
Error analysis of a compositional score-based
algorithm for simulation-based inference

Camille Touron
Univ. Grenoble Alpes, Inria

CNRS, Grenoble INP, LJK, France
camille.touron@inria.fr

Gabriel V. Cardoso
Geostatistics team, Centre for geosciences and geoengineering

Mines Paris, PSL University, Fontaineableau, France
gabriel.victorino_cardoso@minesparis.psl.eu

Julyan Arbel
Univ. Grenoble Alpes, Inria

CNRS, Grenoble INP, LJK, France
julyan.arbel@inria.fr

Pedro L. C. Rodrigues
Univ. Grenoble Alpes, Inria

CNRS, Grenoble INP, LJK, France
pedro.rodrigues@inria.fr

Abstract

Simulation-based inference (SBI) has become a widely used framework in applied
sciences for estimating the parameters of stochastic models that best explain ex-
perimental observations. A central question in this setting is how to effectively
combine multiple observations in order to improve parameter inference and obtain
sharper posterior distributions. Recent advances in score-based diffusion methods
address this problem by constructing a compositional score, obtained by aggre-
gating individual posterior scores within the diffusion process. While it is natural
to suspect that the accumulation of individual errors may significantly degrade
sampling quality as the number of observations grows, this important theoretical
issue has so far remained unexplored. In this paper, we study the compositional
score produced by the GAUSS algorithm of Linhart et al. (2024) and establish an
upper bound on its mean squared error in terms of both the individual score errors
and the number of observations. We illustrate our theoretical findings on a Gaussian
example, where all analytical expressions can be derived in a closed form.

1 Introduction
Probabilistic approaches to inverse problems (Tarantola, 2005) aim at inferring parameters θ of a
stochastic model from its outputs x through the posterior distribution p(θ|x). Directly sampling
from this posterior is often difficult in practice, since the associated likelihood p(x|θ) is frequently
intractable. To address this, simulation-based inference with conditional score-based modeling (Shar-
rock et al., 2024) approximates the posterior by learning a time-dependent conditional estimate
sϕ(θ,x, t) of the score of noisy versions of the posterior, ∇θ log pt(θ|x). Importantly, this training
relies only on joint samples (θi,xi) ∼ p(θ,x) which can be obtained sequentially as θi ∼ λ(θ),
the prior, and then xi|θi ∼ p(x|θi), thus circumventing the need to evaluate the likelihood (see
Appendix A.1 for details). A central question in this line of work is how the denoising score matching
mean squared error, denoted ϵ2DSM, affects the quality of samples obtained via a backward diffusion
process (see Figure 1). Recent results by Gao et al. (2025) provide explicit bounds on the Wasserstein
error of the approximate samples in terms of ϵ2DSM and the discretization hyperparameters (number
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Figure 1: Contours represent
the true target posterior distri-
bution p (see Appendix A.2.1
for details), either conditioned
on a single observation (top
row) or eleven of them (bot-
tom row): increasing the num-
ber of conditional observations
sharpens the posterior and al-
lows for better inference. Scat-
tered points in red are samples
from p̃ obtained by a diffusion
process with an inexact score
estimate with mean squared er-
ror ϵ2DSM: larger errors tend to
bias the sampling and degrade
its quality.

of steps, step size) used in the backward process. These results imply that one can reach a prescribed
sampling accuracy (in Wasserstein distance) either by tuning the diffusion hyperparameters or by
improving the accuracy of the score estimator.

We extend this setting to n IID observations, with the goal of inferring parameters from the posterior
p(θ|x1:n). In practice, additional observations improve inference, as the posterior concentrates
with growing n (see Figure 1). Recent works (Linhart et al., 2024; Geffner et al., 2023; Arruda
et al., 2025; Gloeckler et al., 2025) propose a compositional score approach: instead of directly
approximating ∇θ log pt(θ|x1:n) with a highly complex network, they aggregate individual posterior
scores sϕ(θ,xj , t) ≈ ∇θ log pt(θ|xj). The resulting compositional score can then be used in
backward diffusion or annealed Langevin dynamics to sample from the multi-observation posterior.
Importantly, if we can bound the error of the compositional score estimate, then we can guarantee
convergence of our sampling to the target multi-observation posterior in terms of Wasserstein distance
(Gao et al., 2025).

However, while the error of each individual score estimate can be controlled during training time, the
error of the aggregated compositional score arises from the accumulation of individual errors as n
grows. To the best of our knowledge, this accumulation effect has not been theoretically analyzed
so far. Here we address this gap: focusing on the compositional score (1) defined by the GAUSS
algorithm of Linhart et al. (2024), we derive in Proposition 2 an upper bound on the mean squared
error (MSE) of its estimate (2) as a function of the n individual score errors.

2 Background on compositional score estimation with GAUSS

Linhart et al. (2024) adopt the common assumption (Sohl-Dickstein et al., 2015) that the backward
kernels of the diffused prior and the diffused individual posteriors can be well approximated by
Gaussian distributions for all times t ∈ [0, T ] of a diffusion process, namely

q̂λ0|t(θ0|θt) = N
(
θ0;µt,λ(θt),Σt,λ(θ)

)
and q̂0|t(θ0|θt,xj) = N

(
θ0;µt,j(θt),Σt,j(θ)

)
,

with j ∈ {1, . . . , n}. In addition, their GAUSS algorithm assumes that both the prior and each indi-
vidual posterior are themselves Gaussian, N (θ;µλ,Σλ) and N (θ;µj ,Σj). Under this assumption,
the diffused covariances Σt,λ and Σt,j are fully determined and, importantly, no longer depend on θ.
With these simplifications, the diffused compositional score takes the form

∇θ log pt(θ|x1:n) = Λ−1

(
n∑

j=1

Σ−1
t,j∇θ log pt(θ|xj)− (n− 1)Σ−1

t,λ∇θ log λt(θ)

)
, (1)

where Λ =
∑

j Σ
−1
t,j − (n− 1)Σ−1

t,λ. Note that the compositional score (1) does not stem from the
simple addition of the n individual scores, as it aims at correctly approximating the true score of a

2



noisy version of the multi-observation posterior for some specific noise level prescribed by a classical
diffusion process. For most priors used in the SBI literature (Gaussian, Uniform, log-Normal), the
diffused score ∇θ log λt(θ) has a closed-form expression and therefore introduces no error (Sharrock
et al., 2024). In contrast, Equation (1) also involves the scores of the individual posteriors, which
are only available through the approximations sϕ(θ,xj , t) and thus contribute to errors ϵ2DSM,j . A
further source of bias comes from the estimation of the covariance matrices Σλ and Σj . Covariance
Σλ can be approximated by the empirical covariance of prior samples. However, for each posterior
one must simulate a backward diffusion process using the approximate score sϕ(θ,xj , t) to generate
samples from p̃(θ|xj) ≈ p(θ|xj), and then compute the empirical covariance Σ̃j . The estimator for
the compositional score (1) is then written as:

s(θ,x1:n, t) = Λ̃−1

 n∑
j=1

Σ̃−1
t,j sϕ(θ,xj , t)− (n− 1)Σ̃−1

t,λ∇θ log λt(θ)

 . (2)

In what follows, we derive an upper bound on the mean squared error of this estimator in terms of the
individual score errors ϵ2DSM,j , the errors incurred in estimating the precision matrices Σ−1

λ and Σ−1
j ,

and the number of observations n. We use ∥.∥ to refer either to the Euclidean norm when applied to
vectors, or spectral norm when applied to matrices.

