Y = Xk+1, obtaining

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−Mk
i , X

k+1
i −Xk

i

〉
(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Applying the Cauchy-Schwarz inequality, we have

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−Mk

i ∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Now, the update rule (1) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and〈
Mk

i , X
k+1
i −Xk

i

〉
=
〈
Mk

i ,LMOBk
i

(
Mk

i

)
−Xk

i

〉
= −tki max

∥Xi∥(i)≤1

〈
Mk

i , Xi

〉
= −tki ∥Mk

i ∥(i)⋆.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Consequently,

f(Xk+1)

≤ f(Xk) +

p∑
i=1

[
−tki ∥Mk

i ∥(i)⋆ + tki ∥∇if(X
k)−Mk

i ∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

= f(Xk) +

p∑
i=1

[
− tki ∥Mk

i −∇if(X
k) +∇if(X

k)∥(i)⋆ + tki ∥Mk
i −∇if(X

k)∥(i)⋆

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2

≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ + 2tki ∥Mk
i −∇if(X

k)∥(i)⋆
]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2
.

Taking expectations, we obtain

E[f(Xk+1)] ≤ E[f(Xk)] +

p∑
i=1

[
− tki E[∥∇if(X

k)∥(i)⋆] + 2tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
+
L0
i + L1

iE[∥∇if(X
k)∥(i)⋆]

2

(
tki
)2]

.

Telescoping the last inequality gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2

K−1∑
k=0

tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
(27)

+

K−1∑
k=0

L0
i

2

(
tki
)2

+

K−1∑
k=0

L1
i

2
E[∥∇if(X

k)∥(i)⋆]
(
tki
)2]

,

where ∆0 := f(X0)− infX∈S f(X).

Now, inspired by the analysis in Hübler et al. (2024), we introduce the following notation: µk
i :=

Mk
i − ∇if(X

k), γki := ∇ifξk(X
k) − ∇if(X

k), αk = 1 − βk, βa:b :=
∏b

k=a β
k and Sk

i :=

∇if(X
k−1)−∇if(X

k). Then, we can rewrite the algorithm’s momentum update rule as

Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k)

= βk
(
µk−1
i +∇if(X

k−1)
)
+ (1− βk)

(
γki +∇if(X

k)
)

= ∇if
(
Xk
)
+ αkγki + βkSk

i + βkµk−1
i .

This yields

µk
i =Mk

i −∇if
(
Xk
)

= αkγki + βkSk
i + βkµk−1

i

=

k∑
τ=1

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i + β1:kµ0

i

=

k∑
τ=0

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i ,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where the last line follows from the fact that M0
i = ∇ifξ0(X

0) and β0 = 0. Thus,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
= E

[∥∥µk
i

∥∥
(i)⋆

]
≤ E

∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
(i)⋆

+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

≤ ρiE

[∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
2

]
+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

≤ ρi

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2 E [∥γτi ∥22]+ k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]
,

where in the last line we used Jensen’s inequality and the fact that for all q < l

E
[
(γli)

⊤γqi
]
= E

[
E
[
(γli)

⊤γqi | X l
i

]]
= E

[
E
[
γli | X l

i

]⊤
γqi

]
= E

[(
E
[
∇ifξl(X

l)−∇if(X
l) | X l

i

])⊤
γqi

]
= 0.

Using Assumptions 1 and 2, we get

E
[
∥γτi ∥

2
2

]
= E

[
E
[
∥γτi ∥

2
2 | Xτ

i

]
︸ ︷︷ ︸

≤σ2

]
≤ σ2

and

∥Sτ
i ∥(i)⋆ ≤

(
L0
i + L1

i ∥∇if(X
τ)∥(i)⋆

)
∥Xτ+1

i −Xτ
i ∥(i) ≤

(
L0
i + L1

i ∥∇if(X
τ)∥(i)⋆

)
tτi .

Therefore,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
≤ σρi

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
+ L0

i

k∑
τ=1

βτ :ktτi

+L1
i

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]
.

