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ABSTRACT

Recent developments in deep learning optimization have brought about radically
new algorithms based on the Linear Minimization Oracle (LMO) framework, such
as Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025b). After over a
decade of Adam’s dominance, these LMO-based methods are emerging as viable
replacements, offering several practical advantages such as improved memory
efficiency, better hyperparameter transferability, and most importantly, superior
empirical performance on large-scale tasks, including LLM training. However,
a significant gap remains between their practical use and our current theoretical
understanding: prior analyses (1) overlook the layer-wise LMO application of
these optimizers in practice, and (2) rely on an unrealistic smoothness assumption,
leading to impractically small stepsizes. To address both, we propose a new LMO-
based framework called Gluon, capturing prior theoretically analyzed methods
as special cases, and introduce a new refined generalized smoothness model that
captures the layer-wise geometry of neural networks, matches the layer-wise prac-
tical implementation of Muon and Scion, and leads to state-of-the-art convergence
guarantees. Our experiments with NanoGPT and CNN confirm that our assumption
holds along the optimization trajectory, ultimately closing the gap between theory
and practice.

1 INTRODUCTION

The success of deep learning models across a wide range of challenging domains is inseparable
from the optimization algorithms used to train them. As neural networks have grown deeper and
datasets larger, optimization has quietly become one of the most consequential components of
modern machine learning (ML). Nowhere is this more evident than in the training of large language
models (LLMs), which routinely consume thousands of GPU-hours. Adam (Kingma & Ba, 2015)
(and lately AdamW (Loshchilov & Hutter, 2019))—being effective, relatively reliable, and widely
adopted—has for over a decade served as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also exposed the shortcomings of adaptive moment
estimation as a one-size-fits-all solution–namely, sensitivity to learning rate schedules, heavy tuning
requirements (Wilson et al., 2017), and poor generalization when not carefully calibrated (Zou
et al., 2021). However, a shift may now be underway. Recent optimizers, such as Muon (Jordan
et al., 2024b) and Scion (Pethick et al., 2025b), represent a significant departure from Adam-type
methods: they forgo the adaptive moment estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms (Frank & Wolfe, 1956; Pokutta, 2024). These optimizers are not only
simpler to implement and easier to tune, but also appear empirically stronger, outperforming AdamW
in LLM training (Liu et al., 2025; Pethick et al., 2025b).

Yet, despite their potential, these new methods are still in their infancy, and our understanding
of their theoretical foundations and practical utility in LLM training remains incomplete. Prior
convergence guarantees in realistic nonconvex regimes are still far from satisfactory. Indeed, as we
argue in Section 2, the (very few) existing theoretical analyses fail to capture the true algorithms
used in practice, focusing instead on simplified variants that diverge from actual implementations.
We identify two key mismatches—neglect of layer-wise structure (Section 2.1) and flawed stepsize
choices stemming from an inaccurate smoothness model (Section 2.2)—and close this gap with a
solution to both. We elaborate on these advances in the remainder of the paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p ] ∈ S, momentum M0 = [M0

1 , . . . ,M
0
p ] ∈

S, momentum decay factors βk ∈ [0, 1) for all iterations k ≥ 0
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ξk ∼ D
4: for i = 1, 2, . . . , p do
5: Compute stochastic gradient ∇ifξk(X

k) for layer i
6: Update momentum Mk

i = βkMk−1
i + (1− βk)∇ifξk(X

k) for layer i
7: Choose adaptive stepsize/radius tki > 0 for layer i
8: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
Mk

i

)
:= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i) (1)

9: end for
10: Update full parameter vector Xk+1 = [Xk+1

1 , . . . , Xk+1
p ]

11: end for

Our goal is to solve the general optimization problem

min
X∈S

{f(X) := Eξ∼D [fξ(X)]} , (2)

where S is a finite-dimensional vector space and fξ : S 7→ R are potentially non-convex and
non-smooth but continuously differentiable functions. Here, fξ(X) represents the loss of model
parameterized by X associated with training data point ξ sampled from probability distribution D.
To make the problem meaningful, we assume that f inf := infX∈S f(X) > −∞. In this work we are
particularly interested in the scenario when the parameter vector X ∈ S is obtained by collecting
the matrices Xi ∈ Si := Rmi×ni of trainable parameters across all layers i = 1, . . . , p of a deep
model. For simplicity, we therefore write X = [X1, . . . , Xp]. This means that, formally, S is the
d-dimensional product space S :=

⊗p
i=1 Si ≡ S1 ⊗ · · · ⊗ Sp, where d :=

∑p
i=1mini. With each

space Si we associate the trace inner product ⟨Xi, Yi⟩(i) := tr(X⊤
i Yi) for Xi, Yi ∈ Si, and an

arbitrary norm ∥ · ∥(i), not necessarily induced by the inner product.

2 THEORY VS. PRACTICE OF MUON AND SCION

In this work, we focus on an algorithm based on iteratively calling linear minimization oracles
(LMOs) across all layers, formalized in Algorithm 1, for which we coin the name Gluon. In particular,
for each layer i, independently across all layers, Gluon iteratively updates the parameters via

Xk+1
i = LMOBk

i
(Mk

i ) := argmin
Xi∈Bk

i

⟨Mk
i , Xi⟩(i), where Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki },

where tki > 0 is an adaptively chosen stepsize/radius/learning rate.1 Note that the momentum
Mk = [Mk

1 , . . . ,M
k
p ] ∈ S accumulates the contributions from the stochastic gradients ∇fξk(Xk) =

[∇1fξk(X
k), . . . ,∇pfξk(X

k)] ∈ S (see Step 6 of Algorithm 1).

The Gluon framework generalizes a range of methods, including Muon and Scion, which are recovered
as special cases under specific norm choices (see Section 4.1 and Appendix D.1). Beyond their
ability to outperform AdamW on large-scale benchmarks, these optimizers offer a number of attractive
properties: improved memory efficiency, greater robustness to hyperparameter settings, and the ability
to transfer those settings across model sizes (Pethick et al., 2025b; Shah et al., 2025). Moreover,
in contrast to Adam, they were theoretically analyzed shortly after release and are guaranteed to
converge under standard assumptions of Lipschitz smoothness2 and bounded variance of stochastic
gradients (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b).

1In this context, the radii defining the norm balls in the LMOs effectively act as stepsizes–see Appendix C.1.
Accordingly, we use the terms radius, stepsize, and learning rate interchangeably throughout.

2A function f : S 7→ R is L-smooth if ∥∇f(x)−∇f(y)∥⋆ ≤ L ∥x− y∥ for all x, y ∈ S, where S is a
finite-dimensional vector space equipped with a norm ∥ · ∥ and ∥ · ∥⋆ is the dual norm associated with ∥ · ∥.
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Figure 1: Training NanoGPT on FineWeb validates our layer-wise (L0, L1)-smoothness model.

Gluon presents the method that is deployed in practice (Jordan et al., 2024a; Pethick et al., 2025a)
and has proven highly effective. That said, we argue that existing analyses (Kovalev, 2025; Li &
Hong, 2025; Pethick et al., 2025b) do not accurately reflect this implementation, diverging from it in
two key ways. As such, they fail to explain why the algorithm performs so well. Let us detail why.

2.1 LAYER-WISE STRUCTURE

First, we briefly walk through the theoretical understanding offered by previous studies. Muon is an
optimizer specifically designed for hidden layers, leaving the first and last layers to be handled by
some other optimizer, e.g., Adam(W). Its original introduction by Jordan et al. (2024b) was purely
empirical, with no attempt at theoretical analysis. The first convergence result came from Li & Hong
(2025), who analyzed the smooth nonconvex setting but focused solely on problem (2) with p = 1,
effectively limiting the scope to the single-layer case. The Scion3 optimizer (a special case of Gluon)
proposed by Pethick et al. (2025b) improves upon Muon by applying the LMO-based rule to all
layers, ultimately achieving better empirical performance. Both this work and that of Kovalev (2025)
analyze (a variant of) the general update rule

Mk = βkMk−1 + (1− βk)∇fξk(Xk),

Xk+1 = LMOBk(Mk),
(3)

where βk ∈ [0, 1) is momentum, ∇fξk(Xk) is the stochastic gradient sampled at iteration k, and
Bk := {X ∈ S : ∥X −Xk∥ ≤ tk} is a norm ball centered at Xk with stepsize tk > 0. This setup
closely resembles the structure of Gluon, but is not exactly the same. Indeed, Gluon updates the
parameters layer-wise, not jointly over the full vector X . This distinction is critical since for practical,
extremely high-dimensional models, calculating a single global LMO for the entire parameter vector
is prohibitively expensive, while breaking the problem into “smaller”, per-layer LMOs restores
computational feasibility.

Motivated by this disconnect, we formulate our analysis in the matrix product space S, explicitly
honoring the layer-wise structure. This enables us to study the actual per-layer updates (1), with
assumptions and hyperparameters adapted to each layer.

2.2 A THEORY WITH PREDICTIVE POWER

All prior works claiming to guarantee convergence of Algorithm 1 come with several serious analytical
shortcomings–and these directly translate into practical deficiencies. Concretely, all existing analyses
of Muon/Scion are built on the classical L-smoothness assumption, imposing a uniform smoothness
constant across all layers. This is problematic, as different layers have different geometries, and thus
should be treated differently.

