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ABSTRACT

Discovering novel materials is critical for technological advancements such as
solar cells, batteries, and carbon capture. However, the development of new mate-
rials is constrained by a slow and expensive trial-and-error process. To accelerate
this pipeline, we introduce PLalD, a Large Language Model (LLM) fine-tuned for
stable crystal generation. We first fine-tune a base version of LLaMA-2 7B on
Wyckoft-based text representations of crystals. Then, we further fine-tune via Di-
rect Preference Optimization on sampled structures categorized by their stability.
By encoding symmetry constraints directly into text and aligning model outputs
to explore stable chemical space, PLalD generates structures that are thermody-
namically stable, unique, and novel at a 40% higher rate than prior methods. Our
work demonstrates the potential of adapting post-training techniques from natural
language processing to materials design, paving the way for targeted and efficient
discovery of novel materials.

1 INTRODUCTION

The discovery of new solid-state materials is the foundation of many transformative technologies
including solar cells (Green et al.l |2014), batteries (Zhao et al., 2020)), and carbon capture (Sriram
et al.| 2024a)). However, the search for new materials is constrained by the immense scale of chem-
ical space—previous explorations have only uncovered a fraction of the total number of potential
stable inorganic compounds (Davies et al.,2016). Generative models offer a promising avenue for
accelerating technological breakthroughs by efficiently discovering novel and stable structures in
unexplored regions of chemical space.

Previous work have applied variational autoenconders (Xie et al.| [2021), denoising models (Zeni
et al., 2023 Jiao et al.,[2023; Miller et al., [2024)), and language models (Gruver et al., [2024} [Flam-
Shepherd & Aspuru-Guzik, [2023) to generate stable and novel structures. Language models are
advantageous due to their natural language prompting, which allows for a single model to be applied
to many tasks like conditional generation, infilling, and crystal structure prediction. Specifically, the
pre-trained knowledge of large language models (LLMs) make them data-efficient, requiring fewer
training examples compared to training models from scratch (Gruver et al., [2024).

Symmetry is a defining aspect of crystal structures. The set of rotations, reflections, inversions,
and translations exhibited by a crystal lattice form its space group. A crystal’s space group and
symmetries are not merely a mathematical construct but critical to many optical, electrical, and
magnetic properties like piezoelectricity (Malgrange et al., 2014; [Yang et al., 2005). One way to
define a crystal’s structure from its symmetries is via Wyckoff positions, whereby one can specify
a few key atomic coordinates and have the remaining atomic positions filled by applying symmetry
operations (Hahn et al.| {1983]).

Recent methods like WyFormer (Kazeev et al.,2024)) and CrystFormer (Cao et al.,[2024) have incor-
porated symmetry into language models for crystal generation. However, both works use bespoke
chemical tokenization and require explicit a priori space group and formula constraints, limiting
their utility in de novo generation. Other fields of machine learning have shown that general-purpose
architectures that focus on scale and data expressivity outperform models with handcrafted, domain-
specific constraints (Dosovitskiyl [2020; [Kaplan et al., 2020). We contend that the same “Bitter
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Lesson” holds true for materials generation (Suttonl 2019). Rather than imposing explicit crys-
tallographic constraints, we train an LLM to learn and exploit structural parameters from the data
itself. By allowing the model to discover patterns implicitly through training on Wyckoff-based text
representations, we see significant improvements in unconditional generation.

To guide our search space towards chemically useful structures, we apply Direct Preference Opti-
mization (DPO) (Rafailov et al.}[2023)), a method from Reinforcement Learning from Human Feed-
back (RLHF) used to align LLMs with human preferences (Bai et al.| 2022)). Our pipeline is as
follows: first, we perform supervised finetuning on a base LLM with Wyckoff-based text encod-
ings of crystals, then further fine-tune the LLM via DPO on generated structures categorized by
their stability. By incorporating inherent crystal symmetries and the feedback of a neural network
interatomic potential, we significantly increase the rate of stable, unique, and novel (S.U.N.) mate-
rials. Our experiments demonstrate that our method PLaID generates stable materials at ~60 %
higher rate and S.U.N materials at over a 40% higher rate than prior models while retaining the
flexibility of natural language prompting.

Our contributions are as follows:

1. We develop a novel, symmetry-informed text representation for crystal structures which is
compact, performant, and physically-motivated.

