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Abstract

Multimodal large language models (MLLMs)001
have gained significant attention due to their im-002
pressive ability to integrate vision and language003
modalities. Recent advancements in MLLMs004
have primarily focused on improving perfor-005
mance through high-quality datasets, novel ar-006
chitectures, and optimized training strategies.007
However, in this paper, we identify a previ-008
ously overlooked issue, language prior con-009
flict, a mismatch between the inherent language010
priors of large language models (LLMs) and011
the language priors in training datasets. This012
conflict leads to suboptimal vision-language013
alignment, as MLLMs are prone to adapting014
to the language style of training samples. To015
address this issue, we propose a novel training016
method called Decoupled Proxy Alignment017
(DPA). DPA introduces two key innovations:018
(1) the use of a proxy LLM during pretraining019
to decouple the vision-language alignment pro-020
cess from language prior interference, and (2)021
dynamic loss adjustment based on visual rel-022
evance to strengthen optimization signals for023
visually relevant tokens. Extensive experiments024
demonstrate that DPA significantly mitigates025
the language prior conflict, achieving superior026
alignment performance across diverse datasets,027
model families, and scales. Our method not028
only improves the effectiveness of MLLM train-029
ing but also shows exceptional generalization030
capabilities, making it a robust approach for031
vision-language alignment.032

1 Introduction033

After the significant success of large language mod-034

els (LLMs) (Dubey et al., 2024; Yang et al., 2024a),035

numerous efforts have been made to leverage the036

powerful language understanding capabilities of037

LLMs to construct multimodal large language mod-038

els (MLLMs). Many recent studies are centered039

around enhancing the performance of MLLMs,040

which can be divided into three categories: (1) in-041

troducing high-quality datasets (Chen et al., 2024a;042

(a) The Dataset Quality Paradox on CVBench.

(b) Loss change (%) for linguistically relevant and
visually relevant words before and after training.

Figure 1: In this paper, we identify the issue of language
prior conflict. Figure 1a illustrates that datasets consid-
ered "high-quality" for one model may negatively affect
another due to language prior conflict. Figure 1b shows
that DPA enables models to focus more on vision-text
alignment rather than overfitting to language priors in
the training data. See Section 5.1 for more analysis.

Deitke et al., 2024), (2) improving model architec- 043

ture design (Tong et al., 2024a; Dubey et al., 2024), 044

and (3) optimizing training strategies (Xiao et al., 045

2024; Chen et al., 2024b). These approaches are 046

both distinctive and complementary, collectively 047

driving the development of MLLMs and signifi- 048

cantly improving their performance across diverse 049

tasks. 050

Despite these efforts, our research has uncovered 051

a critical issue during the training of MLLMs: a sig- 052
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Figure 2: Illustration of Decoupled Proxy Alignment (DPA). From left to right: Proxy LLM Pretraining, Proxy
MLLM Pretraining , and MLLM Instruction Tuning. See Section 4.3 for details.

nificant mismatch between the inherent language053

priors of LLMs and the language priors present054

in the training datasets. This mismatch causes055

MLLMs to adapt to the language style of the train-056

ing samples, which compromises vision-language057

alignment and results in suboptimal performance.058

We term this phenomenon as language prior con-059

flict, a challenge that has not been effectively ad-060

dressed in existing methods. Consequently, there061

is an urgent need for a more effective multimodal062

training approach that mitigates the interference of063

language prior conflict and enhances the alignment064

between visual and language modalities.065

To address this challenge, we propose a novel066

method called Decoupled Proxy Alignment067

(DPA). The core idea of DPA is to decouple the068

vision-language alignment process from the inter-069

ference caused by language prior conflicts. Specif-070

ically, DPA integrates two key components: (1)071

During the pretraining phase, a proxy LLM is intro-072

duced to mitigate the impact of language prior con-073

flict, ensuring a less biased alignment process. (2)074

Throughout training, the loss weights are dynam-075

ically adjusted to strengthen the optimization sig-076

nals for visually relevant tokens, rather than those077

related to linguistic style, further enhancing vision-078

language alignment.079

Experimental results demonstrate that DPA ef-080

fectively mitigates language prior conflicts and sig-081

nificantly outperforms baseline methods across var-082

ious model families and training datasets. Further-083

more, DPA exhibits strong generalization capabili-084

ties, achieving consistently superior performance085

across datasets and models of varying scales.086

Our contributions can be summarized as follows:087

• We are the first to define and investigate the issue088

of language prior conflict in MLLMs, experi-089

mentally verifying its negative impact on vision-090

language alignment.091

• We introduce DPA, a three-stage training method092

that effectively mitigates language prior conflict 093

and enhances vision-language alignment. 094

• Through extensive experiments, we validate the 095

effectiveness of DPA, demonstrating significant 096

improvements in alignment performance and out- 097

standing generalization capabilities. 098

2 Related Work 099

Multimodal Large Language Models Multi- 100

modal large language models (MLLMs) have 101

achieved significant advancements in visual un- 102

derstanding, progressing from basic image caption- 103

ing to complex visual reasoning tasks (Li et al., 104

2024b; Team, 2025). These models typically com- 105

bine a pretrained vision encoder (Radford et al., 106

2021; Zhai et al., 2023) with a pretrained language 107

model (Touvron et al., 2023; Yang et al., 2024a), 108

integrating the two modalities through connectors 109

such as multi-layer perceptrons (MLPs) (Liu et al., 110

2024b,a) or cross-attention modules (Dai et al., 111

2023; Dubey et al., 2024). 112

A widely adopted training strategy for MLLMs 113

is the two-stage visual instruction tuning frame- 114

work, first proposed by Liu et al. (2024b). This 115

methodology has been validated by subsequent 116

studies (Agrawal et al., 2024; McKinzie et al., 117

2024; Tong et al., 2024a). While recent advance- 118

ments, such as ShareGPT4V (Chen et al., 2023) 119

and InternVL (Chen et al., 2024b), have introduced 120

more sophisticated training protocols, they are fun- 121

damentally built upon the two-stage framework. 122

Given its demonstrated efficacy, our study also 123

adopts this two-stage training method. 124

Language Prior The concept of Language prior 125

refers to the unique linguistic characteristics that 126

LLMs develop during training. These characteris- 127

tics include distinct language patterns, styles, vo- 128

cabularies, grammatical preferences, and implicit 129

world knowledge. Language prior has already at- 130

tracted significant attention in LLM research. Li 131
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et al. (2023); Wang et al. (2023) have demonstrated132

