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Abstract

This paper introduces a cost-efficient active learning (AL) framework for classification, fea-
turing a novel query design called candidate set query. Unlike traditional AL queries requir-
ing the oracle to examine all possible classes, our method narrows down the set of candidate
classes likely to include the ground-truth class, significantly reducing the search space and
labeling cost. Moreover, we leverage conformal prediction to dynamically generate small
yet reliable candidate sets, adapting to model enhancement over successive AL rounds. To
this end, we introduce an acquisition function designed to prioritize data points that offer
high information gain at lower cost. Empirical evaluations on CIFAR-10, CIFAR-100, and
ImageNet64x64 demonstrate the effectiveness and scalability of our framework. Notably, it
reduces labeling cost by 48% on ImageNet64x64.

1 Introduction

Deep neural networks owe much of their success to large-scale annotated datasets (Deng et al., 2009b;
Kirillov et al., 2023; OpenAI, 2023; Radford et al., 2021). Scaling datasets is crucial for improving both of
their performance (Hestness et al., 2017; Zhai et al., 2022) and robustness (Fang et al., 2022). However,
the resources demanded for manual annotation pose a significant bottleneck, particularly in fields requiring
expert input like medical data. In response to these challenges, cost-efficient methods for dataset collection,
such as semi-automatic labeling (Kim et al., 2024; Qu et al., 2024; Wang et al., 2024), synthetic data
generation (Liu et al., 2019; Tran et al., 2019), and active learning (AL) (Ash et al., 2020; Kirsch et al.,
2019; Sener & Savarese, 2018; Settles, 2009; Sinha et al., 2019; Wang & Ye, 2015) have been studied.

This paper investigates AL for classification, where a training algorithm selects informative samples from the
data pool and queries annotators for their class labels within a limited budget. We focus on improving the
design of annotation queries, emphasizing their critical role. To be specific, we consider image classification
of L classes. In the conventional query design, an annotator is asked to choose a class from a list of L
classes. Here, the effort needed to review the entire class list and identify the correct class increases as the
list size L increases; according to an information-theoretic analysis (Hu et al., 2020), the cost of choosing
among L options is log2 L. To address this issue of growing annotation cost, recent studies (Hu et al., 2020;
Kim et al., 2024) employ a 1-bit query design asking annotators to check if the top-1 model prediction is
correct. While this simplifies and speeds up annotation, it produces weak supervision incompatible with
standard classification loss functions, necessitating specialized losses and algorithms like contrastive loss and
semi-supervised learning techniques.

We propose candidate set query (CSQ), a novel AL query design that remains cost-efficient with increasing
classes and integrates seamlessly with existing loss functions. CSQ presents the annotator with an image
and a narrowed set of candidate classes, which is likely to include the ground-truth class. The annotator
first searches this small candidate set for the ground-truth class and proceeds to the remaining classes only
if the ground-truth class is not found during the first search. This query approach can reduce labeling cost
by reducing the search space required for annotation, which is particularly effective in scenarios with a wide
range of classes where the search space for the annotator could be extensive. Figure 1(left) compares CSQ
with the conventional query in AL for classification to show its efficiency.
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Figure 1: Conventional query versus candidate set query. (left) While the conventional query presents all
possible options to annotators, CSQ leverages the knowledge of the model to offer narrowed options that are
likely to include the ground-truth label, thereby reducing the annotation time. (right) By conducting a user
study on 40 participants, we demonstrate that the labeling cost increases logarithmically to the candidate set
size, which closely aligns with the information-theoretic cost suggested by Hu et al. (2020) with a correlation
coefficient of 0.97. Note that as the labeling cost increases per sample, the overall labeling cost increases
significantly when multiplied by the total number of labeled samples. Further details of the user study are
provided in Sec. 4.2 and Appendix A.

In the CSQ framework, the design of the candidate set is crucial for its effectiveness. On one hand, too
many candidates unnecessarily increase the labeling costs. On the other hand, too few candidates are likely
to omit the ground-truth class, requiring an additional query to identify the ground-truth class among the
remaining classes, which is more expensive than the conventional query. To enhance the effectiveness of the
CSQ framework, we propose to construct candidate sets guided by prediction uncertainty from a trained
model using conformal prediction (Shafer & Vovk, 2008; Angelopoulos et al., 2023). Conformal prediction
aims at constructing a set of predictions including the true class, where each set is properly sized based
on the certainty of the model about the input. This strategy enables flexible adjustment of the candidate
set for each sample, expanding it for an uncertain sample to include the true label and shrinking it for a
more certain one to reduce the labeling cost. Furthermore, we optimize the level of certainty in conformal
prediction to minimize the labeling cost for each round. Therefore, this candidate set construction adapts
to the increasing accuracy of the model over successive AL rounds, refining the candidate set as the model
improves.

Last but not least, we propose a new acquisition function designed to maximize the cost efficiency of CSQ.
Conventional acquisition functions in AL are designed to favor samples with high estimated information
gain, assuming uniform annotation costs across all samples. On the other hand, in CSQ, the labeling cost
for each sample varies according to the size of its candidate set. Thus, we propose an acquisition function
that evaluates samples based on the ratio of estimated information gain to labeling cost. Specifically, we
combine the conventional acquisition function score, which indicates the estimated information gain, with
the estimated cost derived from the candidate set, favoring samples that maximize information gain per
unit cost. This cost-efficient acquisition function can incorporate with any sample-wise acquisition score,
ensuring the selection of both informative and cost-efficient samples.

The proposed method achieves state-of-the-art performance on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet64x64 (Chrabaszcz et al., 2017). We verify the effectiveness
and generalizability of CSQ through extensive experiments with varying datasets, acquisition functions, and
budgets. Notably, CSQ achieves the same performance as the conventional query on ImageNet64x64 at
only 48% of the cost, showing its scalability. Our ablation studies demonstrate that both our candidate set
construction and sampling strategy contribute to the performance. Furthermore, the necessity of CSQ is
demonstrated by a user study involving 40 participants. In short, the main contribution of this paper is
four-fold:
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• We propose a novel query design for active learning, where the annotator is presented with an image
and a narrowed set of candidate classes that is likely to include the ground-truth class. This approach,
termed CSQ, reduces labeling cost by minimizing the search space the annotator needs to explore.

• To maximize the advantage of CSQ, we propose to utilize conformal prediction to dynamically generate
small yet reliable candidate sets optimized to reduce labeling costs, adapting to the evolving model
throughout successive AL rounds.

• We propose a new acquisition function that prioritizes a data point expected to have high information
gain relative to its labeling cost, enhancing cost efficiency.

• The proposed framework achieved state-of-the-art performance on diverse image classification datasets,
CIFAR-10, CIFAR-100, and ImageNet64x64, showing its effectiveness and generalizability.