3 Contributions

We first derive an upper bound on the error of the estimator for the precision matrices, noting that
for the GAUSS algorithm the errors ∥Σ−1

t,j − Σ̃−1
t,j ∥ at each t ∈ [0, T ] are directly related to the initial

estimation error ∥Σ−1
j − Σ̃−1

j ∥, which in turn depends on the sampling quality from each individual
posterior. Since Gaussian distributions are smooth log-concave, we can use the aforementioned
results from Gao et al. (2025) to tune the discretization hyperparameters of each backward diffusion
process and drive the individual score error ϵ2DSM,j sufficiently low to achieve a prescribed small
Wasserstein error. The following proposition (proof in Appendix A.3.2) provides a bound on the
precision estimation error as a function of a fixed Wasserstein error η.

Proposition 1 (Precision matrix error). Choosing 0 < η < min
(√

∥Σ∥
2 , f(∥Σ∥, ∥Σ−1∥)

)
we get

W2(p, p̃) ≤ η ⇒ ∥Σ̃− Σ∥ ≤ γ ⇒ ∥Σ̃−1 − Σ−1∥ ≤ γ∥Σ−1∥2

1− γ∥Σ−1∥
,

where

γ =
(
2
√

2∥Σ∥η + η2(1 +
√
2)
) ∥Σ∥
∥Σ∥ − η

√
2∥Σ∥

> 0,

and function f : R2
+ → R+ is defined in Appendix A.3.2.

We now propose an upper bound on the MSE between the compositional score (1) and its estimate (2)
for any time t ∈ [0, T ] of the diffusion process as a function of the individual score errors, the
precision estimation errors and the number of observations n. For simplicity, we assume a Gaussian
prior, leading to closed-form formula for the corresponding scores and the precision matrices Σ−1

t,λ

(a more general result is stated in Appendix A.5.2). We also assume that individual posterior score
errors ϵ2DSM,j(resp. precision errors) are bounded by the same constant ϵ2DSM (resp. ϵ). Note that in
practice, the error ϵ can be directly linked to the Wasserstein error η of each diffusion process, and
thus indirectly to ϵ2DSM, as stated in Proposition 1. Finally, all constants, except ϵ, are time-dependent
(proof in Appendix A.4).
Proposition 2 (Compositional score error). Let η be chosen as in Proposition 1 and denote

M = maxj ∥Σ−1
t,j ∥ with L = maxj Eθ∼pt(·|x1:n)

(
∥∇ log pt(θ|xj)∥2

)
Mλ ≥ ∥Σ−1

t,λ∥ with Lλ ≥ Eθ∼pt(·|x1:n)

(
∥∇ log λt(θ)∥2

)
.
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Suppose that Eθ∼pt(·|x1:n)(∥∇θ log pt(θ|xj)− sϕ(θ,xj , t)∥2) ≤ ϵ2DSM and ∥Σ−1
j − Σ̃−1

j ∥ ≤ ϵ for
all j = 1, . . . , n such that nϵ < 1

∥Λ−1∥ . Then it holds

Eθ∼pt(·|x1:n)

[
∥∇ log pt(θ | x1:n)− s(θ,x1:n, t)∥2

]
≤
[
(n− 1)∥Λ−1∥

√
Lλ

(
nϵ∥Λ−1∥Mλ

1− nϵ∥Λ−1∥

)
+n∥Λ−1∥(

√
L+ ϵDSM)

(
ϵ+

nϵ∥Λ−1∥(M + ϵ)

1− nϵ∥Λ−1∥

)
+ ∥Λ−1∥nMϵDSM

]2
.

If ϵDSM is sufficiently small and accompanied by a proper choice of diffusion hyperparameters such
that W2(p̃(θ | xj), p(θ | xj)) ≤ η for all j = 1, . . . , n (Proposition 4 in Gao et al., 2025), then the
precision estimation error ϵ can be further bounded using Proposition 1 and η.

(A) (B) (C)

Figure 2: Solid lines stand for the evolution of the empirical MSE of the compositional score estimate (2)
computed with the algorithm GAUSS at different times t ∈ [0, 1] of a diffusion process for the 2D Gaussian
example (see Appendix A.2.1). Dashed lines represent the evolution of the theoretical bound of the afore-
mentioned compositional score error derived in Proposition 2. The empirical and theoretical evolutions are
represented with respect to (A) the precision estimation error ϵ assuming exact individual scores are known,
(B) the number of conditional observations n and (C) the individual score error ϵ2DSM that contributes both
directly to the compositional score error and indirectly through the precision estimation. The choice of the fixed
parameters, especially ϵ in panel (B) and (C), is discussed in detail in Appendix A.2.2.

Remark. In the assumptions of Proposition 2, we bound the individual score error in expectation over
the multi-observation posterior, although one could argue that it would be more natural to bound in
expectation over each individual posterior. This choice is questionable, but it ensures that individual
score estimates provide good approximations on both the support of the multi-observation posterior,
which is our real target, and on the support of each individual posterior (see Appendix A.6 for details).

Numerical illustrations. We showcase our theoretical bound on a Gaussian example (see Ap-
pendix A.2.1 for more details) where all true scores can be analytically computed and for which
the Gaussianity assumption of both the backward kernels and the individual posteriors happens to
be verified : in this setting, the compositional score (1) corresponds to the true score; therefore, no
source of error stemming from external assumptions interferes with the analysis of the compositional
MSE. We compare the evolution of our bound to that of the compositional score error obtained
empirically, depending on the number of conditional observations n, the precision estimation error ϵ
and the individual score error ϵ2DSM. When all individual scores are perfectly known (ϵ2DSM = 0), the
sole intrinsic source of error associated with the compositional score (2) stems from the precision
estimation error ϵ, which itself depends only on the discretization hyperparameters of each individual
diffusion process and the number of samples used to compute each empirical precision matrix. In
such a case, Figure 2(A) shows that our upper bound successfully captures the global trend of the
empirical error. As the number of conditional observations n grows, the empirical compositional
score error and our theoretical bound surprisingly do not blow up but rather tend to stabilize more or
less quickly depending on the diffusion time: ∥Λ−1∥ (appearing in both Equation (1) and our bound)
indeed hides a dependence in 1/n that seems to counterbalance the simple accumulation of the n
individual score errors. Our bound follows this trend especially for large n and/or advanced diffusion
times as seen in Figure 2(B). Finally, Figure 2(C) shows that our theoretical bound well captures the
global evolution of the empirical score error for individual score errors ϵ2DSM ≥ 0.01 but seems to
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be a bit large for smaller values: the empirical evolution seems to be O(ϵ2DSM) while our theoretical
bound contains a constant term C and is thus in O(ϵ2DSM + ϵDSM + C), which biases the evolution.

Conclusion and perspectives. We provide a bound on the mean squared error between the composi-
tional score (1) and its estimate (2) as a function of the n individual score errors and the precision
estimation error, that is specific to the algorithm. Note that we do not try to quantify the error made
by the Gaussian approximations of backward kernels in our analysis, but rather provide a bound for
a compositional score estimate computed according to the GAUSS method. Our upper bound could
be used to derive convergence bounds for diffusion process using such compositional estimate or
even tune the corresponding diffusion discretization hyperparatemeters to achieve a better sampling
quality from the multi-observation posterior. Also, our analysis allows to better understand the effect
of each source of errors involved in the compositional estimate (2) as well as the link between the
precision estimation error and the individual score error.

