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Abstract

Adverse weather severely impairs real-world visual perception, while existing
vision models trained on synthetic data with fixed parameters struggle to generalize
to complex degradations. To address this, we first construct HFLS-Weather, a
physics-driven, high-fidelity dataset that simulates diverse weather phenomena,
and then design a dual-level reinforcement learning framework initialized with
HFLS-Weather for cold-start training. Within this framework, at the local level,
weather-specific restoration models are refined through perturbation-driven image
quality optimization, enabling reward-based learning without paired supervision;
at the global level, a meta-controller dynamically orchestrates model selection
and execution order according to scene degradation. This framework enables
continuous adaptation to real-world conditions and achieves state-of-the-art per-
formance across a wide range of adverse weather scenarios. Code is available at
https://github.com/xxclfy/AgentRL-Real-Weather

1 Introduction

Adverse weather conditions present a persistent challenge for computer vision systems operating in
real-world environments. Rain, snow, haze, and their interactions degrade image quality through
intricate physical processes, including light scattering by atmospheric particles, dynamic sensor
noise, and surface-level phenomena such as water film reflections and ice crystal refraction. Various
deep-learning-based methods are developed from adverse weather image restoration, such as weather-
specific models for deraining [15, 61, 20, 68, 21, 54, 14], dehazing [19, 4, 13, 44, 48], desnowing [32],
and all-in-one models for multiple weather types [27, 46, 11, 35, 69, 49, 63, 36, 58, 8].

Despite these advances, existing methods often struggle in real-world applications due to a funda-
mental limitation: models trained on synthetic data fail to generalize effectively to unpredictable
real-world degradations. This performance gap arises from three limitations in current approaches:
(i) existing multi-weather synthetic datasets fail to capture the high-precision representation and the
intricate physics underlying weather phenomena, (ii) conventional static models lack the capacity
to adapt to novel degradation patterns encountered during real-world deployment, and (iii) single-
model architectures cannot leverage dynamic coordination strategies to optimally handle diverse and
multiple degradation types.

To address these, we develop a self-evolving approach that contains the physics-driven synthetic data
generation with a dual-level reinforcement learning architecture. First, we create the High-Fidelity
Large-Scale Weather dataset (HFLS-Weather), which simulates weather artifacts like rain, fog, and
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snow based on their physical formation. This dataset contains one million images, using depth
information predicted by a robust depth estimation model [59, 60] to generate realistic weather
effects in any scene. On this foundation, we train specialized restoration models for various weather
conditions, including rain, snow, haze, and mixed weather types, providing high-quality supervised
cold starts. Similarly to LLMs [17], a high-quality “cold start” is essential for the effectiveness of
subsequent reinforcement learning.

Second, we design a Dual-level Reinforcement Learning framework (DRL) for continuous refinement
and real-world adaptation. At the local level, multiple specialized restoration models, such as derain,
dehaze, and desnow, are first trained on our HFLS-Weather dataset and then continuously refined
based on real-world feedback through reinforcement learning. At the global level, a meta-controller
dynamically coordinates the collaboration of individual restoration models (agents) by analyzing
degradation patterns and historical execution data. This dual-level synergy establishes a closed-
loop learning ecosystem: at the local level, individual restoration models continuously refine their
capabilities based on real-world feedback, while at the global level, the meta-controller dynamically
optimizes model coordination for enhanced overall performance.

The key challenge for this framework is training the dual-level system on real data without paired
ground-truth images. Reinforcement learning offers a potential solution, as it doesn’t require pixel-
level supervision, making it suitable for scenarios where real data, particularly in adverse weather,
lacks paired ground-truth images. However, unlike recent successful reinforcement learning appli-
cations in large language models (e.g., Group Relative Policy Optimization, GRPO [42]), where (i)
multiple responses can be generated for a single prompt, enabling result comparison [17], and (ii)
rule-based reward designs work well for tasks with deterministic answers [43], image restoration
models typically output a fixed result for each input and it is difficult to derive deterministic rewards
without paired ground-truth images.

To train each individual restoration model, we develop Perturbation-driven Image Quality Optimiza-
tion (PIQO), which modifies GRPO [42] in two aspects to make it suitable for image restoration tasks.
First, we introduce perturbations to network parameters, enabling the model to generate different
results for a single input image, facilitating effective comparison during the learning process. Second,
to assess performance and provide learning rewards for unlabeled real-world images, we design a
reward assessment strategy for image quality, which integrates various evaluation metrics for restored
images. To train the global meta-controller, we take the image quality assessment score as reward to
autonomously determine the optimal execution sequence for input images and dynamically select
the most suitable model to maximize performance. The scheduling policy is continuously refined
through real-world interactions, enabling adaptability to changing conditions.