2. We apply DPO to materials generation and show its ability to guide behavior towards de-
sirable chemical properties.

3. We demonstrate that PLalID significantly outperforms existing state-of-the-art models in
generating novel and stable materials.

2 METHOD

2.1 BASE MODEL: FINE-TUNING LLAMA FOR CRYSTAL GENERATION

Our approach begins with a pre-trained large language model (LLaMA-2) (Touvron et al. [2023),
which has demonstrated strong capabilities in text generation and reasoning. Following the method-
ology outlined by (Gruver et al.| |2024), we fine-tune the base version of LLaMA-2 7B to model
the crystal generation process via parameter-efficient fine-tuning (Hu et all 2021). Unlike prior
works that rely on explicit space group constraints or predefined templates, our method enables
more flexible and generalizable unconditional structure generation through the use of a natural lan-
guage prompt.

The training objective is to maximize the likelihood that the model generates the correct token
sequence representing stable crystal structures. We fine-tune two versions of the base model: one
where the crystal structures are represented as text-based 3D coordinates and another based on a
new text-based Wyckoff representation.

2.2  WYCKOFF REPRESENTATION: ENCODING SYMMETRY INTO TEXT

Crystal structures inherently follow symmetry constraints that can be represented by space groups
and Wyckoff positions. To improve the model’s ability to generate valid and stable structures, we
introduce a Wyckoff representation that encodes these symmetries directly into text. Unlike previ-
ous methods such as DiffCSP++ (Jiao et al., |2024) which rely on searching template structures for
Wyckoff positions, our approach allows direct prediction of these sites within the generative process.

Because Wyckoff positions specify atomic site symmetries in a given space group, they significantly
increase the possibility of feasible atomic arrangements. Our encoding method represents each crys-
tal as a sequence of tokens as shown in Figure [l We specify the chemical formula, space group,
lattice parameters, individual chemical elements, fractional coordinates, and Wyckoff site symme-
tries. Note that we include the chemical formula first to ensure self-consistency during generation.

2.3 DIRECT PREFERENCE OPTIMIZATION (DPO) FOR STABILITY ALIGNMENT

While encoding symmetry improves structural validity, stability remains a crucial factor for practical
material discovery. To explicitly align our model toward generating more stable crystals, we employ
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G ~ pdmm
i Example generation prompt:
a ® O LadCusAs8 P g P i
Spacegroup: PAmm <s> Below is a description of a bulk
. . abc: 4.01 4.01 7.71 material. [The chemical formula is
String Encoding les: 90.0 90.0 90.0 o s
PY . angles: 90. .0 90. LadCudAs8]. Generate a description of the
Sites (16) lengths of angles of the lattice vectors
La 0.100 0.100 0.900 4d and then the element type and coordinates
H Cu ©.130 0.500 0.180 4f for each atom within the lattice. [Crystal
o [ ] El As 0.310 0.410 0.680 8g String] </s>

Figure 1: Left: An example crystal highlighting the p4mm space group symmetry, where colors
represent atoms of different elements. By leveraging symmetry, the asymmetric unit of the crystal
(highlighted in green) can be used to represent the entire crystal in our Wyckoff-based text repre-
sentation. Right: An example prompt used during training. The blue conditioning information is
optional, and the crystal string is replaced with the encoding on the left.

Direct Preference Optimization (DPO) (Rafailov et al.,[2023), a reinforcement learning technique
that directly optimizes model outputs based on ranked preferences.

To train the model to prefer stable crystals, we first construct a crystal stability preferences dataset
using the M3GNet relaxation model. M3GNet is a machine learning interatomic potential (MLIP)
that predicts relaxed formation energies for materials, serving as an efficient proxy for stability
assessment. To generate this dataset, we sample 10,000 crystal structures from our fine-tuned
LLaMA model. From here, we categorize crystals based on metastability as predicted by M3GNet
(< 0.08 eV/atom E™!). Specifically, we create stability preference pairs (z, y.,, y1), where  is the
model prompt and ¥, and y; are accepted and rejected crystals.