Combining the last inequality with (27) gives
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0 +

p∑
i=1

[
2σρi

K−1∑
k=0

tki

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
︸ ︷︷ ︸

=:I1

+2L0
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi︸ ︷︷ ︸
=:I2

+ 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]

︸ ︷︷ ︸
=:I3

+
L0
i

2

K−1∑
k=0

(
tki
)2

︸ ︷︷ ︸
=:I4

+
L1
i

2

K−1∑
k=0

(
tki
)2 E [∥∇if(X

k)∥(i)⋆
]]
. (28)

Let us now upper-bound each term Ii, i = 1, 2, 3, 4.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I1: using Lemma 5, we obtain

I1 ≤ σρiti

(
7 + 2

√
2e2 log(K)

)
.

I2: using Lemma 5, we obtain

I2 ≤ 14L0
i t

2
i (3 + log(K)) .

I3: rearranging the sums and using Lemma 4 with a = τ +1, b = K, p = 3/4 and q = 1/2, we have

I3 = 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi

(
K−1∑
k=τ

tki β
τ :k

)
E
[
∥∇if(X

τ)∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi ti

(
K−1∑
k=τ

(k + 1)−3/4βτ :k

)
E
[
∥∇if(X

τ)∥(i)⋆
]

≤ 2L1
i

K−1∑
τ=1

tτi tiτ
−1/4 e2((τ+1)1/2−τ1/2)︸ ︷︷ ︸

≤e2(
√

2−1) for τ≥1

E
[
∥∇if(X

τ)∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
τ=1

tτi tiτ
−1/4E

[
∥∇if(X

τ)∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]
.

I4:

I4 =
L0
i

2

K−1∑
k=0

(
tki
)2 ≤ L0

i

2

∞∑
k=0

(
tki
)2

=
L0
i

2
t2i

∞∑
k=0

(1 + k)−3/2

≤ L0
i

2
t2i

(
1 +

∫ ∞

1

1

z3/2
dz

)
=

3L0
i

2
t2i .

Combining the upper-bounds for Ii, i = 1, 2, 3, 4 with (28) gives
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i (3 + log(K))

+ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]

+
3L0

i

2
t2i +

L1
i

2

K−1∑
k=0

(
tki
)2 E[∥∇if(X

k)∥(i)⋆]

]
.

Using the fact that tki = ti(1 + k)−3/4 ≤ ti, and denoting C := 2e2(
√
2−1) + 1

2 ≤ 5.1, we get
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)

+ CL1
i ti

K−1∑
k=0

tki E
[
∥∇if(X

k)∥(i)⋆
]]
.

Now, let us consider two options: (1) L1
i = 0 for all i ∈ {1, . . . , p} and (2) L1

i ̸= 0, for all
i ∈ {1, . . . , p}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Case 1: L1
i = 0, i = 1, . . . , p. In this case,

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)]
,

and therefore,

min
k=0,...,K−1

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

K−1∑
k=0

p∑
i=1

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
.

Case 2: L1
i ̸= 0, i = 1, . . . , p. Let us choose ti = 1

12L1
i

. Then

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ 2∆0 +

p∑
i=1

[
2σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i (87 + 28 log(K))

]
,

and hence

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρi
6L1

i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i)

2
(87 + 28 log(K))

]
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

F.1 EXPERIMENTAL DETAILS

All experiments for the NanoGPT model are conducted using PyTorch7 with Distributed Data Parallel
(DDP)8 across 4 NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed
on a single NVIDIA A100 GPU (40GB). The training and evaluation pipelines are implemented
using open-source codebases (Jordan, 2024; Jordan et al., 2024a; Pethick et al., 2025a), with all
modifications clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an
analytical solution is unavailable (e.g., for SVD-type updates), following the approach proposed by
Jordan et al. (2024b). This method provides a computationally efficient approximation of the required
orthogonalization while preserving the convergence behavior of the overall algorithm.