Lastly, we conduct various experiments under complex real-world conditions across diverse weather
scenarios by comparing with various methods for removing weather-related artifacts. The results
demonstrate that our model outperforms the previous methods by a large margin, both quantitatively
and visually. To our knowledge, this is the first work to successfully apply GRPO concepts to image
restoration, demonstrating that a high-quality cold start and effective reward design are key to success.

2 Related Work

2.1 Adverse Weather Image Restoration

Earlier research primarily focused on restoring images degraded by specific weather conditions, such
as rain [15, 61, 20, 68, 21, 54, 14], haze [19, 4, 13, 44, 48], and snow [32]. More recent efforts aim
to develop unified frameworks for general adverse weather removal [27, 46, 11, 35, 69, 49, 63, 36].
All-in-One [27] first unified weather restoration via joint training; TransWeather [46] introduced
transformer-based adaptive queries; and Chen et al. [11] used contrastive learning with knowledge
distillation. WeatherDiff [35] proposed a diffusion-based model, while WGWS [69] employed a two-
stage pipeline for general-to-specific refinement. WeatherStream [64] introduced real degraded–clean
pairs but suffered from compression noise. Although these approaches have shown impressive results
on synthetic benchmarks [15, 38, 32, 25, 26, 20, 55, 57], their real-world performance is hindered
by the domain gap between controlled synthetic data and the complexity of actual environmental
conditions. This gap often limits their ability to handle the unpredictable and diverse nature of
real-world weather scenarios.
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Figure 1: Weather-degraded images from Foggy Cityscapes-DBF [40], RESIDE-OTS [25], RainCityscapes [20],
and Snow100K [32] showcase artifacts such as ghosting and uneven weather effects resulting from depth
estimation errors. Note that RESIDE-OTS does not provide public depth maps, and Snow100K lacks depth data.
The three rows represent clean images, depth maps, and weather-degraded images, respectively.

2.2 Large-Scale, Agent-Based, and Perturbation Methods

Recent advancements leveraged large-scale models and multi-agent systems to address image restora-
tion challenges across various adverse weather conditions. DA-CLIP [33] extends CLIP [39] via
a dynamic controller for robust embeddings. Other methods integrate external knowledge: e.g.,
distilling semantics from SAM [65, 24], using prompt learning and depth priors [8], or leveraging
VLMs for semi-supervised enhancement [56]. RestoreAgent [6] uses multimodal LLMs to assess,
sequence, and apply restoration tools autonomously. AgenticIR [67] coordinates multiple expert
agents via LLMs for toolbox-based restoration, including synthetic degradation generation. Very
recently, JarvisIR [29] also adopts multi-agent RL strategies for weather-degraded image restoration.

Some works explore perturbation-based mechanisms for improving restoration diversity and robust-
ness. DFPIR [45] introduces degradation-aware feature perturbation, while earlier works exploit
latent-space or parameter perturbations through learned priors, such as deep mean-shift priors [3]
and autoencoding priors [2]. Unlike these, our method employs RL-guided parameter perturbations
with IQA-based reward filtering, and further introduces a dual-level structure where a global meta-
controller dynamically coordinates local restoration agents, enhancing adaptability in real-world
scenarios. Although GPT-4o2 shows potential in visual editing (e.g., removing weather artifacts),
it often produces visually appealing but physically unauthentic outputs (e.g., hallucinated objects,
distorted structure) [9], limiting its utility in tasks requiring geometric and photometric fidelity.

3 High-Fidelity Large-Scale Weather Dataset

3.1 Dataset Overview

Existing weather-related datasets for fog, rain, and snow [41, 20, 21] primarily rely on synthetic
images generated via atmospheric scattering models [16], with depth maps sourced from LiDAR [41,
20] or monocular depth estimation [30]. While widely used for weather artifact removal, these
datasets suffer from key limitations: (i) LiDAR-based collection is expensive and limited in scale
and scene diversity; (ii) depth maps often lack granularity, introducing unrealistic artifacts such as
ghosting (see Fig. 1); and (iii) depth estimation models generalize poorly, further degrading realism.

To overcome these issues, we develop HFLS-Weather, a large-scale, high-fidelity dataset for realistic
weather synthesis. Leveraging an advanced depth prediction model [60], we generate precise and
scalable simulations of rain, haze, and snow. The rain and snow simulations include both pure
artifacts (i.e., rain-only or snow-only) and mixed conditions combining rain or snow with haze. This
design improves both the diversity and physical plausibility of training data (Fig. 1a).