that models with similar language priors exhibit133

strong behavioral correlations in their predictions,134

enabling model tracing. Furthermore, Yang et al.135

(2024b); Wang et al. (2024) have shown that con-136

flicts in language priors can lead to the forgetting137

of a model’s original knowledge and capabilities.138

In the context of MLLMs, language prior intro-139

duces two key challenges: (1) MLLMs are prone140

to capturing spurious correlations present in mul-141

timodal training data (Agarwal et al., 2020; Goyal142

et al., 2017). (2) MLLMs often rely disproportion-143

ately on textual prediction, which diminishes their144

dependence on the visual modality (Leng et al.,145

2024). These challenges have significant implica-146

tions for the performance of multimodal models.147

Image-text Modality Alignment Image-text148

modality alignment has long been regarded as a149

core challenge in multimodal understanding. Tra-150

ditional approaches to image-text alignment often151

involve training multimodal models from scratch152

using strategies such as contrastive learning or au-153

toregressive learning (Radford et al., 2021; Lin154

et al., 2024). In recent years, researchers have155

made significant strides by leveraging larger and156

higher-quality datasets, leading to notable advance-157

ments in cross-modal alignment (Chen et al., 2023;158

Deitke et al., 2024). However, these methods often159

come at the cost of substantial human and com-160

putational resources. More recently, Xiao et al.161

(2024) proposed CAL, which improves alignment162

by dynamically adjusting the importance of differ-163

ent tokens during the alignment process, achieving164

superior results. Despite these improvements, the165

underlying mechanisms driving these gains remain166

largely unexplored. In this study, we present a com-167

prehensive analysis of the conflicts between the168

language priors in training data and those inherent169

to LLMs. Furthermore, we propose a novel method170

designed to effectively mitigate these conflicts.171

3 Language Prior Conflict172

In this section, we analyze how language prior con-173

flict impedes the alignment training of multimodal174

models and ultimately degrades their performance.175

In Section 3.1, we start by defining language prior176

conflict, followed by an exploration of its causes177

and potential adverse effects. In Section 3.2, we178

present two quantitative experiments to compre-179

hensively demonstrate the impact of language prior180

conflict on MLLMs.181

3.1 Causes and Consequences 182

Language prior conflict refers to the mismatch be- 183

tween the inherent language priors of LLMs and 184

those present in their training datasets. This phe- 185

nomenon is particularly pronounced in the training 186

of multimodal models. LLMs are typically trained 187

on diverse, large-scale text corpora that cover a 188

wide range of topics and styles. In contrast, image- 189

caption datasets (Chen et al., 2024a; Deitke et al., 190

2024) primarily focus on objective descriptions of 191

visual scenes, often generated by advanced models 192

or through human annotation. These datasets ex- 193

hibit linguistic distributions that differ significantly 194

from the data used to pretrain LLMs. 195

During the pretraining phase of MLLMs, the 196

model may prioritize minimizing training loss by 197

adapting to the language style of the training sam- 198

ples rather than focusing on image-text alignment. 199

This prioritization can even lead to severe conflicts, 200

such as overfitting to the style and knowledge con- 201

tained in the training dataset. In the following sec- 202

tion, we present experimental evidence demonstrat- 203

ing the impact of language prior conflict on the 204

performance of MLLMs. 205

3.2 Negative Impacts 206

3.2.1 Dataset Quality Paradox 207

A surprising discovery in MLLM training is that 208

datasets regarded as "high-quality" for one model 209

may negatively impact another due to conflicts in 210

language priors. We refer to this phenomenon as 211

dataset quality paradox. To explore this further, 212

we conducted a comparative study using two LLM 213

backbones and two image-caption datasets. More 214

details can be seen in Appendix A.1. 215

The experimental results are presented in Fig- 216

ure 1a. Vicuna-7B-1.5, trained on the high-quality 217

dataset (ShareGPT4V-PT), demonstrates superior 218

performance compared to the model trained on 219

BLIP-LCS. This aligns with the expectation that 220

high-quality data enhances performance. How- 221

ever, for Qwen2.5-7B-Instruct, training on the high- 222

quality dataset led to a performance decline. 223

This discrepancy is attributed to a significant con- 224

flict between the language priors of Qwen2.5-7B- 225

Instruct and the ShareGPT4V-PT dataset. Specif- 226

ically, Qwen2.5-7B-Instruct’s advanced language 227

capabilities may cause it to overly focus on textual 228

content in the high-quality dataset, especially when 229

processing lengthy captions, while underutilizing 230

visual information. In contrast, Vicuna-7B-1.5 ben- 231
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efits from its extensive training on open-source232

GPT-4 distilled data, resulting in linguistic priors233

that are more compatible with the ShareGPT4V-PT234

dataset. Additionally, Vicuna’s relatively weaker235

language capabilities reduce the risk of overfitting236

on complex captions, encouraging a greater re-237

liance on visual features. This enables Vicuna-7B-238

1.5 to more effectively learn the correspondence239

between images and text.240

3.2.2 Quantitative Analysis241

To further investigate the underlying reasons for242

the performance drop observed when training243

Qwen2.5-7B-Instruct on ShareGPT4V-PT, we con-244

duct a detailed quantitative analysis of word-level245

loss changes during training. Specifically, we ex-246

amine how the model’s loss on linguistically rele-247

vant and visually relevant words evolves before and248

after training on both BLIP-LCS and ShareGPT4V-249

PT. The detailed experimental setup is provided in250

Appendix A.2.251

As shown in the figure 3, for BLIP-LCS, the252

loss change of linguistically relevant words centers253

around zero, indicating that the model does not254

overfit these words. In contrast, for ShareGPT4V-255

PT, the loss change for linguistically relevant words256

fluctuates dramatically due to overfitting of high-257

frequency words and increased loss for others. For258

visually relevant words, BLIP-LCS leads to a con-259

sistent loss decrease, reflecting effective visual-text260

alignment, while ShareGPT4V-PT shows an in-261

crease in loss, suggesting that language prior con-262

flict hinders multimodal alignment. These results263

highlight the negative effect of language prior con-264

flict on MLLM training with Qwen2.5-7B-Instruct.265

Figure 3: Word-level loss change for linguistically rele-
vant and visually relevant words after training Qwen2.5-
7B-Instruct on BLIP-LCS and ShareGPT4V-PT. The
results highlight the negative impact of language prior
conflict on multimodal alignment.