It would be interesting to extend our error analysis to other methods for estimating precision matrices,
in particular those keeping a dependence in θ for such matrices (e.g. JAC algorithm, see Linhart
et al., 2024): indeed, the algorithm GAUSS conveniently renders the precision matrices independent
of θ but at the cost of a strong Gaussianity assumption on each individual posterior. Note that our
upper bound remains valid for these other types of estimation methods, if we consider bounding
supθ ∥Σt,j(θ)− Σ̃t,j(θ)∥2 and not Eθ∼pt(θ|x1:n)∥Σt,j(θ)− Σ̃t,j(θ)∥2 as it is done in Proposition 2
for individual score errors.
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A Technical Appendices and Supplementary Material
A.1 Conditional score-based modelling
We consider a stochastic model M, encoded in a simulator, that outputs observations x depending on
some parameters θ. We encode knowledge about the parameter space through a prior distribution
λ(θ) and consider the case where the likelihood p(x | θ) of M is intractable. Given some specific
observation x0, the goal of Bayesian inference is to sample from the posterior distribution p(θ | x0)
relating the parameters to this specific observation. One way to avoid likelihood evaluations while
obtaining the desired samples is to run a (conditional) diffusion process, which requires learning the
score of all noisy versions of the posterior distribution ∇θ log pt(θ | x0). As posterior samples are
not directly accessible, conditional score-based modeling usually trains a conditional score estimate
sϕ(θ,x, t) by minimizing the following loss in ϕ on the joint model p(θ,x) = λ(θ)p(x | θ):

L(ϕ) =
T∑

t=1

γ2
t Eθ∼λ(θ)Ex∼p(x|θ)Eθt∼qt|0(θt|θ)

[
∥sϕ(θt,x, t)−∇ log qt|0(θt | θ)∥2

]
where γt are positive weights and qt|0 denotes a forward diffusion kernel. This loss is the traditional
denoising score matching loss for unconditional distributions (Sohl-Dickstein et al., 2015) averaged
over the observation space. With this averaging operation it becomes easy to create a training dataset
(θi,xi) ∼ p(θ,x) and use a Monte-Carlo approximation of L. Also, the final score estimate sϕ
becomes a valid score approximation for individual posteriors conditioned by any x, i.e.:

sϕ(θ,x, t) ≈ ∇θ log pt(θ | x) ∀x ∼ p(x), ∀t ∈ [0, T ],∀θ ∼ pt(θ | x).
If we need to estimate the score of pt(θ | x1) where x1 is a new observation different from x0, it
is sufficient to evaluate our estimate at x1, i.e. sϕ(θ,x1, t) without having to train another score
estimate from scratch.

A.2 Gaussian test case
A.2.1 Theoretical setting
We consider a Gaussian prior defined as λ(θ) = N (θ;µλ,Σλ) and a Gaussian simulator model (or
likelihood) defined as p(x | θ) = N (x;θ,Σ). The goal of Bayesian inference is to determine the
mean θ ∈ Rd of the Gaussian simulator model, given some specific observation x0. This boils down
to sampling from the posterior distribution that is also Gaussian

p(θ | x0) = N (θ;µpost(x0),Σpost),

where Σpost = (Σ−1 +Σ−1
λ )−1 and µpost(x0) = Σpost(Σ

−1x0 +Σ−1
λ µλ).

When we have multiple IID observations x1, . . . ,xn (generated by the same θ), the multi-observation
posterior remains Gaussian:

p(θ | x1:n) = N (θ;µpost(x1:n),Σpost(n)),

where Σpost(n) = (nΣ−1 +Σ−1
λ )−1 and µpost(x1:n) = Σpost(n)

(∑n
i=1 Σ

−1xi +Σ−1
λ µλ

)
. If we

follow a Variance-Preserving diffusion process, then the forward transition kernels read as follows:

qt|0(θt | θ0) = N (θt;
√
αtθ0, (1− αt)I) ∀t ∈ [0, T ].

We can then analytically find the expressions of the individual posterior scores and prior scores over
time as well as the true multi-observation posterior scores (see Appendix D in Linhart et al. (2024)):

∇θ log pt(θ | xi) = −
(
αtΣpost + (1− αt)I

)−1
(θ −

√
αtµpost(xi)),

∇θ log λt(θ) = −
(
αtΣλ + (1− αt)I

)−1
(θ −

√
αtµλ),

∇θ log pt(θ | x1:n) = −
(
αtΣpost(n) + (1− αt)I

)−1
(θ −

√
αtµpost(x1:n)).

A.2.2 Numerical illustration
We propose a numerical illustration that aims at testing the quality of our upper bound with respect to
one source of error, leaving the others fixed. We use the theoretical setting described in Appendix A.2.1
where the dimension d = 2.

In panel (A) of Figure 2, we fix the number of conditional observations n and assume exact individual
scores (ϵ2DSM = 0) : the sole source of error comes from the precision estimation error ϵ. In practice,
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it can be impacted by the choice of discretization parameters during the backward process and the
number of samples used to compute each empirical precision matrix.

In panel (B), we fix ϵ2DSM and let n grows from 1 to 50. The precision error ϵ used in the bound is
fixed but chosen according to ϵ2DSM : we empirically compute the precision error of the 50 diffusion
processes (one per conditional observation) and take the largest value.

In panel (C), we fix n and ϵ and study the evolution with respect to ϵ2DSM. Note that ϵ used in the
theoretical bound corresponds to the largest precision error across all diffusion processes (each of
them is specific to a conditional observation and uses a score estimate with a specific error level
ϵ2DSM).

In Figure 2, we do not try to assess the quality of the precision bound given in Proposition 1 but
rather the quality of the compositional score error given in Proposition 2 : in panel (A), we let ϵ runs
over a specific range of values (that can be empirically encountered) and in the last two panels, we
set the score errors (fixed or not) and make a fixed choice of discretization parameters, which led to
Wasserstein errors during the individual diffusion processes slightly too high, thus not satisfying the
assumptions of Proposition 1.

A.3 Proof of Proposition 1
A.3.1 Intermediate results
We first begin with some lemmas that will be useful to derive the proof of Proposition 1. The
following lemma as well as the corresponding proof is inspired from Theorem 4.1 in Huggins et al.
(2018).
Lemma 1.1. Let p and p̃ be two probability distributions with corresponding covariance matrices Σ,

respectively Σ̃. Suppose that W2(p, p̃) ≤ η with 0 < η <
√

∥Σ∥
2 . Then it holds

∥Σ− Σ̃∥ ≤
(
2
√
2η∥Σ∥ 1

2 + η2(
√
2 + 1)

)( ∥Σ∥ 1
2

∥Σ∥ 1
2 −

√
2η

)
.

Proof. We start by assuming the latent dimension to be one, so that parameters are scalars. Suppose
that θ ∼ p and θ̃ ∼ p̃ are distributed according to the optimal coupling for the 2-Wasserstein distance
i.e. W2

2 (p, p̃) = E|θ− θ̃|2. Let µ (resp. µ̃) be the mean of p (resp. p̃) and σ (resp. σ̃) be the standard
deviation of p (resp. p̃). We assume µ = 0 without loss of generality (otherwise, consider the variable
θ − µ) and W2(p, p̃) ≤ η. Let ζ2 = E(θ2) = σ2 and ζ̃2 = E(θ̃2) = σ̃2 + µ̃2.

|ζ2 − ζ̃2| = |E(θ2 − θ̃2)| = |E[(θ − θ̃)(θ + θ̃)]|

≤ E[(θ − θ̃)2]
1
2E[(θ + θ̃)2]

1
2 by Cauchy–Schwarz

≤ ηE[(θ + θ̃)2]
1
2 by optimal coupling and Wasserstein bound

≤ ηE[2(θ2 + θ̃2)]
1
2 since (a+ b)2 ≤ 2a2 + 2b2

= 2
1
2 η(E[θ2] + E[θ̃2])

1
2

≤ 2
1
2 η
(
E[θ2]

1
2 + E[θ̃2]

1
2
)

since
√
a+ b ≤

√
a+

√
b for a, b ≥ 0

= 2
1
2 η
(
ζ + ζ̃

)
.