HFLS-Weather offers two core advantages: (i) High-fidelity depth at scale. We generate accurate
depth maps from clear-weather images using a state-of-the-art model, eliminating the cost and
limitations of LiDAR while enabling realistic synthesis across diverse scenes. (ii) Depth-consistent
multi-weather simulation. A unified framework applies depth-driven attenuation not only to haze,

2https://openai.com/index/hello-gpt-4o/
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Table 1: Comparison of datasets for image restoration under adverse weather.
Dataset Year Weather Depth Depth Source #Clean #Pairs Real/Syn

Snow100K [32] 2017 Snow No - 50,000 50,000 Syn
Rain14000 [15] 2017 Rain No - 650 9,100 Syn
RESIDE-OTS [25] 2018 Haze Yes DCNF 2,061 72,135 Syn
NTURain [7] 2018 Rain No - - 3,123 Syn
Foggy Cityscapes [41] 2018 Haze Yes Stereo Vision 2,975 8,925 Syn
Foggy City.-DBF [40] 2018 Haze Yes Stereo Vision 2,975 8,925 Syn
RESIDE-RTTS [25] 2018 Haze - - - 4,322 Real
RainHeavy25 [62] 2019 Rain No - - 1,710 Syn
RainCityscapes [20, 21] 2019 Rain Yes Stereo Vision 262 9,432 Syn
Outdoor-Rain [26] 2019 Rain No - - 13,500 Syn
CSD [10] 2021 Snow No - - 10,000 Syn
WeatherStream [64] 2023 Rain/Haze/Snow No - «188,000 188,000 Real (diff. time)
CDD11 [18] 2024 Rain/Haze/Snow Yes MegaDepth [28] 1,383 13,013 Syn
Weather30K [57] 2025 Rain/Haze/Snow No - 30,000 30,000 Syn

HFLS-Weather 2025 Rain/Haze/Snow Yes DepthAnything v2 [60] 1,000,000 1,000,000 Syn

but also to rain and snow, ensuring that all weather effects decay realistically with distance. This
yields physically consistent degradations aligned with scene geometry, supporting robust training for
multi-weather restoration models.

3.2 Weather-Related Artifact Simulation

We simulate realistic fog, rain, snow, and hybrid conditions using an atmospheric scattering model [5,
16], incorporating depth-dependent interactions between weather phenomena. In real-world scenarios,
distant objects are often obscured by fog, while proximate regions exhibit rain streaks or snowflakes
[20, 21]. To model this, we define the weather-affected image Iweather(x) as

Iweather(x) = J(x) (1−M(x)− F (x)) +M(x) +A(x)F (x) ,

where J(x) represents the clean image, M(x) ∈ [0, 1] denotes the rain/snow layer, and F (x) =
e−βd(x) corresponds to the fog layer, with β as the atmospheric scattering coefficient and d(x)
representing high-quality depth information. A(x) is the global atmospheric light. Fog is simulated
using a transmission map F (x) = e−βd(x), where β controls fog density and d(x) provides depth
information, allowing fog to naturally obscure distant objects while leaving closer objects clearer.
Rain and snow are represented by the rain/snow layer M(x), a semi-transparent mask created
through procedural generation. Rain streaks appear more intense on closer objects, while snowflakes
accumulate in a scattered pattern, adding realism through variable opacity based on depth. In both
rain and snow conditions, fog effects can be applied to objects at greater distances from the camera.

3.3 Dataset Comparison

To construct HFLS-Weather, we collected one million clean images from diverse sources including
Snow100K [32], RESIDE-OTS [25], Google Landmark V2 [51], and OSV5M [1]. Each image
was randomly augmented with one weather type, i.e., haze, rain (rain-only & rain+haze), and snow
(snow-only & snow+haze), using our physically grounded synthesis pipeline, resulting in one million
high-quality degraded images.

As summarized in Table 1, HFLS-Weather provides balanced coverage across rain, haze, and
snow, unlike prior datasets that target single weather types. Its use of high-fidelity depth enables
accurate simulation of weather effects, improving realism and consistency. With one million diverse
backgrounds and generated pairs, it surpasses existing datasets in both scale and diversity, facilitating
robust generalization. By combining large-scale synthesis with physically consistent depth cues,
HFLS-Weather addresses key limitations of prior benchmarks and supports inter-condition learning
for advanced weather artifact removal.

4 Dual-Level Reinforcement Learning Framework

In this work, we present a dual-level reinforcement learning framework for real-world adverse
weather image restoration, integrating both Perturbation-Driven Image Quality Optimization (PIQO)
and a Multi-Agent System to continuously refine restoration models through real-world feedback.
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Figure 2: Architecture of Perturbation-Driven Image Quality Optimization and Multi-Agent System.

