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Abstract

Low-rank training has emerged as a promising approach for reducing memory
usage in training Large Language Models (LLMs). Previous methods either rely on
decomposing weight matrices (e.g., LoRA), or seek to decompose gradient matrices
(e.g., GaLore) to ensure reduced memory consumption. However, both of them
constrain the training in a low-rank subspace, thus inevitably leading to sub-optimal
performance. To resolve this, we propose a new plug-and-play training framework
for LLMs called Fira, as the first attempt to consistently preserve the low-rank
constraint for memory efficiency, while achieving full-rank training (i.e., training
with full-rank gradients of full-rank weights) to avoid inferior outcomes. First,
we observe an interesting phenomenon during LLM training: the scaling impact
of adaptive optimizers (e.g., Adam) on the gradient norm remains similar from
low-rank to full-rank training. In light of this, we propose a norm-based scaling
method, which utilizes the scaling impact of low-rank optimizers as substitutes
for that of original full-rank optimizers to achieve this goal. Moreover, we find
that low-rank optimizers may lead to potential loss spikes during training. To
address this, we further put forward a norm-growth limiter to smooth the gradient.
Extensive experiments on the pre-training and fine-tuning of LLMs show that Fira
outperforms both LoRA and GaLore. Notably, for pre-training LLaMA 7B, our
Fira uses 8× smaller memory of optimizer states than Galore, yet outperforms it
by a large margin.

1 Introduction

In recent years, Large Language Models (LLMs) have achieved remarkable advancements in various
domains [2, 30, 10]. While the substantial increase in model size contributes significantly to these
advancements, it also introduces considerable memory bottlenecks, especially for optimizer states
[43]. For instance, pre-training a LLaMA-7B model from scratch 2 requires at least 58 GB memory,
allocated as follows: 14GB for loading parameters, 14GB for weight gradients, 28GB for Adam
[16] optimizer states, and 2GB for activations [43]. Notably, the optimizer states consume even
more memory than the parameters themselves. To address this, low-rank training has demonstrated
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2Training the model with a single batch size and maximum sequence length of 2048 under BF16 precision.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/xichen-fy/Fira


full-gradient of full-parameter 

Trainable
update

full-rank gradients of low-rank weights

Frozen
Trainable

Trainable update

(a) LoRA
full-gradient of full-parameter low-rank gradients of full-rank weights

Trainable Trainable

update
update

(b) GaLore
full-rank gradients of full-rank weights subspace-gradient of full-parameter 

Trainable Trainable
updateupdate

full-gradient of subspace-parameter 

Frozen
Trainable

Trainable update

(c) Fira (ours)

Figure 1: This analyses three types of memory-efficient approaches at a macro level.

its effectiveness in reducing the memory usage of the optimizer states by conducting training in a
low-rank subspace [43, 13].

The current low-rank training methods can be broadly divided into two categories: weight matrix-
based and gradient matrix-based low-rank decomposition. For the weight matrix decomposition
methods, the most representative one is Low-Rank Adaptation (LoRA) [13], where its basic idea is to
use low-rank matrices as decomposed representations of the pre-trained weights during training, as
shown in Figure 1 (a). However, the optimization of LoRA is constrained in a low-rank subspace
of the weights. This will inevitably cause the reduction of representation capacity, leading to sub-
optimal outcomes [40, 35]. Although the variant ReLoRA [18] attempts to extend the application
of LoRA from fine-tuning to pre-training, by periodically updating high-rank weights with multiple
low-rank updates. It still requires full-rank weight training as a warm-up before low-rank training,
thus rendering memory efficiency unachievable [43].

For the gradient matrix decomposition based methods, the typical one is the gradient low-rank
projection (GaLore) proposed recently [43]. In contrast to LoRA, GaLore attempts to reduce the
memory usage in optimizer states via decomposing the gradient matrix, as shown in Figure 1
(b). While GaLore supports the training of full-rank weights, it leverages only low-rank gradients,
restricting them to a low-rank subspace. Consequently, any gradient information outside this subspace
is lost, in contrast to training with full-rank gradients. Note that since these methods constrain LLM
training to a low-rank subspace, this inevitably leads to sub-optimal results compared to full-rank
training (i.e., training with full-rank gradients and full-rank weights). This raises the question: Can
we achieve full-rank training for LLMs while consistently maintaining a low-rank constraint?

Table 1: Cosine Similarity and MSE between low-
rank and full-rank scaling factors at the matrix and
column levels for pre-training LLaMA models rang-
ing from 60M to 1B parameters, averaged over 10K
steps. Detailed analyses are presented in Appendix D.

Size Matrix Level Column Level
Cosine Similarity MSE Cosine Similarity MSE

60M 0.9922 3e-04 0.9273 3e-05
130M 0.9901 2e-04 0.9046 2e-05
350M 0.9893 1e-04 0.9174 1e-05

1B 0.9795 2e-04 0.9229 1e-05

In light of this, we propose a new memory-
efficient training framework for LLMs, called
Fira, which, to the best of our knowledge, is
the first to achieve full-rank training while
consistently maintaining a low-rank con-
straint. To achieve this goal, a significant
challenge is that the low-rank constraint
makes it hard to preserve complete optimizer
states (e.g., gradient momentum and vari-
ance) of full-rank weights in the commonly-
used adaptive optimizer (e.g., Adam). As a
result, the adaptive optimizer fails to correct
the raw gradients without corresponding op-
timizer states. Without this correction, adaptive optimization algorithms would degrade into simple
stochastic gradient descent (SGD), leading to significantly reduced optimization performance [16, 39].
This point is further validated in Section 4.1 and Section 5.4.

Fortunately, we observe an interesting phenomenon during LLM training: at weight matrix level,
the scaling factors 3 of low-rank gradients exhibit strong similarity to those of full-rank gradients.
As illustrated in Table 1, Cosine Similarity and Mean Squared Error (MSE) between low-rank and
full-rank scaling factors exhibit significant similarity (Cosine Similarity close to 1, while MSE close
to 0). Detailed quantitative analyses of this similarity are presented in Appendix D.

3The scaling factor ϕt(Rt) is defined as ∥ψ(Rt)∥
∥Rt∥ , where ∥Rt∥ is the norm of the raw gradient, ∥ψ(Rt)∥ is

the norm of the gradient corrected by the gradient correction function ψ of the optimizer (e.g., Adam).
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Based on this observation, we put forward a norm-based scaling method that utilizes the scaling
factor of a weight matrix in low-rank training to replace the corresponding matrix’s scaling factor in
full-rank training. In this way, our scaling factor can also play a similar role in correcting the raw
gradient, as adaptive optimizers do. Therefore, we can enable full-rank training while preserving the
low-rank constraint.

However, we observe potential sudden increases in gradients caused by low-rank optimizers during
the early stages of training, which can lead to spikes in training loss, as illustrated in Figure 3. This
phenomenon primarily arises because our norm-based scaling method lacks the gradient stability
compared to the original full-rank Adam optimizer. Such gradient instability can trigger substantial
parameter updates, causing the loss function to reach a much higher value and undermining prior
optimization efforts [11, 39]. Despite the use of gradient clipping techniques [25], this issue may
not be adequately resolved, as shown in Figure 3. To this end, we propose a norm-growth limiter,
which aims to smooth the gradient by restricting the magnitude of the gradient norm’s increase. By
employing our limiter, we adaptively convert sudden rises in gradients into gradual increases, thereby
facilitating a smooth update that effectively mitigates the problem of loss spikes.

Our main contributions can be summarized as follows:

1. We propose Fira, a plug-and-play memory-efficient training framework of LLMs, constitut-
ing the first attempt to enable full-rank training consistently under the low-rank constraint.
We will release the source code and package of our Fira into a Python library for easy use.

2. We design two components in Fira: a norm-based scaling strategy that leverages the scaling
effects of low-rank optimizers to facilitate full-rank training, and a norm-growth limiter to
address the issue of loss spikes by limiting the growth of gradient norm.

3. Extensive experiments on the pre-training and fine-tuning of LLMs across various parameter
counts (60M, 130M, 350M, 1B, 7B) validate the effectiveness of Fira in both pre-training
and fine-tuning tasks, surpassing both LoRA and GaLore.

2 Related Work

Low-rank adaptation. Low-Rank Adaptation (LoRA) has been introduced by [13] as an efficient
fine-tuning method for LLMs. The core idea of LoRA is to freeze the pre-trained weights and
introduce trainable low-rank matrices as decomposed representations of the pre-trained weights.
In this way, the memory usage of training LLMs could be saved. Recently, a variety of methods
by extending LoRA have been proposed to further improve the performance [41, 33, 35, 40, 9].
For instance, ReLoRA [18] is proposed to extend the application of LoRA from fine-tuning to pre-
training. However, it still requires full-rank warm-up training before low-rank training, which prevents
achieving memory efficiency. It is worth noting that while LoRA-based methods reduce memory
usage by limiting training to a low-rank parameter subspace, they inevitably reduce representation
capacity [35].