2 Related Work

Acquisition functions in AL. The key to AL is to select and annotate the most informative samples Settles
(2009); Dasgupta (2011); Hanneke et al. (2014). To assess informativeness, various acquisition functions have
been proposed, considering either the uncertainty of model predictions (Asghar et al., 2017; He et al., 2019;
Ostapuk et al., 2019; Fuchsgruber et al., 2024; Kim et al., 2024; Cho et al., 2024; Kim et al., 2023), diversity
in feature space (Sener & Savarese, 2018; Sinha et al., 2019; Yehuda et al., 2022), or both (Ash et al., 2020;
Hwang et al., 2022; Wang & Ye, 2015; Wang et al., 2019; Hacohen et al., 2022; Hacohen & Weinshall, 2023a;b).
Disagreement-based AL and its variants are supported by rigorous theoretical learning guarantees (Hanneke
et al., 2014; Krishnamurthy et al., 2019). However, these methods assume uniform sample costs and select
based solely on the amount of information. We emphasize that the labeling cost required for each sample
varies and prioritize samples offering the best information-to-cost ratio.

Efficient query design. Designing efficient annotation queries reduces the annotation costs of craft-
ing datasets. In AL, diverse types of queries have been investigated, including conventional classification
queries (Huang et al., 2015; Kang et al., 2020; Yu et al., 2020; Xie & Huang, 2021; Cour et al., 2011), one-bit
queries (Hu et al., 2020; Joshi et al., 2010) asking for yes or no answers, multi-class queries (Hwang et al.,
2023) identifying all classes within a set of multiple instances, relative quires (Qian et al., 2013) asking for
similarity of triplets, and correction queries (Kim et al., 2024) utilizing pseudo labels from the model. While
these query methods require tailored loss functions, our candidate set query (CSQ) is cost-efficient and pro-
vides complete supervision, integrating seamlessly with existing loss functions. The approach closely related
to CSQ is the n-ary query (Bhattacharya & Chakraborty, 2019), which reduces the search space by asking
for the correct class among top-n predictions of the model. However, the n-ary query uses a fixed number
of top-n predictions for all data without considering individual sample difficulty. CSQ, on the other hand,
adjusts the candidate set size based on sample difficulty and model performance using conformal prediction.
Through rigorous comparisons, we demonstrate that CSQ achieves a superior model performance at the
same cost compared to the previous query designs.

Conformal prediction (CP). CP enables us to quantify uncertainty in predictions with an associated
confidence level (Shafer & Vovk, 2008). Recent advances in CP empower classifiers to generate predictive
sets that include the ground-truth label with a probability chosen by the user (Angelopoulos et al., 2020;
2023). In the field of AL, nonconformity measurements from CP are employed in the acquisition function
to select informative samples (Matiz & Barner, 2020). In contrast, we utilize CP not only to develop a
cost-efficient acquisition function but also to design an efficient candidate set query reducing the labeling
cost.

3 Proposed Method

We consider general classification tasks such that for input x and a categorical variable y ∈ Y = {1, 2, . . . , L},
a model parameterized by θ predicts the class of the input as arg maxy∈Y Pθ(y|x). We study an active
learning (AL) scenario conducted over R rounds. In each round r, a budget of B samples with high acquisition
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Algorithm 1 Cost-efficient active learning with candidate set query
Require: The number of AL rounds R, per-round budget B, unlabeled data pool X , Initial labeled dataset D0.

1: Train the initial model θ0 on D0.
2: for r = 1, 2, . . . , R do
3: Estimate sample-wise labeling cost of x ∈ X .
4: Select B samples Ar ⊂ X considering both their estimated labeling cost and informativeness. ▷ Sec. 3.3
5: Construct candidate set Ŷ (x) for each x ∈ X . ▷ Sec. 3.2
6: Query annotator for label y of x ∈ Ar using candidate set Ŷ (x) to form Dr.
7: Get model θr trained on

⋃r

i=0 Di.
8: end for
9: Return Final model θR.

function values is actively selected from the unlabeled data pool X . This actively selected set Ar is then
labeled by an annotator to form the labeled dataset Dr with labeling cost Cr, and is used to update the
model. Let θr denote the model trained on the accumulated labeled data up to round r,

⋃r
i=0 Di. Our goal

is to maximize the performance of θr, while minimizing the accumulated cost
⋃r

i=0 Ci. The key aspect of the
proposed method is candidate set query (CSQ), which reduces Cr by narrowing the set of candidate classes
presented to annotators. For simplicity, we omit the round index r from θr in the remainder of this section.

In the following, we first introduce CSQ and discuss its efficiency in labeling cost (Sec. 3.1). Then, we present
a method to construct a candidate set based on the prediction uncertainty of a trained model for a given
sample (Sec. 3.2). Lastly, we introduce an acquisition function designed to consider cost efficiency as well
as information gain (Sec. 3.3). The overall pipeline of the CSQ framework combined with our cost-efficient
sampling is summarized in Algorithm 1.

3.1 Candidate set query

CSQ for an instance x is associated with a (non-empty) candidate set Y (x) ⊆ Y such that 1 ≤ |Y (x)| ≤ L.
CSQ first asks the annotator to choose the ground-truth class in Y (x) if it exists, or to verify the absence
of the ground-truth label in Y (x), i.e., the annotator is first asked to pick an option out of (k + 1) choices,
where k = |Y (x)|. Only if the absence of the ground-truth class in the candidate set is verified, the annotator
is further asked to select the ground-truth class from the remaining ones Y \ Y (x). In short, CSQ asks the
following query with an image to the oracle.

Select the ground-truth class from the candidate set, or choose “None of the above.”
(only if “None of the above” is chosen): Select the ground-truth from the remaining classes.

Following the information-theoretic cost model of (Hu et al., 2020) and the user-study results in Table 1, we
model the cost of selecting one label from k candidates as log2 k. Then, the labeling cost Γ(Y (x), y) of CSQ
for input x, ground-truth label y, and candidate set Y (x) ⊆ Y can be obtained as:

Γ(Y (x), y)=
{

log2(k + 1) if y ∈ Y (x)
log2(k + 1) + log2(L − k) otherwise

. (1)

The conventional query in AL is a special case of CSQ where Y (x) = Y, and it is inefficient since the
annotator must search through the entire set of size L with a cost of log2 L. The following theorem reveals
the condition under which the expected cost of CSQ offers an improvement over that of the conventional
query.
Theorem 3.1. Assume the information-theoretic cost model (Hu et al., 2020) of selecting one out of L
possible options to be log2 L. Let L ≥ 2 be the number of classes, k = |Y (x)|, and α be the probability that
the candidate set Y (x) does not include the ground-truth class of instance x. Denote by Ccon and Ccsq the
expected costs of the conventional query and the candidate set query, respectively. If

log2(k + 1)
log2 L

< 1 − α , (2)
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then the candidate set query is strictly cheaper, i.e., Ccsq(L, x, α) < Ccon(L, x).