F.2 FITTING L0
i AND L1

i

To minimize the Euclidean error between the true value L̂i[k] and its approximation L̂approx
i [k], while

penalizing underestimation, we incorporate a hinge-like penalty term. Specifically, we fit L0
i and L1

i
by minimizing the loss function

Li

(
L0
i , L

1
i

)
:=

K−1∑
k=0

(
L̂i[k]− L̂approx

i [k]
)2

+ λ

K−1∑
k=0

max
(
0, L̂i[k]− L̂approx

i [k]
)2
. (29)

The first term of Li captures the standard Euclidean (squared) error, while the second term introduces
an additional penalty proportional to the amount of underestimation (i.e., when L̂i[k] > L̂approx

i [k]).
The hyperparameter λ ≥ 0 controls the strength of this penalty.

F.3 TRAINING NANOGPT ON FINEWEB.

In this section, we present additional results and experimental details for the experiment described in
the main text, which involves training a NanoGPT model on the FineWeb dataset using the unScion
optimizer.

F.3.1 EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at
empirically validating Assumption 1. We plot the estimated trajectory smoothness

L̂i[k] :=
∥∇ifξk+1(Xk+1)−∇ifξk(X

k)∥(i)⋆
∥Xk+1

i −Xk
i ∥(i)

and its approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆

as functions of the iteration index k, where L0
i , L

1
i ≥ 0 are fitted using the procedure described in

Appendix F.2.

Figures 5, 6, and 7 show results for parameter groups from the embedding layer and from the 4th
and 8th transformer blocks. Similar patterns are observed across all layers. In each case, we see a
strong agreement between L̂i[k] and L̂approx

i [k], suggesting that Assumption 1 holds approximately
along the optimization trajectory.

7PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
8Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/

notes/ddp.html

33

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
iteration k

10 1

6 × 10 2

2 × 10 1

3 × 10 1

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

0 1000 2000 3000 4000 5000
iteration k

0.05

0.06

0.07

0.08

0.09

0.10

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

Figure 5: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the embedding layer
of NanoGPT-124M along unScion training trajectories. The group norm is ∥ · ∥(p) = np∥ · ∥1→∞, with fitted
values L0

p ≈ 0, L1
p ≈ 1.3. The same plot is shown twice with different y-axis limits.

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0039

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.42

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0090

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.51

0 1000 2000 3000 4000 5000
iteration k

3

4

5

6

7

8

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0128

Li

Lapprox
i : L0

i = 0.00, L1
i = 71.16

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0050

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.17

0 1000 2000 3000 4000 5000
iteration k

12

14

16

18

20

22

Name: module._orig_mod.transformer.h.4.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0019

Li

Lapprox
i : L0

i = 0.00, L1
i = 69.92

0 1000 2000 3000 4000 5000
iteration k

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0029

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.87

Figure 6: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 4th transformer
block of NanoGPT-124M along unScion training trajectories. The group norms are ∥ ·∥(i) =

√
ni/mi∥ ·∥2→2,

with fitted values L0
i ≈ 0, L1

i ≈ 70.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
iteration k

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Name: module._orig_mod.transformer.h.8.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0022

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.07

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.8.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0068

Li

Lapprox
i : L0

i = 0.00, L1
i = 69.60

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.8.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0133

Li

Lapprox
i : L0

i = 0.00, L1
i = 71.46

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.8.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.96

0 1000 2000 3000 4000 5000
iteration k

11

12

13

14

15

16

17

18

19

Name: module._orig_mod.transformer.h.8.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0012

Li

Lapprox
i : L0

i = 0.02, L1
i = 69.43

0 1000 2000 3000 4000 5000
iteration k

8

10

12

14

16

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.11

Figure 7: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 8th
transformer block of NanoGPT-124M along unScion training trajectories. The group norms are
∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values L0

i ≈ 0, L1
i ≈ 70.