We apply DPO to fine-tune LLaMA on this curated preference dataset. DPO is advantageous com-
pared to other reinforcement learning methods because it eliminates the need for a computationally-
expensive reward model, directly leveraging pairwise comparisons for model alignment. Given a
pre-trained reference model m..f which assigns a probability to our prompt z, the loss can be written
as

o (Yw | ) . W)] 1)
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ore <>{ © <ﬁ v [2) % Tl [2)

where 7y is the model to be fine-tuned, and S is a hyper-parameter controlling how far the tuned
model deviates from the reference model. We have additional information about our DPO hyperpa-
rameters and dataset creation process in Appendix [A.2]

3 EXPERIMENTS

3.1 SETUP

We trained our model on the well-established MP-20 dataset (Xie et al., 2021), a collection of
45,231 inorganic crystalline materials from the Materials Project (Jain et al., [2013). The dataset
includes structures with up to 20 atoms, all of which are metastable. We follow the methodology
of |Gruver et al.| (2024) by independently fine-tuning a pre-trained LLaMA-2 7B model using 4-
bit quantization and Low-Rank Adapters (LoRA) (Hu et al.l [2021), implemented with PyTorch
(Paszke et al., |2019) and Transformers (Wolf et al.| 2020). Symmetry information for our Wyckoff
representation is calculated by Pyxtal Fredericks et al.|(2021). Following supervised fine-tuning, we
apply DPO on the generated preference dataset to further guide generation towards stable structures.
Full hyperparameters details are provided in Appendix [A.2] We sample 10,000 structures from
each fine-tuned model, parsing a CIF from the generated string. We resample if a CIF cannot be
parsed from the string, which guarantees all samples can be interpreted as crystals but does not
guarantee validity. Additional information relating to sampling validity and efficiency are available

in Appendix
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Table 1: Results for unconditional materials generation on the MP-20 dataset. Shows ablated results
for PLalD, where base refers to LLaMA-2 7B using a coordinate representation and no DPO.

Method Params Validity (%) (1) Coverage (%) (1) | Property Dist. (}) | Stability (%) (1) | S.U.N. (%) (1)
Structural ~ Composition | Recall  Precision d, detem Initial  Relaxed
CDVAE - 99.93 86.93 98.31 99.35 0.914 1.654 0.1 3.6 35
DiffCSP - 99.61 82.23 99.53 99.35 0.257 0.403 8.9 12.5 9.7
DiffCSP++ - 99.99 85.81 99.48 99.66 0.278 0.408 8.9 13.2 9.1
FlowMM - 96.43 83.37 99.47 99.71 0.291 0.079 4.1 9.3 6.3
SymmCD - 94.32 85.85 99.64 98.87 0.090 0.399 5.0 9.4 7.0
CrystalLLM 7B" - 96.4 93.3 91.1 94.9 3.61 1.06 - - -
LLaMA-2 7B
Base 99.21 87.98 97.56 99.55 0.824 0.084 6.3 17.0 9.2

PLalD-Types DPO 98.40 88.91 96.99 99.56 1.325 0.165 79 209 12.2

Wyckoff 99.87 91.28 98.32 99.64 0.129 0.110 114 17.5 12.0
PLaID Wyckoff & DPO | 99.67 93.03 | 98.07 99.44 | 1.500 0.102 | 86 205 | 14.2

T Our CrystalLLM reproduction, PLaID Base, significantly outperforms reported CrystalLLM results. We explore this in Appendix

3.2 METRICS

To initially evaluate the quality of our generated crystal structures, we focus on validity, coverage,
and property statistics as defined by [Xie et al.| (2021). These metrics provide an effective proxy
for assessing the quality and diversity of generated crystals before conducting more computationally
expensive stability evaluations. We explain more details about these metrics in Appendix [A.T]

Our primary metric for evaluating generated crystal structures is the S.U.N Rate from Miller et al.
(2024), which measures the percentage of crystals that are stable, unique, and novel. Stability is
assessed by comparing a crystal’s energy to a convex hull of previously computed energies from
Riebesell et al.| (2023)). Crystals on or below the hull (< 0 eV/atom EMiy are deemed stable. Due
to compute constraints, we assess stability via the CHGNet MLIP (Deng et al.| [2023). Similar to
SymmCD (Levy et al., |2024), we randomly sub-sample 1,000 crystals of the 10,000 samples and
predict their stability before and after CHGNet relaxation. Note that we specifically use different
MLIPs—M3GNet and CHGNet—for preference dataset creation and crystal generation evaluation
to avoid reward hacking or overfitting to a specific MLIP. Following Miller et al.|(2024), we evaluate
uniqueness—differentiation from other generated crystals—and novelty, which measures diversity
from the training data to calculate S.U.N.