Proof. Recalling the definition of α, we have Ccsq(L, x, α) = (1−α) log2(k +1)+α{log2(k +1)+log2(L−k)}
from Eq. (1). As L − k < L, the cost ratio of Ccsq(L, x, α) to Ccon(L, x) for instance x is induced as:

Ccsq(L, x, α)
Ccon(L, x) = log2(k + 1) + α log2(L − k)

log2 L

<
log2(k + 1)

log2 L
+ α . (3)

Although we adopt the cost model from Hu et al. (2020), Theorem 3.1 holds for any cost model that increases
monotonically with the number of options.
Remark 3.2. If we constrain all candidate set sizes k to be fixed, then 1 − α corresponds to the top-k
accuracy pk of the model. Therefore, when pk ≥ logL(k + 1), CSQ consistently offers an improvement over
the conventional query in the expected labeling cost. For example, in datasets such as CIFAR-10 (L = 10),
CIFAR-100 (L = 100), and ImageNet (L = 1000), if the model has a top-1 accuracy ( i.e., k = 1) of at least
30.1%, 15.1%, and 10.0% respectively, then CSQ always provides an improvement.

The above proof and remark demonstrate that under moderate conditions, CSQ is more efficient than the
conventional query. As described in Eq. (3), the cost of CSQ decreases as both α and k become smaller.
However, since k and α are inversely related, balancing the trade-off between α and k is essential to fully
leverage CSQ. Also, fixing candidate set sizes as in Remark 3.2 is suboptimal because it does not consider
the difficulty of individual samples. In the following section, we introduce our candidate set construction
method, which both reflects the uncertainty of each sample and automatically balances the trade-off between
α and k.

3.2 Construction of cost-efficient candidate set

As shown in Eq. (1) and Theorem 3.1, a candidate set needs to be both small and accurate in covering the
ground-truth class. To do so, we propose using conformal prediction (Romano et al., 2020) to get a reliable
and cost-optimized candidate set using the trained model θ of the previous round.

Calibration set collection. Conformal prediction requires a labeled set for calibration that has not been
used during the model training phase; this set must follow the same distribution as the target dataset for
prediction (Vovk et al., 1999; Angelopoulos et al., 2023). To achieve this, we randomly select ncal samples
from the actively selected data Ar and annotate them within the given budget to form Dcal = {(xi, yi)}ncal

i=1 .
The calibration set Dcal is used for conformal prediction and candidate set optimization, which will be
explained in the following sections. Note that Dcal also contributes to model training after the candidate set
construction.

Conformal prediction. Using the model θ from the previous round and calibration set Dcal ⊂ Ar of size
ncal, we define a collection of conformal scores s := (si)ncal

i=1 , where si := 1 − Pθ

(
yi | xi

)
for (xi, yi) ∈ Dcal.

Then, we obtain the (1 − α) empirical quantile Q̂(α) of s, indicating that at least 100 × (1 − α)% of the
scores in s are smaller than Q̂(α). This empirical quantile Q̂(α) is given as,

Q̂(α) := min
s∈s

{
s : 1

ncal

∑
s′∈s

(
1[s′ ≤ s]

)
≥ 1 − α

}
, (4)

where α ∈ (0, 1) is an error rate hyperparameter, and 1[·] is an indicator function. Then, we define the
candidate set Ŷθ(x, α) for unlabeled data x using conformal prediction as follows:

Ŷθ(x, α) :=
{

y : Pθ(y|x) ≥ 1 − Q̂(α), y ∈ Y
}

. (5)

5



Under review as submission to TMLR

Previous study (Vovk et al., 1999; Angelopoulos et al., 2023) proved that the candidate set includes the true
label with the probability not less than 1 − α, which is,

P
(
y ∈ Ŷθ(x, α)

)
≥ 1 − α . (6)

This ensures the inclusion of the ground-truth classes even under model overconfidence, while adaptively
reflecting uncertainties throughout the AL process. Without loss of generality, we consider Ŷθ(x, 0) = Y,
where Y corresponds to the conventional query. More detailed procedure of conformal prediction is in
Appendix C.

Cost-optimized error rate selection. The proposed candidate set construction method (Eq. (5)) adapts
the size of the candidate set for each sample based on its predicted uncertainty. While this allows the
candidate set to be both compact and reliable, it requires manually adjusting the hyperparameter α. To
eliminate the need for manual tuning, we introduce an automatic selection scheme that optimizes α at each
AL round by minimizing the expected labeling cost on the calibration set, which serves as a pseudo-validation
set. To be specific, α is optimized by

α∗ := arg min
α∈[0,1)

∑
(x,y)∈Dcal

Γ(Ŷθ(x, α), y) , (7)

where Γ(·, y) is the labeling cost in Eq. (1). We implement this optimization using a grid search over
predefined options of α. The optimization is computationally efficient, requiring only negligible computation
as shown in Figure 7. This approach not only eliminates the reliance on hand-tuned hyperparameters but
also helps construct candidate sets in a more cost-efficient manner, as the selected α∗ is tailored to minimize
the labeling cost under the proposed cost model for each round. Since the optimization in Eq. (7) naturally
considers the conventional query as a special case of CSQ at α = 0, CSQ is at least as efficient as, and in
general more efficient than, the conventional query.

Note that to construct the candidate set query, the calibration set Dcal is required to calculate (1 − α∗)
quantile in Eq. (4). Thus, when getting annotations of Dcal in the calibration set collection step, the
candidate set query of the current round cannot be applied. To avoid this circular dependency, the quantile
from the previous round is used when labeling Dcal.

3.3 Cost-efficient acquisition function

Since the labeling cost of each sample varies in CSQ, we propose to consider the cost for annotation in the
acquisition function. We implement an acquisition function that evaluates samples based on the ratio of
the estimated information gain to the estimated labeling cost. The information gain is quantified using an
established acquisition score, entropy, BADGE (Ash et al., 2020), or SAAL (Kim et al., 2023), though our
approach is compatible with other acquisition scores as well, not just these. Given a conventional acquisition
score gscore(x), the proposed cost-efficient acquisition function gcost is given by,

gcost(x) := (1 + gscore(x))d

log2(k + 1) + α∗ log2(L − k) , (8)

where d is a hyperparameter adjusting the influence of gscore(x) and α∗ is the optimized error rate hy-
perparameter obtained by Eq. (7). The denominator is an expected cost derived from our cost model
(Eq. (1)), considering two cases: the correct label is included or excluded from the candidate set, which
is (1 − α∗) log2(k + 1) + α∗ {log2(k + 1) + log2(L − k)}. This expected cost assumes the candidate set to
include the ground-truth class with a probability of 1 − α∗, which is supported by the coverage guarantee
in Eq. (6).