Figure 2 illustrates our framework, where PIQO applies Gaussian perturbations to model parameters,
generating multiple restored images that are evaluated using quality assessment models to guide
learning and improve adaptation to various weather conditions. The Multi-Agent System uses a
meta-controller to generate weather descriptions and dynamically select the most suitable restoration
model based on historical success rates, thereby enhancing performance across diverse weathers.

4.1 Perturbation-driven Image Quality Optimization

While reinforcement learning has advanced LLM alignment through techniques like Group Relative
Policy Optimization (GRPO) [42], its application to image restoration is less explored. Unlike text
generation, which naturally supports one-to-many outputs, image restoration typically follows a
one-to-one mapping from degraded inputs to plausible outputs, limiting diversity and complicating
reward design, especially without paired ground truth. Rule-based rewards, effective in deterministic
settings [43], often underperform in such underconstrained scenarios.

To address this, we present Perturbation-driven Image Quality Optimization (PIQO), a GRPO-inspired
framework tailored for image restoration. PIQO injects small Gaussian perturbations into model
parameters during inference to produce diverse outputs for the same input. Let θ be the current model
parameters and the i-th perturbed version θ′i = θ +∆. For each degraded input image, we generate
multiple outputs Îi using perturbed models f(θ′i).

To evaluate output quality without paired supervision, we define a composite no-reference reward
function combining four metrics: LIQE [66], CLIP-IQA [47], and Q-Align [52]. The reward for the
i-th output is:

ri = w1 × LIQE(Îi) + w2 × CLIP-IQA(Îi) + w3 × Q-Align(Îi), (1)

where w∗ are the weights for each metric. This reward function produces a scalar score ri for each
candidate output, reflecting its predicted perceptual quality. By design, higher indicates better overall
visual quality as judged by the ensemble of metrics.

Not all perturbed outputs are beneficial for learning, and some may produce degraded images with
low rewards, introducing high variance or even harmful gradients. To mitigate this, we apply a reward
filtering step that discards outputs whose rewards fall below that of the unperturbed model, ensuring
the optimization focuses only on advantageous directions. Let Ip denote the output from the current
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model and MUSIQ [23] be the filtering criterion; we retain only the indices with:

S = i | MUSIQ(Îi) > MUSIQ(Ip). (2)

Next, we compute the normalized advantage Ai for each retained sample i ∈ S, which reflects how
much its reward deviates from the group mean:

Ai =
ri − r̄

σr + ε
, r̄ =

1

N

N∑
j=1

rj , σr =

√√√√ 1

N

N∑
j=1

(rj − r̄)2, (3)

where r̄ and σr denote the mean and standard deviation of the rewards {rj}Nj=1 within the retained
group S. This relative advantage indicates the quality of a perturbed output compared to the group
average: positive Ai suggests a beneficial perturbation, while negative Ai implies a less favorable
one (note that low-quality samples have mostly been filtered out by the rp baseline). Normalizing
the advantages reduces variance in the gradient estimate and serves as a built-in baseline, akin to
standard policy gradient methods.

Given the filtered set of perturbations and their advantages, PIQO updates the model parameters in
the direction that increases expected image quality. We estimate the cumulative policy gradient g
over the filtered subset S:

g = − 1

|S|
∑
i∈S

Ai(θ
′
i − θ), (4)

where the negative sign reflects gradient ascent on reward.

To stabilize updates, we apply implicit KL regularization by approximating divergence in parameter
space. This is analogous to the trust-region constraint in PPO, which limits how much the policy can
change in a single step.

KLapprox =
1

|S|
∑
i∈S

1

|θ|

|θ|∑
j=1

(
θ′i,j − θj

)2
, (5)

where |θ| is the number of parameters and θ′i,j the j-th parameter of the i-th perturbed model.

We compute a scaling factor based on a KL threshold τ :

scale =

{√
τ/KLapprox, if KLapprox > τ

1, otherwise
(6)

The final parameter update is:
θ ← θ + η · scale · g, (7)

where η is the learning rate. This update ensures stability by preventing large shifts when parameter
divergence is high.

PIQO extends GRPO to image restoration by enabling learning from unlabeled real-world data through
perturbation-induced diversity, reward-based filtering, and variance-reduced gradient updates.

4.2 Muti-Agent System

To further deal with the complex adverse weather conditions in real world, we present a multi-agent
system for image restoration that can handle one or multiple adverse weather types by learning from
real data. After training individual restoration models for specific weather conditions, the system
utilizes specialized agents, each focusing on a particular type of degradation. These agents collaborate
autonomously through a bidding mechanism driven by perceptual analysis.