4 Methodology 266

In this section, we detail our three-stage training 267

framework. First, we introduce Proxy Model Op- 268

timization (PMO) to mitigate language prior con- 269

flicts during pretraining via a proxy LLM. Next, we 270

present Contrastive Modality Optimization (CMO), 271

which enhances visual-language alignment through 272

token reweighting. Finally, we combine these 273

strategies into our Decoupled Proxy Alignment 274

(DPA) method, effectively addressing the key chal- 275

lenges discussed at the end of Section 3.2. 276

4.1 Proxy Model Optimization 277

As described in Section 3.2, during the pretraining 278

phase, when the language priors of LLMs conflict 279

with those of an image-caption dataset, the model 280

tends to focus on textual information while insuffi- 281

ciently utilizing visual information. To address this 282

issue, we propose a novel approach called Proxy 283

Model Optimization (PMO). 284

The PMO methodology involves a two-stage 285

training process. (1) We train the LLM exclu- 286

sively on the textual portion of the image-caption 287

dataset. This aligns the LLM’s language priors 288

with the linguistic style and characteristics of the 289

dataset, resulting in a dataset-adapted LLM, re- 290

ferred to as the Proxy LLM. (2) We construct 291

a Proxy MLLM by integrating the Proxy LLM, 292

which is kept frozen during subsequent training 293

on the full image-caption dataset. Since the Proxy 294

LLM has already captured the language priors of 295

the training data, the model can focus more ef- 296

fectively on vision-language alignment rather than 297

relearning language priors. This two-stage training 298

process effectively resolves the issue of language 299

prior conflicts during the pretraining phase. 300

To further optimize the training of the Proxy 301

LLM, we introduce Low-Rank Adaptation (LoRA), 302

a method that offers significant advantages in miti- 303

gating catastrophic forgetting and reducing compu- 304

tational overhead. On the one hand, directly train- 305

ing the Proxy LLM on the dataset’s textual data 306

may lead to catastrophic forgetting of the original 307

LLM’s pretrained knowledge and general language 308

capabilities. LoRA addresses this by freezing the 309

weights of the original LLM and training only a 310

small number of low-rank matrices, enabling the 311

Proxy LLM to adapt to the language priors of the 312

dataset while retaining the core knowledge of the 313

base LLM. On the other hand, compared to full 314

fine-tuning, LoRA saves a significant number of 315
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trainable parameters, drastically lowering the com-316

putation costs and the training time.317

4.2 Contrastive Modality Optimization318

To further enhance the alignment between the319

visual and language modalities during training320

stage, we propose contrastive modality optimiza-321

tion (CMO). The primary motivation behind CMO322

lies in the varying degrees of visual relevance323

among tokens in the captions. For example, com-324

pared to nouns, verbs, and adjectives that directly325

describe visual attributes, function words, dis-326

course markers, and expansive descriptions may327

contribute less to visual alignment. Treating all328

tokens equally in loss computation may therefore329

not be optimal. The design goal of CMO is to dy-330

namically adjust the loss weights to strengthen the331

optimization signals for visually relevant tokens,332

rather than those related to linguistic style.333

CMO achieves this dynamic token weighting334

through a contrastive method. During training, for335

each token in the caption, CMO estimates its visual336

relevance by comparing the predicted probabilities337

of the token in two scenarios: (1) when the multi-338

modal context with the input image is provided339

and (2) when only the textual context is provided.340

Notably, we directly adjust the weights based on341

probabilities, which is simpler and more effective342

compared to previous works such as CAL (Xiao343

et al., 2024) that rely on logits. Through this con-344

trastive approach, CMO can further decouple the345

influence of language priors, thus re-evaluating the346

relevance of the current token to the visual input.347

Intuitively, tokens with higher visual relevance will348

exhibit greater differences in predicted probabili-349

ties between the scenarios with and without image350

input. As a result, CMO can effectively capture351

and amplify the visual alignment signals of these352

tokens. The detailed algorithm is depicted in Algo-353

rithm 1.354

Algorithm 1 Detail Procedure of LCMO

Input: Visual input Vi, Textual sequence S =
{s1, s2, . . . , sm}, Model distribution Dϕ

1: Extract probability vectors:
ri,j = Dϕ(Vi, S

i,<j),qi,j = Dϕ(S
i,<j)

2: Calculate differential score δs[sj ]
i,j :

δs[sj ]
i,j = r[sj ]

i,j − q[sj ]
i,j

3: Transform scores to weights through normalization:
ω′
i,sj = aggregateΩ(clip(δs[sj ]i,j , α, β))

ωi,sj =
ω′
i,sj∑m

k=1
ω′
i,sk

4: Formulate final loss through token weighting:
LCMO = −

∑N
i=1

∑m
j=1 ωi,sj logDϕ(sj |Vi, S

i,<j)

Output: Optimized model parameters ϕ∗

355

4.3 Decoupled Proxy Alignment 356

The overall methodology comprises three stages: 357

• Proxy LLM Pretraining: We train the LLM 358

solely on the text portion of the image-caption 359

dataset to obtain a Proxy LLM that is adapted to 360

the language priors of the dataset. 361

• Proxy MLLM Pretraining: The Proxy LLM is 362

integrated with vision encoder and visual connec- 363

tor layer to construct Proxy MLLM. Then, the 364

complete image-caption dataset is used to train 365

the Proxy MLLM with CMO. In this stage, only 366

the connector layer is trainable. 367

• MLLM Instruction Tuning: The final MLLM 368

is constructed by combining the original LLM, 369

the pretrained connector layer, and the vision 370

encoder. It then undergoes instruction tuning 371

using CMO, during which both the connector 372

layer and the LLM are trainable. 373

This approach aims to decouple the visual-language 374

alignment process from the potential interference 375

of the language prior conflicts. Additionally, a 376

proxy model is introduced in Stage 1 to enhance 377

the alignment process. Therefore, this method is 378

referred to as Decoupled Proxy Alignment. 379

5 Experiments 380

In this section, we evaluate the performance of our 381

models through comparative analysis on a variety 382

of visual benchmarks, demonstrating the advan- 383

tages of our approach. 384

Please refer to Appendix A.5 for detailed exper- 385

imental setup, including datasets, evaluation met- 386

rics, baselines, and implementation details. 387

5.1 Main Results 388

Compared to Vanilla As shown in Table 1, after 389

incorporating DPA, MLLMs trained on diverse pre- 390

training data consistently demonstrated significant 391

performance improvements compared to Vanilla, 392

indicating that DPA effectively mitigates the preva- 393

lent language prior conflicts existing between dif- 394

ferent pretraining datasets and different LLMs. No- 395

tably, the MLLM trained with DPA on Llama- 396

3.1-8B-Instruct using PixMo-Cap (a high-diversity 397

dataset with multiple expert annotations) achieved 398

an average improvement of 2.8 points compared to 399

Vanilla. This highlights that even with high-quality, 400

well-aligned annotation data, language prior con- 401

flicts still exists. By decoupling language priors 402

and modality alignment processes, DPA effectively 403
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Dataset Method
General Vision-centric

Avg.
MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.