Gradient projection. Recent works [40, 35, 32] have indicated that LoRA may yield sub-optimal
performance since its low-rank constraints in parameters. Inspired by traditional projected gradient
descent methods [6, 4], GaLore [43] has been proposed recently to mitigate this problem. It enables
full-parameter learning under low-rank constraints by projecting the gradient into a low-rank subspace,
reducing memory usage for optimizer states. However, while GaLore allows memory-efficient full-
parameter training, it confines the gradient to a low-rank subspace, discarding the portion outside the
subspace and resulting in significant information loss.

System-Based memory-efficient techniques. Many system-based techniques have been developed
to reduce memory usage in LLM training [5, 27]. However, most of these methods achieve memory
efficiency by compromising either time or precision. Gradient checkpointing [5] is proposed to
reduce memory usage by trading increased computational time for the re-computation of activations.
Quantization [9] reduces memory consumption by using lower-bit data types but at the cost of model
precision. Memory offloading [38, 27] reduces GPU memory usage by using non-GPU memory
(e.g., CPU) as an extension. However, it introduces additional communication overhead, such as
CPU-GPU transfer time. It’s important to note that our proposed method is complementary to these
approaches and can potentially be combined with them to further reduce memory usage.
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3 Preliminaries

3.1 Regular Full-Rank Training

At time step t, we denote the full-rank weight matrix as Wt ∈ Rm×n. The full-rank gradient can
be represented as Gt = ∇W ft(Wt) ∈ Rm×n, where f is the objective function. Then the regular
full-rank training can be expressed as follows:

Wt+1 =Wt − ηψt(Gt), (1)

where η is the learning rate, and ψt is the gradient correction function of the optimizer (for vanilla
SGD, ψt(Gt) = Gt). Instead of vanilla SGD, adaptive optimizers (e.g., Adam [16], AdamW [21])
are usually employed to correct the raw gradient for improving the training performance. However,
this typically requires additional memory for storing optimizer states used in gradient correction. For
instance, Adam [16] requires storing the optimizer states M and V , which consume 2mn of memory.
The gradient correction process is as follows:

Mt = β1Mt−1 + (1− β1)Gt, (2)

Vt = β2Vt−1 + (1− β2)G2
t , (3)

ψt(Gt) =

√
1− βt2

1− βt1
· Mt√

Vt + ϵ
, (4)

where all matrix operations are element-wise. β1 and β2 are Adam’s hyper-parameters, and ϵ is a
small constant (e.g., 1 × 10−8) used for numerical stability. Since this regular full-rank training
typically consumes a large amount of memory for training LLMs, many representative low-rank
training methods, e.g., LoRA [13] and Galore [43], have been proposed to reduce memory usage in
recent years.

3.2 Low-Rank Adaptation

The basic idea behind LoRA [13] is to use low-rank matrices as decomposed representations of the
pre-trained weights during training, in order to reduce memory usage. Formally, LoRA freezes the
full-rank weight matrix W0 ∈ Rm×n and incorporates two low-rank matrices At and Bt for training
as:

Wt =W0 +BtAt, (5)
where Bt ∈ Rm×r, At ∈ Rr×n, and the rank r < min(m,n). While LoRA reduces memory usage
by limiting training to a low-rank subspace of the weight, it inevitably diminishes the representation
capacity of the weight matrix Wt [35].

3.3 Gradient Low-Rank Projection

In contrast to LoRA, GaLore [43] utilizes a projection matrix Pt ∈ Rm×r to project the full-rank
gradient Gt ∈ Rm×n to a low-rank gradient Rt = P⊤

t Gt ∈ Rr×n (m ≤ n)4. By doing so,
the memory usage of optimizer states could be reduced. The parameter update in GaLore can be
formulated as:

Wt+1 =Wt − ηPtψt(Rt), (6)
where the projection matrix Pt can be obtained through singular value decomposition (SVD) of Gt
and can be updated every T step:

Gt = UΣV ⊤ ≈
r∑
i=1

σiuiv
⊤
i , Pt = [u1, u2, . . . , ur], (7)

where ui is the i-th column vector of the left singular matrix U . By selecting the first r columns of
matrix U that correspond to the largest singular values, the projection matrix Pt effectively captures
the most significant directions in the gradient space, leading to faster convergence [43]. The optimal
switching frequency T is usually set to be between 50 to 1000, and the additional computational
overhead introduced by SVD is negligible (< 10%), as stated in [43]. Since Galore restricts the
gradient in the low-rank subspace, the gradient information outside this subspace is lost, leading to
inferior performance.

4For simplicity, we assume m ≤ n, following [43]. If m > n, Rt = GtQt ∈ Rm×r, Qt ∈ Rn×r .
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4 Proposed Method

To achieve full-rank training under low-rank constraints, our framework, named Fira, consists of two
important components: (i) a norm-based scaling method, enabling full-rank training by leveraging
the scaling effects of adaptive optimizers; (ii) a norm-growth limiter, which restricts the growth of the
gradient norm to prevent spikes in training loss. Next, we will elaborate on these two components.

4.1 Norm-Based Scaling

The low-rank constraint makes it challenging to record complete optimizer states for correcting raw
gradients in full-rank training. Fortunately, we find an interesting phenomenon in LLM training: the
scaling factor at the matrix level remains similar from low-rank training to full-rank training. Based
on this observation, we propose a norm-based scaling strategy that approximately corrects the raw
gradient, similar to adaptive optimizers, thereby enabling full-rank training.
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Figure 2: Training loss of different methods for
pre-training LLaMA 60M on C4 dataset (r/dmodel
= 16/256 and T = 200).

Challenge analysis. Given the difficulty of
incorporating trainable low-rank weights into
LoRA to achieve full-rank weight training [43],
we focus on investigating how to achieve full-
rank gradient training by extending the gradient
projection method, Galore, in this paper. In Ga-
Lore, the projection matrix Pt ∈ Rm×r projects
the full-rank gradient Gt ∈ Rm×n of the full-
rank weight Wt ∈ Rm×n, to the low-rank sub-
space gradient Rt = P⊤

t Gt ∈ Rr×n. Then,
the gradient outside this subspace can be rep-
resented as: (I − PtP⊤

t )Gt = Gt − PtRt. In
other words, the full-rank gradient Gt can be
divided into two terms: PtRt and (Gt − PtRt).
In GaLore, the optimizer states only store the
information of Rt instead of Gt to realize the
low-rank constraint. The term of (Gt − PtRt) is directly discarded in Galore due to the lack of
corresponding optimizer states for correction in optimizers. This would lead to significant information
loss especially when r ≪ dmodel, where dmodel = min(m,n) is the full-rank dimension of models
(This point can be verified in our experiment section, as illustrated in Figure 5. In Figure 5, the
validation perplexity of GaLore significantly increases at r = 4 compared to r = 128 when
dmodel = 256, indicating a substantial loss of information and decreased training performance).
Intuitively, to capture the information of (Gt − PtRt), we can directly add it based on Eqn. 6 as
follows:

Wt+1 =Wt − ηPtψt(Rt)− η(Gt − PtRt). (8)

We denote the update strategy in Eqn. 8 as GaLore-add. However, as illustrated in Figure 2, GaLore-
add exhibits almost no improvement compared to updates using Eqn. 6 in GaLore. This phenomenon
primarily arises because the term of (Gt − PtRt) doesn’t have corresponding optimizer states for
gradient correction. As a result, the optimization of (Gt − PtRt) uses vanilla SGD, yielding sub-
optimal outputs. Besides, in GaLore-add, Ptψt(Rt) employs the Adam optimizer for training while
(Gt − PtRt) employs vanilla SGD. This gradient misalignment may also account for the lack of
noticeable improvement.

Similarity of scaling factor. To tackle this challenge, we propose the concept of the scaling factor,
which is defined as follows:

ϕt(Rt) =
∥ψt(Rt)∥
∥Rt∥

, (9)

where the scaling factor ϕt represents the magnitude of the correction applied by the adaptive
optimizer to the gradient norm. Based on the scaling factor ϕt, we observe an interesting phenomenon
during LLM training: the scaling factors at the matrix level exhibit a high degree of similarity between
low-rank and full-rank training (column level will be introduced later). As shown in Table 1, Cosine
Similarity and MSE between low-rank and full-rank scaling factors exhibit significant similarity
(Cosine Similarity close to 1, while MSE close to 0). Details analyses and additional experiments of
this similarity are presented in Appendix D.
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Norm-based scaling. Building on the above observation, we propose a norm-based scaling method
that leverages the scaling factor of a weight matrix in low-rank training as a substitute for the
corresponding factor in full-rank training:

Wt+1 =Wt − ηPtψt(Rt)− ηϕt(Rt)(Gt − PtRt). (10)

Through Eqn. 10, we can approximately correct (Gt − PtRt) as adaptive optimizers do, so as to
achieve full-rank training under low-rank constraints.