F.3.2 GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L0, L1)-smoothness assumption is satisfied
under the standard Euclidean norms ∥ · ∥2 for each parameter block, as opposed to the specialized
norms described in (14). We adopt the same training setup as in Section 5.1, plotting the estimated
trajectory smoothness L̂i and its approximation L̂approx

i along the training trajectories across several
parameter groups. Unlike previous sections, here we do not penalize instances where L̂i > L̂approx

i
in order to find the best approximation (i.e., λ = 0 in (29)). Additionally, when using the standard
Euclidean norm ∥ · ∥2 for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSErel
i , denoted

MSE rel in the figures), defined as

MSErel
i :=

1

K

K∑
i=1

(
L̂i[k]− L̂approx

i [k]

L̂i[k]

)2

,

where a lower value indicates a better fit.

As shown in Figures 8 and 9, both visually and in terms of MSErel
i , using specialized norms for

each group of parameters provides a better approximation than the standard Euclidean norm ∥ · ∥2.
Notably, the relative mean squared error MSErel

i is consistently an order of magnitude lower under
specialized norms.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0023

Li

Lapprox
i : L0

i = 0.00, L1
i = 66.20

(a) MSErel
i = 0.0023

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0048

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.59

(b) MSErel
i = 0.0048

0 1000 2000 3000 4000 5000
iteration k

3

4

5

6

7

8

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0065

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.51

(c) MSErel
i = 0.0065

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0025

Li

Lapprox
i : L0

i = 0.00, L1
i = 65.59

(d) MSErel
i = 0.0025

0 1000 2000 3000 4000 5000
iteration k

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0010

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.29

(e) MSErel
i = 0.001

0 1000 2000 3000 4000 5000
iteration k

0.05

0.06

0.07

0.08

0.09

0.10

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0003

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.31

(f) MSErel
i = 0.0003

Figure 8: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M
along training trajectories of unScion using the specialized norm choices defined in (14).

0 1000 2000 3000 4000 5000
iteration k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0368

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.43

(a) MSErel
i = 0.0368

0 1000 2000 3000 4000 5000
iteration k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0393

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.51

(b) MSErel
i = 0.0393

0 1000 2000 3000 4000 5000
iteration k

0.05

0.10

0.15

0.20

0.25

0.30

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0346

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.75

(c) MSErel
i = 0.0346

0 1000 2000 3000 4000 5000
iteration k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0307

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.59

(d) MSErel
i = 0.0307

0 1000 2000 3000 4000 5000
iteration k

0.1

0.2

0.3

0.4

0.5

0.6

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0133

Li

Lapprox
i : L0

i = 0.00, L1
i = 6.64

(e) MSErel
i = 0.0133

0 1000 2000 3000 4000 5000
iteration k

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0510

Li

Lapprox
i : L0

i = 0.01, L1
i = 0.12

(f) MSErel
i = 0.051

Figure 9: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M
along training trajectories of unScion using the standard Euclidean norm ∥ · ∥2.

F.3.3 LEARNING RATE TRANSFER FROM ADAMW
We now aim to verify layer-wise (L0, L1)-smoothness following the approach used in Section 5.1,
but employing the AdamW optimizer. We use hyperparameters specified in Pethick et al. (2025b,
Table 7). In Figure 10, we present the results for the estimated trajectory smoothness L̂i and its
approximation L̂approx

i across several parameter groups along the training trajectories. Notably, for
the group of parameters from the embedding layer Xp (the last plot in Figure 10), the fitted value
of L1

p is approximately 20–30 times smaller than in other groups. Since in all plots we observe that

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

L0
i ≪ L1

i ∥∇ifξk(X
k)∥(i)⋆, Theorem 1 implies that tki ≈ 1/Lk

i . Thus, tkp should be 20–30 times
larger than tki for i = 1, . . . , p− 1, which is consistent with the tuned parameters from Pethick et al.
(2025b, Table 7).

This insight provides an efficient and principled method for initializing learning rates in Scion.
Smoothness statistics collected during standard AdamW training (which is commonly used for
training LLMs) can serve as a strong prior, allowing practitioners to directly incorporate structure-
aware choices, such as larger stepsizes for embedding layers, into their tuning process. Importantly,
computing these statistics is computationally inexpensive, introducing minimal additional cost.