But the issue runs much deeper. These algorithms are built for deep learning, where the objective
functions are already well known not to be smooth (Crawshaw et al., 2022; Zhang et al., 2020).
This mismatch has consequences: prior convergence analyses prescribe tiny constant stepsizes (see

3Pethick et al. (2025b) introduce two variants of the Scion optimizer: one for constrained optimization,
called simply “Scion”, and another for unconstrained problems, referred to as “unconstrained Scion”. In this
work, “Scion” refers to either variant, and “unScion” is used when referring to the unconstrained version.

3
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Table 1), uniform across all parameter groups, which bear little resemblance to the tuned learning
rates that yield state-of-the-art empirical performance in practice. Consequently, they completely
fail to explain why these methods perform so well empirically. In other words, the theory falls short
at the one thing it should do best: guiding practical choices, leaving practitioners reliant on costly
manual tuning.

Our result in Theorem 1 shows this mismatch is not inevitable. To better reflect the behavior of deep
models, we introduce a more expressive regularity condition: the layer-wise (L0, L1)-smoothness4–an
extension of the generalized smoothness model of Zhang et al. (2020), applied at the layer level.
Assumption 1 (Layer-wise (L0, L1)-smoothness). The function f : S 7→ R is layer-wise (L0, L1)-
smooth with constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 := (L1
1, . . . , L

1
p) ∈ Rp

+. That is, the
inequality

∥∇if(X)−∇if(Y )∥(i)⋆ ≤
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Xi − Yi∥(i) (4)

holds for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈ S, Y = [Y1, . . . , Yp] ∈ S, where ∥ · ∥(i)⋆ is
the dual norm associated with ∥ · ∥(i) (i.e., ∥Xi∥(i)⋆ := sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si).

Assumption 1 can be viewed as a generalization of the anisotropic “vector” (L0, L1)–smoothness
introduced by Liu et al. (2024) (now framed in terms of arbitrary norms), which itself is a generaliza-
tion of the (L0, L1)–smoothness model of Zhang et al. (2020). As such, our analysis of Gluon goes
beyond all existing results, which have only considered the classical L-smooth setting. Crucially,
however, this is not generalization for its own sake–we argue that this is in fact the right model for
the problem setting at hand. Why? There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns very closely with empirical observations.
In Figures 1a and 1b, we validate Assumption 1 in the context of training NanoGPT on the FineWeb
dataset. We plot estimated trajectory smoothness L̂i[k] (defined in (10)) alongside the approximation
L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆, where L0

i , L
1
i are layer-specific parameters estimated

from the training run. The figures show these quantities for parameters from the embedding layer
and one of the transformer blocks. The close correspondence between L̂i[k] and L̂approx

i [k] provides
strong evidence that Assumption 1 holds approximately along the training trajectory. In Section 5,
we further corroborate this finding, showing that our assumption is satisfied across the entire model
architecture for both the NanoGPT language modeling task and a CNN trained on CIFAR-10. In
all cases, we find that L0

i ≈ 0 for all i, again highlighting the limitations of classical smoothness.
Moreover, as shown in Figure 1c, trajectory smoothness varies substantially across blocks and
layers, underscoring the need for per-layer treatment. Complementary experiments using AdamW
as the optimizer (Figure 10) confirm that this heterogeneity is an intrinsic property of the loss
landscape. Together, these results suggest that layer-wise (L0, L1)-smoothness offers a significantly
more realistic model of the loss landscape in modern deep learning.

Secondly, Assumption 1 not only better captures the geometry of the models, but also directly
informs the design of adaptive and practically effective stepsizes. In Theorem 1, we derive learning
rates that reflect the local geometry of each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically grounded stepsizes turn out to accurately
capture the relative magnitudes of the layer-wise learning rates obtained by Pethick et al. (2025b) via
hyperparameter tuning–a striking validation of our approach, which further highlights the need for
layer-wise reasoning. This proves that theoretical stepsizes can have predictive power and effectively
guide hyperparameter tuning.

3 CONTRIBUTIONS

We present a comprehensive theoretical and empirical study of a broad class of layer-wise LMO-based
optimization algorithms. Our key contributions can be summarized as follows:

4While we state Assumption 1 in this general form, it is worth noting that the proofs do not rely on its full
strength. In all cases, we only require the assumption to hold for pairs X , Y such that ∥X − Y ∥ < c for some
constant c ≥ 0 (where ∥·∥ is any norm on S). Specifically, the assumption is only invoked with X = Xk,
Y = Xk+1, and since the stepsizes we use are bounded, the distances between consecutive iterates remain
bounded as well. For clarity and consistency across results–since the relevant constants vary by theorem–we
state the assumption in its stronger, global form, even though the local version suffices for all proofs.
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Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve
mink=0,...,K−1

∑p
i=1 E[∥∇if(X

k)∥(i)⋆] ≤ ε, where the O(·) notation hides logarithmic factors. Notation: K
= total number of iterations, (L0, L1) = the result holds under layer-wise (L0, L1)-smoothness, tki = radius/step-
size, 1− βk = momentum.

Result Stochastic? (L0, L1) Rate Stepsizes tki 1 − βk

(Kovalev, 2025, Theorem 1) ✗ ✗ O
(

1

K1/2

)
const ∝ 1

K1/2
(b) —

(Kovalev, 2025, Theorem 2) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

(Li & Hong, 2025, Theorem 2.1)(a) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

(Pethick et al., 2025b, Lemma 5.4) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) ∝ 1

k1/2

NEW: Theorem 1 ✗ ✓ O
(

1

K1/2

)
Adaptive —

NEW: Theorem 2 ✓ ✓ O
(

1

K1/4

)
∝ 1

k3/4
∝ 1

k1/2

(a) Applies only to the Muon/Scion update in (13) with p = 1.
(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

⋄ A new generalized smoothness framework for neural networks. We introduce layer-wise
(L0, L1)-smoothness (Assumption 1), a novel non-Euclidean generalized smoothness condition that
reflects the anisotropic, layer-wise structure of modern deep networks. This framework extends
standard (L0, L1)-smoothness assumption (Zhang et al., 2020) to arbitrary norms while capturing
per-layer variation, offering a realistic foundation for analyzing deep learning optimizers.

⋄ First principled analysis of layer-wise methods. Building on our new assumption, we develop the
first faithful convergence analysis for a class of LMO-based algorithms we term Gluon (Algorithms 1
and 2). We recover known algorithms, including state-of-the-art Muon-type optimizers, as special
cases (Section 4.1 and Appendix D.1), and pinpoint why earlier theoretical works fail to explain
the empirical success of these methods (Section 2). In contrast to prior analyses that oversimplify
the update rules used in practice, our framework directly aligns with real-world implementations,
bridging a critical gap between theory and application.

⋄ Sharper and more general convergence theory. We develop a convergence theory that extends
prior work in both scope and sharpness. In the deterministic case (Algorithm 2), we establish
convergence for general non-convex objectives under our Assumption 1 (Theorem 1), and under the
block-wise PŁ condition (Theorem 5). Unlike earlier analyses, our theory yields adaptive, layer-wise
stepsizes that align remarkably well with those selected via tuning in large-scale experiments (Pethick
et al., 2025b) (Section 5.1). We next analyze the practical stochastic variant with time-varying
stepsizes and momentum (Algorithm 1), proving convergence under bounded variance assumption
(Theorem 1). In both deterministic and stochastic regimes, our guarantees offer tighter convergence
rates under more general assumptions (Table 1), providing the first such results the in non-smooth
setting. Moreover, we provide the first theoretical explanation of the benefits of layer-wise learning
rates, clearly establishing the advantages of structured, anisotropic optimization in deep learning.

⋄ Empirical evidence. We validate our theoretical insights through extensive experiments (Section 5
and Appendix F) in both language modeling (NanoGPT on FineWeb) and image classification
(CNN on CIFAR-10). The results confirm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoretically prescribed stepsizes from Theorem 1.

4 MAIN THEORY AND RESULTS

To gain a better intuition into the structure of the updates, we begin with a deterministic formulation
of Gluon, formalized in Algorithm 2. At each iteration, the method independently minimizes a linear
approximation of f around each parameter group Xk

i within a ball of radius tki > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1 EXAMPLES OF OPTIMIZERS SATISFYING OUR FRAMEWORK

Deterministic Gluon describes a general class of methods, parameterized by the choice of norms
∥ · ∥(i) in the LMO. To illustrate the flexibility of this framework, we highlight several notable special
cases (see Appendix D.1 for more details). First, observe that the update rule (12) can be written as

Xk+1
i = Xk

i + tki LMO{Xi∈Si:∥Xi∥(i)≤1}
(
∇if(X

k)
)
= Xk

i + tki argmin
∥Xi∥(i)≤1

⟨∇if(X
k), Xi⟩(i). (5)

5
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For any Xi ∈ Si = Rmi×ni , define ∥Xi∥α→β := sup∥z∥α=1 ∥Xiz∥β , where ∥ · ∥α and ∥ · ∥β are
some (possibly non-Euclidean) norms on Rni and Rmi , respectively. Note that (5) naturally recovers
several known updates for specific choices of the layer norms, e.g., layer-wise normalized GD (Yu
et al., 2018) for Euclidean norms ∥ · ∥(i) = ∥ · ∥2, and layer-wise signGD (Balles et al., 2020) for
max-norms ∥ · ∥(i) = ∥ · ∥∞. Two special cases are particularly relevant to our analysis:

⋄ Muon (Jordan et al., 2024b) when ∥ · ∥(i) = ∥ · ∥2→2 for all hidden layers.