To further enhance our approach, we introduce a more fine-grained strategy for computing scaling
factors in Eqn. 10 by considering each column of the weight matrix individually:

ϕt(Rt)i =
∥ψ(Rt,:,i)∥
∥Rt,:,i∥

, i = 1, 2, . . . , n, (11)

where Rt,:,i is the i-th column of Rt, and ϕt(Rt)i is the i-th scaling factor. As evidenced in Table 1,
scaling factors computed at the column level also demonstrate strong similarity between low-rank
and full-rank training, further validating the effectiveness of this fine-grained strategy. Additional
theoretical analysis and experimental results on scaling factors are provided in Appendix E.

4.2 Norm-Growth Limiter

However, limited by low-rank constraints, we notice that there are still shortcomings in the norm-
based scaling approach that need to be improved compared to the full-rank Adam. Specifically,
potential sharp increases of the gradient may occur at the early stage of training, leading to spikes
of training loss. As shown in Figure 3, Fira-w.o.-limiter (our method without using the proposed
norm-growth limiter) experiences spikes in both gradient norm and training loss. In this section, we
analyze the reasons for this issue and propose a norm-growth limiter that transforms abrupt gradient
spikes into gradual, smooth increases, and then enhances the norm-based scaling method.
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Figure 3: Training loss and gradient norm of three variants of
Fira for pre-training LLaMA 60M.

Loss spike analysis. There are
two main reasons for the spikes:
(i) Switching the projection matrix
Pt in gradient projection methods
would cause instability during train-
ing. As illustrated in Figure 2, both
GaLore and GaLore-add exhibit sig-
nificant training loss spikes at inte-
ger multiples of T = 200 (i.e., the
frequency of switching the projec-
tion matrix Pt). This instability oc-
curs because, when switching pro-
jection matrices Pt, the optimizer
retains states linked to the previous
matrix, while the current input gra-
dient uses a new projection matrix, leading to significant misalignment. Furthermore, as shown in
Figure 2, GaLore-add also exhibits additional training spikes compared to Galore, reinforcing our
earlier claim that directly incorporating (Gt−PtRt) may introduce instability and hinder training; (ii)
Maintaining the original direction of the raw gradient (Gt − PtRt) may be insufficient for handling
the sharp loss landscapes in LLM training, unlike Adam [39]. Due to space constraints, further
analysis is provided in Appendix G.

Addressing loss spikes. To address this issue, a straightforward solution is to use gradient clipping
techniques [25] to avoid loss spikes. However, clipping based on the absolute norm of gradient
matrices fails to account for significant differences between them, leading to sub-optimal results.
This point can also be verified in Figure 3 and Table 5. To this end, we propose a norm-growth limiter
method that constrains the ratio of the current gradient norm to the previous step’s norm to a fixed
ratio γ when the gradient norm increases:

if
∥St∥
∥St−1∥

> γ then St ←
St
∥St∥

· γ∥St−1∥, (12)

where γ is a threshold ensuring that the rate of gradient growth does not exceed this value. St =
ϕt(Rt)(Gt − PtRt) is the corrected gradient by applying our norm-based scaling. This approach
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limits the magnitude of gradient norm increases, converting sudden spikes into gradual rises and
thus preventing loss spikes. Moreover, by constraining the relative increase of each gradient matrix’s
norm, our method is more flexible than the absolute norm clipping. As illustrated in Figure 2 and
Figure 3, Fira with our proposed limiter improves the optimization performance without significant
spikes.

Discussion with other stabilization methods. A variety of approaches have been developed
to mitigate loss spikes and enhance training stability, including embedding normalization [17],
gradient shrink on embedding layers [36], tensor-wise scaling [8]. While these methods contribute
to stabilization, they either primarily concentrate on embedding stabilization (e.g., embedding
normalization and gradient shrink), or employ static scaling (e.g., tensor-wise scaling). Compared to
our norm-growth limiter, these techniques are insufficient in addressing the adaptive instability that
arises from the substantial variations among different weight matrices, thereby inadequately resolving
the issue of loss spikes in norm-based scaling. Further detailed analyses and experimental results
regarding the norm-growth limiter are discussed in Section 5.4 and Appendix G.

4.3 Overall Algorithm

We present the overall algorithm of Fira with Adam in Algorithm 1 in Appendix A.1. Our main
components, the norm-based scaling method, and the norm-growth limiter, are straightforward to
implement, requiring only 3 additional lines of code. Moreover, Fira is a plug-and-play framework
that can be easily integrated into the training process without requiring significant modifications. The
plug-and-play Pytorch-like pseudo-code of Fira is provided in Appendix A.2.

Table 2: Comparison of different methods. Denote Wt ∈ Rm×n (m ≤ n), rank r.

Method Fira GaLore LoRA Full-rank

Weights mn mn mn+mr + nr mn
Optimizer States mr + 2nr + 1 mr + 2nr 2mr + 2nr 2mn
Gradients mn mn mr + nr mn

Full-Rank Gradients ! % ! !

Full-Rank Weights ! ! % !

Pre-Training ! ! % !

Fine-Tuning ! ! ! !

It’s worth noting that compared to Galore, Fira only introduces one parameter ∥St−1∥ for each
weight matrix in the optimizer state, which is negligible, as shown in Table 2. Besides, in addition
to the original hyper-parameters of optimizers and gradient projection methods, Fira only adds one
hyper-parameter γ in the norm-growth limiter, whose choice is not sensitive to the performance
of Fira. The hyper-parameter γ is set to 1.01 across all experiments, which consistently yields
satisfactory results. Sensitivity analyses of hyper-parameter γ to training performance are provided
in Appendix H.

5 Experiments

In this section, we validate the effectiveness of Fira in pre-training and fine-tuning tasks of LLMs. In
our experiments, we denote our method using the strategy of Eqn. 10 as Fira-matrix, and denote our
method additionally using the column-wise strategy of Eqn. 11 as Fira.

5.1 Memory-Efficient Pre-training

Experimental setup. We follow the settings in Galore [43] to conduct the pre-training experiments.
We compare Fira with GaLore [43], LoRA [13], ReLoRA [18], and full-rank training baselines.
Adam optimizer is used to train all baselines and our method on the C4 dataset in the BF16 format.
The settings of these baselines can be found in [43]. The dataset C4 is a colossal, cleaned version
of Common Crawl’s web crawl corpus, which is widely used in LLM pre-training [26]. Following
[43], we utilize LLaMA-based architectures equipped with RMSNorm and SwiGLU activations
[37, 29, 31]. As in [43], our training protocol excludes data repetition and spans a sufficiently large
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Table 3: Comparison of different methods for pre-training LLaMA models of various sizes on the C4
dataset. We report validation perplexity (↓) with a memory estimate of total parameters, gradients
and optimizer states. Results of all baselines are taken from [43]. r refers to the rank and dmodel is
the full-rank dimension of models.

60M 130M 350M 1B
Full-Rank 34.06 (0.48G) 25.08 (1.01G) 18.80 (2.74G) 15.56 (10.40G)

Fira 31.06 (0.36G) 22.73 (0.77G) 16.85 (1.90G) 14.31 (6.98G)
GaLore 34.88 (0.36G) 25.36 (0.77G) 18.95 (1.90G) 15.64 (6.98G)
LoRA 34.99 (0.44G) 33.92 (0.99G) 25.58 (2.12G) 19.21 (7.36G)
ReLoRA 37.04 (0.44G) 29.37 (0.99G) 29.08 (2.12G) 18.33 (7.36G)

r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

dataset, encompassing a diverse array of model sizes (60M, 130M, 350M, 1B). To guarantee a fair
comparison, we employ the same learning rate 0.01 as used in GaLore and maintain the same rank r
for each model size. The detailed settings of pre-training are provided in Appendix B.1. We use 8
A100 80G GPUs to conduct pre-training experiments.

Result analysis. As shown in Table 3, Fira consistently outperforms low-rank training baselines
by a large margin under the same rank constraint, and even surpasses full-rank training. Following
[43], we estimate the memory reduction of the optimizer states via the same memory estimation
method introduced in [43]. Detailed memory estimation methods are presented in C.1. Additional
experiments on real memory usage and throughput are presented in C.2. From Table 3, our Fira
saves 61.1% memory usage of the optimizer states when pre-training the LLaMA 1B architecture
compared to full-rank training, while Fira achieves better results. Compared to full-rank training,
Fira’s superior performance may be attributed to the following reason: the gradient direction in the
norm-based scaling method is determined by the current state, rather than by historical gradients
in Adam. Therefore, Fira introduces a higher degree of randomness in training, which can enhance
the model’s ability to escape the local optima, leading to better training performance [44]. It’s
worth noting that previous work [42, 45] also reveals this phenomenon. Detailed analysis of this
phenomenon is presented in Appendix F.