From Huggins et al. (2018), it is also shown that |µ− µ̃| = |µ̃| ≤ η. Then,

|σ2 − σ̃2| = |ζ2 − ζ̃2 + µ̃2| ≤ |ζ2 − ζ̃2|+ |µ̃2|

≤
√
2η
(
ζ + ζ̃

)
+ η2 =

√
2η
(
σ +

√
σ̃2 + µ̃2

)
+ η2

≤
√
2η (σ + σ̃ + |µ̃|) + η2 since

√
a+ b ≤

√
a+

√
b for a, b ≥ 0

≤
√
2η(σ + σ̃ + η) + η2

= η2(
√
2 + 1) + 2

3
2 ηmax(σ, σ̃).

When the dimension is greater than one, we can use Lemma C.3 and Corollary C.2 of Huggins et al.
(2018) to extend the previous result and get:

∥Σ− Σ̃∥ ≤ 2
3
2 ηmax(∥Σ∥ 1

2 , ∥Σ̃∥ 1
2 ) + η2(

√
2 + 1).
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We can pursue the computation to get rid of ∥Σ̃∥. Indeed by triangular inequality we have:

∥Σ̃∥ 1
2 ≤

(
∥Σ∥+ ∥Σ̃− Σ∥

) 1
2

≤ ∥Σ∥ 1
2 +

∥Σ̃− Σ∥
2∥Σ∥ 1

2

using
√
a+ b ≤

√
a+

b

2
√
a

for a ≥ 0, b ≥ −a.

So we get the following bound:

∥Σ− Σ̃∥ ≤ 2
3
2

(
∥Σ∥ 1

2 +
∥Σ̃− Σ∥
2∥Σ∥ 1

2

)
η + η2(

√
2 + 1)

⇒

(
1−

√
2

∥Σ∥ 1
2

η

)
∥Σ− Σ̃∥ ≤ 2

√
2η∥Σ∥ 1

2 + η2(
√
2 + 1)

⇒ ∥Σ− Σ̃∥ ≤
(
2
√
2η∥Σ∥ 1

2 + η2(
√
2 + 1)

)( ∥Σ∥ 1
2

∥Σ∥ 1
2 −

√
2η

)
since η <

√
∥Σ∥
2

.

Lemma 1.2. Suppose that we have ∥Σ̃− Σ∥ ≤ γ with γ < 1
∥Σ−1∥ , then it holds

∥Σ̃−1 − Σ−1∥ ≤ γ∥Σ−1∥2

1− γ∥Σ−1∥
.

Proof. Suppose that ∥Σ̃− Σ∥ = ∥E∥ ≤ γ and that 1/γ > ∥Σ−1∥ then we can write the following:

Σ̃−1 = (Σ + E)−1,

=
(
Σ(I +Σ−1E)

)−1

,

= (I +Σ−1E)−1Σ−1.

Now we can write

Σ̃−1 − Σ−1 = (I +Σ−1E)−1Σ−1 − Σ−1

=
(
(I +Σ−1E)−1 − I

)
Σ−1

= −(I +Σ−1E)−1Σ−1EΣ−1 since I = (I +Σ−1E)−1(I +Σ−1E).

We will use the following lemma:

Lemma 1.3 (Li and Huynh, 2022). For any matrix, A ∈ Mn(C), with ∥A∥ < 1. The matrix (I −A)
is invertible and

∥(I −A)−1∥ ≤ 1

1− ∥A∥
.

Since ∥Σ−1E∥ ≤ ∥Σ−1∥∥E∥ ≤ γ∥Σ−1∥ < 1 by assumption, we can write

∥(I +Σ−1E)−1∥ ≤ 1

1− ∥Σ−1E∥
.

As such, we can bound the norms as follows:

∥Σ̃−1 − Σ−1∥ ≤ ∥(I +Σ−1E)−1∥ ∥Σ−1∥ ∥E∥ ∥Σ−1∥

≤ γ∥Σ−1∥2

1− γ∥Σ−1∥
.
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A.3.2 Proof of Proposition 1
We are now ready to derive a proof of Proposition 1 that we restate below.

Proposition 1 (Precision matrix error) Choosing 0 < η < min
(√

∥Σ∥
2 , f(∥Σ∥, ∥Σ−1∥)

)
we get

W2(p, p̃) ≤ η ⇒ ∥Σ̃− Σ∥ ≤ γ ⇒ ∥Σ̃−1 − Σ−1∥ ≤ γ∥Σ−1∥2

1− γ∥Σ−1∥
,

where

γ =
(
2
√

2∥Σ∥η + η2(1 +
√
2)
) ∥Σ∥
∥Σ∥ − η

√
2∥Σ∥

> 0,

and function f : R2
+ → R+ is defined in the following proof.

Proof. To improve readability, we denote m =
√
∥Σ∥. Thanks to Lemma 1.1 and since η < m√

2
we

know that ∥Σ− Σ̃∥ ≤
(
2
√
2ηm+ η2(

√
2 + 1)

) (
m

m−
√
2η

)
if W2(p, p̃) ≤ η.

Let g(η) = η2(
√
2+1)+2

√
2ηm− 1

∥Σ−1∥

(
1−

√
2η
m

)
= η2(

√
2+1)+

√
2η(2m+ 1

m∥Σ−1∥ )−
1

∥Σ−1∥ .

Let γ =
(
2
√
2ηm+ η2(

√
2 + 1)

) (
m

m−
√
2η

)
> 0. If we want γ < 1

∥Σ−1∥ , we need to solve (in η)

the inequality g(η) < 0. Let ∆ = 2
(
2m+ 1

m∥Σ−1∥

)2
+ 4(

√
2+1)

∥Σ−1∥ be the discriminant of g. As it
is nonnegative, g admits exactly 2 roots η− and η+ and g(η) < 0 for η ∈ (η−, η+). After simple
computations, we get:

η± =
−
√
2(2m+ 1

m∥Σ−1∥ )±
√
∆

2(1 +
√
2)

,

with η− ≤ 0 ≤ η+. As η should be positive, it is sufficient to select η < η+ =

−
√
2

(
2
√

∥Σ∥+ 1√
∥Σ∥∥Σ−1∥

)
+
√
∆

2(1+
√
2)

:= f(∥Σ∥, ∥Σ−1∥) to solve the inequality. This ensures that

γ < 1
∥Σ−1∥ . Therefore, we can use Lemma 1.2 to get the last inequality of the statement.