4 Experiments

4.1 Experimental setup

Datasets. We use three image classification datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), and ImageNet64x64 (Chrabaszcz et al., 2017). CIFAR-10 comprises 50K training
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Figure 2: Accuracy (%) versus relative labeling cost (%) for conventional query (CQ) and the proposed
candidate set query (CSQ) with different acquisition functions. CSQ approaches (blue lines) consistently
outperform the CQ baselines (red lines) by a significant margin across various cost budgets, acquisition
functions, and datasets1.

and 10K validation images across 10 classes. CIFAR-100 contains the same number of images as CIFAR-10,
but is associated with 100 classes. ImageNet64x64 is a downsampled version of ImageNet (Deng et al.,
2009a) with a resolution of 64 × 64, which consists of 1.2M training and 50K validation images with 1000
classes. Following previous studies, we evaluate a model using the validation split of each dataset.

Implementation details. For CIFAR-10 and CIFAR-100, we adopt ResNet-18 (He et al., 2016) as a
classification model. We train it for 200 epochs using AdamW (Loshchilov & Hutter, 2019) optimizer with
an initial learning rate of 1e−3, decreasing by a factor of 0.2 at epochs 60, 120, and 160. We apply a
weight decay of 5e−4 and a data augmentation consisting of random crop, random horizontal flip, and
random rotation. For ImageNet64x64, we adopt WRN-36-5 (Zagoruyko, 2016), and train it for 30 epochs
using AdamW optimizer with an initial learning rate of 8e−3. We apply a learning rate warm-up for 10
epochs from 2e−3. After the warm-up, we decay the learning rate by a factor of 0.2 every 10 epochs.
We adopt random horizontal flip and random translation as data augmentation. For all the datasets, we
use Mix-up (Zhang et al., 2018), where a mixing ratio is sampled from Beta(1, 1). We set the size of the
calibration dataset ncal to 500 for CIFAR-10 and CIFAR-100, and 5K for ImageNet64x64. For all datasets
and acquisition functions, hyperparameter d in Eq. (8) is set to 0.3.

Active learning protocol. For CIFAR-10, we conduct 10 AL rounds of consecutive data sampling and
model updates, while for CIFAR-100, we perform 9 AL rounds. In both cases, the per-round budget is 6K
images. For ImageNet64x64, we conduct 16 AL rounds with a per-round budget of 60K images. The detailed
budget configuration for the three datasets is shown in Table 5. In the initial round, we randomly sample
1K images for CIFAR-10, 5K images for CIFAR-100, and 60K images for ImageNet64x64. In each round,
the model is evaluated based on two factors: its accuracy (%) on the validation set, and the accumulated
annotation cost required to train it. The annotation cost is defined as a relative labeling cost (%) compared
to the cost of labeling the entire training set using the conventional query, given by N log2 L, where N
is the size of the entire training set, and L is the number of classes. We conduct all experiments with
three independent trials with different random seeds and report the mean and standard deviation to ensure
reproducibility.

1Unfortunately, for ImageNet64x64, we exclude the BADGE and ProbCover acquisition baselines due to their computational
intractability.
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Figure 3: Average size of the candidate set and accuracy (%) of our method with cost-efficient entropy
sampling in varying rounds on CIFAR-10, CIFAR-100, and ImageNet64x64. Note that the candidate set
includes all classes at the initial round, but our candidate set design effectively reduces its size over successive
active learning rounds, adapting dynamically as the model accuracy improves.

Baseline methods. We compare our candidate set query (CSQ) with the conventional query (CQ) in
combination with various sampling strategies. To be specific, we employ random (Rand), entropy (Ent),
BADGE (Ash et al., 2020), ProbCover (Yehuda et al., 2022), and SAAL (Kim et al., 2023) as the sampling
strategies. Cost(·) indicates the proposed cost-efficient sampling (Eq. (8)) using conventional acquisition
scores; e.g., Cost(SAAL) is the one combined with SAAL. We denote the combination of the query and
sampling method with ‘+’, e.g., CSQ+Rand is a candidate set query combined with random sampling.

4.2 Experimental results

Candidate set query vs. Conventional query. In Figure 2, we compare the performance of the candidate
set query (CSQ) with the conventional query (CQ) on CIFAR-10, CIFAR-100, and ImageNet64x64 with
different acquisition functions. CSQ approaches consistently outperform the CQ approaches across various
acquisition functions and datasets, demonstrating the general effectiveness of our method. Notably, CSQ
reduces the labeling cost by 43%, 54%, and 48% on CIFAR-10, CIFAR-100, and ImageNet64x64, compared
to CQ, respectively. This is promising as it shows that the same volume of labeled data can be obtained
at roughly half the cost, without introducing any label noise or sample bias. Notably, the performance
gain of CSQ increases as the model improves, as it is tailored to the improved model. In the appendix, we
also present experiments on a text classification task (Figure 13) showing the generalization ability of the
proposed method to the natural language domain. Additionally, we provide the zoomed version of Figure 2
in Figure 16 and Figure 17.

Progressive reduction in candidate set size. The effectiveness of CSQ stems from its ability to reduce
labeling costs through smaller candidate sets. To demonstrate this, Figure 3 shows the average size of the
candidate sets and accuracy (%) of our method with varying AL rounds on CIFAR-10, CIFAR-100, and
ImageNet64x64. After the first round, CSQ achieves a sufficiently small candidate set size and continues to
reduce it as accuracy improves, thereby enhancing labeling efficiency.

Empirical validation for our cost model. We conduct a user study with 40 annotators who label samples
using candidate sets of various sizes; see Appendix A for more details. The results in Table 1 suggest that
shrinking candidate sets improves both labeling efficiency and accuracy. They also align closely with the
theoretical cost (Hu et al., 2020), as shown in Figure 1(right).

4.3 Ablation studies

Contribution of each component. Figure 4a demonstrates the contribution of each component in our
method across varying AL rounds: candidate set query (Eq. (5)), cost reduction from α∗ (Eq. (7)), and the
proposed acquisition function (Eq. (8)). The results show consistent performance improvements from each
component in every round. The performance gap between CQ+Ent and CSQ(α=0.1)+Ent verifies the efficacy
of proposed CSQ framework, which provides the largest improvement. The gap between CSQ(α = 0.1)+Ent
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Table 1: User-study results on a fixed image set with different numbers of class options presented to the
annotator. A smaller option set yields both faster annotation and higher accuracy. The empirical trends
also align closely with the theoretical cost curves in Figure 1(right). In all experiments, we treat annotation
cost as proportional to annotation time, which we consider a more practical measure than simply counting
labeled examples.