As shown in Figure 2, the process begins by analyzing the input image using a meta-controller
(CLIP [39]), which identifies the dominant weather-related degradation and generates a corresponding
“weather description.” This semantic description guides the selection of agents for subsequent
restoration stages. The system broadcasts this weather description to all registered agents, who assess
the compatibility of their specialization with the identified degradation. Each agent decides whether
to participate in the bidding process based on its historical success rate with similar degradations.
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Table 2: Performance comparison in real-world scenarios, evaluated by IQA metrics.

Method Snow Haze Rain
Q-Align CLIP-IQA LIQE MUSIQ Q-Align CLIP-IQA LIQE MUSIQ Q-Align CLIP-IQA LIQE MUSIQ

Chen et al.[11] 3.5898 0.4959 3.1256 60.2062 3.1109 0.3373 2.0729 54.0597 3.7629 0.4201 2.5429 54.2367
WGWS [69] 3.5901 0.5026 3.1042 60.4800 3.1137 0.3643 2.1464 54.0680 3.7986 0.4428 2.5310 54.5487
PromptIR [37] 3.6492 0.5291 3.2397 61.1700 3.0906 0.3757 2.0673 53.8121 3.8074 0.4466 2.5622 54.6686
OneRestore [18] 3.5884 0.5089 3.1478 61.3300 2.9825 0.3293 2.0571 53.9140 3.7019 0.4167 2.4556 55.0806
DA-CLIP [33] 3.6261 0.5219 3.2410 61.1583 3.1301 0.3687 2.0797 54.4134 3.8144 0.4656 2.5810 54.9613

Ours 3.9569 0.5918 3.9458 67.7990 3.5608 0.4561 3.0267 63.3000 4.0283 0.5623 3.2945 64.1187

Table 3: Performance comparison in real-world scenarios, evaluated by GPT-4o.

Weather Metric Chen et al. WGWS PromptIR OneRestore DA-CLIP DFPIR JarvisIR Ours

Snow
Artifact Removal ↑ 2.949 2.664 3.057 3.116 3.047 – 3.570 4.421

Weather Resilience ↑ 3.014 3.045 3.172 3.440 3.128 – 3.610 4.355
Overall Visual Quality ↑ 3.012 2.936 3.232 3.464 3.003 – 3.730 4.393

Haze
Artifact Removal ↑ 3.142 3.015 3.083 3.415 3.071 3.170 3.650 4.074

Weather Resilience ↑ 3.056 2.935 3.014 3.322 3.016 3.140 3.450 4.015
Overall Visual Quality ↑ 3.070 3.098 2.978 3.415 3.211 3.240 3.580 3.948

Rain
Artifact Removal ↑ 2.965 2.978 3.371 3.359 3.275 3.340 3.710 4.254

Weather Resilience ↑ 2.841 2.923 3.323 3.222 3.159 3.150 3.690 4.007
Overall Visual Quality ↑ 2.984 3.014 3.314 3.201 3.163 3.180 3.870 3.896

Only agents with a high likelihood of success, based on past performance, submit bids. The system
ranks the bidding agents by their historical success rates and selects the top-ranked agent to handle the
restoration task. Once the restoration is completed, the system evaluates the result through a two-step
process: (i) The CLIP model re-analyzes the restored image to check for the targeted degradation. (ii)
An objective Image Quality Assessment (IQA) score is calculated to assess the quality improvement.
Specifically, we adhere to the PIQO reward configuration; see Eq. (1).

If the IQA score decreases compared to the previous round, the restoration is considered a failure.
In this case, the system reverts the image to its previous state, removes the failed agent from the
candidate list, and selects the next highest-ranked agent for another attempt. This process continues
until a successful restoration is achieved or three consecutive failures occur, at which point the image
with the highest IQA score is returned.

If the restoration does not result in a decrease in IQA score, the system checks whether further
degradation is present using the CLIP model. If degradation is still detected, the restoration is
considered partially successful, and the system enters the next round. The bidding process is re-
initiated, excluding the agent from the previous round to avoid redundancy. If no further degradation
is detected, the restoration is considered complete, and the image is returned as the final output.

To avoid computational overload, the system limits the number of agents involved in a single
restoration to three. If three consecutive restoration attempts result in failure (i.e., successive IQA
drops), the process terminates, and the image with the highest IQA score is returned.