3.3 RESULTS

‘We compare our model to five prior methods, as reported from|Levy et al.| (2024): CDVAE (Xie et al.,
2021)), DiffCSP (Jiao et al., |2023)), FlowMM (Miller et al., 2024)), SymmCD (Levy et al.}|2024) and
CrystalLLM (Gruver et al.,|2024). Our main results are presented in Tablem On stability and S.U.N,
the most important metrics, PLalD significantly outperforms all prior methods. While both Wyckoff
text encoding and DPO fine-tuning each individually improved the base model’s stability and S.U.N
rates, applying both methods together significantly improved the rates, resulting in our best PLalD
model. We note that the pre-relaxation stability for both DPO fine-tuned models goes down, however
we theorize this may be due to the quality of relaxations from the M3GNet pseudo-potential model.
For our best overall PLaID model, 20.5% of the relaxed structures are deemed stable, out of which
74% are unique and 94% are novel, leading to a S.U.N. rate of 14.20%. PLalID achieves a ~60%
higher stability rate and 40 % higher S.U.N rate than the best previous method.

On the proxy metrics, PLalD achieves performance on par with other methods, and reaches the
highest compositional validity. Our Wyckoff encoding specifically increases compositional validity
for both the base and DPO fine-tuned models, highlighting symmetry-based encodings as a natural
and intuitive mechanism to increase the validity and stability of generated structures. Though many
of these metrics have saturated, we report PLalD’s performance for comparison and completeness.
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4 DISCUSSION

In this paper, we introduce a novel Wyckoff-based text encoding for crystal structures and demon-
strate DPO’s ability to guide generation towards chemically stable and useful structures. Our method
achieves state-of-the-art performance across stability and S.U.N metrics. Current random structure
search methods achieve less than a 1% success rate (Pickard & Needs| 2011) in identifying stable
materials—PLalD represents a significant acceleration from traditional approaches to future meth-
ods with greater stability and real-world utility.

In future work, we plan to (1) apply DPO to conditional generation tasks like generating crystals
with desired electronic and magnetic properties, (2) explore how scaling laws dictate generation
performance, and (3) verify our results via Density Functional Theory Kohn & Sham|(1965).
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A APPENDIX

A.1 PROXY METRIC DETAILS

Validity provides a computationally efficient check on whether a generated crystal is physically
plausible. We assess this through two criteria: structural validity, which ensures that no two atoms
are closer than 0.5 A, and positional validity, which verifies charge neutrality.

Coverage measures how well the generated structures represent the diversity of real crystals. We
compute recall and precision by comparing the CrystalNN (Zimmermann & Jain, 2020) and Magpie
(Ward et al.,|2016) fingerprints of generated samples against those in the test set, using their pairwise
distances.
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Property statistics evaluate the alignment of generated crystals with the distribution of real materi-
als. We compare the generated and test set crystals by computing the Wasserstein distances of key
properties, specifically atomic density (d,) and the number of unique elements (dejerm,), to quantify
distributional similarity.

Stability Rate assesses how many generated materials are thermodynamically stable. Stability is
determined by the energy above the hull (E™") metric, which measures the energy difference be-
tween a material and the convex hull of competing phases with the same composition. A material
is considered stable if FMI < (0 eV/atom, while those with EM! < .08 eV/atom are classified as
metastable. We compute Eypy; by relaxing generated structures using CHGNet using the Materials
Project dataset (February 2023) as a reference. Total energies were corrected using the MP2020
compatability scheme, which maintains consistency across various functionals (DFT/DFT+U).

S.U.N. Rate extends the stability metric to assess both novelty and uniqueness. A structure is novel
if it is not structurally similar to any training set material, determined using Pymatgen’s Structure-
Matcher (Ong et al.||2013)). Uniqueness ensures that duplicate generations are not counted separately
by grouping structurally similar outputs into equivalence classes. The S.U.N. rate is defined as the
fraction of generated structures that are Stable, Unique, and Novel:

Ny,
Stability Rate = —2*° x 100% 2)
Ngen
~ Nsun
SUN Rate = x 100% 3)

gen
Together, these metrics provide a more rigorous assessment of generative model performance by

quantifying both the stability and originality of discovered materials.