A.4 Time-independence of precision errors
We show here that the precision estimation error ϵ is not time dependent, contrary to all other constants
described in Proposition 2. The algorithm GAUSS assumes that all individual posteriors are Gaussian
of the form p(θ | xj) = N (µj(θ),Σj) for all j = 1, . . . , n. We consider a Variance-Preserving
diffusion process that noises these individual posteriors along a forward path using the following
Gaussian kernels qt|0(θt | θ) = N (

√
αtθ, (1− αt)I). Then known results (e.g. Equation 2.115 in

Bishop, 2006) ensure that p(θ | θt,xj) = N (µt,j ,Σt,j) where Σt,j = (Σ−1
j + αt

1−αt
I)−1. Thus,

∥Σ̃−1
t,j − Σ−1

t,j ∥ = ∥Σ̃−1
j +

αt

1− αt
I − (Σ−1

j +
αt

1− αt
I)∥

= ∥Σ̃−1
j − Σ−1

j ∥
≤ ϵ by assumption on precision estimation error.

This shows that ∥Σ̃−1
t,j − Σ−1

t,j ∥ is bounded uniformly in time by the initial precision estimation error
ϵ.

A.5 Proof of Proposition 2 - detailed version
A.5.1 Proof of intermediate results on compositional score error

Lemma 2.1. Suppose that ∥Σ̃−1
t,i −Σ−1

t,i ∥ ≤ ϵ for i = 1, . . . , n and ∥Σ̃−1
t,λ −Σ−1

t,λ∥ ≤ ϵλ then it holds

∥Λ− Λ̃∥ ≤ (n− 1)ϵλ + nϵ.
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Proof. Recall that

Λ = (1− n)Σ−1
t,λ +

n∑
i=1

Σ−1
t,i ,

where we omit the dependence of Λ in θ since no covariance matrix depends explicitly in θ with the
GAUSS algorithm. Then,

∥Λ− Λ̃∥ =

∥∥∥∥∥(1− n)
(
Σ−1

t,λ − Σ̃−1
t,λ

)
+

n∑
i=1

(
Σ−1

t,i − Σ̃−1
t,i

)∥∥∥∥∥
≤ (n− 1)∥Σ−1

t,λ − Σ̃−1
t,λ∥+

n∑
i=1

∥Σ−1
t,i − Σ̃−1

t,i ∥ since n ≥ 1

≤ (n− 1)ϵλ + nϵ.

Corollary 1. Let ϵ > 0 and ϵλ > 0 such that (n− 1)ϵλ + nϵ < 1
∥Λ−1∥ . Then,

∥Λ̃−1 − Λ−1∥ ≤ ((n− 1)ϵλ + nϵ)∥Λ−1∥2

1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥
.

Proof. We only apply Lemma 1.2 with the correct assumptions.

In the following, we set sϕ(θ,xj , t) := sj(θ, t) and let sλ(θ, t) ≈ ∇θ log λt(θ) for more clarity
(recall that in this detailed version of Proposition 2 we assume that prior scores are unknown and
need to be approximated). Thus, the linear combination of individual posterior scores involved in the
compositional score expression (1) and its estimate in (2) reads as follows:

Γ(θ, t;x1:n) = (1− n)Σ−1
t,λ∇ log λt +

n∑
i=1

Σ−1
t,i ∇ log pt(θ | xi),

Γ̃(θ, t;x1:n) = (1− n)Σ̃−1
t,λsλ(θ, t) +

n∑
i=1

Σ̃−1
t,i si(θ, t).

Lemma 2.2. Suppose that

• ∥Σ̃−1
t,λ − Σ−1

t,λ∥ ≤ ϵλ and Eθ∼pt(·|x1:n)(∥sλ(θ, t)−∇θ log λt(θ)∥2) ≤ ϵ2DSM,λ,

• ∥Σ̃−1
t,j − Σ−1

t,j ∥ ≤ ϵ and Eθ∼pt(·|x1:n)(∥sj(θ, t)−∇θ log pt(θ | xj)∥2) ≤ ϵ2DSM,

for all j = 1, . . . , n. Then it holds

Ept(·|x1:n)(∥Γ̃(θ, t;x1:n)− Γ(θ t;x1:n)∥2)

≤
[
(n− 1)

(
ϵλ

√
Ept(·|x1:n)(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)∑
+

n∑
i=1

(
ϵ
√
Ept(·|x1:n)(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)]2
.

Proof. We first show intermediate results that will be useful for the proof. In the following the
expectations are taken over θ drawn from the diffused multi-observation posterior pt(θ | x1:n) and
we will only use Eθ.
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Result (R1):

Eθ

(∥∥(1− n)
(
Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)

)∥∥2)
≤ (1− n)2Eθ

(
∥Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λsλ(θ, t)∥+ ∥Σ−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)∥

)2
triangular inequality

= (1− n)2
(
Eθ∥Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λsλ(θ, t)∥

2 + Eθ∥Σ−1
t,λsλ(θ, t)− Σ−1

t,λ∇θ log λt(θ)∥2
)

+ 2(1− n)2Eθ

(
∥Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λsλ(θ, t)∥∥Σ

−1
t,λsλ(θ, t)− Σ−1

t,λ∇θ log λt(θ)∥
)

expand the square

≤ (1− n)2∥Σ̃−1
t,λ − Σ−1

t,λ∥
2Eθ(∥sλ(θ, t)∥2) + (1− n)2∥Σ−1

t,λ∥
2Eθ∥sλ(θ, t)−∇θ log λt(θ)∥2

+ 2(1− n)2
√
Eθ(∥Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λsλ(θ, t)∥2)

√
Eθ(∥Σ−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)∥2)

norm inequality and Cauchy–Schwarz inequality

≤ (1− n)2ϵ2λEθ(∥sλ(θ, t)∥2) + (1− n)2∥Σ−1
t,λ∥

2ϵ2DSM,λ

+ 2(1− n)2∥Σ̃−1
t,λ − Σ−1

t,λ∥
√
Eθ(∥sλ(θ, t)∥2)∥Σ−1

t,λ∥
√

Eθ(∥sλ(θ, t)−∇θ log λt(θ)∥2)

≤ (1− n)2ϵ2λEθ(∥sλ(θ, t)∥2) + (1− n)2∥Σ−1
t,λ∥

2ϵ2DSM,λ

+ 2(1− n)2ϵλ
√
Eθ(∥sλ(θ, t)∥2)∥Σ−1

t,λ∥ϵDSM,λ

= (1− n)2
(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)2
. (R1)

In the following results, we will first consider n precision errors ϵ1, . . . , ϵn that we will finally bound
by the same constant ϵ at the end of the proof.

Result (R2):

Eθ

(
∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥2

)
≤ Eθ

(
∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i si(θ, t)∥+ ∥Σ−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥

)2
triangular inequality

= Eθ∥Σ̃−1
t,i si(θ, t)− Σ−1

t,i si(θ, t)∥
2 + Eθ∥Σ−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥2

+ 2Eθ

(
∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i si(θ, t)∥∥Σ

−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥
)

≤ ∥Σ̃−1
t,i − Σ−1

t,i ∥
2Eθ∥si(θ, t)∥2 + ∥Σ−1

t,i ∥
2Eθ∥si(θ, t)−∇θ log pt(θ | xi)∥2

+ 2
√
Eθ(∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i si(θ, t)∥2)

√
Eθ(∥Σ−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥2)

≤ ϵ2iEθ(∥si(θ, t)∥2) + ∥Σ−1
t,i ∥

2ϵ2DSM

+ 2∥Σ̃−1
t,i − Σ−1

t,i ∥
√
Eθ(∥si(θ, t)∥2)∥Σ−1

t,i ∥
√
Eθ(∥si(θ, t)−∇θ log pt(θ | xi)∥2)