5.2 Scaling up to LLaMA 7B Pre-training
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Figure 4: Pre-training LLaMA 7B with differ-
ent methods on the C4 dataset.

To validate the scalability of our method, we scale
up by pre-training the LLaMA 7B model with the
full-rank dimension dmodel = 4096. We compare Fira
with the GaLore baseline, which generally achieves
the best performance among low-rank training base-
lines, as shown in Table 3. As illustrated in Figure 4,
our method demonstrates a significant improvement
over GaLore for pre-training LLaMA 7B, while us-
ing an 8× smaller rank (memory of optimizer states).
This highlights Fira’s effectiveness, suggesting it
could be a viable solution for large-scale LLM pre-
training.

5.3 Memory-Efficient Fine-Tuning

Experimental setup. Following [14], we perform the fine-tuning task to compare Fira with LoRA,
GaLore, Flora [12], ReLoRA, Full-rank training, on the LLaMA-7B model for commonsense
reasoning tasks. This task consists of eight sub-tasks, each with its own designated training and
testing sets. Following the approach of [14], we combine the training datasets from all eight sub-tasks
into a unified training set, while evaluating each sub-task individually using its respective testing
dataset. In the fine-tuning task, the rank r is set to 32 and the learning rate is set to 1e-4. The detailed
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Table 4: Accuracy (↑) of various fine-tuning methods on eight commonsense reasoning datasets with
LLaMA 7B. Results for all baseline methods, except GaLore, are taken from [14].

Method Memory BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg
Fira 14.44G 69.4 82.6 78.0 76.8 81.2 82.2 64.4 80.8 76.9
GaLore 14.44G 69.5 82.0 75.1 32.2 18.0 80.7 65.8 78.0 62.7
LoRA 14.53G 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
ReLoRA 14.53G 68.9 81.2 77.8 46.0 79.4 80.2 64.2 79.6 72.2
Flora 14.44G 50.1 77.5 74.2 53.8 45.5 79 64.6 74.8 64.9
Full-rank 56.00G 64.2 68.1 68.0 42.3 66.5 55.6 43.9 60.0 58.6

settings of fine-tuning are provided in Appendix B.2. We adopt RTX 4090 GPUs for fine-tuning
experiments.

Result analysis. As shown in Table 4, our Fira achieves the highest performance on 5 out of 8
datasets, demonstrating better or comparable performance compared to the baseline methods. Notably,
GaLore struggles to adapt to the HellaSwag and WinoGrande datasets, resulting in a significant
decline in scores. In contrast, our Fira adapts to these tasks well and achieves the highest scores on
WinoGrande. In terms of memory efficiency, our method uses comparable or even less memory than
the low-rank training methods LoRA and GaLore. These results illustrate the effectiveness of our
method for the fine-tuning of LLMs.

5.4 Ablation Study

Table 5: Ablation study on the C4 dataset.

Method Perplexity (↓)
Fira-w.o.-scaling 37.06

Fira-matrix 31.52
Fira-w.o.-limiter 32.22

Fira-gradient-clipping 31.22
Fira-gradient-shrink 33.98

Fira-tensor-wise-scaling 33.81
Fira 31.06

In this section, we conduct an ablation study
to assess the effectiveness of each component
in our method. We adopt the same settings in
Section 5.1 for pre-training the LLaMA 60M
model. We design six variants of our method
for the ablation study: (1) Fira-w.o.-scaling:
our Fira without using the scaling factor to cor-
rect the gradient (i.e., setting ϕt(Rt) to a fixed
value of 1). (2) Fira-matrix: our Fira using
the scaling factor at the matrix level instead of
at the column level. (3) Fira-w.o.-limiter: our
Fira without using norm-growth limiter to avoid
training loss spikes. (4) Fira-gradient-clipping: our Fira using gradient clipping [25] to avoid
loss spikes instead of our proposed norm-growth limiter. (5) Fira-gradient-shrink: our Fira using
gradient shrink [36] instead of our proposed norm-growth limiter. (6) Fira-tensor-wise-scaling: our
Fira using tensor-wise scaling [8] instead of our proposed norm-growth limiter.

Table 5 presents the results. It can be found that Fira outperforms Fira-w.o.-scaling, thereby demon-
strating the effectiveness of our proposed norm-based scaling method for gradient correction. This
also suggests that directly incorporating the raw gradient outside the subspace without correction will
lead to sub-optimal results. Besides, Fira yields better performance than Fira-matrix, illustrating that
a more fine-grained consideration of the scaling factor is beneficial. Furthermore, Fira demonstrates
improved performance over Fira-w.o.-limiter, Fira-gradient-clipping, Fira-gradient-shrink, and Fira-
tensor-wise-scaling, indicating the effectiveness of our proposed norm-growth limiter in addressing
the issue of training loss spikes.

5.5 Performance under Varying Ranks

In this section, we illustrate the advantages of our Fira over Galore under a lower rank. We adjust
various rank configurations within the set {4, 16, 64, 128} and dmodel = 256, and then assess the
performance of pre-training the LLaMA 60M model on the C4 dataset as outlined in Section 5.1. The
validation perplexity of Fira and GaLore after 10K steps across different ranks is depicted in Figure 5.
From Figure 5, we can observe that Fira consistently surpasses GaLore across all rank configurations.
Notably, even when the ranks are set very low (4 and 16), Fira still achieves performance comparable
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Figure 5: Validation perplexity of Fira and GaLore for varying ranks when pre-training LLaMA 60M
on the C4 dataset with dmodel = 256.

to full-rank training. In contrast, the performance of GaLore significantly declines in these cases.
These results highlight the superiority of our proposed Fira at lower ranks and its effectiveness in
reducing memory usage.

6 Conclusion

In this paper, we present a plug-and-play memory-efficient training framework for LLMs, called Fira,
as the first attempt to facilitate full-rank training consistently under low-rank constraints. First, we find
a notable phenomenon in LLM training: the scaling effect of adaptive optimizers on the gradient norm
remains similar between low-rank and full-rank training. Building on this observation, we propose a
norm-based scaling method that applies the scaling effect of low-rank optimizers in place of full-rank
optimizers to facilitate full-rank training. This allows us to maintain the low-rank constraint within the
optimizer while still benefiting from the advantages of full-rank training for improved performance.
Additionally, we observe sudden spikes in gradient values during optimization, which can result in
corresponding spikes in the training loss. To mitigate this, we propose a norm-growth limiter that
smooths gradients by regulating the relative increase in gradient norms. Extensive experiments in
both pre-training and fine-tuning of LLMs demonstrate the effectiveness of our proposed Fira.
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A Fira Implementation

A.1 Algorithm Pseudocode

Algorithm 1 Fira with Adam
Input: Step size η, decay rates {β1, β2}, weight matrices W ∈ Rm×n with m ≤ n, rank r,
switching frequency T , hyper-parameter of Galore α, limiter threshold γ = 1.01.
M0, V0 ∈ Rr×n ← 0, 0 t← 0 {Initialize moving 1st, 2nd moment and step}
repeat
Gt ∈ Rm×n ← ∇W ft(Wt) {Calculate full-rank gradients of full-rank weights}
if t mod T = 0 then
U,Σ, V ⊤ ← SVD(Gt) Pt ← U [:, : r] {Initialize the projection matrix every T steps}

else
Pt ← Pt−1 {Reuse the previous projection matrix}

end if
Rt, St ← P⊤

t Gt, (I − PtP⊤
t )Gt {Divide gradients into two terms by gradient projection}

Mt ← β1Mt−1 + (1− β1)Rt {ψt(Rt): Apply Adam with low-rank gradients Rt}
Vt ← β2Vt−1 + (1− β2)R2

t

Nt ←
√

1−βt
2

1−βt
1
· Mt√

Vt+ϵ

K ← [
∥Nt[:, 1]∥
∥Rt[:, 1]∥+ ϵ

,
∥Nt[:, 2]∥
∥Rt[:, 2]∥+ ϵ

, · · · , ∥Nt[:, n]∥∥Rt[:, n]∥+ ϵ
] {Norm-Based Scaling}

St ← [k1St[:, 1], k2St[:, 2], · · · , knSt[:, n]]
St ← St · γ/max{ ∥St∥

∥St−1∥+ ϵ
, γ} {Norm-Growth Limiter}

G̃t ← α · (PtNt + St) {Project back and complete full-rank gradients}
Wt ←Wt−1 − η · G̃t t← t+ 1 {Update the weight matrix}

until convergence criteria met
return WT

A.2 Plug-and-play Framework for Fira

Algorithm 2 Plug-and-play framework for Fira, Pytorch-like.
1: for weight in model.parameters() do
2: grad = weight.grad
3: sub_grad, outer_grad = project(grad) {Gradient projection.}
4: sub_adapt = adapt(sub_grad) {Adaptive optimizer, e.g., Adam, RMSProp.}
5: outer_Fira = Fira(sub_grad, sub_adapt, outer_grad) {Apply Fira to outer_grad.}
6: weight_update = project_back(sub_grad) + outer_Fira {full-rank training}
7: weight.data += weight_update
8: end for

B Details of Experiments

B.1 Detailed Pre-Training Setting

This section provides an overview of the LLaMA architectures and the hyper-parameters employed
during pre-training. To ensure a fair comparison, we adopt the same settings as [43]. Table 6 presents
the hyper-parameters of the LLaMA architectures across various sizes. For all architectures, we utilize
a maximum sequence length of 256 and a batch size of 131K tokens. Furthermore, we implement a
learning rate warm-up during the initial 10% of training steps and employ cosine annealing for the
learning rate schedule, which decreases to 10% of the initial learning rate.