0 1000 2000 3000 4000 5000
iteration k

0

1

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.1177

Li

Lapprox
i : L0

i = 0.26, L1
i = 81.42

0 1000 2000 3000 4000 5000
iteration k

2

4

6

8

10

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.1268

Li

Lapprox
i : L0

i = 2.05, L1
i = 86.99

0 1000 2000 3000 4000 5000
iteration k

5

10

15

20

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.1265

Li

Lapprox
i : L0

i = 5.52, L1
i = 60.30

0 1000 2000 3000 4000 5000
iteration k

0

10

20

30

40

50

60

70

80

Name: module._orig_mod.transformer.h.4.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0140

Li

Lapprox
i : L0

i = 0.00, L1
i = 96.98

0 1000 2000 3000 4000 5000
iteration k

0

2

4

6

8

10

12

14

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0196

Li

Lapprox
i : L0

i = 0.00, L1
i = 37.13

0 1000 2000 3000 4000 5000
iteration k

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0026

Li

Lapprox
i : L0

i = 0.21, L1
i = 4.69

Figure 10: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in
NanoGPT-124M along AdamW training trajectories.

F.4 TRAINING CNN ON CIFAR-10
In this section, we provide additional results for the experiments described in Section 5.2, where a
CNN model is trained on the CIFAR-10 dataset using the unScion optimizer.

Full-batch (deterministic) gradients. We begin with presenting additional results in the determin-
istic setting. Figure 11 shows the estimated trajectory smoothness

L̂i[k] :=
∥∇if(X

k+1)−∇if(X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
and its approximation

L̂approx
i [k] := L1

i ∥∇if(X
k+1)∥(i)⋆

(where we set L0
i = 0) for a broader selection of parameter groups than shown in the main text. The

results further support the validity of Assumption 1 with L0
i = 0.

Stochastic gradients. Here, we report results for analogous experiments in the stochastic setting,
using noisy gradients ∇ifξk . We use momentum as in Pethick et al. (2025b, Table 10), but do not
apply a linear decay schedule. In Figure 12, we plot

L̂i[k] =
∥∇ifξk+1(Xk+1)−∇ifξk(X

k)∥(i)⋆
∥Xk+1

i −Xk
i ∥(i)

, L̂approx
i [k] = L1

i ∥∇ifξk+1(Xk+1)∥⋆,

again setting L0
i = 0. Despite the added variance, we still observe that the stochastic trajectory

roughly adheres to Assumption 1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80
epoch

10

20

30

40

50

60

70
Name: layers.1.conv2.weight

Size: [64, 64, 3, 3] | MSE_rel: 0.0167

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.20

0 10 20 30 40 50 60 70 80
epoch

60

70

80

90

100

110

120

Name: layers.2.conv1.weight
Size: [256, 64, 3, 3] | MSE_rel: 0.0058

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.81

0 10 20 30 40 50 60 70 80
epoch

20

25

30

35

40

45

Name: layers.3.conv2.weight
Size: [256, 256, 3, 3] | MSE_rel: 0.0060

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.84

0 10 20 30 40 50 60 70 80
epoch

10

20

30

40

50

Name: layers.1.norm2.bias
Size: [64] | MSE_rel: 0.0360

Li

Lapprox
i : L0

i = 0.00, L1
i = 4.06

0 10 20 30 40 50 60 70 80
epoch

5

10

15

20

25

30

35

Name: layers.2.norm1.bias
Size: [256] | MSE_rel: 0.0206

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.89

0 10 20 30 40 50 60 70 80
epoch

0.004

0.006

0.008

0.010

0.012

Name: head.weight
Size: [10, 256] | MSE_rel: 0.0195

Li

Lapprox
i : L0

i = 0.00, L1
i = 0.04

Figure 11: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with full-batch gradients. The norms used for each group are as

follows: ∥·∥(i) =
√

1/Cout
i ∥·∥2 for biases, ∥·∥(i) = k2

√
Cin

i /Cout
i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞

for the last group Xp, associated with classification head weights.