⋄ unScion for LLM training (Pethick et al., 2025b) when ∥ · ∥(i) =
√

ni/mi∥ · ∥2→2 for i =
1, . . . , p− 1, corresponding to weight matrices of transformer blocks, and ∥ · ∥(p) = np∥ · ∥1→∞ for
the last group Xp, representing the embedding and output layers (the two coincide under the weight
sharing regime5 considered here). In this case, update (5) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
,

(6)

where the matrices Uk
i , V

k
i are obtained from the (reduced) SVD of ∇if(X

k) = Uk
i Σ

k
i

(
V k
i

)⊤
.

4.2 CONVERGENCE RESULTS

Having demonstrated the framework’s flexibility through concrete examples, we now state a general
convergence result for deterministic Gluon.
Theorem 1. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic

Gluon (Algorithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then, to guarantee that

min
k=0,...,K−1

p∑
i=1

[
1/L1

i

1
p

∑p
j=1

1/L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (7)

it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i/(L1

i )
2
)

ε2
(

1
p

∑p
j=1

1/L1
j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1/L1
j

)
 (8)

iterations, where ∆0 := f(X0)− f inf .

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an additional result (Theorem 3) that modifies the
first term in (8) to 2∆0 ∑p

i=1 L0
i/ϵ2, potentially leading to improvements in certain settings (depending

on the relationship between the sequences {L0
i } and {L1

i }–see Remark 4). However, this introduces a
dependence on L1

max := maxi=1,...,p L
1
i in the second term. Empirically, we find that L0

i ≈ 0 across
all layers (see Section 5), making the first term vanish in both bounds. In this case, the rate (8) is
clearly superior, replacing the worst-case constant L1

max with the more favorable harmonic mean.

When p = 1, our rates match the best-known complexity for finding a stationary point of (L0, L1)-
smooth functions, O

(
L0∆0

/ϵ2 + L1∆0
/ϵ
)
, as established by Vankov et al. (2025) for the Gradient

Method. While no prior work has analyzed deterministic Gluon under general (L0, L1)-smoothness,
there exist analyses under classical L-smoothness, treating the parameters as a single vector. The
analysis by Kovalev (2025) guarantees convergence in K =

⌈
6L∆0

/ϵ2
⌉

iterations. The same bound
appears in Li & Hong (2025) and Pethick et al. (2025b) (by setting σ2 = 0). Since for p = 1,
L-smoothness implies Assumption 1 with L1 = 0 (Lemma 2), our rates match these prior results
up to a constant factor. Thus, even in the smooth setting, our bounds are as tight as those derived
specifically for it.

5Weight sharing refers to the practice of using the same parameters (weights) for different parts of a model,
rather than allowing each part to have its own unique parameters.
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However, the real strength of our guarantees lies in their broader applicability. Our analysis is
much more general than prior studies, as it extends beyond standard smoothness–allowing L1

i > 0
introduces additional terms that drive the accelerated convergence enabled by (L0, L1)-smoothness.
This richer model is essential for explaining the empirical speedup of methods like Muon, and much
more accurately reflects the geometry of neural network loss surfaces. Indeed, as we demonstrate in
Section 5, the assumption typically holds with L0

i ≈ 0 and L1
i > 0.

Practical radii tki . Unlike previous analyses (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b),
which prescribe impractically small constant radii proportional to ϵ, our framework allows tki to be
adaptive to the loss landscape. Therefore, tki can be larger early in training when ∥∇if(X

k)∥(i)⋆
is large and gradually shrink as the gradient norm decreases. In the special case when L0

i ≈ 0
(as observed empirically), tki ≈ 1/L1

i , which is substantially larger than the radii dictated by earlier
analyses. Crucially, as shown in Section 5.1, our adaptive stepsizes closely match those that yield state-
of-the-art empirical performance identified by Pethick et al. (2025b) through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven stepsize selection could substantially
reduce the need for costly manual tuning.

4.3 STOCHASTIC CASE

In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We
therefore turn to the practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates
with noisy gradient estimates available through a stochastic gradient oracle ∇fξ, ξ ∼ D.
Assumption 2. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
variance. That is, Eξ∼D[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists σ ≥ 0 such that
Eξ∼D

[
∥∇ifξ(X)−∇if(X)∥22

]
≤ σ2 for all X ∈ S, i = 1, . . . , p.

Note that the choice of norm in Assumption 2 is not restrictive: in finite-dimensional spaces, all
norms are equivalent, so variance bounds remain valid up to a constant factor when compared to
those based on any non-Euclidean norm. The following result establishes the convergence properties.
Theorem 2. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 1) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0). Then

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]
≲

∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

L1
i

+
L0
i

(L1
i )

2

]
, (9)

where ∆0 := f(X0)− f inf and the notation ≲ omits numerical constants and logarithmic factors.

For p = 1, our rate in (9) recovers the complexity for finding a stationary point of (L0, L1)-smooth
functions established by Hübler et al. (2024) for normalized SGD with momentum. When p ≥ 1,
compared to existing guarantees for Gluon, our Theorem 2 operates under the significantly more
general Assumption 1 and uniquely supports training with larger, non-constant stepsizes tki ∝ k−3/4.
In contrast, prior analyses prescribe constant, vanishingly small stepsizes tki ≡ ti ∝ K−3/4, tied to
the total number of iterations K (see Table 1).

5 EXPERIMENTS

Below, we highlight selected experimental results for the unScion optimizer, a special case of Gluon
(see Appendix D.1). Additional details and further experiments are provided in Appendix F.6

5.1 TRAINING NANOGPT ON FINEWEB

In the first set of experiments, we aim to verify layer-wise (L0, L1)-smoothness (Assumption 1). To
this end, we train the NanoGPT model with 124M parameters on the FineWeb dataset, leveraging
two open-source GitHub repositories (Jordan et al., 2024a; Pethick et al., 2025a). We use the unScion
optimizer, i.e., Gluon with the norm choices as in (6). We adopt the hyperparameters from Pethick
et al. (2025b, Table 7), mapping their values γ = 0.00036, ρ2 = 50, and ρ3 = 3000 into our notation
as follows: tki ≡ γρ2 = 0.018 for i = 1, . . . , p− 1 (corresponding to the transformer block layers),
and tkp ≡ γρ3 = 1.08 (token embeddings and output projections, due to weight sharing). We set
the number of warmdown iterations to 0 to keep the learning rates constant throughout training.

6Code for all experiments is available here.
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Figure 2: Validation of Assumption 1 for the 8th transformer block in NanoGPT-124M along
training trajectories of unScion.
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Figure 3: (a) Validation curves for AdamW and unScion with varying ρ3 values; (b) Heatmap of
validation loss from the last iteration of unScion across different combinations of ρ2 and ρ3.

The model is trained for 5,000 iterations in accordance with the Chinchilla scaling laws to ensure
compute-optimal training. In Figures 2, 5, 6, we plot the estimated trajectory smoothness as a function
of the iteration index k

L̂i[k] := ∥∇ifξk+1(Xk+1)−∇ifξk(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i) (10)

for parameter groups from the embedding layer and 4th and 8th transformer blocks (with similar
trends observed across all blocks). We compare this to the approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i ≥ 0 are fitted to minimize the Euclidean error between L̂i[k] and L̂approx

i [k], with
hinge-like penalty on underestimation (see Appendix F.2). The close alignment between these curves
implies that Assumption 1 is approximately satisfied along the training trajectories.

Effect of scaling factors. We next evaluate the impact of the learning rate scaling factors ρ2 and ρ3
on the performance of the unScion optimizer. For consistency, all other hyperparameters are fixed
as described earlier. As a baseline, we include results obtained with the AdamW optimizer, using
the hyperparameter settings from Section F.3.3. Figure 3 presents (a) validation curves for both
optimizers, with varying ρ3 in unScion, and (b) the final validation loss for unScion across different
combinations of ρ2 and ρ3. The best performance is achieved with ρ2 = 50 and ρ3 = 3000, i.e.,
tki = 0.018 for i = 1, . . . , p− 1 and tkp = 1.08.This supports the use of non-uniform scaling across
layers, with larger step sizes for the embedding layer.

Additional ablation studies. In Appendix F.3.2, we present an ablation study demonstrating that
specialized norms provide a better approximation of trajectory smoothness compared to the standard
Euclidean norm. Appendix F.3.3 demonstrates that the layer-wise (L0, L1)-smoothness model also
closely approximates trajectory smoothness during AdamW training. Notably, we observe a similar
gap between transformer and embedding layers as with Scion, suggesting that smoothness statistics
from AdamW training can guide per-layer learning rate tuning in Scion.
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5.2 TRAINING CNN ON CIFAR-10

In this experiment, we further validate layer-wise (L0, L1)-smoothness by training a CNN model on
the CIFAR-10 dataset, following implementations from two open-source GitHub repositories (Jor-
dan, 2024; Pethick et al., 2025a). The model is trained using the unScion optimizer (15) with full-batch
gradients ∇if , no momentum and no learning rate decay (results for the stochastic case are reported in
Appendix F.4). Other hyperparameters are as in Pethick et al. (2025b, Table 10), except that we train
for more epochs. Similar to the NanoGPT experiments discussed in Section 5.1, we plot the estimated
(non-stochastic) trajectory smoothness L̂i[k] := ∥∇if(X

k+1) −∇if(X
k)∥(i)⋆/∥Xk+1

i −Xk
i ∥(i)

alongside its approximation L̂approx
i [k] := L0

i + L1
i ∥∇if(X

k+1)∥(i)⋆ for selected parameter groups.
In this experiment, we consider a simplified variant of Assumption 1, setting L0

i = 0, and estimate
L1
i ≥ 0 using the same procedure as in Section 5.1. Figure 4 presents the results, demonstrating that

Assumption 1 is approximately satisfied along the training trajectory. When this condition holds
with L0

i = 0, Theorem 1 guarantees convergence under the stepsize choice tki ≡ ti = 1/L1
i . In this

setting, the estimated L1
i values (shown in Figure 4) are L1

i ≈ 3 for all parameter groups except
for the classification head weights Xp, where L1

p ≈ 0.03. This roughly two-orders-of-magnitude
difference justifies the much larger radius tkp used for the head weights in the tuned configuration
reported in Pethick et al. (2025b, Table 10).
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Figure 4: Validation of Assumption 1 for different groups of parameters in CNN along training
trajectories of unScion with full-batch gradients.