For all methods except Fira and GaLore, we tune the optimal learning rate from the set {0.01, 0.005,
0.001, 0.0005, 0.0001} across model sizes ranging from 60M to 1B, selecting their best validation
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Table 6: Hyper-parameters of LLaMA architectures for pre-training.

Params Hidden Intermediate Heads Layers Steps Data Amount (Tokens)

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

perplexity to report. In contrast, both Fira and GaLore employ the same learning rate 0.01 and a
subspace change frequency T of 200 without tuning. Additionally, the scale factor α is considered
a fractional learning rate [43]. Furthermore, a relatively large learning rate may result in spikes of
training loss [43]. To address this issue, for models with a size of less than 1B, we set α to 0.25,
while for models exceeding 1B, we adjust α to 0.0625.

B.2 Detailed Fine-tuning Setting

We fine-tune the pre-trained LLaMA-7B model for commonsense reasoning tasks benchmark designed
for LLM fine-tuning, which include eight sub-tasks [14]. Table 7 shows the hyper-parameter
configurations.

Table 7: Hyper-parameter configurations of fine-tuning LLaMA-7B for Fira.

Hyper-parameters Setting

Rank r 32
α 64
Dropout 0.05
Base optimizer Adam
LR 1e-4
LR Scheduler Linear
Batch size 16
warm-up Steps 100
Epochs 3
Where Q, K, V, Up, Down

C Details of Overhead Comparison

C.1 Memory Estimates

Due to the difficulties associated with directly measuring GPU memory usage for a specific com-
ponent, we estimate the memory requirements for weight parameters and optimizer states across
various methods and model sizes, following GaLore [43]. This estimate is derived from the number
of parameters and optimizer states in BF16 format. In particular, for the memory of parameters, we
multiply the total number of parameters by 2; for the memory of optimizer states and gradients, we
first calculate the total number of them according to Table 2 and then multiply this total number by 2.

C.2 Additional Experiments on Real Overhead

We conduct additional comparisons regarding real memory usage and throughput of different memory-
efficient training methods for both pre-training and fine-tuning. As illustrated in Tables 8 and 9, Fira
achieves superior memory efficiency compared to full-rank training without significantly reducing
throughput. Although Fira’s throughput is slightly lower than that of other memory-efficient methods,
it delivers exceptional performance. During pre-training, methods like LoRA necessitate maintaining
additional higher-rank adapters (e.g. r/dmodel = 512/2048) to achieve performance comparable
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to full-rank training. However, in practice, maintaining these higher-rank adapters outweighs the
benefits of fewer trainable parameters compared to full-rank training. This may be due to the fact
that higher-rank adapters significantly increase computational demands during pre-training compared
to fine-tuning (e.g. r/dmodel = 32/2048), thus leading to more memory and less throughput.
Furthermore, since full fine-tuning of LLaMA 7B’s memory requirements exceeds the A100’s 80GB
capacity, we utilize DeepSeed’s Zero2 technology to mitigate its memory usage.

Table 8: Real memory usage and normalized throughput when pre-training LLaMA 1B on the C4
dataset.

Method Fira Galore Flora LoRA ReLoRA Full-rank

Memory (GB) 54.6 54.6 54.5 59.0 59.0 58.5
Normalized Throughput (%) 94.2 95.9 95.9 67.4 67.4 100

Table 9: Real memory usage and normalized throughput when fine-tuning LLaMA 7B on common-
sense reasoning datasets.

Method Fira Galore Flora LoRA ReLoRA Full-rank

Memory (GB) 23.4 23.4 23.3 23.7 23.7 >80
Normalized Throughput (%) 156.1 201.1 210.3 232.8 232.8 100

D Additional Quantitative Analysis of Scaling Factor Similarity

In this section, we analyze the similarities of scaling factors between low-rank and full-rank training
at the matrix and column levels. Specifically, when analyzing similarity, we will form a vector of

values for different scaling factors (ϕ1, ϕ2, . . . , ϕk) (ϕi =
∥ψ(R(i)

t )∥
∥R(i)

t ∥
). For the matrix level, we take

the different weight matrices of the model as items (i.e., R(i)
t ∈ Rr×n); for the column level, we take

the columns in the weight matrix as items (i.e., R(i)
t ∈ Rr×1). We use the same low-rank setup as in

Table 3. The models of different training runs are trained from the same random initialization. The
only difference between them is the value of the rank hyperparameter (low-rank vs. full-rank).

D.1 Spearman, Kendall, and Pearson Correlation Coefficients

In this section, we will employ Kendall’s Tau correlation coefficient [1] and Spearman’s rank
correlation coefficient [28], Pearson’s correlation coefficient [7] to evaluate the similarities of scaling
factors between low-rank and full-rank training. We conduct our experiment by including all matrices
of LLaMA models ranging from 60M to 1B. Then, we train these models and assess the similarity of
scaling factors averaged over 10,000 steps. Additionally, to evaluate the effectiveness of a column-
level fine-grained strategy for scaling factors, we perform a column-level quantitative similarity
analysis. Due to the computational challenges posed by the large number of columns, we randomly
sample 100 columns for each weight matrix for analysis. Specifically, in the LLaMA 1B model, over
10,000 columns are sampled.

Both Spearman, Kendall, and Pearson correlation coefficients range from -1 to +1. A coefficient of 1
signifies a perfect positive correlation, and -1 signifies a perfect negative correlation. The p-value
helps us determine whether the observed correlation is statistically significant or if it could have
occurred by random chance. For instance, a p-value less than 0.05 means there is less than a 5%
probability that the observed correlation happened by chance if there was actually no correlation.
Generally, a p-value below 0.05 suggests that a significant correlation exists. As shown in Table 10
, we can observe the significant similarity of scaling factors between low-rank and full-rank LLM
training (all coefficients close to 1, while p-values close to 0). Thus, it is likely that the observed
behavior is an inherent feature of LLM training, manifesting across a broad range of scenarios. This
insight provides a robust experimental basis for our proposed norm-based scaling in Fira and helps
explain its effectiveness.
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Table 10: Spearman, Kendall, and Pearson correlation coefficients (p-values) at both the matrix and
column levels for pre-training LLaMA models ranging from 60M to 1B parameters, averaged over
10,000 steps.

Size Matrix Level Column Level

Spearman Kendall Pearson Spearman Kendall Pearson

60M 0.9972 (2e-62) 0.9662 (7e-26) 0.9891 (1e-46) 0.9372 (0.0) 0.7942 (0.0) 0.8723 (0.0)

130M 0.9925 (2e-76) 0.9409 (9e-37) 0.9813 (2e-60) 0.8698 (0.0) 0.6830 (0.0) 0.7805 (0.0)

350M 0.9770 (3e-113) 0.8848 (5e-65) 0.9766 (1e-112) 0.9091 (0.0) 0.7400 (0.0) 0.8272 (0.0)

1B 0.9469 (1e-83) 0.8249 (1e-56) 0.9457 (6e-83) 0.8331 (0.0) 0.6513 (0.0) 0.8112 (0.0)

D.2 Similarity Trends.

In this section, we conduct additional experiments on similarity trends of scaling factors through
Cosine Similarity and Euclidean Distance using two rank settings: r/dmodel = 16/256 and
r/dmodel = 128/256.
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Figure 6: Euclidean Distance trends over
training iterations (r/dmodel = 128/256).
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Figure 7: Euclidean Distance trends over
training iterations (r/dmodel = 16/256).
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Figure 8: Cosine Similarity trends over train-
ing iterations (r/dmodel = 128/256).

0 2000 4000 6000 8000 10000
Iterations

0.996

0.997

0.998

0.999

1.000

C
os

in
e 

si
m

ila
rit

y

t(Rt) vs t(Gt)
t(Rt) vs t(Gt PtRt)
t(Gt) vs t(Gt PtRt)

Figure 9: Cosine Similarity trends over train-
ing iterations (r/dmodel = 16/256).
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As shown in Figure 6, 7, 8, and 9, the similarity exhibits fluctuations during the initial training
phase but achieves a relatively steady pattern with high similarity in the later iterations. Under lower
rank setting r/dmodel = 16/256, there is negligible reduction in similarity. Besides, ϕt(Gt) and
ϕt(Gt − PtRt) demonstrate significantly higher similarity owing to their closely aligned dimensions.