≤ ϵ2iEθ(∥si(θ, t)∥2) + ∥Σ−1
t,i ∥

2ϵ2DSM

+ 2ϵi
√
Eθ(∥si(θ, t)∥2)∥Σ−1

t,i ∥ϵDSM

=
(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2
. (R2)

Result (R3):

Eθ

(
∥

n∑
i=1

Σ̃−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥2
)

= Eθ

n∑
i=1

∥Σ̃−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥2 expand the squared norm
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+ Eθ

n∑
i=1

∑
j ̸=i

〈
Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi), Σ̃

−1
t,j sj(θ, t)− Σ−1

t,j∇θ log pt(θ | xj)
〉

=

n∑
i=1

Eθ∥Σ̃−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥2 linearity of expectation

+

n∑
i=1

∑
j ̸=i

Eθ

〈
Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi), Σ̃

−1
t,j sj(θ, t)− Σ−1

t,j∇θ log pt(θ | xj)
〉

≤
n∑

i=1

(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2
by Result (R2)

+

n∑
i=1

∑
j ̸=i

Eθ∥Σ̃−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥∥Σ̃−1
t,j sj(θ, t)− Σ−1

t,j∇θ log pt(θ | xj)∥

using Cauchy–Schwarz inequality

≤
n∑

i=1

(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2
+

n∑
i=1

∑
j ̸=i

√
Eθ(∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥2)

√
Eθ(∥Σ̃−1

t,j sj(θ, t)− Σ−1
t,j∇θ log pt(θ | xj)∥2)

Cauchy–Schwarz a second time

≤
n∑

i=1

(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2
+

n∑
i=1

∑
j ̸=i

(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)(
ϵj

√
Eθ(∥sj(θ, t)∥2) + ∥Σ−1

t,j ∥ϵDSM

)
by Result (R2)

=

(
n∑

i=1

ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2

. (R3)

We are now ready to derive the proof of Lemma 2.2.

Eθ

(
∥Γ̃(θ, t;x1:n)− Γ(θ, t;x1:n)∥2

)
= Eθ

∥∥∥∥∥(1− n)
(
Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)

)
+

n∑
i=1

(
Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)

)∥∥∥∥∥
2

= Eθ

(∥∥∥(1− n)
(
Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)

)∥∥∥2)

+ Eθ

∥∥∥∥∥
n∑

i=1

(
Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)

)∥∥∥∥∥
2


+ 2Eθ

〈
(1− n)

(
Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)

)
,

n∑
i=1

(
Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)

)〉
expanding the squared norm

≤ (1− n)2
(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)2
+

(
n∑

i=1

ϵi
√
Eθ(∥si(θ, t)∥2)∥+ ∥Σ−1

t,i ∥ϵDSM

)2
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+ 2

n∑
i=1

Eθ

〈
(1− n)

(
Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)

)
, Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)

〉
by Results (R1) and (R3) and linearity of expectation and scalar product

≤ (1− n)2
(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)2
+

(
n∑

i=1

ϵi
√
Eθ(∥si(θ, t)∥2)∥+ ∥Σ−1

t,i ∥ϵDSM

)2

+ 2

n∑
i=1

(n− 1)Eθ∥Σ̃−1
t,λsλ(θ, t)− Σ−1

t,λ∇θ log λt(θ)∥∥Σ̃−1
t,i si(θ, t)− Σ−1

t,i ∇θ log pt(θ | xi)∥

by Cauchy–Schwarz ⟨x,y⟩ ≤ |⟨x,y⟩| ≤ ∥x∥∥y∥ and n ≥ 1

≤ (1− n)2
(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)2
+

(
n∑

i=1

ϵi
√
Eθ(∥si(θ, t)∥2)∥+ ∥Σ−1

t,i ∥ϵDSM

)2

+ 2(n− 1)

n∑
i=1

√
Eθ∥Σ̃−1

t,λsλ(θ, t)− Σ−1
t,λ∇θ log λt(θ)∥2

√
Eθ∥Σ̃−1

t,i si(θ, t)− Σ−1
t,i ∇θ log pt(θ | xi)∥2

by Cauchy–Schwarz E(|XY |) ≤
√
E(X2)

√
E(Y 2)

≤ (1− n)2
(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)2
+

(
n∑

i=1

ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

)2

+ 2(n− 1)

n∑
i=1

(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)(
ϵi
√

Eθ(∥si(θ, t)∥2) + ∥Σ−1
t,i ∥ϵDSM

)
by Results (R1) and (R2)

=

(
(n− 1)

(
ϵλ
√

Eθ(∥sλ(θ, t)∥2) + ∥Σ−1
t,λ∥ϵDSM,λ

)
+

n∑
i=1

(
ϵi
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

))2

≤

(
(n− 1)

(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)
+

n∑
i=1

(
ϵ
√
Eθ(∥si(θ, t)∥2) + ∥Σ−1

t,i ∥ϵDSM

))2

since we assume that ϵi ≤ ϵ ∀ i.

Lemma 2.3. Suppose that

• ∥Σ̃−1
t,λ − Σ−1

t,λ∥ ≤ ϵλ and for all j = 1, . . . , n ∥Σ̃−1
t,j − Σ−1

t,j ∥ ≤ ϵj

• sλ(θ, t)
(
resp. sj(θ, t)

)
is a score estimate of ∇θ log λt(θ)

(
resp. ∇θ log pt(θ | xj)

)
Then it holds

Ept(·|x1:n)(∥Γ̃(θ, t;x1:n)∥2) ≤

(
(n− 1)(∥Σ−1

t,λ∥+ ϵλ)
√
Ept(·|x1:n)(∥sλ(θ, t)∥2)

n∑
i=1

(∥Σ−1
t,i ∥

+

n∑
i=1

(∥Σ−1
t,i ∥+ ϵi)

√
Ept(·|x1:n)(∥si(θ, t)∥2)

)2

.
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Proof. Here again the expectations are taken over θ under the diffused multi-observation posterior
pt(θ | x1:n).

Eθ

(
∥Γ̃(θ, t;x1:n)∥2

)
= Eθ

(
∥(1− n)Σ̃−1

t,λsλ(θ, t) +

n∑
i=1

Σ̃−1
t,i si(θ, t)∥

2

)

= (1− n)2Eθ

(
∥Σ̃−1

t,λsλ(θ, t)∥
2
)
+

n∑
i=1

Eθ

(
∥Σ̃−1

t,i si(θ, t)∥
2
)

expanding the squared norm

+ 2(1− n)Eθ

〈
Σ̃−1

t,λsλ(θ, t),

n∑
i=1

Σ̃−1
t,i si(θ, t)

〉

= (1− n)2Eθ

(
∥Σ̃−1

t,λsλ(θ, t)∥
2
)
+

n∑
i=1

Eθ

(
∥Σ̃−1

t,i si(θ, t)∥
2
)

+ 2(1− n)

n∑
i=1

Eθ

〈
Σ̃−1

t,λsλ(θ, t), Σ̃
−1
t,i si(θ, t)