Class options (#) 4 8 16 32
Annotation Time (s) 69.4±13.8 91.5±27.3 116.9±29.6 166.9±30.8
Accuracy (%) 100.0±0.0 98.5±3.2 99.5±1.5 95.5±5.2
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Figure 4: (a) Contribution of each component of our method, measured by accuracy (%) versus relative
labeling cost (%) (left), and relative labeling cost (%) versus AL rounds (right) on CIFAR-100. The results
compare the full method (CSQ+Cost(Ent)), the method without acquisition function in Eq. (8) (CSQ+Ent),
without α optimization in Eq. (7), where α is fixed to 0.1 (CSQ(α=0.1)+Ent), and without CSQ (CQ+Ent).
All components of our method lead to steady performance improvement over varying rounds. (b) Relative
labeling cost (%) at the fifth round with varying calibration set sizes ncal in Eq. (4) on CIFAR-100. The
dashed line indicates the relative labeling cost (%) of CQ+Ent. Our method shows consistent performance
with varying calibration set sizes.

and CSQ+Ent shows the impact of α optimization, offering modest but steady gains across rounds. Finally,
the gap between CSQ+Ent and CSQ+Cost(Ent) shows the effectiveness of our acquisition function, particularly
from 4 to 6 rounds.

Impact of calibration set size. In Figure 4b, we evaluate the relative labeling cost (%) at the fifth round
with varying calibration set sizes ncal in Eq. (4) to assess its impact on the performance on CIFAR-100. As
shown in Figure 4b, our method shows consistent performance, varying by less than 2%p as the calibration
set size changes from 0.1K to 2K, and significantly outperforms the baseline.

Detailed ablation study on candidate set design. Figure 5 illustrates the effectiveness of using con-
formal prediction (Conformal (α=0.1)) for candidate set construction on CIFAR-100, compared to baselines:
Conventional (using all classes), Top1 (top-1 prediction), Top10 (top-10 predictions), and Oracle (smallest top-k
set always containing the ground truth). Note that Oracle represents an unattainable upper bound requiring
knowledge of the ground truth. Top1 and Top10 are variants of the n-ary query (Bhattacharya & Chakraborty,
2019) baseline. For consistency, we fixed α=0.1 in Eq. (5). Figures 5a and 5b show that conformal prediction
consistently reduces labeling cost compared to the baselines. While Top10 is effective in the early rounds
and Top1 becomes more efficient as the model improves, our method adapts and outperforms all baselines
in every round. Figure 5c demonstrates that with α = 0.1, our method includes the ground-truth class in
over 90% of cases, aligning with Eq. (6), while the top-k baselines show lower inclusion rates, especially in
early and middle rounds. This demonstrates that conformal prediction effectively adjusts candidate set sizes
based on sample uncertainty, ensuring ground-truth inclusion and improving labeling efficiency.
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Figure 5: Impact of the candidate set design evaluated on CIFAR-100 using the conventional query with
all classes (Conventional), top-1 prediction from model (Top1), top-10 predictions from model (Top10), our
method with conformal prediction with fixed α=0.1 (Conformal(α=0.1)), and the smallest top-k prediction
sets always including the ground-truth class (Oracle). For comparison, the same entropy sampling is used
to keep the accuracy at each round constant, focusing solely on the labeling cost and isolating the effect of
the candidate set design. (a) Our method constantly outperforms the baselines both in accuracy (%) and
relative to labeling cost (%). (b) Our design achieves a greater reduction in labeling cost compared to the
baselines. (c) Our candidate set effectively includes the ground-truth class in over 90% of cases (= 1 − α),
even when model accuracy is low.

Table 2: Effectiveness of the proposed cost-efficient sampling (Cost(·)) on CIFAR-100, reported as accuracy
per cost. All methods employ the same candidate set query (CSQ) framework, and we simply replace the
acquisition function baselines with their Cost(·) variants. Our sampling consistently improves the performance
across various acquisition functions and AL rounds. The best results are highlighted in bold.

Acquisition 2nd round 3rd round 4th round 5th round 6th round 7th round 8th round 9th round
Ent 2.36 1.74 1.55 1.43 1.36 1.30 1.26 1.24
Cost(Ent) 2.36 2.09 1.89 1.68 1.56 1.48 1.37 1.30
BADGE 2.51 1.94 1.69 1.51 1.40 1.34 1.29 1.27
Cost(BADGE) 2.64 2.17 1.92 1.75 1.58 1.49 1.37 1.32
ProbCover 2.43 1.72 1.60 1.55 1.47 1.39 1.33 1.30
Cost(ProbCover) 2.43 2.10 1.98 1.79 1.66 1.52 1.39 1.32
SAAL 2.37 1.83 1.55 1.43 1.37 1.32 1.28 1.25
Cost(SAAL) 2.36 2.12 1.94 1.74 1.64 1.50 1.38 1.31

Detailed ablation study on cost-efficient acquisition function. In Table 2, we investigate the impact
of the proposed cost-efficient sampling (Sec. 3.3) on CIFAR-100, where performance is measured by accuracy
per cost (i.e., accuracy divided by relative labeling cost). This metric reflects how efficiently a method
achieves high accuracy under a fixed annotation budget—higher values indicate better cost-effectiveness.
The proposed cost-efficient sampling strategy consistently improves performance across different acquisition
functions, with gains observed throughout various AL rounds. A more detailed accuracy versus labeling cost
graph is illustrated in Figure 10.

Ablation study on cost-optimized error rate selection. In Figure 6a, we present the impact of cost-
optimized error rate selection as in Eq. (7), evaluated on CIFAR-100 using entropy sampling, in terms of
relative labeling cost (%). Compared to the baselines using hand-picked error rate values, the cost-optimized
error rate α = α∗ from the proposed method consistently reduces labeling cost across all AL rounds. This
demonstrates that the proposed method reduces the need for manual tuning of the error-rate hyperparameter
and instead automatically selects an error rate optimized for each AL round.
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Figure 6: Impact of cost-optimized error rate selection as in Eq. (7), evaluated on CIFAR-100 with entropy
sampling. (a) Relative labeling cost (%) versus AL rounds with different error rate α compared with the α∗

selected by the proposed method (Eq. (7)). This shows our method removes manual tuning by automatically
choosing an adaptive error rate at each round. (b) Relative labeling cost per round (%) versus α across various
AL rounds. The cost curves reveal that selecting the right error rate greatly lowers labeling cost, with the
benefit growing in later rounds. Pink triangles mark the true optimal α, blue squares mark α∗ from our
method. The selected α∗ remains consistently close to the true optimum, enabling each round to sharply
reduce labeling cost.

4.4 In-depth analysis

Quality of the optimized error rate α∗. In Figure 6b, we compare the optimized error rate (α∗, blue
squares) selected by our method with the true optimal error rate (pink triangles), showing their relative
labeling costs (%) across different AL rounds. As indicated by the labeling cost curves for each error
rate, choosing an effective error rate significantly impacts cost reduction, and this impact becomes more
prominent at later rounds. Our proposed method adaptively selects an optimized error rate (α∗) close to
the true optimal error rate at each AL round, substantially reducing labeling costs.