E Theoretical Analysis

E.1 Error Upper Bound for the Approximation of Scaling Factors

In Section 4.1, we use the scaling factors of low-rank gradients to approximate that of full-rank
gradients. To quantify the effectiveness of this approximation, we will derive its error upper bound
theoretically, and verify our analysis experimentally. The error of the approximation κ(r) can be
written as:

κ(r) =
∣∣ϕ2t (Gt)− ϕ2t (Rt)∣∣ , (13)

where rank r ≤ n, and Rt = P⊤
t Gt ∈ Rr×n. To simplify the proof, we consider that r components

(g1, . . . , gr) of low-rank gradients are directly sampled from n components (g1, . . . , gn) of full-rank
gradients. Under these conditions, the error can be rewritten as:

κ(r) =

∣∣∣∣∑n
i=1 ψ

2
i (gi)∑n

i=1 g
2
i

−
∑r
i=1 ψ

2
i (gi)∑r

i=1 g
2
i

∣∣∣∣ . (14)

Assumption 1. (Bounded Scaling Factors): we assume that the adaptive optimizer scales each
gradient component gi by the scaling factor that lies within known bounds. Specifically, there exist
constants cmin and cmax such that for all i:

cmin ≤
∣∣∣∣ψi(gi)gi

∣∣∣∣ ≤ cmax. (15)

This implies:

c2min ≤
ψ2
i (gi)

g2i
≤ c2max. (16)

Theorem 1. (Error Upper Bound for Approximation) Under the assumption that ψ
2
i (gi)

g2i
are bounded

between constants c2min and c2max for all components i, the approximation error κ(r) satisfies:

κ(r) ≤ ∆ϕ2 ·
(
1− ∥Gr∥

∥G∥

)
, (17)

where ∆ϕ2 ≜ supg ̸=0
ψ2(g)
g2 − infg ̸=0

ψ2(g)
g2 = (c2max − c2min) defines the squared scaling factor

variation, ∥G∥ =
∑n
i=1 g

2
i , and ∥Gr∥ =

∑r
i=1 g

2
i .

Proof. We first define the following quantities: Total Gradient Norm sn =
∑n
i=1 g

2
i , Partial Gradient

Norm (first r components) sr =
∑r
i=1 g

2
i , Remaining Gradient Norm sn−r = sn−sr =

∑n
i=r+1 g

2
i ,

Total Corrected Gradient Norm Sn =
∑n
i=1 ψ

2
i (gi), Partial Adjusted Gradient Norm (first r compo-

nents) Sr =
∑r
i=1 ψ

2
i (gi), Remaining Adjusted Gradient Norm Sn−r = Sn−Sr =

∑n
i=r+1 ψ

2
i (gi).

Then, our estimation error κ(r) can be rewritten using these definitions:

κ(r) =

∣∣∣∣Snsn − Sr
sr

∣∣∣∣ . (18)

First, we rewrite the estimation error κ(r) in terms of Sr, Sn−r, sr, and sn−r:

κ(r) =

∣∣∣∣Sr + Sn−r
sr + sn−r

− Sr
sr

∣∣∣∣ . (19)

Then, compute the difference in the numerator:

κ(r) =

∣∣∣∣ (Sr + Sn−r)sr − Sr(sr + sn−r)

(sr + sn−r)sr

∣∣∣∣ . (20)
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Simplify the numerator, thus, the estimation error becomes:

κ(r) =
|Sn−rsr − Srsn−r|

snsr
. (21)

After that, we factor out sn−r:

κ(r) =
sn−r
sn
·
∣∣∣∣Sn−rsn−r

− Sr
sr

∣∣∣∣ . (22)

From our bounded assumption, we have:

c2min ≤
Sr
sr
≤ c2max and c2min ≤

Sn−r
sn−r

≤ c2max. (23)

Therefore, the maximum possible difference between Sn−r

sn−r
and Sr

sr
is:

max(

∣∣∣∣Sn−rsn−r
− Sr
sr

∣∣∣∣) ≤ c2max − c2min = ∆ϕ2 . (24)

In addition, we have:
sn−r
sn

= 1−
∑r
i=1 g

2
i∑n

i=1 g
2
i

= 1− ∥Gr∥
2

∥G∥2
. (25)

Finally, the approximation error κ(r) is bounded above by:

κ(r) ≤ ∆ϕ2 ·
(
1− ∥Gr∥

2

∥G∥2

)
. (26)

From this theory, we can find that the error upper bound on the approximation of scaling factors is
mainly determined by two aspects, and we can verify them experimentally:

• Variability of Scaling Factor ∆ϕ2 : This term represents the maximum variation in the scaling
factors of different gradient components. For further validation, we designed Fira-only-
scaling, a variant of Fira. It directly applies the low-rank scaling factors to the full-rank
gradients by changing the Eqn. 10 from Wt+1 =Wt − ηPtψt(Rt)− ηϕt(Rt)(Gt − PtRt)
to Wt+1 = Wt − ηϕt(Rt)Gt. In this way, we are able to exclude the influence of the
original Adam term Ptψt(Rt) and better analyze the effectiveness of our approximation.
As shown in Table 11, Fira-only-scaling (column-level) gains better performance than
Fira-only-scaling (matrix-level) for its more fine-grained consideration of the scaling factor,
which also means a smaller maximum variation ∆ϕ2 .

• Effectiveness of Gradient Sampling
(
1− ∥Gr∥

∥G∥

)
: This term represents the proportion of

the gradients norm contributed by the sampled low-rank r components from full-rank n
components. As shown in Table 12, we conducted ablation experiments Fira-only-scaling-
w.o.-svd, i.e., Fira-only-scaling without SVD in low-rank gradient sampling. As we can see,
SVD is capable of sampling more prominent low-rank gradients, which leads to a reduction
in the upper bound of error and enhanced performance. Similarly, as shown in Table 13,
employing a higher rank enables the sampling of a greater proportion of the gradients norm,
resulting in reduced error upper bound and improved performance.

Table 11: Ablation on the level of scaling factors for the variant Fira-only-scaling.

Level Perplexity (↓)
Column 31.68
Matrix 32.05
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Table 12: Ablation on SVD for the variant Fira-only-scaling.

Method Perplexity (↓)
Fira-only-scaling 31.68

Fira-only-scaling-w.o.-svd 32.22

Table 13: Ablation on rank for the variant Fira-only-scaling and full-rank Adam (dmodel = 256).

Rank 4 16 64 128 256 (Full-rank) Adam (Full-rank)

Perplexity (↓) 35.91 32.90 31.93 31.68 30.84 34.06

E.2 Variance of Scaling Factors.

The variance of adaptive learning rates is significantly elevated during the early stage of training,
often necessitating a warm-up to mitigate this variance and stabilize training [19]. As illustrated in
Figure 10, the scaling factor in Fira exhibits a similar pattern, characterized by substantial variance
during the early stage of training, which also necessitates a warm-up. However, the addition of an
extra warm-up hyper-parameter for Fira would be inefficient. Therefore, it is crucial to investigate
whether the original warm-up would have efficiently mitigated the variance in Fira. In the subsequent
theoretical analysis, we show that, during the early training phase, the variance of the scaling factor
of Fira is less than or equal to that of the adaptive learning rate. This finding suggests that the existing
warm-up strategy is sufficient to mitigate the variance of Fira, thereby eliminating the need for an
additional warm-up hyper-parameter.

Consider independent random vectors {g(i)}ni=1, where each g(i) = (g
(i)
1 , g

(i)
2 , . . . , g

(i)
t ). Here, the

superscript i indicates the index of the weight matrix to which the vector belongs, while the subscript
j (where j ranges from 1 to t) denotes training iterations with each parameter. Following [19], we

assume the adaptive learning rate of Adam ψ(.) =
√

1−βt
2

(1−β2)
∑t

i=1
β
t−i
2 g2

i

, and g(i)j ∼ N (0, σ2) for all i

and j in the early stage. Additionally, approximate the distribution of the exponential moving average

as the distribution of the simple average, p(ψ(.)) = p(
√

1−βt
2

(1−β2)
∑t

i=1
β
t−i
2 g2

i

)≈ p(
√

t∑t
i=1 g

2
i
) [24], and

then ψ2(.) ∼ Scale-inv-X 2(ρ, 1
σ2 ).

Theorem 2. (Variance of Scaling Factors) In the early stages of training, if ψ2(·) ∼
Scale-inv-X 2(ρ, 1

σ2 ), and g
(i)
j ∼ N (0, σ2)5 for all i, j, then for all ρ > 4, the scaling factor

ϕ2 =
∑n

i=1 ψ
2
i (g

(i)
t )2∑n

i=1(g
(i)
t )2

satisfies Var[ϕ2] ≤ Var[ψ2]. If we approximate
√
ψ2 and

√
ϕ2 to the first order,

we have Var[ϕ] ≤ Var[ψ].