6 CONCLUSION AND FUTURE WORK

In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art
optimizers such as Muon and Scion as special cases. We develop a principled analytical framework
for layer-wise optimization based on a novel layer-wise (L0, L1)-smoothness assumption, which
captures the anisotropic structure of modern deep networks. This assumption enables sharper and
more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes that
closely match those found via finetuning. Our framework thus provides the first rigorous and
practically predictive analysis of modern layer-wise optimizers. Experiments confirm that the
assumption holds approximately throughout training, reinforcing its practical relevance. Together,
these results offer a refined foundation for structured optimization in deep learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important
directions for future research. Our analysis assumes exact LMO computations, whereas practical
implementations use approximations (Appendix F.1). Additionally, our stochastic guarantees (The-
orem 2) rely on the widely adopted bounded variance assumption, which may not hold in certain
scenarios, e.g., under subsampling (Khaled & Richtárik, 2020). Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically
in the stochastic regime (Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps–establishing
a realistic generalized smoothness model and aligning analysis with actual implementations–no single
work can exhaust the subject. The field remains open, with many fruitful directions left to pursue.
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A RELATED WORKS

Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz
continuous with a global constant L, often fails to accurately capture the complex geometry of
loss landscapes in deep learning (Crawshaw et al., 2022; Zhang et al., 2020). To address this,
Zhang et al. (2020) introduced the (L0, L1)-smoothness condition, empirically observing in language
model experiments that a bound of the form ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ better described the
Hessian norm behavior. Subsequent works have analyzed standard optimization algorithms under
this generalized smoothness framework. For instance, Gorbunov et al. (2025) and Vankov et al.
(2025) provided convergence analyses for the Gradient Method. Hübler et al. (2024) analyzed
Normalized SGD with momentum in a parameter-agnostic setting under (L0, L1)-smoothness. Yu
et al. (2025) proposed non-Euclidean generalized smoothness and established convergence rates
for mirror-descent-type methods. Our work extends this line by incorporating (L0, L1)-smoothness
into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models,
researchers have explored anisotropic smoothness conditions, where smoothness constants can vary
across different dimensions or parameter blocks. Early work in this direction includes coordinate-wise
Lipschitz continuity for coordinate descent methods (Nesterov, 2012; Richtárik & Takáč, 2014).
More recently, Bernstein et al. (2018) analyzed signSGD under a weaker notion of coordinate-wise
smoothness. Crawshaw et al. (2022) further developed this by analyzing Generalized signSGD
under a generalized coordinate-wise smoothness assumption, highlighting that different parameter
groups can exhibit vastly different geometries. Jiang et al. (2024) focused on Adagrad’s analysis
under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits
of adaptivity. Liu et al. (2024) proposed “Anisotropic (L0, L1)-smoothness” (a vector version of
(L0, L1)-smoothness applied coordinate-wise) and demonstrated Adagrad’s provable advantages
over SGD in this setting. Xie et al. (2024) also leveraged anisotropic smoothness concepts in their
convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise (L0, L1)-
smoothness, which combines the benefits of the generalized smoothness model with a structured,
anisotropic perspective tailored to the layer-block architecture of neural networks and compatible with
arbitrary layer-specific norms. This framework is essential for understanding LMO-based methods
like Muon and Scion.

LMO-based Optimizers. The optimizers Muon (Jordan et al., 2024b) and Scion (Pethick et al.,
2025b) represent a recent class of methods that have shown strong empirical performance in deep
learning. Muon was initially introduced as an effective empirical method, with its update rule for
hidden layers inspired by ideas from Bernstein & Newhouse (2024b). Subsequently, Pethick et al.
(2025b) (authors of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW)
framework (Frank & Wolfe, 1956; Jaggi, 2013), proposing the use of layer-specific norms within
an LMO-based update rule. These methods perform updates by solving, for each layer, a linear
minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of
these optimizers (Kovalev, 2025; Li & Hong, 2025; Pethick et al., 2025b) have relied on standard
L-smoothness and analyzed a simplified global update. Our work provides the first convergence
guarantees for these methods under the more realistic layer-wise (L0, L1)-smoothness, directly
addressing their practical layer-wise nature and leveraging the geometric insights offered by LMOs
over general norms.
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B AUXILIARY LEMMAS

Lemma 1. Let f : S 7→ R satisfy Assumption 1. Then, for any X,Y ∈ S, we have

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Proof. For all X,Y ∈ S we have

f(Y ) = f(X) +

∫ 1

0

⟨∇f(X + τ(Y −X)), Y −X⟩ dτ

= f(X) + ⟨∇f(X), Y −X⟩+
∫ 1

0

⟨∇f(X + τ(Y −X))−∇f(X), Y −X⟩ dτ.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩|

≤

∣∣∣∣∣
∫ 1

0

p∑
i=1

⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i) dτ

∣∣∣∣∣
≤

∫ 1

0

p∑
i=1

∣∣∣⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i)
∣∣∣ dτ

≤
∫ 1

0

p∑
i=1

∥∇if(X + τ(Y −X))−∇if(X)∥(i)⋆ ∥Yi −Xi∥(i)dτ

≤
∫ 1

0

p∑
i=1

τ
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Yi −Xi∥2(i)dτ

=

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

∥∇f(X)−∇f(Y )∥max ⋆ ≤ L ∥X − Y ∥max ,

where X = [X1, . . . , Xp] and Y = [Y1, . . . , Yp] with Xi, Yi ∈ Si. Then Assumption 1 holds with
L0
i ≤ L and L1

i = 0 for all i = 1, . . . , p.

Proof. L-smoothness and the definition of the norm give
p∑

i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ Lmax
{
∥X1 − Y1∥(1) , . . . , ∥Xp − Yp∥(p)

}
for all X,Y ∈ S. In particular, choosing X = [X1, . . . , Xp] and Y =
[X1, . . . , Xj−1, Yj , Xj+1, . . . Xp], we have

∥∇jf(X)−∇jf(Y )∥(j)⋆ ≤
p∑

i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ L ∥Xj − Yj∥(j)

for any j ∈ {1, . . . , p}, proving the claim.

Lemma 3. Suppose that x1, . . . , xp, y1, . . . , yp ∈ R, maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.
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Proof. Cauchy-Schwarz inequality gives(
p∑

i=1

xiyi

)2

=

(
p∑

i=1

yi√
zi

√
zixi

)2

≤

(
p∑

i=1

y2i
zi

)(
p∑

i=1

zix
2
i

)
.

Rearranging, we obtain the result.

Lemma 4 (Technical Lemma 10 by Hübler et al. (2024)). Let q ∈ (0, 1), p ≥ 0, and p ≥ q. Further,
let a, b ∈ N≥2 with a ≤ b. Then

b−1∑
k=a−1

(1 + k)−p
k∏

τ=a−1

(
1− (τ + 1)−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
.

Lemma 5 (Technical Lemma 11 by Hübler et al. (2024)). Let t > 0 and for k ∈ N≥0, set βk =

1− (k + 1)−1/2, tk = t(k + 1)−3/4, t > 0. Then, for all K ∈ N≥1 the following inequalities hold:

(i)
∑K−1

k=0 tk
√∑k

τ=0(1− βτ )2
∏k

κ=τ+1(β
κ)2 ≤ t

(
7
2 +

√
2e2 log(K)

)
,

(ii)
∑K−1

k=0 tk
∑k

τ=1 t
τ
∏k

κ=τ β
κ ≤ 7t2 (3 + log(K)).

Proof. This is a direct consequence of Lemma 11 by Hübler et al. (2024). To obtain (ii), it suffices to
take the limit as L1 → 0 in statement (ii) of part (b).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C REMARKS ON THE THEORETICAL RESULTS

C.1 NOTE ON RADII AND STEPSIZES

It is known (see, e.g., Gruntkowska et al. (2025, Theorem D.1), who establish this for S = Rd under
Euclidean norms; the extension to general normed vector spaces is entirely analogous) that if g is a
convex function, then the solution to the problem

argmin
X∈Bk

g(X)

lies on the boundary of the ball Bk := {X ∈ S : ∥X−Xk∥ ≤ tk} (unless Bk∩argminX∈S g(X) ̸=
∅, that is, the ball intersects the set of minimizers of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (1), since the
objective ⟨Mk

i , Xi⟩(i) is linear in Xi, and hence convex. In other words, each LMO step moves the
iterate from the center of the ball Xk

i to a new point Xk+1
i located on the boundary of Bk

i , effectively
traversing a distance of tki at each step. For this reason, we use the terms radius, stepsize, and learning
rate interchangeably.