A.2 ADDITIONAL EXPERIMENT DETAILS

Training/Evaluation Pipeline. Our finetuning pipeline consists of multiple stages, including the
supervised finetuning of a base LLaMA-2 7B model, direct preference optimization (DPO), and
evaluation using CHGNet’s relaxation model. The complete process is illustrated in Figure[2]

Figure 2: Flowchart of the model finetuning pipeline. Note that although unconditional generation
was the focus of this work, we support infilling and conditional materials generation.

Supervised Finetuning. We perform supervised finetuning (SFT) on LLaMA to adapt the model
for crystal structure generation. For our fine-tuning, the model performs infilling one-third of the
time. The remaining two-thirds of the time, we generate structures de novo, where we either gen-
erate crystals unconditionally, or randomly append between one and five additional properties in
our prompt. The properties we include are the chemical formula, energy above the hull, formation
energy per atom, band gap and space group.

To fine-tune different LLaMA-2 7B models on both text-based and Wyckoff-based crystal represen-
tation, we followed the steps outlined by |Gruver et al.| (2024) to reproduce their results. We use
an AdamW optimizer with batch size of 16 samples, a learning rate of 10~5, fp-4 mixed precision
alongside LoRA adapters (with a LoRA rank of 8, LoRA alpha of 32, and LoRA dropout of 0.05)
to fine-tune over the MP-20 dataset for 10 epochs.
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While running the SFT experiments, we noticed an interesting phenomenon. Sticking to |Gruver
et al.| (2024)’s procedure caused the model to encounter gradient-NaN errors in the training process.
By switching the precision of the model weights not included in LoRA to bfloat-16 (as opposed to
float-16), our gradients not only became computable but the base fine-tuned model performance also
vastly exceeded that of the fine-tuned LLaMA-2 7B outlined in |Bai et al.|[(2022). We hypothesize
that this may be because the LlaMA-2 models were trained using bfloat-16, making it more numer-
ically stable to maintain the same precision format during fine-tuning. This alignment in numerical
precision likely helps preserve the model’s learned representations and computational stability, lead-
ing to more effective parameter updates during the fine-tuning process.

DPO. After supervised finetuning, we apply Direct Preference Optimization (DPO) to align the
model’s probability distribution to favor more stable structures. We use the DPO Trainer from TRL
(Wolf et al., |2020) using the Adam optimizer with a batch size of 16 samples, a learning rate of
10~9, fp-4/bfloat-16 precision, and a 3 of 0.1 on one epoch of our dataset.

We curate the dataset used for DPO by sampling 10, 000 structures from the fine-tuned LLaMA-2
7B models. From these structures, we filter the crystals into two categories falling above or below
the 0.08 eV/atom E™! threshold. For DPO, those considered metastable constitute our accepting
crystals and those considered non-metastable constitute our rejecting crystals in our preference pairs.

We form our dataset by pairing accepted and rejected crystals in a 1:3 ratio determined experimen-
tally via internal ablation studies (that is every meta-stable crystal gets paired with 3 non meta-stable
crystals). This creates roughly 10,000 to 20,000 DPO pairs depending on the metastability rate. In-
terestingly, the model incurs significantly worse performance when we compile our dataset using a
1:1 and 1:10 ratio. We hypothesize that smaller ratios perform worse as our training dataset becomes
noticeably smaller, and larger ratios perform worse as the model overfits to each positive sample and
consequently generates less diverse structures and lower S.U.N rates.

CHGNet + M3GNet. We employ M3GNet to curate our preference dataset (assessing crystal struc-
tures above and below the 0.08 eV/atom E™!! threshold) and CHGNet for our stability evaluations by
computing relaxed formation energies. For M3GNet and CHGNet, we used 500 and 1500 relaxation
steps respectively.