Proof. We express ϕ2 as a weighted sum:

ϕ2 =

n∑
i=1

wiψ
2
i , (27)

where the weights are defined as:

wi =
(g

(i)
t )2∑n

j=1(g
(j)
t )2

. (28)

Each wi is a non-negative random variable satisfying
∑n
i=1 wi = 1.

In the context of adaptive optimization algorithms like Adam, the squared gradients ψ2
i accumulate

information from past iterations to adapt the learning rate for each parameter. With β2 = 0.999,

5The assumption of a mean-zero normal distribution is valid at the outset of training, as the weights are
sampled from normal distributions with a mean of zero [3]
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Figure 10: Scaling factor ϕt(Rt) during the
early stage of training (1K iterations of total
10K iterations).
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Figure 11: The simulation of variance of the
scaling factor Var[ϕ] across different rank set-
tings. The adaptive learning rate ψ is equiva-
lent to ϕ when the rank equals 1.

the moving average of the squared gradients places significant weight on historical data, making ψ2
i

dependent mainly on past gradients, yielding:

ψ2
i ≈ ψ2

i (g
(i)
1 , . . . , g

(i)
t−1). (29)

Since ψ2
i primarily depend on past gradients g(i)1 , . . . , g

(i)
t−1, and wi depend solely on the current

gradients g(i)t , we can consider ψ2
i and wi to be independent random variables.

Consequently, we can express the variance of ϕ2 as:

Var[ϕ2] = Var

[
n∑
i=1

wiψ
2
i

]
. (30)

Using the law of total variance, we have:

Var[ϕ2] = E

[
Var

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]]
+Var

(
E

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

])
. (31)

Since ψ2
i are independent of the wi, we find:

E

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]
= E[ψ2

i ]

n∑
i=1

wi = E[ψ2
i ], (32)

Var

[
n∑
i=1

wiψ
2
i | w1, . . . , wn

]
=

n∑
i=1

w2
i Var[ψ

2
i ]. (33)

Thus, the variance simplifies to:

Var[ϕ2] = Var[ψ2] E

[
n∑
i=1

w2
i

]
. (34)

The second term, Var
(
E
[∑n

i=1 wiψ
2
i | wi

])
, is zero since E[ϕ2 | wi] = E[ψ2

i ] is constant.

Let Xi = (g
(i)
t )2, where each Xi ∼ σ2χ2

1. Then, we can express the weights as:

wi =
Xi∑n
j=1Xj

. (35)

Since Xi/σ
2 ∼ χ2

1, and each wi is the ratio of Xi to the sum of all Xj , the vector (w1, . . . , wn)
follows a Dirichlet distribution with parameters αi = νi

2 = 1
2 , where νi = 1 is the degrees of freedom

of χ2
1.
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For a Dirichlet distribution, the expected value of w2
i is given by:

E[w2
i ] =

αi(αi + 1)

(
∑n
k=1 αk) (

∑n
k=1 αk + 1)

. (36)

Substituting αi = 1
2 and

∑n
k=1 αk = n

2 yields:

E[w2
i ] =

1
2 ·

3
2

n
2 ·
(
n
2 + 1

) =
3

4
· 4

n(n+ 2)
=

3

n(n+ 2)
. (37)

Thus, summing over all i gives:

E

[
n∑
i=1

w2
i

]
= n · E[w2

i ] =
3

n+ 2
. (38)

Finally, substituting this result back into the variance expression:

Var[ϕ2] = Var[ψ2] · 3

n+ 2
. (39)

Since n ≥ 1, it follows that:
3

n+ 2
≤ 1, (40)

which implies:
Var[ϕ2] ≤ Var[ψ2]. (41)

Given ρ > 4 and ψ2(·) ∼ Scale-inv-X 2(ρ, 1
σ2 ), the variance of ψ2(·) exists [19].

Since ψ2
i and wi are independent and

∑n
i=1 E[wi] = 1:

E[ϕ2] = E

[
n∑
i=1

wiψ
2
i

]
=

n∑
i=1

E[wi] E[ψ
2
i ] = E[ψ2

i ]

n∑
i=1

E[wi] = E[ψ2
i ], (42)

Thus, we have shown that:

Var[ϕ2] ≤ Var[ψ2], and E[ϕ2] = E[ψ2
i ]. (43)

Follow [19], we approximate
√
ψ2 and

√
ϕ2 to the first order [34]

Var[ψ] ≈ Var[ψ2]

4 E[ψ2]
, and Var[ϕ] ≈ Var[ϕ2]

4 E[ϕ2]
. (44)

which implies:
Var[ϕ] ≤ Var[ψ]. (45)

To further examine our theorem, we conduct simulations to calculate the variance of the scaling
factor ϕ at ranks within the set {1, 5, 10, 50, 100}. The adaptive learning rate ψ is equivalent to that
of ϕ when the rank equals 1. As shown in Figure 11, the variance decreases as the rank increases,
supporting our above theorem Var[ϕ] ≤ Var[ψ]. Furthermore, we observe a surprisingly large
variance during the early stage, which corroborated our initial experiments. Consequently, we
conclude that our method is efficient without requiring an additional warm-up.

F Potential Reasons for Fira’s Enhanced Performance Compared to
Full-Rank Optimizer

While our proposed method aims to approximate full-rank training, one might intuitively assume that
the performance of full-rank Adam represents the upper bound. However, in previous experiments, we
noticed that Fira may achieve performance that is comparable to or even better than full-rank training.
This raises the question of why Fira outperforms full-rank Adam in certain scenarios. In this section,
we first demonstrate that, despite its goal of approximating full-rank training, Fira is fundamentally
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distinct from full-rank Adam. We then further substantiate this claim through experimental evidence.
Finally, we explore potential reasons why Fira can achieve enhanced performance compared to
full-rank Adam. Notably, the phenomenon where approximate optimizer correction outperforms the
original full-rank optimizer has also been observed in prior work, such as [42, 45], consistent with
our findings in Fira.

The approximation of low-rank to full-rank training in Fira is limited to scaling factors. Even in the
case of full-rank training, Fira is not equivalent to the original Adam. To illustrate this, we introduce
a variant of Fira called Fira-only-scaling in Appendix E.1. To isolate the influence of the original
Adam term Ptψt(Rt), Fira-only-scaling directly applies low-rank scaling factors to the full-rank
gradients by modifying Eqn. 10 from:

Wt+1 =Wt − ηPtψt(Rt)− ηϕt(Rt)(Gt − PtRt), (46)

to:
Wt+1 =Wt − ηϕt(Rt)Gt. (47)

As shown in Table 13, higher-rank approximations of scaling factors lead to improved performance,
validating the effectiveness of our approximation. But we can also find that full-rank Fira-only-scaling
and Adam are not the same. Fira-only-scaling employs a weight-matrix-wise scaling factors ϕt(Rt)
to adjust the raw gradients, whereas Adam uses element-wise adaptive learning rates.

As a result, in contrast to full-rank Adam, which is parameter-level adaptive, Fira applies adaptive
strategy at matrix-level (column-level), while maintaining the original gradient direction within a
matrix (column) (i.e., ϕt(Rt)Gt). As a result, the gradient direction which is only determined by the
current state can introduce a higher degree of randomness in training. Then, the randomness in training
can enhance the model’s ability to escape the local optima, thus leading to better generalization
performance. This insight potentially explains why Fira could match or even surpass the full-rank
Adam baseline.

To further argue this point, we conduct additional experiments on the comparisons of perplexity
trends. We compare the perplexity trends of Fira, Fira-only-scaling, SGD, and Adam. As illustrated
in 12 (a), the performance of vanilla SGD is significantly inferior, highlighting its inadequacy for
directly training LLMs. As depicted in 12 (b) and (c), while Adam demonstrates faster convergence
during the initial stages, both Fira and Fira-only-scaling achieve superior performance in the later
stages. This may occur because Fira applies an adaptive strategy exclusively at the matrix level while
preserving the original gradient direction within each weight matrix. As previously analyzed, Fira
may introduce a higher degree of randomness in training and a better ability to escape the local
optima, and then enable better generalization performance.
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(a) Fira v.s. SGD
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(b) Fira v.s. Adam
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Figure 12: Comparisons of perplexity (↓) trends for pre-training LLaMA 60M on C4 dataset.