Qwen2.5-7B-Instruct

BLIP-LCS
Vanilla 74.5 341 33.3 72.8 59.7 66.1 40.0 18.8 49.9
CAL 74.5 356 34.2 74.0 58.4 67.1 32.0 18.4 49.3
DPA 75.8 345 34.7 72.2 63.5 68.7 38.7 20.5 51.1

ShareGPT4V-PT
Vanilla 73.1 365 34.7 72.9 58.5 62.1 36.0 18.5 49.0
CAL 75.7 367 35.3 74.7 60.0 70.2 38.0 17.8 51.0
DPA 76.1 368 36.0 74.1 61.1 68.1 40.7 20.4 51.7

PixMo-Cap
Vanilla 76.4 377 37.7 74.7 61.5 70.4 41.3 19.8 52.4
CAL 76.4 392 38.0 75.0 61.8 69.9 42.7 19.9 52.9
DPA 77.0 404 38.2 75.0 67.9 65.4 45.3 20.7 53.7

Llama-3.1-8B-Instruct

BLIP-LCS
Vanilla 70.4 319 30.1 65.4 58.5 59.2 28.0 13.7 44.6
CAL 70.4 329 30.6 65.1 58.9 67.6 28.0 16.8 46.3
DPA 70.9 336 30.6 65.3 61.4 68.5 28.7 15.4 46.8

ShareGPT4V-PT
Vanilla 69.4 350 32.3 65.8 62.2 62.2 33.3 15.6 47.0
CAL 68.3 344 31.7 66.7 57.4 65.5 32.7 10.9 46.0
DPA 71.5 346 32.2 66.9 66.1 71.8 39.3 16.6 49.9

PixMo-Cap
Vanilla 68.4 347 33.1 66.9 60.3 60.6 37.3 16.1 47.2
CAL 71.1 361 34.7 67.4 62.3 66.8 38.0 17.8 49.3
DPA 72.3 349 34.4 67.2 63.7 71.4 37.3 18.6 50.0

Gemma-2-9B-it

BLIP-LCS
Vanilla 72.5 334 31.0 67.6 59.4 60.9 28.7 15.3 46.1
CAL 71.9 340 31.2 67.6 58.3 62.8 28.7 15.7 46.3
DPA 72.9 335 31.6 67.7 62.7 61.5 25.3 15.8 46.4

ShareGPT4V-PT
Vanilla 72.9 354 34.2 68.4 64.0 60.5 33.3 16.7 48.2
CAL 71.7 362 34.3 67.6 60.4 61.8 30.0 17.4 47.4
DPA 74.3 377 35.5 69.6 64.8 58.7 38.7 21.1 50.0

PixMo-Cap
Vanilla 74.3 364 37.0 70.7 64.1 65.2 45.3 19.9 51.6
CAL 75.3 367 37.4 71.0 65.0 66.8 34.7 19.8 50.8
DPA 74.7 383 37.5 70.4 65.6 70.8 42.7 21.4 52.7

Table 1: Evaluation results of baselines and DPA. The best performances within each setting are
bolded. Abbreviations: MMB.(MMBench), OCRB.(OCRBench), CV-2D(CVBench-2D), CV-3D(CVBench-3D),
NaB.(NaturalBench).

suppresses the language-dominated overfitting ten-404

dency. This fully validates the effectiveness of our405

method in multimodal alignment.406

Compared to CAL When compared with the407

CAL method, DPA also consistently achieves bet-408

ter performance across all mainstream models and409

datasets. For instance, using the Llama-3.1-8B-410

Instruct with ShareGPT4V-PT, the DPA method411

achieves a score of 16.6 on the NaturalBench412

benchmark, surpassing CAL by 5.7 points. Further-413

more, DPA’s average performance across metrics414

exceeds CAL’s by 3.9 points.415

Notably, CAL exhibits inferior performance416

compared to even the Vanilla method in several417

configurations (e.g., Llama-3.1-8B-Instruct with418

ShareGPT4V-PT). This phenomenon reveals that419

simply adjusting the loss weight of visually-related420

tokens is insufficient to decouple language priors421

from the modality alignment process. Interference422

from language priors disrupts the optimization tra-423

jectory of modality alignment, ultimately leading 424

to performance degradation. These results high- 425

light the unique advantages of DPA in harmonizing 426

language priors with multimodal alignment. 427

Word-level Loss Analysis To further illustrate 428

how DPA alleviates language prior conflict, we 429

conduct a word-level loss analysis by tracking the 430

loss changes for “Linguistically Relevant” and “Vi- 431

sually Relevant” words before and after training 432

with either the Vanilla or DPA method (see Ap- 433

pendix A.3 for details). As illustrated in Figure 1b, 434

DPA substantially reduces loss fluctuations for lin- 435

guistically relevant tokens compared to Vanilla, 436

indicating a lower tendency to overfit linguistic 437

styles. At the same time, DPA achieves greater 438

loss reductions for visually relevant tokens, signify- 439

ing improved visual-text alignment. These results 440

demonstrate that DPA effectively re-prioritizes op- 441

timization, suppressing language prior overfitting 442

and enhancing multimodal alignment. This also 443
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Method General Avg. Vision. Avg.
Vanilla 54.3 43.8
+ PMO 55.4 46.1
+ CMO 55.7 47.2
DPA 55.8 47.6

Table 2: Ablation study on DPA’s components.

explains why DPA excels even when training on444

high-quality datasets, overcoming the dataset qual-445

ity paradox observed with conventional methods.446

Conclusion In summary, DPA significantly out-447

performs both Vanilla and CAL in alleviating lan-448

guage prior conflicts and improving overall multi-449

modal performance. The word-level loss analysis450

further demonstrates that DPA re-prioritizes op-451

timization, effectively suppressing overfitting to452

linguistic priors while enhancing visual-text align-453

ment. These results validate the generalizability454

and robustness of DPA, providing a superior and455

principled solution for multimodal alignment.456

6 Analysis457

In this section, we first verify the effectiveness of458

each component of DPA in multimodal alignment.459

We then evaluate DPA across different model scales460

and data sizes. Finally, we analyze the impact of461

various reweighted loss strategies on multimodal462

alignment. The detailed experimental setup is pro-463

vided in Appendix A.4.464

6.1 Ablations Studies465

Component Analysis To evaluate the effective-466

ness of the core components in the DPA framework,467

we systematically ablated PMO and CMO to train468

different models. As shown in Table 2, combining469

either PMO or CMO with the Vanilla model im-470

proves performance on both general benchmarks471

and vision-centric benchmarks. Notably, CMO472

achieves greater improvements (from 54.3 to 55.7473

on General benchmarks, and from 43.8 to 47.2474

on vision-centric benchmarks) compared to PMO475

(from 54.3 to 55.4 on General benchmarks, and476

from 43.8 to 46.1 on vision-centric benchmarks),477

as CMO enhances modality alignment during both478

pretraining and instruction tuning, whereas PMO479

only impacts pretraining. Furthermore, combining480

both PMO and CMO yields additional performance481

gains. Specifically, as shown in the detailed tables482

in the appendix B.6, DPA significantly outperforms483

models with only CMO or PMO on benchmarks484

like MMVP and MMBench. 485

Stages of conducting CMO within MLLM Train- 486

ing CMO can be integrated into both the Pre- 487

Training (PT) stage and the Instruction Tuning (IT) 488

stage in existing MLLMs. In this section, we in- 489

vestigate which stage benefits the most from CMO 490

in Table 11. Our experimental analysis reveals 491

distinct advantages of CMO integration across dif- 492

ferent training phases: The instruction tuning (IT) 493

stage contributes the majority of performance gains 494

across all evaluated benchmarks, while pretraining 495

(PT) stage integration further enhances model ca- 496

pabilities, particularly demonstrating marked im- 497

provements on vision-centric benchmarks. 498

We present more ablation experiments in the Ap- 499

pendix B.1 These include the necessity of LoRA 500

in PMO, the selection of its rank, whether the third 501

stage of DPA continues to use the proxy LLM, as 502

well as ablation studies on the hyper-parameters 503

[α, β] in the clamping operation. 504

6.2 Results Across Different Model Scales 505

Scales Method General Avg. Vision. Avg.