4.3 Training Strategy

We adopt the dual-level reinforcement learning strategy to train a DSANet [12]-based multi-agent
system for real-world weather adaptation, utilizing eight NVIDIA RTX 4090 GPUs. The training
process begins with a cold start on the HFLS-Weather dataset, using the Adam optimizer with a batch
size of eight and a learning rate of 0.0001 for up to 100 epochs. Early stopping is applied based on the
validation loss. At this stage, we also fine-tune the rain sub-model on the SPA+ dataset[69]to further
improve rain removal. At the local level, task-specific restoration agents (e.g., deraining, dehazing,
desnowing) are enhanced via Perturbation-driven Image Quality Optimization (PIQO), guided by
weighted image quality assessment (IQA) rewards with weights w1 = 0.2, w2 = 1, and w3 = 0.2.
The training leverages real-world data, including 2,318 hazy images from the URHI dataset [25], and
2,433 rainy images and 2,018 snowy images from the WReal dataset [56], with a learning rate of
0.0001 and a batch size of 16. At the global level, the multi-agent system is further optimized using a
batch size of 16 and a learning rate of 0.0001.
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Figure 3: Visual comparisons of real images under haze, snow, and rain, with [11, 18, 33, 37, 69].

5 Experimental Results

To assess model performance in removing weather artifacts, we use the WReal dataset [56], which
includes 4,322 real haze images from RTTS [25], 2,320 real rain images from DDN-SIRR [50] and
Real3000 [31] (excluding synthetic scenes), and 1,329 real snow images from Snow100K [32].

5.1 Performance Comparison with State-of-the-Art Methods

Quantitative comparison. In real-world scenarios, the lack of labeled images affected by haze,
snow, or rain complicates the evaluation of image restoration methods. Metrics such as CLIP-
IQA [47] and Q-Align [53], originally designed for general datasets, often fail to capture subtle noise
and residual artifacts, resulting in inflated scores that misrepresent visual quality. To address these
issues, besides IQA metrics, we use GPT-4o [34] for additional evaluation across artifact removal,
weather resilience, and overall visual quality. Artifact removal assesses artifact suppression and color
accuracy, while weather resilience evaluates model robustness in more challenging cases. Overall
visual quality measures the aesthetic coherence of the image.

Table 2 and Table 3 show the results of common image quality metrics and GPT-4o evaluation,
comparing with recent image restoration methods under adverse weather conditions, including Chen
et al.[11], WGWS[69], PromptIR[37], OneRestore[18], DA-CLIP[33], DFPIR [45], and JarvisIR [29].
From the results, we observe the following: (i) Our method outperforms all competitors under snow,
haze, and rain, demonstrating strong generalization across diverse real-world degradations. (ii) Our
method achieves the highest scores in all IQA metrics, reflecting superior visual fidelity and semantic
relevance. (iii) GPT-4o’s perceptual evaluation highlights our method’s excellence in artifact removal,
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Table 4: Comparison of models that are pre-trained on various synthetic and real datasets as different “cold
starts”, followed by further finetuning with our PIQO approach.

Metric Snow Haze Rain
RealSnow Snow100K Our Snow Our Snow+Haze OTS ITS Our Haze SPA+ Rain1300 Our Rain Our Rain+Haze

Q-Align 3.6974 3.7490 3.8482 3.8693 3.1220 3.1014 3.5329 3.7805 3.6974 3.9318 3.9205
CLIP-IQA 0.5315 0.5149 0.5653 0.5625 0.3846 0.3697 0.4496 0.4612 0.4205 0.5340 0.5615
LIQE 3.3386 3.4609 3.7094 3.7741 2.1239 2.1412 3.0120 2.6766 2.5681 2.9805 3.0485
MUSIQ 63.5571 64.2048 69.86 69.86 54.8760 54.5783 63.6006 56.5147 55.2493 60.4364 61.8700

Input basic. basic+Agent. basic+PIQO. basic+PIQO+Agent.

Figure 4: Visual ablation study of the framework components.

weather resilience, and overall visual quality. (iv) While competing methods fluctuate across different
weather conditions, our approach maintains stable and superior performance, demonstrating that
real-world refinement via dual-level reinforcement learning significantly boosts generalization and
robustness beyond the models trained solely on synthetic data.

Visual comparison. Figure 3 shows the visual comparison results, where the effectiveness of our
approach is demonstrated across different weather conditions, including haze, snow, and rain. As
shown, our method consistently delivers superior restoration quality, better preserving fine details,
colors, and structural integrity of the scene, while others may fail to remove weather degradations,
recover important features or introduce artifacts, particularly in challenging real weather conditions.

Latency comparison. Our Multi-Agent System incurs higher latency (570 ms) due to running
multiple specialized models, yet it achieves superior restoration quality under complex weather.
Compared with single-model baselines such as OneRestore (17 ms), Chen et al. (18 ms), WGWS
(95 ms), and PromptIR (208 ms), our framework is slower but more robust. At the same time, it
remains far more efficient than other multi-agent systems like DA-CLIP (6543 ms) and JarvisIR
(15250 ms), striking a favorable balance between efficiency and performance.