0 1 2 3 4 5 6 7 8
epoch

200

300

400

500

600

Name: layers.1.conv2.weight
Size: [64, 64, 3, 3] | MSE_rel: 0.0148

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.96

0 1 2 3 4 5 6 7 8
epoch

400

600

800

1000

1200

Name: layers.2.conv1.weight
Size: [256, 64, 3, 3] | MSE_rel: 0.0061

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.70

0 1 2 3 4 5 6 7 8
epoch

300

400

500

600

700

Name: layers.3.conv2.weight
Size: [256, 256, 3, 3] | MSE_rel: 0.0108

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.86

0 1 2 3 4 5 6 7 8
epoch

100

200

300

400

500

600

Name: layers.1.norm2.bias
Size: [64] | MSE_rel: 0.0557

Lestimated = || f k + 1(xk + 1) f k(xk)|| *

||xk + 1 xk||

Lapprox
i : L0

i = 0.00, L1
i = 3.91

0 1 2 3 4 5 6 7 8
epoch

100

200

300

400

500

Name: layers.2.norm1.bias
Size: [256] | MSE_rel: 0.0304

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.59

0 1 2 3 4 5 6 7 8
epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Name: head.weight
Size: [10, 256] | MSE_rel: 0.0496

Li

Lapprox
i : L0

i = 0.00, L1
i = 0.04

Figure 12: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with stochastic gradients. The norms used for each group are as

follows: ∥·∥(i) =
√

1/Cout
i ∥·∥2 for biases, ∥·∥(i) = k2

√
Cin

i /Cout
i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞

for the last group Xp, associated with classification head weights.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

G ADDITIONAL EMPIRICAL RESULTS

G.1 LAYER-WISE SMOOTHNESS ACROSS ALL LAYERS AND VARIED MODEL SCALES

Aggregate layer-wise trajectory smoothness across all blocks/layers. The cross-layer heterogeneity
and the empirical trend L0

i ≈0 persist from 124M to 774M parameters.

Step

10 1

100

101

102

L

Block 0
attn.c_attn.weight
attn.c_proj.weight
attn.c_q.weight
attn.c_k.weight
attn.c_v.weight
mlp.c_fc.weight
Word Embedding

Step

L

Block 1

Step

L

Block 2

Step

10 1

100

101

102

L

Block 3

Step

L

Block 4

Step

L

Block 5

Step

10 1

100

101

102

L

Block 6

Step

L

Block 7

Step
L

Block 8

0 1000 2000 3000 4000 5000
Step

10 1

100

101

102

L

Block 9

0 1000 2000 3000 4000 5000
Step

L

Block 10

0 1000 2000 3000 4000 5000
Step

L

Block 11

Smoothness Trajectories: All Blocks (Word Embedding in Block 0)

Figure 13: NanoGPT-124M

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Step

10 1

100

101

102

L

Block 0
attn.c_attn.weight
attn.c_proj.weight
attn.c_q.weight
attn.c_k.weight
attn.c_v.weight
mlp.c_fc.weight
Word Embedding

Step

L

Block 1

Step

L

Block 2

Step

10 1

100

101

102

L

Block 3

Step
L

Block 4

Step

L

Block 5

Step

10 1

100

101

102

L

Block 6

Step

L
Block 7

Step

L

Block 8

Step

10 1

100

101

102

L

Block 9

Step

L

Block 10

Step

L

Block 11

Step

10 1

100

101

102

L

Block 12

Step

L

Block 13

Step

L

Block 14

Step

10 1

100

101

102

L

Block 15

Step

L

Block 16

Step

L

Block 17

Step

10 1

100

101

102

L

Block 18

Step

L

Block 19

Step

L

Block 20

0 1000 2000 3000 4000 5000
Step

10 1

100

101

102

L

Block 21

0 1000 2000 3000 4000 5000
Step

L

Block 22

0 1000 2000 3000 4000 5000
Step

L

Block 23

Smoothness Trajectories: 24 Blocks (Word Embedding in Block 0)

Figure 14: GPT-2 Medium (∼355M)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Step

10 1

100

101

102

L

Block 0
attn.c_attn.weight
attn.c_proj.weight
attn.c_q.weight
attn.c_k.weight
attn.c_v.weight
mlp.c_fc.weight
Word Embedding