1.5B
Vanilla 48.2 36.5
DPA 49.8 42.0

3B
Vanilla 51.5 42.4
DPA 53.3 43.3

14B
Vanilla 55.6 46.4
DPA 55.2 49.4

32B
Vanilla 58.2 54.6
DPA 58.0 56.3

Table 3: Performance across different LLM scales.

Scales Method General Avg. Vision. Avg.

5%
Vanilla 1.5 13.7
DPA 0.4 10.0

10%
Vanilla 1.6 14.3
DPA 0.1 13.5

25%
Vanilla 32.6 32.6
DPA 39.5 38.0

50%
Vanilla 38.9 41.8
DPA 42.3 44.1

100%
Vanilla 39.2 46.7
DPA 42.5 49.1

Table 4: Performance across different data size.

To verify that DPA is applicable to LLMs of 506

different scales, we further trained MLLMs based 507

on LLMs with various parameter scales and evalu- 508

ated them on multimodal benchmarks. As shown 509

7



in Table 3, models of all scales exhibit a stable510

performance improvement trend on vision-centric511

benchmarks. For smaller-scale models (e.g., 1.5B),512

performance improved from 36.5 to 42.0. For513

larger-scale models (e.g., 14B), performance in-514

creased from 46.6 to 49.4. For 32B models, per-515

formance rose from 54.6 to 56.3. Considering that516

unified training hyperparameters were used in the517

experiments, further adjustments could lead to ad-518

ditional improvements. This phenomenon strongly519

demonstrates that DPA has impressive adaptabil-520

ity to LLM scales, and its optimization effect is521

not significantly affected by the number of LLM522

parameters.523

On general benchmarks, performance showed524

a slight decline as the LLM scale increased. This525

may be due to the fact that as the parameter count526

grows, LLMs are more likely to overfit to the lin-527

guistic priors from caption data, causing interfer-528

ence from these linguistic priors during inference.529

In contrast, all the vision-centric tasks are multiple-530

choice questions, where inference is less affected531

by such interference, resulting in no performance532

decline in the metrics.533

6.3 Results Across Different Data Size534

To investigate the impact of data scale on the per-535

formance of MLLMs trained with the DPA method,536

we conducted experiments by adjusting the data537

volumes for pretraining (PT) and instruction fine-538

tuning (IT). Specifically, we trained the models539

using different subsets of the ShareGPT4V-PT and540

Cambrian-1 datasets.541

Table 4 indicate that data scale is critical to the542

effectiveness of the DPA method. When the data543

size is relatively small (≤10%), the performance of544

the DPA method is lower than that of the baseline545

model. This is primarily due to insufficient data,546

which hinders the Proxy LLM from decoupling547

language priors and limits the MLLM’s ability to548

assess visual relevance. However, when the data549

volume reaches 25% or more, the performance of550

the baseline model improves significantly. The551

DPA method further enhances modality alignment,552

leading to additional performance improvements.553

As the data scale continues to increase, the DPA554

method provides even greater improvements in555

modality alignment and overall performance.556

In summary, while the DPA method is limited in557

effectiveness with small data scales, it demonstrates558

significant advantages with larger data scales, mak-559

ing it highly valuable for improving the perfor-560

mance of multimodal models. 561

6.4 Resutls Across Different Reweighted Loss 562

To further validate the effectiveness and general- 563

ization of our proposed CMO, we conduct a di- 564

rect comparison with CAL under the same training 565

strategy (PMO) across multiple model backbones. 566

As shown in Table 5, CMO consistently achieves 567

the best performance on all models, while CAL 568

sometimes even underperforms the baseline. This 569

suggests that CAL’s performance is highly sensitive 570

to the underlying model, likely due to its reliance 571

on model-specific logits distributions. In contrast, 572

CMO demonstrates strong robustness and gener- 573

alization, benefiting from its probability-based de- 574

sign. These results highlight the practical advan- 575

tage of CMO for multimodal model training across 576

diverse architectures.

Method General. Avg. Vision. Avg. Avg.
Qwen2.5-7B-Instruct

PMO 55.4 46.0 50.7
PMO + CAL 56.0 46.9 51.5
PMO + CMO (Ours) 55.8 47.6 51.7

Llama-3.1-8B-Instruct
PMO 49.2 42.4 45.8
PMO + CAL 50.3 44.1 47.2
PMO + CMO (Ours) 51.3 48.5 49.9

Gemma-2-9B-it
PMO 53.7 44.7 49.2
PMO + CAL 53.5 44.3 48.9
PMO + CMO (Ours) 54.3 45.8 50.0

Table 5: Comparison between our proposed CMO loss
and CAL loss when combined with PMO. All models
are trained on ShareGPT4V-PT dataset. The best perfor-
mances within each setting are bolded.

577

7 Conclusion 578

In this paper, we introduced the concept of lan- 579

guage prior conflict and proposed a novel method, 580

Decoupled Proxy Alignment (DPA), to effectively 581

address this challenge and enhance the alignment 582

between visual and language modalities. Extensive 583

experiments demonstrate that DPA significantly 584

reduces the negative impact of language prior con- 585

flict, achieving superior alignment performance 586

across a wide range of datasets, model families, and 587

scales. It not only enhances the training efficiency 588

of MLLMs but also shows exceptional generaliza- 589

tion capabilities, making it a robust approach for 590

vision-language alignment. 591
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Limitations592

While our proposed DPA demonstrates significant593

improvements in mitigating language prior con-594

flicts and enhancing vision-language alignment,595

certain limitations remain. Specifically, the selec-596

tion of lower and upper bounds in CMO process597

is currently determined empirically, which could598

be extended to more adaptive settings in further599

explorations.600
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A Experimental Details797