G Additional Analysis of Spikes

Maintaining the direction of the raw gradient without correction might be unable to effectively deal
with the steep loss landscapes of LLM training like Adam [39]. The steep loss landscapes are likely
to cause abrupt increases in raw gradients. When the raw gradients increase abruptly, the gradients’
norm after norm-based scaling may also increase abruptly, as illustrated in Figure 3. This arises from
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Figure 13: Training loss comparison of Adam,
Fira, and Fira without limiter.
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Figure 14: Training loss comparison of differ-
ent gradient stabilization variants of Fira.

the fact that the norm-based scaling method only adjusts the average gradient norm of the gradient at
the matrix level, failing to make fine-grained adjustments to each parameter, unlike the optimizer
Adam. As a result, a significant parameter update may occur, undermining previous optimization
efforts, i.e. training loss spikes [11, 39]. As shown in Figure 13, when we directly use Adam to
pre-train the LLaMA model, there will be no loss spike. Our norm-growth limiter is mainly aimed at
addressing the gradient stability capability that our norm-based scaling method lacks compared to
Adam.

For more comprehensive comparisons of our norm-growth limiter, we design two additional gradient
stabilization variants to solve the loss spike: Gradient Shrink [36] (|St| = |St| · µ+ |St−1| · (1− µ)),
and Tensor-Wise Scaling [8] (|St| = |St| · µ), where St = ϕt(Rt)(Gt − PtRt) is the corrected
gradient by applying our norm-based scaling. As shown in Figure 14 and Table 14, Fira outperforms
other gradient stabilization methods. For further analysis, Gradient Shrink fails to solve the loss spike,
while Tensor-Wise Scaling solves the loss spike but leads to sub-optimal results.

Table 14: Validation perplexity (↓) of Fira across different gradient stabilization methods.

Method Ours Gradient Shrink Tensor-Wise Scaling Gradient Clipping Without Limiter

Perplexity (↓) 31.06 33.98 33.81 31.22 32.22

H Sensitivity Analyses of γ

Table 15: Validation perplexity (↓) of Fira across different choices of γ.

γ ∞ (w.o. limiter) 1.1 1.01 1.001 1

Perplexity (↓) 32.22 32.09 31.06 31.26 31.28

As shown in Table 15, the performance of Fira is not sensitive to the choice of γ. Provided that
γ ≤ 1.01, Fira can effectively mitigate spikes in loss, with only a marginal decrease in performance
when γ = 1. As we can see, the setting of γ = 1.01, employed across all experiments in this paper,
is highly effective. This value is neither too small to restrict the normal growth of the gradient nor too
large to fail to limit sudden increases in gradient magnitude.
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I Discussion on Concurrent Works

Adam-mini [42] employs block-wise learning rates to replace Adam’s element-wise learning rate
based on the Hessian structure of neural networks. However, it only reduces memory usage for
the second-order momentum while keeping the first-order momentum unchanged. In contrast, Fira
reduces memory for both first-order and second-order momentum.

SlimAdam [15] uses layer-wise SNR analysis to replace second-moment tensors with their means for
memory efficiency. However, like Adam-mini, it only focuses on the second-order momentum and is
unable to reduce memory for both first-order and second-order momentum like Fira.

MicroAdam [23] compresses gradient information to save memory with theoretical convergence
guarantees, but it is designed for fine-tuning workloads and cannot be adapted to LLM pre-training.
However, Fira works for both LLM pre-training and fine-tuning.

AdaLomo [22] enhances low-memory optimization (LOMO) with adaptive learning rates to improve
robustness and convergence. Unlike Fira, which focuses on enabling full-rank training under low-rank
constraints, AdaLomo focuses on improving LOMO’s convergence without involving the low-rank
constraints.

FRUGAL [46] addresses gradient information loss outside the subspace in GaLore by directly adding
these gradients outside the subspace via SGD or signSGD, without exploring more effective ways to
utilize such gradients. In contrast, Fira explores the use of scaling factors to enable more effective
updates for gradients outside the subspace. Additionally, FRUGAL provide theoretical convergence
guarantees when using SGDM for subspace updates and SGD for updates outside the subspace.

GaRare [20] analyzes and compares the loss landscapes of low-rank and full-rank setting under
gradient projection of GaLore, demonstrates that low-rank constraints improve the optimization
landscape by avoiding sharp minima. This may help explain Fira’s superior performance. Although
GaLore’s low-rank constraints enable a better optimization landscape, they discard significant gradient
information outside the subspace, leading to suboptimal results. In contrast, Fira leverages low-rank
constraints for a better optimization landscape while effectively capturing gradient information
outside the subspace, resulting in superior performance.

J Additional Experimental Comparison

To further demonstrate the generality of our method, we conduct additional experiments on a wider
range of architectures (Gemma-7B, Mistral-7B), datasets (MMLU), and adaptive optimizer (Adagrad).

Table 16: Comparison results on MMLU tasks. Results of all baselines are taken from [45].

Model Methods STEM Social Sciences Humanities Other Average

Gemma-7B

Full 30.03 37.16 34.08 35.47 34.21
LoRA 26.23 34.94 30.88 36.96 32.18
GaLore 25.47 33.21 31.07 33.71 30.95
Fira 29.03 35.27 32.40 36.52 33.26
APOLLO 27.53 36.97 33.99 36.40 33.81

Mistral-7B

Full 52.40 72.95 55.16 69.05 61.67
LoRA 52.13 72.46 55.05 68.77 61.41
GaLore 51.87 72.82 54.94 69.49 61.56
Fira 52.80 72.85 55.07 69.11 61.72
APOLLO 51.63 73.12 54.90 69.58 61.58

Table 17: Validation perplexity (↓) for pre-training LLaMA 60M on C4 dataset.

Method Fira+Adagrad Adagrad GaLore+Adagrad

Perplexity (↓) 43.11 103.85 88.87
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As shown in Table 16 and 17, Fira remains competitive with all baselines across different model
architectures, datasets, and optimizers, confirming its broad applicability.

To provide a comprehensive comparison against a broader range of baseline methods, we further
extend our evaluation under the same experimental settings as in Tables 3 and 4.

Table 18: Pre-training LLaMA models on the C4 dataset. Validation perplexity (↓) is reported.

60M 130M 350M 1B
Fira 31.06 22.73 17.03 14.31
Adam-mini 31.64 28.37 20.72 16.72
SlimAdam 31.22 24.70 18.12 15.42
FRUGAL 34.91 24.88 19.35 15.73

Table 19: Accuracy (↑) on eight commonsense reasoning datasets when fine-tuning LLaMA 7B.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg
Fira 69.4 82.6 78.0 76.8 81.2 82.2 64.4 80.8 76.9
Adam-mini 69.8 78.3 65.1 38.6 80.3 78.2 64.5 80.4 69.4
SlimAdam 68.3 79.2 77.2 76.9 76.5 78.2 61.1 74.1 73.9
FRUGAL 68.2 78.5 76.1 77.0 77.5 80.1 63.5 76.8 74.7

As shown in Table 18, Fira demonstrates consistent superiority over these baselines when pre-
training LLaMA models of different sizes. As shown in Table 19, when fine-tuning LLaMA 7B
on commonsense reasoning datasets, Fira achieves the highest performance across most datasets,
exhibiting superior average accuracy compared to these baselines.

K Robustness of Norm-based Scaling

As discussed in Adam-mini [42] and APOLLO [45], Adam’s element-wise scaling contains significant
redundancy. Using a shared scaling for a group of parameters, such as column-wise scaling in Fira-
only-scaling, is sufficient to replace Adam’s element-wise scaling. In this scenario, by aggregating
historical gradient information across multiple parameters, column-wise norm-based scaling of Fira
may be more robust than Adam’s element-wise scaling when dealing with training data noise.

To empirically assess this robustness, we inject Gaussian noise into the gradients during pre-training
and measure the resulting performance degradation.

Table 20: Validation perplexity (↓) for pre-training LLaMA 60M on C4 dataset.

Method Without Noise With Noise (0.00001 · N (0, 1))

Fira-only-scaling 31.68 34.64
Adam 34.06 445.47

As shown in Table 20, Fira-only-scaling exhibits slight performance degradation, while Adam’s
element-wise scaling shows significant performance degradation. This indicates that column-wise
scaling is more robust.

L Limitations

This work presents Fira, a novel memory-efficient training framework that enables full-rank training
of Large Language Models (LLMs) under low-rank constraints, significantly reducing memory usage
while maintaining high performance. However, our current research primarily focuses on LLMs.
In future work, we aim to extend the applicability of Fira to other domains, such as Multimodal
Large Language Models (MLLMs) and diffusion models, to further broaden its impact across diverse
machine learning tasks and architectures.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the paper’s primary contributions
and scope, including the development and evaluation of our proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: See Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper offers detailed information required to replicate the primary experi-
mental results, promoting transparency and reproducibility of the findings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code will be released publicly.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail all training and testing procedures in Section 5 and the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Owing to the high training costs, we did not conduct multiple runs to calculate
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the information on the computer resources in the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper fully complies with the NeurIPS Code of Ethics,
with all aspects of our work carefully reviewed to meet the established ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper has no negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, because no data or models were released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have appropriately credited and referenced the creators or original owners
of assets, such as code, data and models, used in our work. And, we have explicitly
mentioned and properly respected the licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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