〉
linearity of scalar product

≤ (1− n)2∥Σ̃−1
t,λ∥

2Eθ

(
∥sλ(θ, t)∥2

)
+

n∑
i=1

∥Σ̃−1
t,i ∥

2Eθ

(
∥si(θ, t)∥2

)
+ 2(n− 1)

n∑
i=1

Eθ

(
∥Σ̃−1

t,λsλ(θ, t)∥∥Σ̃
−1
t,i si(θ, t)∥

)
Cauchy–Schwarz and n ≥ 1

≤ (1− n)2∥Σ̃−1
t,λ∥

2Eθ∥sλ(θ, t)∥2 +
n∑

i=1

∥Σ̃−1
t,i ∥

2Eθ∥si(θ, t)∥2

+ 2(n− 1)

n∑
i=1

√
Eθ∥Σ̃−1

t,λsλ(θ, t)∥2
√
Eθ∥Σ̃−1

t,i si(θ, t)∥2

Cauchy–Schwarz inequality

≤ (1− n)2∥Σ̃−1
t,λ∥

2Eθ∥sλ(θ, t)∥2 +
n∑

i=1

∥Σ̃−1
t,i ∥

2Eθ∥si(θ, t)∥2

+ 2(n− 1)∥Σ̃−1
t,λ∥
√
Eθ(∥sλ(θ, t)∥2)

n∑
i=1

∥Σ̃−1
t,i ∥
√
Eθ(∥si(θ, t)∥2)

≤ (1− n)2∥Σ̃−1
t,λ∥

2Eθ∥sλ(θ, t)∥2 +

(
n∑

i=1

∥Σ̃−1
t,i ∥
√
Eθ∥si(θ, t)∥2

)2

+ 2(n− 1)∥Σ̃−1
t,λ∥
√
Eθ(∥sλ(θ, t)∥2)

n∑
i=1

∥Σ̃−1
t,i ∥
√
Eθ(∥si(θ, t)∥2)

since
∑

a2i ≤
(∑

ai

)2
when ai ≥ 0

=

(
(n− 1)∥Σ̃−1

t,λ∥
√

Eθ(∥sλ(θ, t)∥2) +
n∑

i=1

∥Σ̃−1
t,i ∥
√
Eθ(∥si(θ, t)∥2)

)2

≤
[
(n− 1)(∥Σ−1

t,λ∥+ ϵλ)
√

Eθ(∥sλ(θ, t)∥2)

+

n∑
i=1

(∥Σ−1
t,i ∥+ ϵi)

√
Eθ(∥si(θ, t)∥2)

]2
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using triangular inequality to bound ∥Σ̃−1
t,λ∥ and ∥Σ̃−1

t,i ∥.

A.5.2 Proof of detailed version of Proposition 2
The final expressions of the multi-observation score (1) and its estimate (2) are the following:

∇ log pt(θ | x1:n) = Λ−1Γ(θ, t;x1:n),

s(θ, t;x1:n) = Λ̃−1Γ̃(θ, t;x1:n),

where Λ = (1− n)Σ−1
t,λ +

∑n
i=1 Σ

−1
t,i and Λ̃ = (1− n)Σ̃−1

t,λ +
∑n

i=1 Σ̃
−1
t,i .

We propose here a more detailed version of Proposition 2 than what was presented in the main text:
we do not assume a Gaussian prior, and thus need to estimate both the prior score ∇θ log λt(θ) and
the precision matrix Σ−1

λ .

Proposition 2 (Compositional score error - detailed version) Let η (resp. ηλ) be chosen as in
Proposition 1 and denote

M = maxj ∥Σ−1
t,j ∥ with L = maxj Eθ∼pt(·|x1:n)

(
∥∇ log pt(θ|xj)∥2

)
Mλ ≥ ∥Σ−1

t,λ∥ with Lλ ≥ Eθ∼pt(·|x1:n)

(
∥∇ log λt(θ)∥2

)
.

Suppose that

Eθ∼pt(·|x1:n)(∥∇θ log pt(θ|xj)− sϕ(θ,xj , t)∥2) ≤ ϵ2DSM, for all j = 1, . . . , n

Eθ∼pt(·|x1:n)(∥∇θ log λt(θ)− sλ(θ, t)∥2) ≤ ϵ2DSM,λ

∥Σ̃−1
j − Σ−1

j ∥ ≤ ϵ, for all j = 1, . . . , n

∥Σ̃−1
λ − Σ−1

λ ∥ ≤ ϵλ,

with (n− 1)ϵλ + nϵ < 1
∥Λ−1∥ . Then it holds

Eθ∼pt(·|x1:n)

[
∥∇ log pt(θ | x1:n)− s(θ,x1:n, t)∥2

]
≤
[
(n− 1)∥Λ−1∥(

√
Lλ + ϵDSM,λ)

(
ϵλ +

((n− 1)ϵλ + nϵ)∥Λ−1∥(Mλ + ϵλ)

1− ((n− 1)ϵλ + nϵ)∥Λ−1∥

)
+n∥Λ−1∥(

√
L+ ϵDSM)

(
ϵ+

((n− 1)ϵλ + nϵ)∥Λ−1∥(M + ϵ)

1− ((n− 1)ϵλ + nϵ)∥Λ−1∥

)
M

∥Λ∥
+ ∥Λ−1∥((n− 1)MλϵDSM,λ + nMϵDSM

]
2.

If ϵDSM (resp. ϵDSM,λ) is sufficiently small and accompanied by a proper choice of diffusion hyperpa-
rameters such that W2(p̃(θ | xj), p(θ | xj)) ≤ η for all j = 1, . . . , n (resp. W2(λ̃(θ), λ(θ)) ≤ ηλ)
(Proposition 4 in Gao et al., 2025), then the precision estimation error ϵ (resp. ϵλ for the prior
precision error) can be further bounded using Proposition 1 and η (resp. ηλ).

Proof. To simplify notations in the proofs, we write the expectation taken over the diffused multi-
observation posterior Eθ∼pt(·|x1:n) simply by Eθ , and we use si(θ, t) := sϕ(θ,xi, t) and sλ(θ, t) ≈
∇θ log λt(θ).

Recall that precision errors are time independent (see Appendix A.4), i.e. for all t ∈ [0, T ]:

∥Σ̃−1
t,j − Σ−1

t,j ∥ ≤ ϵj ≤ ϵ ∀j = 1, . . . , n and ∥Σ̃−1
t,λ − Σ−1

t,λ∥ ≤ ϵλ.

15



We have

Eθ∥∇ log pt(θ | x1:n)− s(θ, t;x1:n)∥2

= Eθ∥Λ−1Γ(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥2

≤ Eθ

(
∥Λ−1Γ(θ, t;x1:n)− Λ−1Γ̃(θ, t;x1:n)∥+ ∥Λ−1Γ̃(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥

)2
using triangular inequality

= Eθ∥Λ−1Γ(θ, t;x1:n)− Λ−1Γ̃(θ, t;x1:n)∥2 + Eθ∥Λ−1Γ̃(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥2

+ 2Eθ

(
∥Λ−1Γ(θ, t;x1:n)− Λ−1Γ̃(θ, t;x1:n)∥∥Λ−1Γ̃(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥

)
expanding the square

≤ Eθ∥Λ−1Γ(θ, t;x1:n)− Λ−1Γ̃(θ, t;x1:n)∥2 + Eθ∥Λ−1Γ̃(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥2

+ 2

√
Eθ∥Λ−1Γ(θ, t;x1:n)− Λ−1Γ̃(θ, t;x1:n)∥2

√
Eθ∥Λ−1Γ̃(θ, t;x1:n)− Λ̃−1Γ̃(θ, t;x1:n)∥2

by Cauchy–Schwarz

≤ ∥Λ−1∥2Eθ∥Γ(θ, t;x1:n)− Γ̃(θ, t;x1:n)∥2 + ∥Λ−1 − Λ̃−1∥2Eθ∥Γ̃(θ, t;x1:n)∥2

+ 2∥Λ−1∥
√
Eθ(∥Γ(θ, t;x1:n)− Γ̃(θ, t;x1:n)∥2)∥Λ−1 − Λ̃−1∥

√
Eθ(∥Γ̃(θ, t;x1:n)∥2)