A.1 Dataset Quality Paradox798

To explore the dataset quality paradox, we con-799

ducted a comparative study using two LLM back-800

bones:801

• Vicuna-7B-1.5 A relatively weaker model in text802

generation.803

• Qwen2.5-7B-Instruct A model with strong text804

generation capabilities.805

and two image-caption datasets:806

• BLIP-LCS A noisier dataset with shorter cap-807

tions, commonly used in LLaVA-1.5 pretraining.808

• ShareGPT4V-PT A high-quality dataset featur-809

ing longer, more detailed captions generated by810

GPT-4.811

Both models were fine-tuned based on the812

LLaVA-1.5 architecture under consistent experi-813

mental settings and hyperparameters (Liu et al.,814

2024b). The Cambrian-1 dataset was utilized as815

the instruction-tuning dataset. Performance eval-816

uation was conducted using CVBench, a vision-817

centric benchmark specifically designed to account818

for sensitivity to language priors.819

A.2 Analysis of Word-Level Loss820

To further investigate the impact of language prior821

conflict on MLLM training, we conducted a word-822

level loss analysis based on the fine-tuning experi-823

ments of Qwen2.5-7B-Instruct on BLIP-LCS and824

ShareGPT4V-PT.825

Specifically, we randomly sampled 100 exam-826

ples from each dataset. Each example was tok-827

enized at the word level, and GPT-4.1 was used828

to classify each word as either Language Prior or829

Visually Relevant. For each word, we computed its830

loss before and after fine-tuning. If a word was split831

into multiple tokens, we used the loss of the first to-832

ken as the word-level loss. The percentage change833

in loss for each category was then calculated to834

analyze the model’s tendency to fit language priors835

versus visually grounded content.836

All other training settings were kept consistent837

with the main experiments described above.838

A.3 Analysis of Word-Level Loss for Main839

Results840

The experimental setup for the word-level loss anal-841

ysis in Section 5.1 closely follows the procedure842

described in Section A.2. Specifically, this analysis843

is based on the fine-tuning results of Qwen2.5-7B-844

Instruct on the BLIP-LCS dataset.845

The only difference from Section A.2 is that, to 846

facilitate clearer visualization, we excluded words 847

with a frequency less than 3 in the sampled data. 848

All other experimental settings remain consistent 849

with those described above. 850

A.4 Ablation Study and Analysis 851

Unless otherwise specified, all experiments in Sec- 852

tion 6 are conducted using the Qwen2.5-Instruct se- 853

ries models trained on the BLIP-LCS dataset. If the 854

model size is not explicitly mentioned, Qwen2.5- 855

7B-Instruct is used by default. 856

A.5 Detailed Experimental Setup 857

Datasets During the pretraining stage, we se- 858

lected three representative multi-modal pretraining 859

datasets for comparative analysis: BLIP-LCS 1(Li 860

et al., 2022): Used as the pretraining dataset for 861

LLaVA-1.5(Liu et al., 2024a). It is a filtered subset 862

of LAION(Schuhmann et al., 2021), CC(Sharma 863

et al., 2018), and SBU(Saleh and Elgammal, 2015), 864

with a more balanced distribution of concept cover- 865

age. ShareGPT4V-PT(Chen et al., 2024a): Used 866

as the pretraining dataset for ShareGPT4V(Chen 867

et al., 2024a). It utilizes high-quality image-text 868

descriptions generated by the GPT-4, offering sig- 869

nificantly richer semantics and contextual coher- 870

ence compared to BLIP-LCS. PixMo-Cap(Deitke 871

et al., 2024): Used as the pretraining dataset for 872

Molmo(Deitke et al., 2024), a state-of-the-art open- 873

source MLLM. This dataset is constructed by ex- 874

pert annotations, featuring precise visual attribute 875

labeling and complex scene descriptions. 876

During the instruction tuning stage, we follow 877

Tong et al. (2024a) and use the Cambrian-12 dataset 878

as our training data. This dataset builds upon 879

LLaVA-665k(Liu et al., 2024a), systematically ex- 880

panding the model’s understanding of structured 881

visual information by incorporating OCR data and 882

chart data. 883

Evaluation metrics We employs a dual- 884

dimensional evaluation system: General 885

benchmarks and Vision-centric benchmarks. 886

General benchmarks include MMBench(Liu et al., 887

2024c) (commonsense reasoning), AI2D(Hiippala 888

et al., 2021) (diagram parsing), DocVQA(Hudson 889

and Manning, 2019) (document understanding) 890

and OCRBench(Liu et al., 2023) (OCR capability), 891

1LCS abbreviates the LAION, CC, and SBU datasets
2https://huggingface.co/datasets/nyu-visionx/

Cambrian-10M/blob/main/jsons/Cambrian737k.jsonl

11

https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/blob/main/jsons/Cambrian737k.jsonl
https://huggingface.co/datasets/nyu-visionx/Cambrian-10M/blob/main/jsons/Cambrian737k.jsonl


covering the assessment of fundamental cognitive892

abilities. Vision-centric benchmarks focus on eval-893

uating core visual capabilities, comprising three894

specialized test sets: CVBench(Tong et al., 2024a)895

examines structured visual understanding through896

2D/3D spatial relationship analysis, MMVP(Tong897

et al., 2024b) emphasizes fine-grained feature898

recognition, and NaturalBench(Li et al., 2024a)899

tests comprehensive visual perception capabilities900

through challenging tasks such as understanding901

attribute bindings and reasoning about object902

relationships.903

We use VLMEvalKit(Duan et al., 2024) for sys-904

tematic evaluation. Specifically, multiple choice905

questions (AI2D / MMBench / CVBench / MMVP)906

primarily use the accuracy of the options as the907

core metric. Document parsing (DocVQA) uses908

Normalized Levenshtein Distance. OCR recogni-909

tion (OCRBench) is based on the hit rate of detec-910

tions contained in the ground-truth answers. Cross-911

combination evaluation (NaturalBench) sets four912

fine-grained metrics, including single-question ac-913

curacy, group accuracy (requiring all four com-914

bined questions to be correct), Question Accuracy915

(correct rate for the same question on both images)916

and image accuracy (correct rate for the same im-917

age on both questions).918

Baselines We compare DPA with two representa-919

tive training paradigms: (1) Vanilla is the classic920

two-stage alignment method (Liu et al., 2024b),921

where only the MLP projection layer is unfrozen922

during pretraining, while both the MLP and LLM923

are unfrozen during fine-tuning, (2) CAL(Xiao924

et al., 2024) introduces a dynamic weight adjust-925

ment mechanism on top of Vanilla, optimizing the926

loss weights of different tokens through logits dif-927

ferences to enhance alignment of key semantics.928

Implementation Details The model architecture929

employs CLIP-pretrained ViT-L as the visual en-930

coder, a two-layer MLP cross-modal connection931

layer with GeLU activation, and three different932

LLMs: Qwen2.5-7B-Instruct(Yang et al., 2024a),933

Llama-3.1-8B-Instruct(Dubey et al., 2024), and934

Gemma-2-9B-it(Team et al., 2024). The training935

parameters were optimized through grid search,936

with learning rates set to 2e-3 and 4e-5 for the937

pretraining and fine-tuning stages, respectively.938

The learning rate for the Proxy LLM pretraining939

phase was set to 4e-5. The batch size was fixed940

at 256. The LoRA configuration uses rank=256,941

alpha=512, and weight boundaries α=0.05, β=0.5,942

Figure 4: Comparison of pretraining loss function be-
havior across three training strategies: Vanilla, DPA
without LoRA, and DPA with LoRA.