C.2 NOTE ON PRIOR ANALYSES

As presented, prior convergence results do not directly apply to the algorithms used in practice.
However, there is a workaround. Specifically, some of the existing convergence guarantees (Kovalev,
2025; Pethick et al., 2025b) expressed in terms of the flat vector x are transferable to the structured
parameters X = [X1, . . . , Xl] ∈ S by employing the max-norm (Bernstein & Newhouse, 2024a;
Large et al., 2024), defined as

∥X∥max := max
{
∥X1∥(1) , . . . , ∥Xp∥(p)

}
, (11)

with corresponding dual norm ∥Y ∥max ⋆ = sup∥X∥max≤1⟨X,Y ⟩ =
∑p

i=1 ∥Yi∥(i)⋆. Nevertheless,
these works do not make this connection explicit, and an additional layer of analysis is required to
ensure the guarantees meaningfully extend to the structured practical setting. Even if such a translation
was attempted, the global treatment introduces serious practical limitations. For example, real-world
training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous structure of deep
networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.
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Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p ] ∈ S

2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Choose adaptive stepsize/radius tki > 0 for layer i
5: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
∇if(X

k)
)
:= argmin

Xi∈Bk
i

⟨∇if(X
k), Xi⟩(i) (12)

6: end for
7: Update full vector: Xk+1 = [Xk+1

1 , . . . , Xk+1
p ]

8: end for

D DETERMINISTIC CASE

We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We
first review several existing algorithms that fall within this framework (Appendix D.1), followed by a
proof of Theorem 1 (Appendix D.2). Finally, we present an additional convergence guarantee under
the layer-wise Polyak-Łojasiewicz (PŁ) condition (Appendix D.3).

D.1 SPECIAL CASES OF THE LMO FRAMEWORK

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameter-
ized by the choice of norms ∥ · ∥(i) in the LMO. We now provide a more detailed discussion of the
most notable special cases.

Layer-wise normalized GD (Yu et al., 2018). Let ∥ · ∥(i) = ∥ · ∥2→2 for each parameter group
and assume that ni = 1 for all i = 1, . . . , p. In this case, the spectral norm reduces to the standard
Euclidean norm ∥ · ∥2, yielding the update rule

Xk+1
i = Xk

i − tki
∇if(X

k)

∥∇if(Xk)∥2
, i = 1, . . . , p,

which corresponds to layer-wise normalized GD. With a suitable choice of tki (see Theorem 1), the
method can also recover the Gradient Method for (L0, L1)-smooth functions (Vankov et al., 2025).

Layer-wise signGD (Balles et al., 2020). Suppose that ∥ · ∥(i) = ∥ · ∥1→∞ for each parameter
group, with ni = 1 for all i = 1, . . . , p. Then, ∥ · ∥1→∞ reduces to ∥ · ∥∞, and the update becomes

Xk+1
i = Xk

i − tki sign
(
∇if(X

k)
)
, i = 1, . . . , p,

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon (Jordan et al., 2024b). Here, the spectral norm ∥ · ∥2→2 is used for all parameter groups,
without restrictions on ni. In this case, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki U
k
i

(
V k
i

)⊤
, i = 1, . . . , p, (13)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition (Bernstein & Newhouse,

2024b). This is exactly the per-layer deterministic version of the Muon optimizer. In practical LLM
training, a more general variant of (13) incorporating stochasticity and momentum is applied to the
intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion (Pethick et al., 2025b). We can also recover two variants of unScion
introduced by Pethick et al. (2025b): one for training LLMs on next-token prediction, and another for
training CNNs for image classification.

• Training LLMs. Define the norms ∥ · ∥(i) as follows: for i = 1, . . . , p− 1, corresponding
to weight matrices of transformer blocks, set ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, and for the last
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group Xp, representing the embedding and output layers (which coincide under the weight
sharing regime considered here), let ∥ · ∥(p) = np∥ · ∥1→∞. In this case, (12) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
,

(14)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This is equivalent to

deterministic layer-wise unScion optimizer without momentum. A more general variant,
incorporating stochasticity and momentum and applied to all layers, was shown by Pethick
et al. (2025b) to outperform Muon on LLM training tasks.

• Training CNNs. The main difference in the CNN setting is the presence of not only 2D
weight matrices, but also 1D bias vectors and 4D convolutional kernels parameters. Biases
are 1D tensors of shape RCout

i , for which we use scaled Euclidean norms. Convolutional
parameters (conv) are 4D tensors with shapes RCout

i ×Cin
i ×k×k, where Cout

i and Cin
i denote

the number of output and input channels, and k is the kernel size. To compute norms, we
reshape each 4D tensor to a 2D matrix of shape RCout

i ×Cin
i k2

, and then apply a scaled
∥ · ∥2→2 norm. This yields the norm choices ∥ · ∥(i) =

√
1/Cout

i ∥ · ∥2 for biases, ∥ · ∥(i) =
k2
√

Cin
i /Cout

i ∥ · ∥2→2 for conv, and ∥ · ∥(p) = np∥ · ∥1→∞ for the last group Xp, associated
with classification head weights. Then, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki

√
Cout

i

∇if(X
k)

∥∇if(Xk)∥2
, (for biases),

Xk+1
i = Xk

i − tki
1

k2

√
Cout

i

Cin
i

Uk
i

(
V k
i

)⊤
, (for conv),

Xk+1
p = Xk

p −
tkp
np

sign
(
∇pf(X

k)
)
, (for head)

(15)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This corresponds to

the deterministic layer-wise unScion optimizer without momentum.

D.2 PROOF OF THEOREM 1

We now state and prove a generalization of Theorem 1.
Theorem 3. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic

Gluon (Algorithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2∆0

∑p
i=1 L

0
i

ϵ2
+

2∆0L1
max

ϵ

⌉
(16)

iterations;

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε, (17)
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it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i

(L1
i )

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)
 (18)

iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Remark 4. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component
norms in (17), the rates are not exactly equivalent. Nevertheless, both use weights that sum to p,
ensuring a fair comparison. Obviously, (1/p

∑p
j=1

1/L1
j)

−1 ≤ L1
max, so the second term in (18) is

always no worse than its counterpart in (16). The comparison of the first terms, however, depends
on how the sequences {L0

i } and {L1
i } relate: if larger values of L0

i s tend to be attached to smaller
values of L1

i , then the first term in (16) improves over that in (18), while for a positive correlation the
opposite is true. Indeed, in the extreme case when L0

1 ≥ . . . ≥ L0
p and L1

1 ≤ . . . ≤ L1
p (or the reverse

ordering), Chebyshev’s sum inequality implies that
p∑

i=1

L0
i

(L1
i )

2(
1
p

p∑
j=1

1
L1

j

)2 ≥

(
1
p

p∑
i=1

L0
i

L1
i

)(
1
p

p∑
i=1

1
L1

i

)
1
p

(
1
p

p∑
j=1

1
L1

j

)2 ≥

(
1
p

p∑
i=1

L0
i

)(
1
p

p∑
i=1

1
L1

i

)
1
p

(
1
p

p∑
j=1

1
L1

j

) =

p∑
i=1

L0
i .

Conversely, if both sequences {L0
i } and {L1

i } are sorted in the same order (either increasing or
decreasing), the inequality reverses, and the first term of (18) may be tighter. That said, empirical
evidence we provide in Section 5 indicates that in practice L0

i ≈ 0 across all layers, in which case the
first terms in (16) and (18) effectively vanish. Then, (18) is clearly superior, replacing the worst-case
constant L1

max by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = Xk and Y = Xk+1

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (12) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇if(X

k),LMOBk
i

(
∇if(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇if(X

k), Xi

〉
(i)

= −tki ∥∇if(X
k)∥(i)⋆.

Consequently,

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

.

Now, choosing

tki =
∥∇if(X

k)∥(i)⋆
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
,
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which minimizes the right-hand side of the last inequality, yields the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) . (19)

Summing the terms, we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) ≤

K−1∑
k=0

(
f(Xk)− f(Xk+1)

)
= f(X0)− f(XK)

≤ f(X0)− inf
X∈S

f(X) =: ∆0.

(20)

Now, the analysis can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (20), we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ≤ ∆0. (21)

Now, applying Lemma 3 with xi = 1, yi = ∥∇if(X
k)∥(i)⋆ and zi =

2
(
L0
i + L1

max

∥∥∇if(X
k)
∥∥
(i)⋆

)
gives

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
=

(∑p
i=1 ∥∇if(X

k)∥(i)⋆
)2

2
(∑p

i=1 L
0
i + L1

max

∑p
i=1 ∥∇if(Xk)∥(i)⋆

)
≤

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Combining the last inequality with (21) and using the

fact that ϕ is increasing, we obtain

Kϕ

(
min

k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆

)
≤

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0, (22)

and hence

min
k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆ ≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 is the inverse function (which exists since ϕ is increasing). Therefore, to reach the
precision mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ, it is sufficient to choose the number
of iterations to be

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2
∑p

i=1 L
0
i∆

0

ϵ2
+

2L1
max∆

0

ϵ

⌉
.

2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with xi = 1/L1
i ,

yi =
∥∥∇if(X

k)
∥∥
(i)⋆

and zi = 2(L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

) to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
)

≥
K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
1

(L1
i )

2

(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
))
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=

K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
L0

i

(L1
i )

2 +
∑p

i=1
1
L1

i
∥∇if(Xk)∥(i)⋆

)
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

where ψ(t) := t2

2

(∑p
i=1

L0
i

(L1
i
)2

+t

) . Since the function ψ is increasing for t > 0, ψ−1 exists.