5.2 Ablation Study

Evaluation on the “cold starts.” To evaluate the effectiveness of our high-fidelity synthetic dataset
for cold-start pretraining, we conduct studies on both single-degradation and mixed-weather datasets,
comparing models initialized on different synthetic datasets and then refined using our PIQO.

As the results in Table 4, we have the following observations. (i) Superiority of High-Quality Cold
Start: Models initialized with HFLS-Weather show significant improvements in image quality over
those trained on prior public datasets for snow, haze, and rain. (ii) Cross-Weather Pretraining
Helps: Incorporating weather diversity in pretraining, such as combining snow and haze, enhances
performance, suggesting that exposure to multiple degradation types improves generalization during
PIQO finetuning. Additional comparisons of HFLS-Weather are in the Appendix.

Evaluation of the framework design. To assess the contribution of each component, we conduct
ablation studies under real-world weather conditions using three quantitative metrics: CLIP-IQA,
LIQE, and Q-Align. The Basic model refers to the baseline image restoration network pretrained
on our HFLS-Weather synthetic dataset, while Agent denotes the proposed multi-agent coordination
system. As shown in Table 5 and Figure 4: (i) adding the PIQO training significantly enhances per-
ceptual quality, especially under challenging conditions like rain and snow; (ii) the Agent framework
improves adaptive restoration by dynamically dispatching specialized agents; and (iii) combining
PIQO with Agent yields the best performance across all metrics, highlighting the effectiveness of
joint local optimization and global coordination.
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Table 5: Ablation study of the framework components under snow, haze, and rain.

Method Snow Haze Rain
CLIP-IQA Q-Align LIQE CLIP-IQA Q-Align Q-Align CLIP-IQA Q-Align Q-Align

Basic 0.4774 3.6649 3.1794 0.3661 3.2673 2.0232 0.4392 3.7678 2.5349
Basic + Agent 0.5242 3.7415 3.4893 0.3814 3.2977 2.2302 0.4721 3.8785 2.6871
Basic + PIQO 0.5653 3.8482 3.7094 0.4496 3.5329 3.0120 0.5340 3.9318 2.9805
Basic + PIQO + Agent 0.5918 3.9458 3.9569 0.4561 3.5608 3.0267 0.5623 4.0283 3.2945

6 Conclusion

We develop a dual-level reinforcement learning framework for real-world adverse weather image
restoration, combining a physics-driven synthetic dataset (HFLS-Weather) with a two-tier adaptive
learning system. At the local level, weather-specific models are refined using perturbation-driven
optimization without paired supervision. At the global level, a meta-controller dynamically schedules
model execution based on degradation patterns. Nevertheless, the multi-agent system introduces extra
inference-time overhead as a result of its multi-round interactions.

Potential negative societal impacts. While our method improves visual robustness in adverse
conditions, it may be misused for surveillance or deepfake generation, and poses risks in safety-critical
applications without proper validation. Responsible use and safeguards are necessary.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims reflect the paper’s contributions and scope for real-world
adverse weather image restoration on developing a dual-level reinforcement learning frame-
work and building the dataset.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 6 for details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method section provides details on how to reproduce the proposed model.
The code and results will be publicly available on the publication of this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the data and code. Please see more in
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details including various hyperparameters and optimizers
are provided in Section 4.3 and Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The improvement is substantial and evident, even in the absence of statistical
analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in Section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors make sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The positive impacts are in Introduction and the negative impacts are in
Conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Providing effective safeguards is challenging for this task. But the authors
discuss this issue in Conclusion.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All related works are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the dataset/code/model are discussed and submitted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experimental Results

A.1 Training on Different Synthetic Datasets

Table below compares the performance of models trained on different synthetic datasets for snow,
haze, and rain conditions, using metrics such as Q-Align [53], CLIP-IQA [47], LIQE [66], and
MUSIQ [23]. For snow, models trained on “Our Snow” and “Our Snow+Haze” datasets outperform
others, with “Our Snow+Haze” achieving the highest Q-Align score of 3.7179 and the best CLIP-IQA
score of 0.4964, indicating superior quality and alignment. Haze models also favor “Our Haze,” which
scores highest in Q-Align (3.2673) and LIQE (2.2555), suggesting better restoration of haze-affected
images compared to others like OTS and ITS. In the rain category, the “Our Rain+Haze” model
excels across all metrics, particularly in Q-Align (3.8148) and MUSIQ (56.1142), outperforming
models trained on Rain13k and “Our Rain.”