LLM Sampling Efficiency. We benchmark PLaID sampling efficiency on a singular NVIDIA
H100. We generate the maximum batch size we can fit on a singular H100 GPU of 256, and find
PLaID takes approximately 88.8 minutes to generate 10,000 samples. We find that roughly 75%
of generated strings are parsable as crystals. A more useful metric is the time to generate a S.U.N.
material, which takes the sampling time divided by the number of S.U.N. materials categorized by
CHGNet. Here, PLaID takes 3.75 seconds seconds per S.U.N. material, which is competitive with
other generative materials models (Miller et al.| 2024} Sriram et al., 2024b).

Though it is not the focus of this work, we notice that the time to generate samples decreases to
roughly 20 minutes and the parsing rate of generated strings increases to over 95% as we scale to
the larger Alex-MP-20 dataset (Zeni et al., [2025).

Experiments — Server Details. Training was conducted on a high performance computing (HPC)
cluster equipped with NVIDIA H100 GPUs. We used a single NVIDIA H100 GPU for LLaMA-2
7B SFT and DPO as well as inference. We used an AMD Epyc 7443P for S.U.N. rate evaluations.

A.3 ADDITIONAL RESULTS

We compare visualizations between the space group distribution of the MP-20 dataset we used
to perform SFT on our base models, a sample of 10,000 crystals we generate from our PLalD
model trained on DPO finetuning and Wyckoff representations, and a sample of 10,000 crystals we
generate from the baseline model that has only undergone SFT on the 3D coordinate representation
in Figure 3]

From the diagram, it appears clear that the DPO finetuning process does not alter the model’s gener-
ated space group distribution in a noticeable way. We observe that DPO fine-tuning is significantly
overestimating the frequency of the most common groups (space groups Fm-3m (225), Pnma (62),
and P63/mmc (194)). We suspect this behavior is a result of bias from the original LLM, and that
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Figure 3: A comparison between the three space group distributions allows us to extract valuable
insights on how our PLaID phases adjust model behavior.

the fine-tuning is exploiting regions with more data. In the future, a possible avenue of exploration
is to introduce a regularizer to combat this.

Meanwhile, space groups Cm (8) and P/ (1) are prominent in the base PLalD model crystals. Space
group Cm has a single symmetry operation (a glide plane), while space group PI only has the
identity operation. Notably, both are among the five most frequently generated space groups in the
model, even though they are not in the top five of the training set. This supports the hypothesis that
the Wyckoff representation helps PLalD generate systems with complex symmetry requirements,
skewing the distribution towards generating crystals with more symmetries and ensuring a more
even distribution across all space groups.

A.4 MISCELLANEOUS EXAMPLES OF GENERATED CRYSTALS
We present additional qualitative examples of crystal structures generated by our model. These

structures are visualized using the ASE and PyMatGen toolkits. Figure ] show several samples
from different space groups.

A.5 WYCKOFF THEORY: MATHEMATICAL BACKGROUND
A Wyckoff position defines a set of equivalent atomic sites in a given space group (Evarestov &

Smirnov, [1997). These positions are characterized by symmetry constraints, which reduce the de-
grees of freedom in atomic placement.

For a crystal structure belonging to a space group G, the Wyckoff positions can be defined as:
W ={gz|g € G} 4

where z is a fractional atomic coordinate, and g is an element of the space group.

Each Wyckoff site follows symmetry constraints that ensure atoms occupy positions dictated by the
underlying crystallographic symmetry:

o' = Rz +1 )

where R is a symmetry operation (such as a rotation, reflection, or inversion) that can be represented
as a matrix, and ¢ is a translation vector.
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Figure 4: Examples of crystals generated by our LLaMA-2-7B model fine-tuned with Wyckoff
representation and Direct Preference Optimization (DPO). The crystals’ corresponding chemical
formulas are from top left to bottom right respectively, Ce,SiyRuy , LiyGdyAug, Cs,CeysSbyTeq o,
and LiyFe,O4F,, respectively.

In this notation, x’ is considered to be part of the same crystallographic orbit as =, where x is referred
to as the generating point. As any one arbitrary point in the crystallographic orbit can be used to
generate all other points in the orbit, the choice of x is not unique.

All symmetry operations (R, ) which map a point in the crystallographic orbit to itself form a finite
subgroup of GG, which can be identified as one of the 32 crystallographic point groups. Each Wyckoff
site in each space group is associated with one such point group, and is often labeled according to
the multiplicity of W (the number of points in the orbit generated by the space group in a single unit
cell) and a letter encoding the point group (i.e. ‘4a’).
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