It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))
 =


2∆0

(∑p
i=1

L0
i

(L1
i )

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.

D.3 CONVERGENCE UNDER THE PŁ CONDITION

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PŁ) condition, intro-
duced in Assumption 3. This property is especially relevant for heavily over-parameterized neural
networks, as it has been shown to capture the properties of their loss landscapes (Liu et al., 2022).
Assumption 3 (Layer-wise Polyak-Łojasiewicz condition). The function f : S 7→ R satisfies the
layer-wise Polyak-Łojasiewicz (PŁ) condition with a constant µ > 0, i.e., for any X ∈ S

p∑
i=1

∥∇if(X)∥2(i)⋆ ≥ 2µ (f(X)− f⋆) ,

where f⋆ := infX∈S f(X) > −∞.

Assumption 3 reduces to the standard PŁ condition (Karimi et al., 2020) by vectorizing the parameters
and adopting the Euclidean norm ∥ · ∥2.
Theorem 5. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of

deterministic Gluon (Algorithm 2) run with tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
.

1. If L1
i ≥ 0, then to reach the precision mink=0,...,K−1 f(X

k)− f⋆ ≤ ϵ, it suffices to run the
algorithm for

K =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
iterations,
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2. If L1
i = 0 for all i = 1, . . . , p, then to reach the precision f(XK) − f⋆ ≤ ϵ, it suffices to

run the algorithm for

K =

⌈
L0
max

µ
log

∆0

ϵ

⌉
,

where L0
max := maxi=1,...,p L

0
i , L1

max := maxi=1,...,p L
1
i , ∆0 := f(X0) − f⋆ and f⋆ :=

infX∈S f(X).

Proof. We consider two scenarios: (1) the general case with arbitrary L1
i ≥ 0 and (2) L1

i = 0 for all
i = 1, . . . , p.

Case 1: L1
i ≥ 0. We start by following the same steps as in the proof of Theorem 1. From (22), we

have

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Now, using Assumption 3, we get(

p∑
i=1

∥∇if(X
k)∥(i)⋆

)2

≥
p∑

i=1

∥∇if(X
k)∥2(i)⋆ ≥ 2µ

(
f(Xk)− f⋆

)
.

Consequently, since ϕ is an increasing function,

Kϕ

(√
2µ
√
f(Xk⋆)− f⋆

)
≤

K−1∑
k=0

ϕ

(√
2µ
√
f(Xk)− f⋆

)

≤
K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where k⋆ := argmink=0,...,K−1 f(X
k)− f⋆. Denoting the corresponding inverse function (which

exists since ϕ is increasing) by ϕ−1, it follows that√
2µ
√
f(Xk⋆)− f⋆ ≤ ϕ−1

(
∆0

K

)
≤
√
2µϵ.

Therefore, to reach the precision f(Xk⋆

)− f⋆ ≤ ϵ, it is sufficient to choose the number of iterations

K =

⌈
∆0

ϕ
(√

2µϵ
)⌉ =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
.

Case 2: L1
i = 0. Inequality (19) from the proof of Theorem 1 with L1

i = 0 gives

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

.

Using the fact that
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

≥ min
j=1,...,p

1

2L0
j

p∑
i=1

∥∇if(X
k)∥2(i)⋆ =

1

2maxj=1,...,p L0
j

p∑
i=1

∥∇f(Xk)∥2(i)⋆

along with Assumption 3, we obtain

f(Xk+1) ≤ f(Xk)− µ

L0
max

(
f(Xk)− f⋆

)
.

The remaining part of the proof follows from the simple observation

log

(
∆0

ϵ

)
≤ k

µ

L0
max

≤ k log

(
1

1− µ
L0

max

)
.
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E STOCHASTIC CASE

E.1 ADAPTIVE STEPSIZES

Before proving the main result from Section 4.3, we first present an attempt to formulate an adaptive
stepsize strategy for the stochastic setting. This requires the following assumption:
Assumption 4. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded
relative variance. That is, E[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists 0 ≤ ζ < 1 such that

∥∇ifξ(X)−∇if(X)∥(i)⋆ ≤ ζ∥∇ifξ(X)∥(i)⋆, i = 1, . . . , p

holds almost surely for all X ∈ S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on
the right-hand side of the inequality. It does not follow from standard conditions and does not
fall within known frameworks for modeling stochasticity, such as the ABC inequality of Khaled &
Richtárik (2020). Instead, it introduces a novel structure with parallels to the literature on contractive
compression (Beznosikov et al., 2023; Demidovich et al., 2023).

To elaborate, recall the definition of a contractive compressor:
Definition 6 (Contractive compressor). A stochastic mapping C : S → S is called a contractive
compressor if there exists α ∈ [0, 1) such that

E
[
∥C(X)−X∥2

]
≤ (1− α)∥X∥2 (23)

for any X ∈ S.

There is a conceptual similarity between Assumption 4 and the contractive property in (23). As-
sumption 4 can be interpreted as asserting that the true gradient ∇f(X) is effectively a contraction
of the stochastic gradient ∇fξ(X), with contraction factor 1− ζ. Unlike contractive compressors,
there is no explicit mapping from ∇fξ(X) to ∇f(X), and the uniform bound implies the same
contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using
an adaptive stepsize strategy similar to the one employed in the deterministic case in Theorem 3.
Theorem 7. Let Assumptions 1 and 4 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon

(Algorithm 1) run with βk = 0 and tki =
(1−ζ)∥∇ifξk (X

k)∥(i)⋆

L0
i+(1+ζ)L1

i ∥∇ifξk (X
k)∥(i)⋆

. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2
∑p

i=1 L
0
i∆

0

(1− ζ)
2
ϵ2

+
2(1 + ζ)L1

max∆
0

(1− ζ)
2
ϵ

⌉
iterations.

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =


2∆0

∑p
i=1

L0
i

(L1
i )

2

ε2(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

ε(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)


iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .
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Proof. Lemma 1 with X = Xk and Y = Xk+1 gives

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[ 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−∇ifξk(X
k), Xk+1

i −Xk
i

〉
(i)

]
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i),

and applying the Cauchy-Schwarz inequality, we get

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[ 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (1) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇ifξk(X

k),LMOBk
i

(
∇ifξk(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇ifξk(X

k), Xi

〉
(i)

= −tki ∥∇ifξk(X
k)∥(i)⋆.

Consequently, using Assumption 4, we obtain

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
− tki ∥∇ifξk(X

k)∥(i)⋆ + tki ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2 ]

≤ f(Xk) +

p∑
i=1

[
− (1− ζ)tki ∥∇ifξk(X

k)∥(i)⋆

+
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

2

(
tki
)2 ]

.

Minimizing the right-hand side of the last inequality with respect to tki yields

tki =
(1− ζ)∥∇ifξk(X

k)∥(i)⋆
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
.

This greedy approach for choosing tki gives the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

(1− ζ)2∥∇ifξk(X
k)∥2(i)⋆

2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
) .

25
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Taking expectations, we have

E[f(Xk+1)] ≤ E[f(Xk)]−
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)] . (24)

Now, let us define the function ϕi(t) :=
(1−ζ)2t2

2(L0
i+(1+ζ)L1

i t)
. Since ϕi(t) is convex, Jensen’s inequality

gives

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)]

≥
p∑

i=1

(1− ζ)2
(
E
[
∥∇ifξk(X

k)∥(i)⋆
])2

2
(
L0
i + (1 + ζ)L1

iE
[
∥∇ifξk(Xk)∥(i)⋆

]) .
By Jensen’s inequality and Assumption 4

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
= E

[∥∥E [∇ifξk(X
k)
∣∣Xk

]∥∥
(i)⋆

]
≤ E

[
E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

∣∣∣Xk
]]

= E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

]
,

and hence, using the fact that ϕi is increasing, we get

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) .
Summing the terms gives

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) ≤
K−1∑
k=0

(
E[f(Xk)]− E[f(Xk+1)]

)
= E[f(X0)]− E[f(XK)]

≤ f(X0)− inf
X∈S

f(X) =: ∆0,

(25)

The remaining part of the proof closely follows the proof of Theorem 3. We can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (25), we obtain

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

]) ≤ ∆0. (26)

Now, Lemma 3 with xi = 1, yi = (1 − ζ)E
[
∥∇if(X

k)∥(i)⋆
]

and zi =

2
(
L0
i + (1 + ζ)L1

maxE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
gives

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

=

(
(1− ζ)

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
])2

2
∑p

i=1

(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
≤

p∑
i=1

(1− ζ)2E
[
∥∇if(X

k)∥(i)⋆
]2

2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
where ϕ(t) := (1−ζ)2t2

2(
∑p

i=1 L0
i+(1+ζ)L1

maxt)
. Combining the last inequality with (26) and using

the fact that ϕ is increasing, we get

Kϕ

(
min

k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤
K−1∑
k=0

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤ ∆0.
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and hence

min
k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
]
≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 denotes the inverse function (which exists since ϕ is increasing). Therefore,
to reach the precision mink=0,...,K−1

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
]
≤ ϵ, it suffices to run the

algorithm for

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2∆0

∑p
i=1 L

0
i

(1− ζ)2ϵ2
+

2∆0(1 + ζ)L1
max

(1− ζ)2ϵ

⌉
iterations.