These results highlight the benefits of combining multiple weather conditions (rain and haze) in
training, as it leads to more realistic and effective restoration. Overall, our dataset consistently
outperforms other synthetic datasets, proving the effectiveness of HFLS-Weather in generating
realistic and high-fidelity weather conditions for image restoration tasks.

Table 6: Performance comparison of models trained on different synthetic datasets.
Metric Snow Haze Rain

RealSnow[69] Snow100K[32] Our Snow Our Snow+Haze OTS[25] ITS[25] Our Haze SPA+[68] Rain13k[22] Our Rain Our Rain+Haze

Q-Align 3.6037 3.6357 3.6649 3.7179 3.0942 3.0309 3.2673 3.7707 3.6357 3.7678 3.8148
CLIP-IQA 0.4727 0.5025 0.4774 0.4964 0.3994 0.3661 0.3786 0.4335 0.3839 0.4392 0.4439
LIQE 3.0512 3.2642 3.1794 3.3741 2.0663 2.0232 2.2555 2.4695 2.3275 2.5349 2.5779
MUSIQ 61.3510 61.6517 62.3326 62.3262 53.9367 53.9367 55.8514 55.1913 53.6375 55.4581 56.1142

A.2 Re-training Other Methods on the HFLS-Weather

A potential concern is that performance improvements may primarily come from the scale of the
HFLS-Weather dataset rather than the proposed framework. To clarify this, we first report in the
main paper (Table 5) the results of our model trained solely on HFLS-Weather without reinforcement
learning (PIQO) or the agent framework, which already demonstrates the additional benefit of our
algorithmic components.

To further disentangle the contributions, we re-trained two representative baselines, WGWS (CVPR
2023) and OneRestore (ECCV 2024), on HFLS-Weather using their released code. The quantitative
results are presented in Table 7. Both baselines improve notably when trained on HFLS-Weather,
confirming that the dataset provides strong supervision. Nevertheless, our full framework consistently
outperforms them across all metrics and weather conditions, indicating that dataset scale alone does
not account for the gains.

These results demonstrate two key points: (i) HFLS-Weather is indeed a valuable contribution that
benefits existing methods, and (ii) the proposed PIQO and dual-level agent framework provide
substantial additional improvements, establishing state-of-the-art performance under diverse weather
degradations.

Table 7: Performance of re-trained baselines on HFLS-Weather. Metrics include LIQE, CLIP-IQA, Q-Align,
and MUSIQ.

Method Snow Haze Rain

LIQE CLIP Q-Align MUSIQ LIQE CLIP Q-Align MUSIQ LIQE CLIP Q-Align MUSIQ

WGWS 3.71 0.54 3.40 65.67 3.31 0.40 2.57 56.76 3.81 0.47 2.70 56.62
OneRestore 3.73 0.55 3.56 65.32 3.38 0.41 2.67 57.13 3.83 0.48 2.68 58.67
Ours 3.84 0.56 3.70 66.30 3.53 0.44 3.01 63.60 3.93 0.53 2.98 60.43

B More Comparisons with the State-of-the-Art Methods
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 5: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 6: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].

23



(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 7: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 8: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 9: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 10: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 11: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 12: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 13: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 14: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 15: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 16: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 17: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 18: Visual comparison of real-world images under snow with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 19: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 20: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 21: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 22: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 23: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 24: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 25: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 26: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 27: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 28: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 29: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 30: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 31: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 32: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 33: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 34: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 35: Visual comparison of real-world images under haze with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 36: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 37: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 38: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 39: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 40: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 41: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 42: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 43: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 44: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 45: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 46: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 47: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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(a) Input (b) Chen et al.

(c) WGWS (d) PromptIR

(e) DACLIP (f) OneRestore

(g) Ours
Figure 48: Visual comparison of real-world images under rain with [11, 18, 33, 37, 69].
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C Additional Results Produced by Our Method

We provide more qualitative results under snow, haze, and rain conditions.
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 49: Additional results produced by our method (snow, set 1).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 50: Additional results produced by our method (snow, set 2).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 51: Additional results produced by our method (snow, set 3).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 52: Additional results produced by our method (haze, set 1).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 53: Additional results produced by our method (haze, set 2).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 54: Additional results produced by our method (haze, set 3).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 55: Additional results produced by our method (rain, set 1).
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Input Ours

Input Ours

Input Ours

Input Ours

Figure 56: Additional results produced by our method (rain, set 2).
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Input Ours

Input Ours

Input Ours

Input Ours

Input Ours

Figure 57: Additional results produced by our method (rain, set 3).
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