=

(
∥Λ−1∥

√
Eθ∥Γ(θ, t;x1:n)− Γ̃(θ, t;x1:n)∥2 + ∥Λ−1 − Λ̃−1∥

√
Eθ∥Γ̃(θ, t;x1:n)∥2

)2

≤

[
∥Λ−1∥

(
(n− 1)

(
ϵλ
√
Eθ(∥sλ(θ, t)∥2) + ∥Σ−1

t,λ∥ϵDSM,λ

)
+

n∑
i=1

(
ϵ
√
Eθ(∥si(θ, t)∥2)∥+ ∥Σ−1

t,i ∥ϵDSM

))

+∥Λ−1 − Λ̃−1∥

(
(n− 1)

(
∥Σ−1

t,λ∥+ ϵλ

)√
Eθ(∥sλ(θ, t)∥2) +

n∑
i=1

(
∥Σ−1

t,i ∥+ ϵi
)√

Eθ(∥si(θ, t)∥2)

)]2
using Lemma 2.2 and Lemma 2.3

≤
[
(n− 1)∥Λ−1∥

√
Eθ(∥sλ(θ, t)∥2)

(
ϵλ +

((n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(∥Σ−1
t,λ∥+ ϵλ)

)
+

n∑
i=1

∥Λ−1∥
√
Eθ(∥si(θ, t)∥2)

(
ϵ+

((n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(∥Σ−1
t,i ∥+ ϵ)

)

+∥Λ−1∥

(
(n− 1)∥Σ−1

t,λ∥ϵDSM,λ +

n∑
i=1

∥Σ−1
t,i ∥ϵDSM

)]2
using Corollary 1 and assuming ϵi ≤ ϵ ∀i.

By assumption, we have M = maxi ∥Σ−1
t,i ∥ and ∥Σ−1

t,λ∥ ≤ Mλ. This gives:

Eθ∥∇ log pt(θ | x1:n)− s(θ, t;x1:n)∥2

≤
[
(n− 1)∥Λ−1∥

√
Eθ(∥sλ(θ, t)∥2)

(
ϵλ +

(n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(Mλ + ϵλ)

)
+

n∑
i=1

∥Λ−1∥
√
Eθ(∥si(θ, t)∥2)

(
ϵ+

(n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(M + ϵ)

)
+∥Λ−1∥ ((n− 1)MλϵDSM,λ + nMϵDSM)

√
E
]
2.

As Eθ

(
∥∇ log λt(θ)∥2

)
≤ Lλ and L = maxi Eθ∥∇ log pt(θ | xi)∥2, then it holds for all i =

1, . . . , n:

Eθ∥si(θ, t)∥2 ≤ Eθ[(∥∇ log pt(θ | xi)∥+ ∥si(θ, t)−∇ log pt(θ | xi)∥)2]
≤ Eθ∥∇ log pt(θ | xi)∥2 + Eθ∥si(θ, t)−∇ log pt(θ | xi)∥2
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+ 2Eθ∥si(θ, t)−∇ log pt(θ | xi)∥∥∇ log pt(θ | xi)∥
≤ Eθ∥∇ log pt(θ | xi)∥2 + Eθ∥si(θ, t)−∇ log pt(θ | xi)∥2

+ 2
√

Eθ∥si(θ, t)−∇ log pt(θ | xi)∥2
√
Eθ∥∇ log pt(θ | xi)∥2

by Cauchy–Schwarz inequality

≤ L+ ϵ2DSM + 2
√
LϵDSM by assumption on score matching error

= (
√
L+ ϵDSM)2.

Similarly,
Eθ∥sλ(θ, t)∥2 ≤ (

√
Lλ + ϵDSM,λ)

2.
Thus we finally get:
Eθ∼pt(·|x1:n)∥∇ log pt(θ | x1:n)− s(θ, t;x1:n)∥2

≤
[
(n− 1)∥Λ−1∥(

√
Lλ + ϵDSM,λ)

(
ϵλ +

(n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(Mλ + ϵλ)

)
+ n∥Λ−1∥(

√
L+ ϵDSM)

(
ϵ+

(n− 1)ϵλ + nϵ)∥Λ−1∥
1− ((n− 1)ϵλ + nϵ) ∥Λ−1∥

(M + ϵ)

)
+∥Λ−1∥ ((n− 1)MλϵDSM,λ + nMϵDSM)

]2
=
[
(n− 1)∥Λ−1∥

√
Lλ

(
nϵ∥Λ−1∥Mλ

1− nϵ∥Λ−1∥

)
+ n∥Λ−1∥(

√
L+ ϵDSM)

(
ϵ+

nϵ∥Λ−1∥
1− nϵ∥Λ−1∥

(M + ϵ)

)
+ ∥Λ−1∥nMϵDSM

]2
if we assume ϵDSM,λ = ϵλ = 0 as in Proposition 2 in the main section.

A.6 Discussion on measure choice
In Proposition 2, all the expectations in the assumptions are taken under the multi-observation
(diffused) posterior distribution pt(θ | x1:n) even though the variables inside the expectations come
from the (diffused) prior λt(θ) or the individual (diffused) posteriors pt(θ | xi). This measure choice
is particularly visible for the individual score error Eθ∼pt(θ|x1:n)∥∇ log pt(θ | xi) − si(θ, t)∥2 ≤
ϵ2DSM, which is usually computed in expectation over the individual posterior pt(θ | xi). But we can
link individual posterior to multi-observation posterior as follows:

pt(θ | xi) =

∫
p(θ0 | xi)qt|0(θ | θ0)dθ0 by definition of the individual diffused posterior

=

∫
qt|0(θ | θ0)

∫
p(θ0,x1:i−1,xi+1:n | xi)dx1:i−1dxi+1:ndθ0 by marginalisation

=

∫
qt|0(θ | θ0)

∫
p(θ0 | x1:n)p(x1:i−1,xi+1:n | xi)dx1:i−1dxi+1:ndθ0

=

∫
p(x1:i−1,xi+1:n | xi)

∫
p(θ0 | x1:n)qt|0(θ | θ0)dθ0dx1:i−1dxi+1:n by Fubini theorem

=

∫
p(x1:i−1,xi+1:n | xi)pt(θ | x1:n)dx1:i−1dxi+1:n by definition of the diffused posterior.

Thus we can apply the double expectation equality and get for any measurable function f :
Eθ∼pt(·|xi)(f(θ)) = Ex1:i−1,xi+1:n∼p(.|xi)Eθ∼pt(θ|x1:n)(f(θ)).

When f(θ) = ∥∇ log pt(θ | xi)−si(θ, t)∥2 for any i = 1, . . . , n we have a bound for the individual
score error:
Eθ∼pt(·|xi)∥∇ log pt(θ | xi)− si(θ, t)∥2 = Ex1:i−1,xi+1:n∼p(.|xi)Eθ∼pt(θ|x1:n)∥∇ log pt(θ | xi)− si(θ, t)∥2

≤ Ex1:i−1,xi+1:n∼p(.|xi)(ϵ
2
DSM) by assumption on the individual score error

= ϵ2DSM.
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So if we manage to bound the individual score error in average under the multi-observation (diffused)
posterior for a specific time t in the diffusion process, then this error will be bounded in average
under any individual (diffused) posterior (by the same constant).
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