Analysis on computational complexity. Figure 7 plots the wall-clock time measured in minutes of each
strategy as the size of unlabeled pool from ImageNet64x64 grows from 10K to 0.7M images. The dashed
curve isolates the cost of the candidate set query (CSQ) itself and reveals a flat line: constructing candidate
sets is constant time, independent of the unlabeled pool size. All entropy-based samplings, including our
proposed CSQ+Cost(Ent), exhibit the expected linear slope. This confirms that both the candidate set query
and cost-efficient sampling add negligible overhead, preserving the linear complexity of standard entropy
sampling. By contrast, CQ+BADGE rises steeply owing to the k-means++ seeding inside BADGE2, even
with an accelerated implementation3.

Table 3 gives an absolute breakdown at the largest pool size (1.21 M images). Although conventional queries
(CQ+Ent, CQ+BADGE) have zero query cost—they simply show all classes to the oracle—our CSQ adds
only <0.05 minutes, a negligible overhead that confirms the constant-time trend in the Figure 7. Likewise,
replacing plain entropy sampling with its cost-efficient variant (Cost(Ent)) increases sampling time by less
than 0.01 min, preserving the same linear complexity. Both components of our pipeline are light—CSQ for
querying and Cost(·) for sampling—so the full method (CSQ+Cost(Ent)) remains scalable even on million-scale
pools.

Examples of constructed candidate sets. In Figure 8, we present input images and their corresponding
candidate sets on ImageNet64x64. Thanks to the conformal prediction, the proposed method allows flexible
adjustments of the candidate set for each sample.

2For computational feasibility we therefore cap its AL budget at 5000 images and its calibration set size at 500.
3We adopt the accelerated code from Zhang et al. (2023).
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Figure 7: Wall-clock time versus unlabeled-pool size
on ImageNet64x64. CSQ (dashed) runs in con-
stant time, independent of pool size. Our sampling
(Cost(Ent)) adds a negligible overhead, keeping the
same linear complexity as plain entropy sampling.

Table 3: Detailed comparison of wall-clock time mea-
sured in minutes (mean ± standard deviation across
three different random seeds) with an unlabeled data
pool of size 1.21 million from ImageNet64x64. The ta-
ble decomposes the total runtime into Query (for con-
structing candidate sets) and Sampling (for selecting
informative samples). While conventional querying
strategies (CQ+Ent and CQ+BADGE) incur no query-
time cost by presenting all classes to the oracle, the
proposed CSQ framework introduces a marginal over-
head (<0.05 minutes), thereby maintaining practical
efficiency. Also, our cost-efficient sampling Cost(Ent)
maintains the linear time complexity of standard en-
tropy sampling, while adding only marginal addi-
tional cost. Together, these results show that the full
pipeline CSQ+Cost(Ent) achieves competitive compu-
tational efficiency without sacrificing scalability.

Query Sampling Total
CQ+Ent 0.00±0.00 2.29±0.01 2.29±0.01

CQ+BADGE 0.00±0.00 17.64±0.31 17.64±0.31

CSQ+Ent 0.04±0.01 2.27±0.01 2.31±0.01
CSQ+Cost(Ent) 0.04±0.00 2.26±0.02 2.31±0.02
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Figure 8: Examples of input images and their corresponding candidate sets constructed using our method
at the fifth AL round on ImageNet64x64. For each image, the ✓ indicates the ground-truth class. Our
method adjusts the size of each candidate set on the fly: it shrinks the set for confident cases (left) to reduce
annotation cost, and enlarges it for uncertain ones (right) to include the ground-truth class.

5 Conclusion

We have introduced candidate set query, an active learning framework that reduces the labeling cost effec-
tively and efficiently by narrowing down the candidate set likely to include the ground-truth class. We have
also proposed a novel acquisition function that balances model performance and labeling cost by taking ex-
pected candidate set sizes into account. Empirical evaluations on CIFAR-10, CIFAR-100, and ImageNet64x64
confirm the effectiveness of our framework.

Limitations and future work. One limitation is that the proposed acquisition function lacks theoretical
guarantee for label complexity (Dasgupta, 2011; Hanneke et al., 2014) at this point. Establishing a theoretical
understanding to quantify the cost required to achieve a target performance remains an interesting direction
for future work.
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Appendix

A Details of user study

(b) Example queries in CIFAR-100

Q. Select the class that corresponds to the image.

(a) Questionnaire with four candidates 𝑘 = 4

Figure 9: Questionnaire and examples used in the user study. (a) Each question contains an instruction,
an image, and a set of candidates. In this case, the candidate set size is 4. (b) We utilize 20 images from
CIFAR-100, each with a resolution of 128 x 128 pixels.

We conduct a user study to examine how the size of a candidate set, k in Sec. 3.1, affects the annotation
time in practice. Figure 9 presents examples of the questionnaire and all images used in our user study. To
facilitate easy comparison with the theoretical costs (Hu et al., 2018), we set the candidate set sizes to 4,
8, 16, and 32. To be specific about Figure 9, we use CIFAR-100 images resized to 128 × 128 using super
resolution4 to enhance visibility for annotators. We first randomly select 20 classes in CIFAR-100 and choose
one image per class to organize the questionnaires. For small-sized candidate sets, we ensure the inclusion
of the ground truth by randomly trimming around it when generating the candidate sets.

We divide 44 annotators into four groups of 11 for each candidate set size to perform labeling tasks. To
account for potential outliers, we exclude the results of the annotators whose time taken deviates the most
from the average time in each group. Table 4 shows that as the candidate set size increases, the time per
query increases and the accuracy decreases. In addition, on the right side of Table 4, the comparison between
the experimental costs and theoretical costs reveals a significant correlation of 0.97.

Table 4: User study for different sizes of candidate set query.

k Total time (s) Time per query (s) Accuracy (%) Experimental Theoretical

4 69.4±13.8 3.47±0.69 100.0±0.0 2.0 2
8 91.5±27.3 5.20±1.36 98.5±3.2 2.6 3
16 116.9±29.6 6.94±1.48 99.5±1.5 3.4 4
32 166.9±30.8 8.35±1.54 95.5±5.2 4.8 5

4https://www.kaggle.com/datasets/joaopauloschuler/cifar100-128x128-resized-via-cai-super-resolution
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B Implementation details and configuration

Table 5 presents the configuration of our main experiments for each dataset. In all experiments, we fixed the
per-round budget, which limits the number of annotated instances per active learning (AL) round. Given this
budget constraint, we compute the labeling cost for each AL round to assess labeling efficiency. The batch
size for CIFAR-10, CIFAR-100, and ImageNet64x64 was determined to be 128. We normalized the input
image to ensure the stability of the training. We trained our classification model on CIFAR-10 and CIFAR-
100 using NVIDIA RTX 3090 and on ImageNet64x64 using 4 NVIDIA A100 GPUs in parallel. The training
requires about 5 GPU hours for CIFAR-10 and CIFAR-100, and about 1.5 GPU days for ImageNet64x64.