Step

L

Block 1

Step

L

Block 2

Step

L

Block 3

Step

10 1

100

101

102

L

Block 4

Step

L

Block 5

Step

L

Block 6

Step

L

Block 7

Step

10 1

100

101

102

L

Block 8

Step

L

Block 9

Step

L

Block 10

Step

L

Block 11

Step

10 1

100

101

102

L

Block 12

Step

L

Block 13

Step

L

Block 14

Step

L

Block 15

Step

10 1

100

101

102

L

Block 16

Step

L

Block 17

Step

L

Block 18

Step

L

Block 19

Step

10 1

100

101

102

L

Block 20

Step

L

Block 21

Step

L

Block 22

Step

L

Block 23

Step

10 1

100

101

102

L

Block 24

Step

L

Block 25

Step

L

Block 26

Step

L

Block 27

Step

10 1

100

101

102

L

Block 28

Step

L

Block 29

Step

L

Block 30

Step

L

Block 31

0 1000 2000 3000 4000 5000
Step

10 1

100

101

102

L

Block 32

0 1000 2000 3000 4000 5000
Step

L

Block 33

0 1000 2000 3000 4000 5000
Step

L

Block 34

0 1000 2000 3000 4000 5000
Step

L

Block 35

Smoothness Trajectories: 36 Blocks (Word Embedding in Block 0)

Figure 15: GPT-2 Large (∼774M)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Step

100

101

102

L

Block 0
attn.c_attn.weight
attn.c_proj.weight
attn.c_q.weight
attn.c_k.weight
attn.c_v.weight
mlp.c_fc.weight
Word Embedding

Step

L
Block 1

Step

L

Block 2

Step

100

101

102

L

Block 3

Step

L

Block 4

Step

L

Block 5

Step

100

101

102

L

Block 6

Step

L

Block 7

Step

L

Block 8

0 1000 2000 3000 4000 5000
Step

100

101

102

L

Block 9

0 1000 2000 3000 4000 5000
Step

L

Block 10

0 1000 2000 3000 4000 5000
Step

L

Block 11

Smoothness Trajectories: All Blocks - Adam Optimizer (Word Embedding in Block 0)

Figure 16: NanoGPT-124M trained with AdamW. The same cross-layer heterogeneity pattern
persists, indicating that layer-wise (L0

i , L
1
i)-smoothness is not specific to unScion.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

G.2 BEST VS. WORST FITS AND AGGREGATE FIT QUALITY

Figure 17 illustrates best and worst per-layer fits of Assumption 1 (measured Li[k] vs. Lapprox
i [k])

along NanoGPT-124M training. We observe tight fits for many layers (e.g., embeddings and several
attention V matrices), while a few layers show looser—yet still bounded—fits. The model error is
more than 10× smaller than for constant-Li fits on most layers, and in some cases smaller by orders
of magnitude.

0 1000 2000 3000 4000 5000
iteration k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | (L_0,L_1) MSE_rel: 0.0005 | Const MSE_rel: 0.2602 (Best Fit #1)

Li

(L0, L1): L0
i = 0.00, L1

i = 1.33 (MSE_rel=0.0005)
Constant: L0 = 0.07 (MSE_rel=0.2602)

0 1000 2000 3000 4000 5000
iteration k

11

12

13

14

15

16

17

18

19

L

Name: module._orig_mod.transformer.h.8.attn.c_v.weight
Size: [768, 768] | (L_0,L_1) MSE_rel: 0.0012 | Const MSE_rel: 0.0216 (Best Fit #2)

Li

(L0, L1): L0
i = 0.02, L1

i = 69.43 (MSE_rel=0.0012)
Constant: L0 = 13.24 (MSE_rel=0.0216)

0 1000 2000 3000 4000 5000
iteration k

11

12

13

14

15

16

17

18

19

L

Name: module._orig_mod.transformer.h.9.attn.c_v.weight
Size: [768, 768] | (L_0,L_1) MSE_rel: 0.0013 | Const MSE_rel: 0.0219 (Best Fit #3)