2. Alternatively, we can start from inequality (25) and apply Lemma 3 with xi = 1/L1
i ,

yi = (1 − ζ)E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
and zi = 2

(
L0
i + (1 + ζ)L1

iE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
to

obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

(1− ζ)2E
[∥∥∇if(X

k)
∥∥
(i)⋆

]2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

])
≥

K−1∑
k=0

(∑p
i=1

1
L1

i
(1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

])2
2
∑p

i=1

(
L0

i

(L1
i )

2 + (1 + ζ) 1
L1

i
E
[
∥∇if(Xk)∥(i)⋆

])
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

where ψ(t) := (1−ζ)2t2

2

(∑p
i=1

L0
i

(L1
i
)2

+(1+ζ)t

) . Since the function ψ is increasing for t > 0, ψ−1

exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))


=


2∆0

∑p
i=1

L0
i

(L1
i )

2

(1− ζ)2ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

(1− ζ)2ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.
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E.2 PROOF OF THEOREM 2
We now establish the main result of Section 4.3. The guarantees in Theorem 2 follow from the
more general result below. Here, ρi > 0 for i ∈ [p] denote the norm equivalence constants, i.e.,
∥Xi∥(i)⋆ ≤ ρi ∥Xi∥2 for all Xi ∈ Si.
Theorem 8. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of
Gluon (Algorithm 1) run with βk = 1 − (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and
M0

i = ∇ifξ0(X
0).

1. If L1
i = 0, then

min
k=0,...,K−1

p∑
i=1

tiE
[
∥∇if(X

k)∥(i)⋆
]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
,

2. If L1
i ̸= 0, then for ti = 1

12L1
i

, we have

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρi
6L1

i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i )

2
(87 + 28 log(K))

]
,

where ∆0 := f(X0)− infX∈S f(X).

Proof. We again start with the result in Lemma 1 with X = Xk and Y = Xk+1, obtaining

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[ 〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−Mk
i , X

k+1
i −Xk

i

〉
(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Applying the Cauchy-Schwarz inequality, we have

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[ 〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−Mk

i ∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Now, the update rule (1) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and〈
Mk

i , X
k+1
i −Xk

i

〉
=
〈
Mk

i ,LMOBk
i

(
Mk

i

)
−Xk

i

〉
= −tki max

∥Xi∥(i)≤1

〈
Mk

i , Xi

〉
= −tki ∥Mk

i ∥(i)⋆.
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Consequently,

f(Xk+1)

≤ f(Xk) +

p∑
i=1

[
−tki ∥Mk

i ∥(i)⋆ + tki ∥∇if(X
k)−Mk

i ∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

= f(Xk) +

p∑
i=1

[
− tki ∥Mk

i −∇if(X
k) +∇if(X

k)∥(i)⋆ + tki ∥Mk
i −∇if(X

k)∥(i)⋆

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2

≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ + 2tki ∥Mk
i −∇if(X

k)∥(i)⋆
]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2
.

Taking expectations, we obtain

E[f(Xk+1)] ≤ E[f(Xk)] +

p∑
i=1

[
− tki E[∥∇if(X

k)∥(i)⋆] + 2tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
+
L0
i + L1

iE[∥∇if(X
k)∥(i)⋆]

2

(
tki
)2 ]

.

Telescoping the last inequality gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2

K−1∑
k=0

tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
(27)

+

K−1∑
k=0

L0
i

2

(
tki
)2

+

K−1∑
k=0

L1
i

2
E[∥∇if(X

k)∥(i)⋆]
(
tki
)2 ]

,

where ∆0 := f(X0)− infX∈S f(X).

Now, inspired by the analysis in Hübler et al. (2024), we introduce the following notation: µk
i :=

Mk
i − ∇if(X

k), γki := ∇ifξk(X
k) − ∇if(X

k), αk = 1 − βk, βa:b :=
∏b

k=a β
k and Sk

i :=

∇if(X
k−1)−∇if(X

k). Then, we can rewrite the algorithm’s momentum update rule as

Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k)

= βk
(
µk−1
i +∇if(X

k−1)
)
+ (1− βk)

(
γki +∇if(X

k)
)

= ∇if
(
Xk
)
+ αkγki + βkSk

i + βkµk−1
i .

This yields

µk
i =Mk

i −∇if
(
Xk
)

= αkγki + βkSk
i + βkµk−1

i

=

k∑
τ=1

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i + β1:kµ0

i

=

k∑
τ=0

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i ,
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where the last line follows from the fact that M0
i = ∇ifξ0(X

0) and β0 = 0. Thus,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
= E

[∥∥µk
i

∥∥
(i)⋆

]
≤ E

∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
(i)⋆

+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

≤ ρiE

[∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
2

]
+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

≤ ρi

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2 E [∥γτi ∥22]+ k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]
,

where in the last line we used Jensen’s inequality and the fact that for all q < l

E
[
(γli)

⊤γqi
]
= E

[
E
[
(γli)

⊤γqi | X l
i

]]
= E

[
E
[
γli | X l

i

]⊤
γqi

]
= E

[(
E
[
∇ifξl(X

l)−∇if(X
l) | X l

i

])⊤
γqi

]
= 0.

Using Assumptions 1 and 2, we get

E
[
∥γτi ∥

2
2

]
= E

[
E
[
∥γτi ∥

2
2 | Xτ

i

]
︸ ︷︷ ︸

≤σ2

]
≤ σ2

and

∥Sτ
i ∥(i)⋆ ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
∥Xτ+1

i −Xτ
i ∥(i) ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
tτi .

Therefore,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
≤ σρi

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
+ L0

i

k∑
τ=1

βτ :ktτi

+L1
i

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]
.

Combining the last inequality with (27) gives
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0 +

p∑
i=1

[
2σρi

K−1∑
k=0

tki

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
︸ ︷︷ ︸

=:I1

+2L0
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi︸ ︷︷ ︸
=:I2

+ 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

︸ ︷︷ ︸
=:I3

+
L0
i

2

K−1∑
k=0

(
tki
)2

︸ ︷︷ ︸
=:I4

+
L1
i

2

K−1∑
k=0

(
tki
)2 E [∥∇if(X

k)∥(i)⋆
] ]
. (28)

Let us now upper-bound each term Ii, i = 1, 2, 3, 4.
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I1: using Lemma 5, we obtain

I1 ≤ σρiti

(
7 + 2

√
2e2 log(K)

)
.

I2: using Lemma 5, we obtain

I2 ≤ 14L0
i t

2
i (3 + log(K)) .

I3: rearranging the sums and using Lemma 4 with a = τ +1, b = K, p = 3/4 and q = 1/2, we have

I3 = 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi

(
K−1∑
k=τ

tki β
τ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi ti

(
K−1∑
k=τ

(k + 1)−3/4βτ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2L1
i

K−1∑
τ=1

tτi tiτ
−1/4 e2((τ+1)1/2−τ1/2)︸ ︷︷ ︸

≤e2(
√

2−1) for τ≥1

E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
τ=1

tτi tiτ
−1/4E

[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]
.

I4:

I4 =
L0
i

2

K−1∑
k=0

(
tki
)2 ≤ L0

i

2

∞∑
k=0

(
tki
)2

=
L0
i

2
t2i

∞∑
k=0

(1 + k)−3/2

≤ L0
i

2
t2i

(
1 +

∫ ∞

1

1

z3/2
dz

)
=

3L0
i

2
t2i .

Combining the upper-bounds for Ii, i = 1, 2, 3, 4 with (28) gives
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i (3 + log(K))

+ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]

+
3L0

i

2
t2i +

L1
i

2

K−1∑
k=0

(
tki
)2 E[∥∇if(X

k)∥(i)⋆]

]
.

Using the fact that tki = ti(1 + k)−3/4 ≤ ti, and denoting C := 2e2(
√
2−1) + 1

2 ≤ 5.1, we get
p∑

i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)

+ CL1
i ti

K−1∑
k=0

tki E
[
∥∇if(X

k)∥(i)⋆
] ]
.

Now, let us consider two options: (1) L1
i = 0 for all i ∈ {1, . . . , p} and (2) L1

i ̸= 0, for all
i ∈ {1, . . . , p}.
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Case 1: L1
i = 0, i = 1, . . . , p. In this case,

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)]
,

and therefore,

min
k=0,...,K−1

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

K−1∑
k=0

p∑
i=1

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
.

Case 2: L1
i ̸= 0, i = 1, . . . , p. Let us choose ti = 1

12L1
i

. Then

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ 2∆0 +

p∑
i=1

[
2σρiti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i (87 + 28 log(K))

]
,

and hence

min
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p∑
i=1

1

12L1
i
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=
1
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tki E[∥∇if(X
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1
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σρi
6L1

i

(
7 + 2

√
2e2 log(K)
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+
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144(L1
i )
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(87 + 28 log(K))

]
.
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F ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

F.1 EXPERIMENTAL DETAILS

All experiments for the NanoGPT model are conducted using PyTorch7 with Distributed Data Parallel
(DDP)8 across 4 NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed
on a single NVIDIA A100 GPU (40GB). The training and evaluation pipelines are implemented
using open-source codebases (Jordan, 2024; Jordan et al., 2024a; Pethick et al., 2025a), with all
modifications clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an
analytical solution is unavailable (e.g., for SVD-type updates), following the approach proposed by
Jordan et al. (2024b). This method provides a computationally efficient approximation of the required
orthogonalization while preserving the convergence behavior of the overall algorithm.