Table 5: Detailed dataset and budget configuration for the proposed scenario.

Dataset L log2L Size Cost of full label # of rounds Per-round budget

CIFAR-10 10 3.322 50K 166.1K 10 6K
CIFAR-100 100 6.644 50K 332.2K 9 6K

ImageNet64x64 1000 9.966 1.2M 12.7M 16 60K

Code. This part demonstrates the reproducibility of our work by providing comprehensive details on the
source code release. We have made available the entire framework, which includes the data sampling methods,
evaluation procedures, and the overall training pipeline. Our aim is to ensure that other researchers can easily
replicate and build upon our results. To get started with running the code, please refer to the script.sh
and README.md files. README.md contains the instructions to comprehend and execute our experiments
seamlessly, and script.sh includes some example commands. To understand our proposed method better,
you can examine the Python script al/strategy_dtopk.py. This file includes the implementation details
of our active learning strategies, particularly candidate set query design. Furthermore, our code can run on
CIFAR-10, CIFAR-100 5, and ImageNet64x64 6, which are available online. Note that you can modify the
running configuration such as dataset, sampling method, and budget through command-line arguments.

C Additional clarification on candidate set construction

The detailed procedure of computing Q̂(α) in Eq. (4). We begin with computing the collection of
conformal scores s for the calibration dataset Dcal. For each data point (xi, yi) ∈ Dcal, the conformal score
is defined as:

si := 1 − Pθ(yi | xi), for i = 1, 2, · · · , ncal , (9)

where ncal = |Dcal|. Using these scores, we define the empirical distribution function Fn(s), which measures
the proportion of scores less than or equal to a given value s. Formally, Fn(s) is expressed as:

Fn(s) = 1
ncal

ncal∑
i=1

1[si ≤ s] , (10)

where 1[·] is an indicator function. The (1 − α) empirical quantile is then defined as the smallest score si

such that the proportion of scores satisfying si ≤ s is at least (1 − α). Mathematically, this is given as
mini∈[ncal] {Fn(si) ≥ 1 − α}, where [ncal] = {1, 2, · · · , ncal}.

Q̂(α) := min
i∈[ncal]

{Fn(si) ≥ (1 − α)} . (11)

Note that Eq. (11) is equivalent to Eq. (4).

5https://www.cs.toronto.edu/~kriz/cifar.html
6https://patrykchrabaszcz.github.io/Imagenet32/
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Figure 10: Comparison of different sampling methods and their cost-sampling variants on CIFAR-100. Each
subplot shows a triple of corresponding methods.

D Impact of proposed cost-efficient sampling across different sampling strategies

In Figure 10, we compare different sampling strategies when combined with their cost-efficient variants on
CIFAR-100. Notably, the performance of cost-efficient sampling consistently improves when combined with
a range of acquisition functions. These results show that our cost-efficient acquisition method (Eq. (8))
performs consistently well when paired with four diverse acquisition strategies: entropy sampling, BADGE
(Ash et al., 2020), ProbCover (Yehuda et al., 2022), and SAAL (Kim et al., 2023). This suggests that it can
be readily combined with a broad range of acquisition functions beyond those evaluated in our experiments.
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Figure 11: Accuracy (%) versus relative labeling cost (%) with varying hyperparameter d in Eq. (8) across
AL rounds, evaluated on CIFAR-10, CIFAR-100 and ImageNet64x64 with CSQ+Cost(Ent). We set d = 0.3
for all dataset in our main experiments.

E Impact of informativeness-cost balancing hyperparameter d

The hyperparameter d in our acquisition function (Eq. (8)) balances the trade-off between labeling cost
and the informativeness of a sample, requiring both factors to be considered. We provide a comprehensive
analysis showing the trend of performance in accuracy with varying d values over AL rounds on CIFAR-10,
CIFAR-100, and ImageNet64x64 in Figure 11. For CIFAR-10 (Figure 11a), both accuracy and labeling cost
remain robust to the change of d, varying only 0.5%p in accuracy. For CIFAR-100 and ImageNet64x64
(Figure 11b and Figure 11c), the overall performance improves as d decreases. Overall, the performance
remains robust for lower values of d, showing little sensitivity across different datasets. This suggests that d
can be easily selected without extensive tuning. We fix d = 0.3 in all main experiments to demonstrate the
robustness of our method without dataset-specific adjustment.

F Discussion on handling outliers and anomalous datapoints

Dealing with out-of-distribution (OOD) data points showing high uncertainty scores has been a chronic
issue in active learning and may affect the efficiency of candidate set query (CSQ). Recent open-set active
learning approaches (Du et al., 2021; Kothawade et al., 2021; Ning et al., 2022; Park et al., 2022; Yang et al.,
2024) tackle this by filtering out OOD samples during active sampling using an OOD classifier. Our CSQ
framework integrates seamlessly with these methods, focusing on labeling in-distribution (ID) samples to
prevent cost inefficiency.

However, as OOD classifiers are not flawless, some OOD samples may still be selected. One advantage of our
method is its ability to leverage the calibration set to capture information about such mixed OOD samples.
This enables adjustments such as increasing the OOD classifier threshold to exclude more OOD-like data or
incorporating the OOD ratio into the alpha optimization process in Eq. (7). Optimizing the combination
of OOD and ID classifier scores within the calibration set or designing better OOD-aware queries presents
promising future research directions.

G Compatibility between candidate set construction and uncertain samples

Figure 12 compares CSQ and conventional query (CQ) on CIFAR-100 with entropy-based sampling (Ent)
and our acquisition function with entropy measure (Cost(Ent), Eq. (8)) across AL rounds, with a fixed number
of samples per round.
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Figure 12: Comparison of candidate set query (CSQ) and conventional query (CQ) on CIFAR-100 with
entropy sampling (Ent) and cost-efficient entropy sampling (Cost(Ent)) varying AL rounds. A fixed number
of samples are selected at each AL round. (a) Accuracy (%) versus relative labeling cost (%) showing the
accuracy per cost. (b) Accuracy (%) versus AL rounds showing the accuracy varies with the number of
samples. Note that the lines of CQ+Ent and CSQ+Ent completely overlap, as they use the same sampling
method. (c) Relative labeling cost (%) versus AL rounds.

Our acquisition function provides superior accuracy per cost. The comparison between
CSQ+Cost(Ent) and CSQ+Ent demonstrates that the proposed acquisition function reduces labeling costs
with only a marginal accuracy trade-off.