Li

(L0, L1): L0
i = 0.16, L1

i = 68.73 (MSE_rel=0.0013)
Constant: L0 = 13.25 (MSE_rel=0.0219)

0 1000 2000 3000 4000 5000
iteration k

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

L

Name: module._orig_mod.transformer.h.11.attn.c_proj.weight
Size: [768, 768] | (L_0,L_1) MSE_rel: 0.0159 | Const MSE_rel: 0.0931 (Worst Fit #1)

Li

(L0, L1): L0
i = 0.00, L1

i = 74.71 (MSE_rel=0.0159)
Constant: L0 = 2.03 (MSE_rel=0.0931)

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

L

Name: module._orig_mod.transformer.h.10.attn.c_q.weight
Size: [768, 768] | (L_0,L_1) MSE_rel: 0.0171 | Const MSE_rel: 0.1699 (Worst Fit #2)

Li

(L0, L1): L0
i = 0.00, L1

i = 73.88 (MSE_rel=0.0171)
Constant: L0 = 2.40 (MSE_rel=0.1699)

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

L

Name: module._orig_mod.transformer.h.11.attn.c_q.weight
Size: [768, 768] | (L_0,L_1) MSE_rel: 0.0185 | Const MSE_rel: 0.1859 (Worst Fit #3)

Li

(L0, L1): L0
i = 0.00, L1

i = 75.43 (MSE_rel=0.0185)
Constant: L0 = 2.25 (MSE_rel=0.1859)

Figure 17: Illustrative best (top row) and worst (bottom row) per-layer fits of Assumption 1 (measured
Li[k] vs. Lapprox

i [k]) along NanoGPT-124M training.

0.000

0.005

0.010

0.015

0.020

M
SE

_r
el

attn.c_attn.weight
wte.weight: 0.0005
Mean: 0.0041 ± 0.0018
Median: 0.0038

attn.c_k.weight
Mean: 0.0053 ± 0.0013
Median: 0.0053

attn.c_proj.weight
Mean: 0.0098 ± 0.0030
Median: 0.0091

0 1 2 3 4 5 6 7 8 9 10 11
Transformer Block

0.000

0.005

0.010

0.015

0.020

M
SE

_r
el

attn.c_q.weight
Mean: 0.0120 ± 0.0031
Median: 0.0102

0 1 2 3 4 5 6 7 8 9 10 11
Transformer Block

attn.c_v.weight
Mean: 0.0025 ± 0.0017
Median: 0.0019

0 1 2 3 4 5 6 7 8 9 10 11
Transformer Block

mlp.c_fc.weight
Mean: 0.0029 ± 0.0013
Median: 0.0023

Figure 18: Relative fit error MSErel of the layer-wise (L0
i , L

1
i) model across transformer blocks for

each matrix type in NanoGPT-124M. Dashed lines show mean and median over blocks (embedding
matrix: MSErel = 0.0005).

43

	Introduction
	Theory vs. practice of Muon and Scion
	Layer-wise structure
	A theory with predictive power

	Contributions
	Main theory and results
	Examples of optimizers satisfying our framework
	Convergence results
	Stochastic case

	Experiments
	Training NanoGPT on FineWeb
	Training CNN on CIFAR-10

	Conclusion and future work
	Related works
	Auxiliary lemmas
	Remarks on the theoretical results
	Note on radii and stepsizes
	Note on prior analyses

	Deterministic case
	Special cases of the LMO framework
	Proof of Theorem 1
	Convergence under the PŁ condition

	Stochastic case
	Adaptive stepsizes
	Proof of Theorem 2

	Additional experimental results and details
	Experimental details
	Fitting L0i and L1i
	Training NanoGPT on FineWeb.
	Empirical validation of ass:generalized-smoothness
	Generalized smoothness under Euclidean vs. specialized norms
	Learning rate transfer from AdamW

	Training CNN on CIFAR-10

	Additional Empirical Results
	Layer-wise smoothness across all layers and varied model scales
	Best vs. worst fits and aggregate fit quality