with a pooling layer window size of 3. Experiments 943

were conducted on 8 NVIDIA H100 GPUs. 944

B More Experimental Results 945

B.1 Ablation Studies 946

Necessity of LoRA To systematically validate 947

the effectiveness of the LoRA-enhanced training 948

strategy, this study investigates the pretraining 949

loss function behavior of three training strategies: 950

Vanilla, DPA w/o LoRA, and DPA (with LoRA). 951

As shown in Figure 4, the DPA w/o LoRA strategy 952

exhibits a clear non-monotonic convergence pat- 953

tern: the training loss initially decreases rapidly but 954

then unexpectedly increases, a significant deviation 955

from the typical training curve. This phenomenon 956

indicates that DPA w/o LoRA overfits to a subset of 957

text descriptions during the Proxy Model Optimiza- 958

tion phase—the model’s loss decreases abnormally 959

on specific samples while its generalization perfor- 960

mance degrades significantly on others. 961

This overfitting phenomenon has a dual negative 962

impact. First, the LLM focuses excessively on lo- 963

cal features within the text data rather than learning 964

the overall prior language distribution. Second, in 965

the subsequent visual modality alignment phase, 966

the model struggles to disentangle the already so- 967

lidified text feature representations, leading to se- 968

mantic mismatches during cross-modal alignment. 969

Notably, the introduction of LoRA results in the ex- 970

pected monotonic convergence characteristic, vali- 971

dating its effectiveness in suppressing overfitting. 972

Rank for LoRA Table 6 using the Qwen2.5-7B- 973

Instruct model on the BLIP-LCS dataset demon- 974

strates a non-linear relationship between LoRA 975

rank and model performance. As rank increases, 976

metrics on both general and vision-centric bench- 977

marks initially improve, then decline. This phe- 978

nomenon can be explained as follows: Initially, in- 979
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Method LoRA rank General Avg. Vision. Avg.
DPA w/o LoRA - 54.2 44.5

DPA with LoRA
128 53.3 43.5
256 54.2 45.7
512 53.8 44.4

Table 6: Performance difference when applying differ-
ent rank for LoRA. The LoRA alpha is set to twice the
LoRA rank.

creasing the rank appropriately increases the num-980

ber of trainable parameters, enhancing the language981

model’s ability to fit the textual descriptions. This,982

in turn, allows the model to focus more on seman-983

tic matching with the visual modality during cross-984

modal alignment (DPA). However, when the rank985

exceeds a certain threshold, the excessive degrees986

of freedom lead to the model overfitting the tex-987

tual descriptions, ultimately weakening the visual-988

language modality alignment.989

Initialization General Avg. Vision. Avg. Avg.
Proxy LLM 54.7 46.8 50.7
Target LLM 54.3 47.9 51.1

Table 7: Performance comparison between models ini-
tialized with the proxy LLM and the target LLM for
instruction fine-tuning.

Proxy LLM vs. Target LLM in Instruction Fine-990

tuning To investigate the effect of restoring the991

proxy LLM to the target LLM in stage 3, we con-992

ducted comparative experiments analyzing the per-993

formance differences when using different LLMs994

as starting points for the instruction-tuning phase.995

Table 7 shows that using the target LLM as the start-996

ing point significantly improves the model perfor-997

mance on vision-centric benchmarks, while there998

is a slight decrease on general benchmarks. The ex-999

perimental results indicate that restoring the proxy1000

LLM to the target LLM in stage 3 is more beneficial1001

for vision-text modality alignment.1002

Hyper-parameters for [α, β] in clamping We1003

further conduct an ablation study on α and β to1004

study the effect of the hyperparameters in our1005

clamping operation. First, we plot the δ distribu-1006

tion on MLLMs in Figure 7. Tokens whose δ lower1007

than 0.5 constitute approximately 96% of the total1008

label sequences. Based on this observation, we1009

set 0.5 as the upper bound β. To prevent language1010

style-related tokens from being completely ignored,1011

we set the lower bound α to 0.05. This is because1012

a δ of 0 implies that the weights of these tokens1013

Figure 5: Anyres performance when using DPA or not.

are zero, meaning they will not be optimized. We 1014

then extended both the lower and upper bounds to 1015

their extreme values, i.e., 0 and 1. The results are 1016

presented in Table 12. (1) When the upper bound 1017

β is set to 1, the model’s performance degrades 1018

significantly. This indicates that allowing a few 1019

visually correlated tokens to dominate the impor- 1020

tance weights across all label tokens negatively 1021

impacts the model. A possible explanation is that 1022

these tokens become over-optimized, while other 1023

tokens are ignored. (2) When the lower bound α is 1024

set to 0, the model also shows a performance drop. 1025

This suggests that focusing solely on optimizing 1026

visually correlated tokens is harmful. Instead, the 1027

optimization process should cover all tokens while 1028

emphasizing visually correlated tokens. 1029

B.2 Dynamic Resolution Input 1030

Supporting dynamic resolution input is a trend in 1031

MLLMs. Based on the Qwen2.5-7B-Instruct model 1032

architecture, we experimented with the Anyres 1033

training strategy of LLaVA 1.5 on the BLIP-LCS 1034

dataset. As shown in Figure 5, the experimental 1035

results demonstrate that this method can effectively 1036

accommodate dynamic resolution input schemes. 1037

B.3 Training on Multi-Datasets 1038

To address the challenge of training on mul- 1039

tiple datasets with conflicting language priors, 1040

we conducted an additional experiment by mix- 1041

ing 200K samples each from BLIP-LCS (web- 1042

crawled), ShareGPT4V-PT (GPT-generated), and 1043

PixMo-Cap (expert-annotated) into a composite 1044

dataset containing 600K samples. This mixed 1045

dataset naturally introduces diverse and potentially 1046

conflicting language priors. We trained Qwen2.5- 1047

7B-Instruct on this dataset and compared the per- 1048

formance of DPA against the Vanilla baseline. As 1049
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Method MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB. Avg.