Candidate set query (CSQ) can reduce labeling costs even for uncertain samples. The com-
parison between CQ+Ent and CSQ+Ent demonstrates that CSQ effectively reduces labeling costs, even with
uncertainty-based sampling methods like entropy sampling. This shows that CSQ can narrow down anno-
tation options even for uncertain samples. Note that CSQ+Ent shows the same accuracy as CQ+Ent, since
they use the same sampling method.

H Experiments in language domain

Dataset. The R52 dataset (Lewis, 1997) is a subset of the Reuters-21578 (Lewis, 1997) news collection,
specifically curated for text classification tasks. It comprises documents categorized into 52 distinct classes,
with a total of 9,130 documents. The dataset is divided into 6,560 training documents and 2,570 testing
documents. Each document is labeled with a single category, and the categories are selected to ensure that
each has at least one document in both the training and testing sets. This structure makes the R52 dataset
particularly suitable for evaluating text classification models.

Implementation details. We adopt an SVM classifier (Cortes, 1995) with sigmoid kernel for classification.
We conduct 11 AL rounds of consecutive data sampling and model updates, where the per-round budget
is 600. The hyperparameter d for our acquisition function is set as 1.2. In the initial round, we randomly
sample 300 samples. In each round, the model is evaluated based on three factors: its accuracy (%) and
Micro-F1 (%).

Figure 13 presents a comparison of candidate set query (CSQ) and conventional query (CQ) on the text clas-
sification dataset (R52) with random sampling (Rand), entropy sampling (Ent), and our acquisition function
with entropy measure (Cost(Ent), Eq. (8)) across AL rounds. CSQ approaches consistently outperform the
CQ baselines by a significant margin across various budgets and acquisition functions. Especially at round
10, CSQ+Rand reduces labeling cost by 65.6%p compared to its conventional query baseline. The result
demonstrates that the proposed CSQ framework generalizes to the text classification domain.
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Figure 13: Comparison between conventional query (CQ) and candidate set query (CSQ) with random sam-
pling (Rand), entropy sampling (Ent), and cost-efficient entropy sampling (Cost(Ent) on text classification
task with R52 dataset. (a) Accuracy (%) versus relative labeling cost (%). (b) Micro-F1 (%) versus relative
labeling cost (%). CSQ approaches (blue lines) consistently outperform the CQ baselines (red lines) by a
significant margin across various budgets and acquisition functions.

I Experiments on real-world datasets

Experiment on datasets containing label noise. We evaluate the candidate set query (CSQ) framework
on CIFAR-100 with noisy labels, simulating a scenario where human annotators misclassify images into
random classes with a noise rate ϵ. This is modeled using a uniform label noise (Frénay & Verleysen, 2013)
with ϵ set to 0.05 and 0.1. Note that this scenario is unfavorable for CSQ, as a misclassifying annotator would
reject the actual true label even if the candidate set includes it. Figure 14 compares CSQ and conventional
query (CQ) on CIFAR-100 with noisy labels using entropy sampling (Ent) and our acquisition function with
entropy measure (Cost(Ent)) across 2, 6, and 9 rounds.

Despite the disadvantageous scenario, our method (CSQ+Cost(Ent)) reduces labeling cost compared to the
baseline (CQ+Ent) across varying AL rounds and noise rates. At round 9, CSQ+Cost(Ent) achieves cost
reductions of 33.4%p and 27.4%p at noise rates of 0.05 and 0.1, respectively. It also consistently outperforms
the baseline in terms of accuracy per labeling cost, demonstrating the robustness of CSQ. Additionally, CSQ
has the potential to reduce label noise, as narrowing the candidate set can lead to more precise annotations.
Our user study (Table 1) shows that reducing candidate set size improves annotation accuracy, suggesting
that CSQ can further enhance performance by reducing label noises.

Experiment on datasets containing class imbalances. Figure 15 compares candidate set query (CSQ)
and conventional query (CQ) on CIFAR-100-LT (Cui et al., 2019), a class-imbalanced version of CIFAR-
100, using entropy sampling (Ent), and our acquisition function with entropy measure (Cost(Ent)) across AL
rounds. The experiments use imbalance ratios (i.e., ratios between the largest and smallest class sizes) of
3, 6, and 10. Note that the maximum AL rounds vary with the imbalance ratio due to dataset size, with a
maximum of 4 rounds for ratios of 3 and 6, and 6 rounds for a ratio of 10.

The result shows that our method (CSQ+Cost(Ent)) reduces labeling cost compared to the baselines (CQ+Ent)
by significant margins across varying AL rounds and imbalance ratios. Specifically, at round 4, CSQ+Cost(Ent)
achieves cost reductions of 31.1%p and 29.2%p at imbalance ratios of 6 and 10, respectively. In terms of ac-
curacy per labeling cost, CSQ+Cost(Ent) consistently outperforms the baseline, demonstrating the robustness
of the CSQ framework in class-imbalanced scenarios.
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Figure 14: Comparison between conventional query (CQ) and candidate set query (CSQ) with entropy sam-
pling (Ent) and the proposed acquisition function with entropy measure (Cost(Ent) on CIFAR-100 with label
noise across AL rounds with varying noise level: (a) Noise rate of 0.05. (b) Noise rate of 0.1. The proposed
CSQ+Cost(Ent) consistently outperforms CSQ+Ent across various AL rounds and noise rates.
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Figure 15: Comparison between conventional query (CQ) and candidate set query (CSQ) with entropy sam-
pling (Ent) and the proposed acquisition function with entropy measure (Cost(Ent) on CIFAR-100-LT, a
variant of CIFAR-100 with class imbalance, across AL rounds with varying imbalance level: (a) Imbalance
ratio of 3. (b) Imbalance ratio of 6. (c) Imbalance ratio of 10. The proposed approach (CSQ+Cost(Ent))
consistently outperforms the baseline (CSQ+Ent) across various AL rounds and noise rates. Note that the
maximum AL rounds vary with the imbalance ratio due to dataset size, with a maximum of 4 rounds for
ratios of 3 and 6, and 6 rounds for a ratio of 10.

23



Under review as submission to TMLR

20 30 40 50 60 70 80 90 100

84

86

88

90

92

94

Relative labeling cost (%)

A
cc

ur
ac

y
(%

)
CQ+Rand CQ+Ent CQ+BADGE CQ+ProbCover CQ+SAAL

CSQ+Rand CSQ+Cost(Ent) CSQ+Cost(BADGE) CSQ+Cost(ProbCover) CSQ+Cost(SAAL)

Figure 16: Accuracy (%) versus relative labeling cost (%) on CIFAR-10.
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Figure 17: Accuracy (%) versus relative labeling cost (%) on CIFAR-100.
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