F.2 FITTING L0
i AND L1

i

To minimize the Euclidean error between the true value L̂i[k] and its approximation L̂approx
i [k], while

penalizing underestimation, we incorporate a hinge-like penalty term. Specifically, we fit L0
i and L1

i
by minimizing the loss function

Li

(
L0
i , L

1
i

)
:=

K−1∑
k=0

(
L̂i[k]− L̂approx

i [k]
)2

+ λ

K−1∑
k=0

max
(
0, L̂i[k]− L̂approx

i [k]
)2
. (29)

The first term of Li captures the standard Euclidean (squared) error, while the second term introduces
an additional penalty proportional to the amount of underestimation (i.e., when L̂i[k] > L̂approx

i [k]).
The hyperparameter λ ≥ 0 controls the strength of this penalty.

F.3 TRAINING NANOGPT ON FINEWEB.

In this section, we present additional results and experimental details for the experiment described in
the main text, which involves training a NanoGPT model on the FineWeb dataset using the unScion
optimizer.

F.3.1 EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at
empirically validating Assumption 1. We plot the estimated trajectory smoothness

L̂i[k] :=
∥∇ifξk+1(Xk+1)−∇ifξk(X

k)∥(i)⋆
∥Xk+1

i −Xk
i ∥(i)

and its approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆

as functions of the iteration index k, where L0
i , L

1
i ≥ 0 are fitted using the procedure described in

Appendix F.2.

Figures 5, 6, and 7 show results for parameter groups from the embedding layer and from the 4th
and 8th transformer blocks. Similar patterns are observed across all layers. In each case, we see a
strong agreement between L̂i[k] and L̂approx

i [k], suggesting that Assumption 1 holds approximately
along the optimization trajectory.

7PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
8Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/

notes/ddp.html
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Figure 5: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the embedding layer
of NanoGPT-124M along unScion training trajectories. The group norm is ∥ · ∥(p) = np∥ · ∥1→∞, with fitted
values L0

p ≈ 0, L1
p ≈ 1.3. The same plot is shown twice with different y-axis limits.
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Figure 6: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 4th transformer
block of NanoGPT-124M along unScion training trajectories. The group norms are ∥ ·∥(i) =

√
ni/mi∥ ·∥2→2,

with fitted values L0
i ≈ 0, L1

i ≈ 70.
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Figure 7: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 8th
transformer block of NanoGPT-124M along unScion training trajectories. The group norms are
∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values L0

i ≈ 0, L1
i ≈ 70.

F.3.2 GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L0, L1)-smoothness assumption is satisfied
under the standard Euclidean norms ∥ · ∥2 for each parameter block, as opposed to the specialized
norms described in (14). We adopt the same training setup as in Section 5.1, plotting the estimated
trajectory smoothness L̂i and its approximation L̂approx

i along the training trajectories across several
parameter groups. Unlike previous sections, here we do not penalize instances where L̂i > L̂approx

i
in order to find the best approximation (i.e., λ = 0 in (29)). Additionally, when using the standard
Euclidean norm ∥ · ∥2 for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSErel
i , denoted

MSE rel in the figures), defined as

MSErel
i :=

1

K

K∑
i=1

(
L̂i[k]− L̂approx

i [k]

L̂i[k]

)2

,

where a lower value indicates a better fit.

As shown in Figures 8 and 9, both visually and in terms of MSErel
i , using specialized norms for

each group of parameters provides a better approximation than the standard Euclidean norm ∥ · ∥2.
Notably, the relative mean squared error MSErel

i is consistently an order of magnitude lower under
specialized norms.
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Figure 8: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M
along training trajectories of unScion using the specialized norm choices defined in (14).
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Figure 9: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M
along training trajectories of unScion using the standard Euclidean norm ∥ · ∥2.

F.3.3 LEARNING RATE TRANSFER FROM ADAMW
We now aim to verify layer-wise (L0, L1)-smoothness following the approach used in Section 5.1,
but employing the AdamW optimizer. We use hyperparameters specified in Pethick et al. (2025b,
Table 7). In Figure 10, we present the results for the estimated trajectory smoothness L̂i and its
approximation L̂approx

i across several parameter groups along the training trajectories. Notably, for
the group of parameters from the embedding layer Xp (the last plot in Figure 10), the fitted value
of L1

p is approximately 20–30 times smaller than in other groups. Since in all plots we observe that
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L0
i ≪ L1

i ∥∇ifξk(X
k)∥(i)⋆, Theorem 1 implies that tki ≈ 1/Lk

i . Thus, tkp should be 20–30 times
larger than tki for i = 1, . . . , p− 1, which is consistent with the tuned parameters from Pethick et al.
(2025b, Table 7).

This insight provides an efficient and principled method for initializing learning rates in Scion.
Smoothness statistics collected during standard AdamW training (which is commonly used for
training LLMs) can serve as a strong prior, allowing practitioners to directly incorporate structure-
aware choices, such as larger stepsizes for embedding layers, into their tuning process. Importantly,
computing these statistics is computationally inexpensive, introducing minimal additional cost.
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Figure 10: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in
NanoGPT-124M along AdamW training trajectories.

F.4 TRAINING CNN ON CIFAR-10
In this section, we provide additional results for the experiments described in Section 5.2, where a
CNN model is trained on the CIFAR-10 dataset using the unScion optimizer.

Full-batch (deterministic) gradients. We begin with presenting additional results in the determin-
istic setting. Figure 11 shows the estimated trajectory smoothness

L̂i[k] :=
∥∇if(X

k+1)−∇if(X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
and its approximation

L̂approx
i [k] := L1

i ∥∇if(X
k+1)∥(i)⋆

(where we set L0
i = 0) for a broader selection of parameter groups than shown in the main text. The

results further support the validity of Assumption 1 with L0
i = 0.

Stochastic gradients. Here, we report results for analogous experiments in the stochastic setting,
using noisy gradients ∇ifξk . We use momentum as in Pethick et al. (2025b, Table 10), but do not
apply a linear decay schedule. In Figure 12, we plot

L̂i[k] =
∥∇ifξk+1(Xk+1)−∇ifξk(X

k)∥(i)⋆
∥Xk+1

i −Xk
i ∥(i)

, L̂approx
i [k] = L1

i ∥∇ifξk+1(Xk+1)∥⋆,

again setting L0
i = 0. Despite the added variance, we still observe that the stochastic trajectory

roughly adheres to Assumption 1.
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Figure 11: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with full-batch gradients. The norms used for each group are as

follows: ∥·∥(i) =
√

1/Cout
i ∥·∥2 for biases, ∥·∥(i) = k2

√
Cin

i /Cout
i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞

for the last group Xp, associated with classification head weights.
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Figure 12: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters of a CNN model
along the training trajectories of unScion with stochastic gradients. The norms used for each group are as

follows: ∥·∥(i) =
√

1/Cout
i ∥·∥2 for biases, ∥·∥(i) = k2

√
Cin

i /Cout
i ∥·∥2→2 for conv, and ∥·∥(p) = np∥·∥1→∞

for the last group Xp, associated with classification head weights.
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G ADDITIONAL EMPIRICAL RESULTS

G.1 LAYER-WISE SMOOTHNESS ACROSS ALL LAYERS AND VARIED MODEL SCALES

Aggregate layer-wise trajectory smoothness across all blocks/layers. The cross-layer heterogeneity
and the empirical trend L0

i ≈0 persist from 124M to 774M parameters.
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Figure 13: NanoGPT-124M

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Step

10 1

100

101

102

L

Block 0
attn.c_attn.weight
attn.c_proj.weight
attn.c_q.weight
attn.c_k.weight
attn.c_v.weight
mlp.c_fc.weight
Word Embedding

Step

L

Block 1

Step

L

Block 2

Step

10 1

100

101

102

L

Block 3

Step
L

Block 4

Step

L

Block 5

Step

10 1

100

101

102

L

Block 6

Step

L
Block 7

Step

L

Block 8

Step

10 1

100

101

102

L

Block 9

Step

L

Block 10

Step

L

Block 11

Step

10 1

100

101

102

L

Block 12

Step

L

Block 13

Step

L

Block 14

Step

10 1

100

101

102

L

Block 15

Step

L

Block 16

Step

L

Block 17

Step

10 1

100

101

102

L

Block 18

Step

L

Block 19

Step

L

Block 20

0 1000 2000 3000 4000 5000
Step

10 1

100

101

102

L

Block 21

0 1000 2000 3000 4000 5000
Step

L

Block 22

0 1000 2000 3000 4000 5000
Step

L

Block 23

Smoothness Trajectories: 24 Blocks (Word Embedding in Block 0)

Figure 14: GPT-2 Medium (∼355M)
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Figure 15: GPT-2 Large (∼774M)
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Figure 16: NanoGPT-124M trained with AdamW. The same cross-layer heterogeneity pattern
persists, indicating that layer-wise (L0

i , L
1
i )-smoothness is not specific to unScion.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

G.2 BEST VS. WORST FITS AND AGGREGATE FIT QUALITY

Figure 17 illustrates best and worst per-layer fits of Assumption 1 (measured Li[k] vs. Lapprox
i [k])

along NanoGPT-124M training. We observe tight fits for many layers (e.g., embeddings and several
attention V matrices), while a few layers show looser—yet still bounded—fits. The model error is
more than 10× smaller than for constant-Li fits on most layers, and in some cases smaller by orders
of magnitude.
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Figure 17: Illustrative best (top row) and worst (bottom row) per-layer fits of Assumption 1 (measured
Li[k] vs. Lapprox

i [k]) along NanoGPT-124M training.
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Figure 18: Relative fit error MSErel of the layer-wise (L0
i , L

1
i ) model across transformer blocks for

each matrix type in NanoGPT-124M. Dashed lines show mean and median over blocks (embedding
matrix: MSErel = 0.0005).
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