Vanilla 0.754 372 36.898 0.738 0.597 0.687 0.327 0.188 51.52
DPA 0.755 394 37.229 0.736 0.619 0.695 0.453 0.210 54.34

Table 8: Performance comparison of Vanilla and DPA on a mixed dataset (BLIP-LCS, ShareGPT4V-PT, and PixMo-
Cap, 600K samples total). DPA demonstrates superior average performance and significant gains in vision-centric
tasks, indicating effective adaptation to multiple conflicting language priors.

shown in Table 8, DPA outperformed Vanilla by a1050

notable margin (average score: 54.34 vs. 51.52),1051

with especially significant improvements in vision-1052

centric tasks such as MMVP (0.453 vs. 0.327).1053

These results indicate that proxy LLM pretrain-1054

ing with LoRA can effectively adapt to diverse1055

language priors while preserving the base LLM’s1056

knowledge, thereby mitigating interference and re-1057

ducing the risk of catastrophic forgetting.1058

B.4 Computational Overhead1059

Our proposed PMO requires an additional round1060

of pre-training on the dataset in conjunction with1061

LoRA. For CMO, each iteration involves two for-1062

ward passes of text tokens. Table 9 presents the1063

training time of Llama-3.1-8B-Instruct on BLIP-1064

LCS using 8 H100 GPUs. DPA introduces ap-1065

proximately 33% additional training time. Mem-1066

ory usage increased by approximately 20% due to1067

LoRA and CMO computations. Given the perfor-1068

mance improvements achieved by DPA (e.g., +2.81069

on PixMo-Cap, as shown in Table 1), this trade-off1070

is considered justified.

Method Other Pretraining Instruction Tuning Overall
Vanilla - 1.37h 6h 6.37h
DPA 0.5h 1.85h 6.12h 8.47h

Table 9: Training time of different methods (Vanilla and
DPA) for pretraining and instruction tuning of Llama-
3.1-8B-Instruct on BLIP-LCS using 8 H100 GPUs.

1071

B.5 Qualitative Analysis of Word-level loss1072

change1073

To further illustrate the impact of language prior1074

conflict, we present a qualitative analysis of word-1075

level loss changes based on a sample from the1076

ShareGPT4V-PT dataset, as shown in Figure 6. In1077

the figure, words highlighted in red indicate a de-1078

crease in loss after fine-tuning, while those in green1079

indicate an increase in loss.1080

It can be observed that many words with de-1081

creased loss are primarily related to language style,1082

such as “captures” and “a lively scene of.” In con- 1083

trast, some words with increased loss are highly rel- 1084

evant to visual content, such as “soccer” and “ball.” 1085

This case further supports our quantitative find- 1086

ings: language prior conflict leads to suboptimal 1087

performance when training Qwen2.5-7B-Instruct 1088

with ShareGPT4V-PT, as the model tends to fit lan- 1089

guage priors at the expense of visually grounded 1090

content. 1091

B.6 Detailed Results 1092
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Figure 6: Qualitative Analysis of Word-level loss change.

(a) Qwen2.5-7B-Instruct (b) Llama-3.1-8B-Instruct

Figure 7: ∆p distribution for models on 100 random sampled cases.

Method
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.
Vanilla 73.1 365 34.7 72.9 58.5 62.1 36.0 18.5
DPA w/o PMO 75.2 385 35.9 73.1 60.6 69.1 39.3 19.8
DPA w/o CMO 74.9 380 35.2 73.4 59.1 65.3 42.0 17.8
DPA 76.1 368 36.0 74.1 61.1 68.1 40.7 20.4

Table 10: Ablation study on DPA’s components.

PT IT
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.
72.4 352 33.9 73.7 60.1 67.5 37.3 17.4

✓ 73.2 357 34.1 72.8 57.5 67.7 40.7 18.5
✓ 74.5 368 35.0 72.9 61.5 69.2 39.3 18.6

✓ ✓ 75.8 345 34.7 72.2 63.5 68.7 38.7 20.5

Table 11: Performance difference when CMO is applied at different training stages.

[α, β]
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.
[0, 1] 65.0 335 30.8 61.5 60.7 53.8 25.3 10.8
[0, 0.5] 67.8 349 32.5 62.5 62.1 65.4 22.7 9.7
[0.05, 1] 74.6 355 34.1 72.4 59.9 62.3 41.3 18.3
[0.05, 0.5] 75.8 345 34.7 72.2 63.5 68.7 38.7 20.5

Table 12: Performance difference when applying different weights [α, β] for clamping.
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Scales Method
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.

1.5B
Vanilla 68.8 300 29.4 64.8 55.9 54.5 22.7 12.8
DPA 70.7 321 30.6 65.6 57.9 61.1 34.7 14.3

3B
Vanilla 71.0 328 31.9 70.2 57.5 66.5 31.3 14.4
DPA 72.6 354 34.9 70.3 56.8 67.9 31.3 17.1

14B
Vanilla 76.6 351 35.9 75.0 63.3 64.9 38.7 18.5
DPA 78.4 351 33.9 73.5 67.0 69.8 39.3 21.3

32B
Vanilla 79.8 369 38.1 78.0 71.5 75.8 48.2 22.7
DPA 81.0 366 37.5 76.7 71.8 75.9 54.4 22.9

Table 13: Performance difference across different LLM parameter scales.

Data size Method
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.

5%
Vanilla 44.2 27 0.4 56.6 4.6 0.6 0.7 1.2
DPA 19.0 22 0.3 57.3 1.6 0.0 0.0 0.0

10%
Vanilla 47.9 59 0.4 53.8 6.3 0.0 0.0 2.1
DPA 46.7 74 0.3 52.8 0.4 0.0 0.0 2.3

25%
Vanilla 53.8 158 11.4 49.7 53.8 55.8 20.7 10.9
DPA 52.4 276 19.0 46.9 57.9 61.2 38.7 16.7

50%
Vanilla 71.8 255 16.8 64.8 56.0 68.2 31.3 16.4
DPA 75.4 256 18.0 64.9 61.2 70.8 37.3 17.5

100%
Vanilla 73.1 365 34.7 72.9 58.5 62.1 36.0 18.5
DPA 76.1 368 36.0 74.1 61.1 68.1 40.7 20.4

Table 14: Performance difference across different data size.

Method LoRA rank
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.
DPA w/o LoRA - 73.7 360 34.6 72.4 59.3 67.2 34.0 17.6

DPA with LoRA
128 73.0 343 32.7 73.2 60.6 67.1 28.7 17.6
256 75.0 350 33.6 73.2 60.1 67.5 37.3 18.0
512 74.1 348 33.8 72.5 58.6 65.4 35.3 18.1

Table 15: Performance difference when applying different rank for LoRA. The LoRA alpha is set to twice the LoRA
rank.

Initialization
General Vision-centric

MMB. OCRB. DocVQA AI2D CV-2D CV-3D MMVP NaB.
Proxy LLM 75.1 363 34.0 73.2 61.9 67.9 38.7 18.6
Target LLM 75.8 345 34.7 72.2 63.5 68.7 38.7 20.5

Table 16: Performance comparison between models initialized with the proxy LLM and the target LLM for
instruction fine-tuning.
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